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Abstract
We formulate a geometric nonlinear theory of the mechanics of accretion. In this
theory, the material manifold of an accreting body is represented by a time-dependent
Riemannian manifold with a time-independent metric that at each point depends on
the state of deformation at that point at its time of attachment to the body, and on the
way the new material is added to the body. We study the incompatibilities induced
by accretion through the analysis of the material metric and its curvature in relation
to the foliated structure of the accreted body. Balance laws are discussed and the
initial boundary value problem of accretion is formulated. The particular cases where
the growth surface is either fixed or traction-free are studied and some analytical
results are provided. We numerically solve several accretion problems and calculate
the residual stresses in nonlinear elastic bodies induced from accretion.

Keywords Accretion · Surface growth · Nonlinear elasticity · Residual stress ·
Foliations ·Material metric

Mathematics Subject Classification 74B20 · 74A05 · 74A10 · 53Z05

1 Introduction

Consider a body undergoing finite deformations while new material is being added
to its boundary. This is called accretion or surface growth. Examples of accretion
processes in Nature are the growth of biological tissues and crystals, the build-up of
volcanic and sedimentary rocks, the formation of planets, etc. Examples in techno-
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Fig. 1 Motion of a nonlinear elastic body undergoing accretion. The material manifold is a time-dependent
set and the material metric G is not known a priori

logical applications are additive manufacturing (3D printing), metal solidification, the
build-up of concrete structures in successive layers, and the deposition of thin films.
The goal of this paper is to formulate the mechanics of nonlinear elastic bodies that
grow as a result of addition of new material on their boundary while deforming at the
same time. (See Fig. 1.) We do not assume any symmetries and formulate the most
general accretion assuming the absence of ablation. To our best knowledge, such a
general theory does not exist in the literature. In particular, calculation of stresses and
deformation during accretion and after the completion of accretion (residual stresses)
is necessary for the design of accreting structures.

In a deforming body, undergoing growth mass is not a conserved quantity and
the body after unloading may be residually stressed. There are two types of growth,
namely bulk and surface growth [accretion or boundary growth (Epstein 2010)]. In
bulk growth, in the language of continuum mechanics, material points are preserved;
only the mass density and the natural (stress-free) configuration of the body evolve.
Due to its similarities with finite plasticity, the decomposition of the deformation
gradient into elastic and growth parts has been assumed in most of the works in the
literature (see Sadik and Yavari 2017 for a historical perspective). There are several
theoretical and computational works in the literature of (bulk) growth mechanics,
e.g., Takamizawa and Matsuda (1990), Takamizawa (1991), Rodriguez et al. (1994),
Epstein and Maugin (2000), Garikipati et al. (2004), Ben Amar and Goriely (2005),
Klarbring et al. (2007), Yavari (2010), Sadik et al. (2016). The recent book by Goriely
(2017) summarizes the recent developments in this exciting field.

In accretion (or surface growth), instead, new material points are added to the
boundary of a deforming body, meaning that the set of material points is time depen-
dent. (See Fig. 1.) Moreover, the relaxed (natural) configuration of the body explicitly
depends not only on the accretion characteristics (accretion flux, accretion velocity,
etc.), but also on the history of loading and deformation during accretion. Themechan-
ics of accretion is much less developed mainly because of the complexities involved in
modeling the kinematics of accretion and the intrinsic incompatible nature of accreting
bodies. For a history of accretionmechanics, see Naumov (1994) and Sozio andYavari
(2017). Recently, Tomassetti et al. (2016) modeled a spherically symmetric accretion
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of a hollow spherical ball made of an incompressible nonlinear elastic solid coupling
nonlinear elasticity and diffusion. Accretion occurs on the inner boundary with fixed
radius as the newmaterial is diffused from the surface of a rigid sphere, while the outer
boundary is time dependent. In particular, they defined a material manifold that is the
Cartesian product of the inner boundary of the sphere and a finite time interval. This is
understood as a submanifold of the Euclidean spaceR4 with a material metric induced
fromR

4. A theory of surface growth coupled with diffusion was presented in Abi-Akl
et al. (2018). Lychev et al. (2018) presented a geometric theory for the mechanics
of “layer-by-layer structures,” which is relevant to our present work in so far as an
accreting body can be seen as a family of infinitely many two-dimensional layers.
In Sozio and Yavari (2017), we introduced a geometric theory of nonlinear accretion
mechanics for symmetric surface growth of cylindrical and spherical bodies. We used
this theory for the analysis of several model problems. Our objective in the present
paper is to develop a nonlinear theory of accretion mechanics without any symmetry
assumptions. This generalization is quite non-trivial.

In classical nonlinear elasticity, one uses a stress-free reference configuration and
motion is a time-dependentmapping from this configuration into anEuclidean ambient
space. In anelasticity (in the sense of Eckart (1948)), the body is residually stressed,
and hence, a global stress-free configuration is non-Euclidean, in general, which can-
not be isometrically embedded in the Euclidean ambient space. However, local relaxed
configurations can be defined using a multiplicative decomposition of the deformation
gradient. In other words, a global stress-free configuration of the body is incompat-
ible with the Euclidean geometry of the ambient space. This idea in the mechanics
of defects is due to Kondo (1955a, b) and Bilby et al. (1955). In a geometric formu-
lation of anelasticity, the geometry of the material manifold depends on the source
of anelasticity. In the case of point and line defects, the geometry depends on the
(areal or volumetric) density of defects (Yavari and Goriely 2012a, b, 2013a, 2014).
In thermoelasticity, the material metric depends on both the temperature distribution
and the thermal properties of the solid, e.g., (temperature dependent) coefficient of
thermal expansion (Ozakin and Yavari 2010; Sadik and Yavari 2016). In bulk growth,
material metric is explicitly time dependent; it depends on the mass flux through the
balance of mass (Yavari 2010; Sadik et al. 2016). For inclusions (or inhomogeneities
with eigenstrains) material metric explicitly depends on the distribution of (finite)
eigenstrains (Yavari and Goriely 2013b, 2015; Golgoon et al. 2016). The geometry of
material manifold of accreting bodies is slightly more complicated. Accretion can be
seen as the study of the formation of non-Euclidean solids (Poincaré 1905) through
a continuous joining of infinitely many two-dimensional layers (Zurlo and Truski-
novsky 2017, 2018). Therefore, a fundamental requirement for an accretion model
consists of expressing the geometry of a deformable 3D body with respect to its layer-
wise structure. The material manifold of the accreted body depends on the way the
layers are put together, that is described by the growth velocity. Note that in general,
at different points on the boundary new material is added at different directions and
with different speeds. One should note that the material manifold also depends on the
deformation the body is experiencing at the time at which each layer is added. The
formulation of the nonlinear mechanics of accretion introduced in this paper explicitly
uses a Riemannian material manifold with a priori unknown metric that describes this
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material structure. In particular, the continuous addition of two-dimensional layers
will be modeled using the geometry of foliations following the ADM formalism of
general relativity presented in Arnowitt et al. (1959).

This paper is organized as follows. In Sect. 2 a model for the kinematics of an
accreting body is presented. In Sect. 2.1 a continuously accreted body is defined. The
kinematics of an accreting body is defined as a pair of a spatial motion of a time-
dependent domain in Sect. 2.2, and a material motion of the layers in the material
ambient manifold in Sect. 2.3. In Sect. 2.4, the spatial growth velocity is defined and
then used to construct the material metric through the introduction of the accretion
tensor Q. In Sect. 3 we present a study of the curvature of the material manifold
following the procedure of the ADM formalism of general relativity. In Sect. 3.1
we decompose the material metric according to the material foliated structure, and
identify the first fundamental form of the layers. In Sect. 3.2 we focus on the second
fundamental form and on the curvature tensor. In Sect. 3.3 all the foliation quantities
are expressed in terms of the growth velocity, and then are used to construct the three-
dimensional non-Euclidean geometry of the accreting solid. In Sect. 4 the balance laws
and the initial boundary value problem of accreting bodies are discussed. In Sect. 5
two classes of problems are investigated: accretion through a fixed growth surface in
Sect. 5.1, and accretion through a traction-free growth surface in Sect. 5.2. Several
numerical examples are presented in Sect. 5.3. In the appendices, we tersely review
some elements of nonlinear anelasticity and the differential geometry of submanifolds,
surfaces in Riemannian manifolds, and foliated manifolds.

2 Kinematics of Accretion

In this section we formulate the kinematics of accretion. An accreting body is seen
as an evolving subset of a material manifold (Segev 1996; Ong and O’Reilly 2004)
endowed with a metric that at any point depends on the state of deformation of the
body at its time of attachment, and on the way the new particles are added to the body.
Unlikemost anelastic problems, in accretionmechanics, thematerial metric is coupled
with deformation and is calculated after solving the accretion initial boundary value
problem (IBVP). In other words, the metric of the material manifold is an unknown
field to be determined as part of the solution of the accretion IBVP.

2.1 An Accreting Body

Definition 2.1 An accreting body is a connected, orientable 3-manifold M (possibly
with corners) that is embeddable in the ambient space R3 together with a smooth map
τ : M → [0, T ], called the time of attachment map, with T being the final time,
satisfying the following properties:

(i) The sets Bt = {X ∈M | τ(X) ≤ t} are connected 3-manifolds ∀t ∈ [0, T ];
(ii) The differential dτ of the time of attachment map never vanishes, so that each

level surface �t = τ−1(t) is a smooth 2-manifold;
(iii) All �t ’s are diffeomorphic to each other.
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We call M the material ambient space and Bt the body at time t . The boundary ∂Bt

is the union of �t , the growth surface at time t , and �t = ∂Bt \ �t , the non-active
boundary (see Fig. 2).

As subsets of the boundary of an orientable manifold, all the �t ’s and �t ’s are ori-
entable surfaces. Notice that Bt1 ⊂ Bt2 for t1 ≤ t2, which expresses the monotonicity
of growth, or equivalently, the absence of ablation. Of course,M = BT . Property (ii)
expresses the continuity of growth, meaning that the layer added during the time inter-
val [t, t+dt] has an infinitesimal thickness. It is straightforward to check that for each
t ∈ R one has

Bt =
⋃

0≤τ≤t
�τ . (2.1)

Therefore, property (ii) implies that the body is a union of 2-dimensional layers, a
foliation in the language of differential geometry (see Appendix C and the develop-
ments in Sect. 3). Finally, property (iii) is a regularity requirement, which will turn out
to be useful in the following developments, allowing us to define material motions.
Note that this requirement implies that one single layer defines the topology of the
entire family, so if one starts with a �0 with some topological characteristics, these
will be preserved throughout the whole accretion process. The non-active boundary
represents that part of the boundary that is not involved in the accretion process.

Remark 2.2 The requirements enunciated for the pair (M, τ )may be violated for some
accretion problems. For example, one may need to include the presence of an initial
body B̊ that works as a substrate onwhich the newmaterial starts being deposited. This
would violate property (ii), as B̊ = �0 = τ−1(0) would not be a surface. Another
example is the case of accretion problems in which the growth surface changes in
a discontinuous manner, e.g., when accretion occurs on one side of the body and
suddenly stops and starts on a different side. This would violate the smoothness of
τ . Another example is a change of topology of the layers �t that violates property
(iii). In all these cases one can divide the problem into more regular pieces (Mi , τi ),
with 1 ≤ i ≤ n, that satisfy all the requirements. Then, the total body B at the end
of accretion will be the union of the initial body B̊ with all the material manifolds
defined for all these regular pieces, viz. B = B̊ ∪M1 ∪ · · · ∪Mn . Nevertheless, the

0

T

R

τ

t

M

BtΠt

Ω
t = τ −1(t)

Fig. 2 The material manifold of an accreting body. A schematic picture with labels for the material ambient
space M, the body at current time Bt , the growth surface �t , and the non-active surface �t
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material structure that will be defined in the following sections would not necessarily
be continuous through the interface of the different bodies.

2.2 Motion of an Accreting Body

The motion of a body subject to accretion is a time-dependent map with a time-
dependent domain, i.e., a family of maps ϕt : Bt → S, with t ∈ [0, T ], where
S is the ambient space manifold. For accretion applications we assume that S is a
three-dimensional Euclidean space. More precisely, indicating with Ct the set of all
embeddings ofBt in S, a motion is a map ϕ : R→ {Ct | 0 ≤ t ≤ T } such that ϕt ∈ Ct .
We indicate withωt the deformed configuration of each layer at its time of attachment,
i.e., ωt = ϕt (�t ), and with πt the deformed non-active boundary, i.e., πt = ϕt (�t ).
Therefore, as ϕt is a homeomorphism for every t , one has

∂ϕt (Bt ) = ϕt (∂Bt ) = ϕt (�t ∪�t ) = ϕt (�t ) ∪ ϕt (�t ) = ωt ∪ πt . (2.2)

As usual, the material and spatial velocity fields Vt and vt are defined as Vt (X) =
∂
∂t ϕ(X , t), and vt ◦ϕt = Vt . The material and spatial acceleration fields At and at are
defined as At = ∂

∂tVt , and at ◦ ϕt = At . The so-called deformation gradient F is the
derivative map of ϕt defined as Ft (X) = Tϕt (X) : TXB→ Tϕt (X)S.

We define a map ϕ̄ :M→ S, ϕ̄(X) = ϕ(X , τ (X)), that records the placement of
each point at its time of attachment.Note that for each layer�t one has ϕ̄|�t = ϕt |�t , as
when τ(X) = t one has ϕ̄(X) = ϕ(X , t). Hence, ϕ̄ records the deformed configuration
ωt = ϕt (�t ) = ϕ̄(�t ) of each layer at its time of attachment. Therefore, one writes

ϕ̄(Bt ) = ϕ̄

( ⋃

0≤τ≤t
�τ

)
=

⋃

0≤τ≤t
ϕ̄ (�τ ) =

⋃

0≤τ≤t
ωτ . (2.3)

Note that the same position in the ambient space S may be occupied by different
material points at different times, i.e., one may have ϕ(X1, τ (X1)) = ϕ(X2, τ (X2))

for X1 	= X2 . This means that, in general, ωt1 and ωt2 are not disjoint for t1 	= t2, and
therefore, the maps ϕ̄ and T ϕ̄ need not be injective, and hence, in general ϕ̄ is not an
embedding, although it is smooth by construction. See Fig. 3 for a schematic sketch
of the mappings ϕt and ϕ̄.

Finally, the two-point tensor F̄ is defined as

F̄(X) = F(X , τ (X)), (2.4)

recording the deformation gradient of each point X at its time of attachment τ(X).

Remark 2.3 Even when ϕ̄ is an embedding, its tangent map T ϕ̄ is invertible but is not
equal to F̄. In fact, in components one has

(T ϕ̄)i J = ∂ϕ̄i

∂X J
= ∂ϕi (X , τ (X))

∂X J
= F̄ i

J + V i ∂τ

∂X J
, (2.5)

123

Author's personal copy



Journal of Nonlinear Science (2019) 29:1813–1863 1819

ϕt1

ϕt2

ϕt3

ϕt1(Bt1)

ϕt2(Bt2)

ϕt3(Bt3)

ϕ̄(Bt3)

S

ϕ̄

Bt1

Bt2

Bt3

Fig. 3 The motion of an accreting body. On the left the evolving material manifold at three different times
t1 < t2 < t3 is shown. In the middle the deformed configurations at t1, t2, and t3 are shown. On the right
Bt3 is mapped by ϕ̄ to the union of layers considered at their time of attachment. Note that ϕ̄ may not be
injective

i.e., T ϕ̄ = F̄+ V⊗ dτ . In general, F̄ is not the tangent map of any embedding, or in
other words, F̄ is not compatible. Nevertheless, since F̄|T�t = T ϕ̄|T�t = Ft |T�t for
each t ∈ R, it is compatible on each single layer.1

2.3 TheMaterial Motion

In the material manifold, the pointwise rate at which the material is added is not
uniquely defined. In fact, in order to define a velocity with which the growth surface
�t is moving in M, one needs to identify points on different layers. This can be
achieved by defining a motion of layers in the material manifold.

Definition 2.4 A material motion is a 1-parameter family of diffeomorphisms 	 :
�0 × [0, T ] → M such that 	(�0, t) = �t . Its trajectories are called material
trajectories. We indicate with U the velocity of the material motion, viz.

U(X , t) = ∂

∂t
	(X , t), (2.6)

and we call it the material growth velocity.

The existence of a material motion is guaranteed by property (iii) of Sect. 2.1. Clearly
it is not unique. On the other hand, the condition for a given nowhere-vanishing vector
field W on M to be a velocity for some material motion can be obtained by the
requirement τ(	(X , t)) = t . Differentiating with respect to time one finds that W
is a material growth velocity for some material motion if and only if 〈dτ,W〉 = 1.
This means that all the growth velocity fields one can define on M must have their
τ -component equal to 1 at every point (see Fig. 4).

1 The tangent bundle T�t of �t ⊂M, is the union of all TX�t ’s for X ∈ �t , i.e., the set of all vectors
that are tangent to �t . Therefore, with F̄|T�t we indicate the restriction of F̄ operating on tangent vectors
on �t . T ϕ̄|T�t and Ft |T�t are defined similarly. We use the same notation for Tωt .
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U1
U2

U3

Ωt

Fig. 4 Left: examples of material trajectories induced by different material motions on the same material
manifold. Right: the velocities of the three different material motions must have the same τ -component

A material motion can also be defined starting from a foliation atlas on M made
of charts (
1, 
2, τ ), with the third coordinate defined globally and given by the
time of attachment map (see Appendix C). The material motion determined by such
coordinates is the one that preserves the “layer coordinates” (
1, 
2) of each particle.
This means that if a point X0 ∈ �0 has coordinates (
1, 
2, 0), then 	t maps it to
the point X with coordinates (
1, 
2, t). Therefore, the trajectories of the motion are
the curves with constant layer coordinates, or τ -lines. In this sense, the third vector of
the basis induced by (
1, 
2, τ ), i.e.,

U = ∂

∂τ

∣∣∣∣

1,
2

, (2.7)

is the material growth velocity associated with 	. Note that 〈dτ, ∂
∂τ
〉 = 1.

Remark 2.5 In general, two different foliation charts induce differentmaterialmotions.
Let us consider two sets of foliation coordinates (
1, 
2, τ ) and (�1,�2, τ ). On the
overlapping region, one has the following change of coordinates

�1 = �̂1(
1, 
2, τ ), �2 = �̂2(
1, 
2, τ ), τ = τ. (2.8)

This means that

U2 = ∂

∂τ

∣∣∣∣
�=const

= ∂
1

∂τ

∂

∂
1 +
∂
2

∂τ

∂

∂
2 +
∂

∂τ

∣∣∣∣

=const

= ∂
1

∂τ

∂

∂
1 +
∂
2

∂τ

∂

∂
2 + U1. (2.9)

This implies that when the change of the layer coordinates depends on τ , in general,
U1 	= U2. On the other hand, its dual co-vector dτ remains unchanged since the third
coordinate τ is the same in both coordinate systems.

One should note that a material motion induces a foliation atlas, in the same way
that foliation coordinates define a material motion. Given a material motion 	, one
can fix coordinates (
1, 
2) on �0, and extend them toM such that the coordinates
of a point X ∈M are 
1(	−1(X , τ (X))), 
2(	−1(X , τ (X))), and τ(X). In short,
we have shown that

Material motion ←→ Foliation atlas.
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M

Bt
ϕt(Bt)

ϕ̄(Bt)

ϕt

ϕ̄|Ωt

ϕ̄

ϕ̄|Ωt

S

U
F̄U

v

w

F̄Uw

Fig. 5 Configurations, motions, and growth velocities. On the left the material growth velocity U is shown.
It is defined on the material ambient spaceM and is tangent to the trajectories of the material motion. The
middle configuration is the deformed configuration at time t . The velocity F̄U is defined on the growth
surface and is tangent to the ϕt image of the trajectories of 	 (or the τ -lines of the foliation coordinates
induced by the material motion 	). The right configuration is the union of all layers at their time of
attachment until time t (in general ϕ̄ is not an embedding). The total velocity w is defined on each layer
at its time of attachment and describes how the growth surface moves. It is tangent to the ϕ̄ image of the
trajectories of 	

It should be emphasized that in the present accretion model what is given is the map
τ , which partitions the material manifold into a union of surfaces, and respects the
topology of the problem. The material motion 	 is any flow onM that is compatible
with the foliation given by τ , i.e., such that 〈dτ,U〉 = 1, with U being the generator
of 	.

The total velocity of the growth surface ω in the deformed configuration has two
contributions: one due to accretion, and one due to deformation. In particular, noting
that �t = 	(�0, t), one can write ωt = ϕ(�t , t) = ϕ̄(�t ) = ϕ̄(	(�0, t)), which
represents the motion of ωt in terms of the coordinates of the material layers, i.e., the
map ϕ̄ ◦ 	t : �0 × R → S. Its velocity wt is called the total velocity and can be
obtained recalling (2.5):

w = d

dt
(ϕ̄ ◦	t ) = (T ϕ̄)U = (

F̄+ v⊗ dτ
)
U = F̄U+ v. (2.10)

The term F̄U represents the contribution of accretion, while v is the contribution of
deformation. Figure 5 shows the three velocities U, F̄U and w, and their respective
configurations.

2.4 TheMaterial Metric

We assume that at each time t one can univocally identify a vector field ut onωt called
the growth velocity that describes the rate and direction at which newmaterial is being
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S

M

qt

ϕt(Bt)

ut

Ωt

Ωt+

BtL

l
U

Fig. 6 Addition of an infinitesimally thin layer to the boundary of a deforming body. The two-point tensor
Q is defined as Q|�t = Tqt |�t

added.2 In other words, if one considers accretion as the addition of material from the
exterior of the body, the velocity of a material point that is about to attach to the growth
surface is vt − ut , and its velocity relative to the growth surface is −ut . We assume
that ut is nowhere purely tangential and that it points outside of the deformed body
ϕt (Bt ). However, in general, it does not need to be normal toω (see Skalak et al. 1997),
Ganghoffer (2011), and the example in Sect. 5.1).3 The growth velocity describes the
way in which the body would naturally evolve in the case of no deformation during
accretion. So it provides information on the material structure of the body. As a matter
of fact, we will see that the Riemannian material structure depends on the deformed
configuration of each layer when it joins the body and on the growth velocity u. Let
us define the following two sets

Lt,ε = {X ∈M | t ≤ τ(X) ≤ t + ε} and lt,ε = {x + s u(x, t) | x ∈ ωt , 0 ≤ s ≤ ε},
(2.11)

for 0 ≤ t < T and 0 < ε ≤ T − t (Fig. 6). The first set represents the material added
during the time interval [t, t + ε] in the material manifold. The second set represents
the layer added to the deformed configuration at time t . Given a point X ∈ Lt,ε (note
that this point has time of attachment t ≤ τ(X) ≤ t + ε), we move it to �t following
its material trajectory. Let us denote this point by Xt = 	t (	

−1
τ(X)(X)), and define the

map

qt : Lt,ε → lt,ε
X �→ ϕ̄(Xt )+ (τ (X)− t)u(ϕ̄(Xt ), t),

(2.12)

where the linear structure of the Euclidean ambient space S allows one to use a
translation operator. Choosing Cartesian coordinates in the ambient space,4 the map
qt can be written as

2 It is related to the flux of mass in the way explained in Sect. 4.1.
3 We assume that the growth velocity is a given vector field on the boundary of the deformed body. However,
in a coupled theory of accretion it would be one of the unknown fields. In this paper we assume that this
vector field is given and focus our attention on formulating the nonlinear elasticity problem. Extending the
present theory to consider the coupling between mass transport and elasticity will be the subject of a future
communication.
4 The translation operation would force one to work with shifters when using curvilinear coordinates
(see Marsden and Hughes 1983). Here, for the sake of simplicity, we use Cartesian coordinates.
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qit (X) = ϕ̄i (Xt )+ (τ (X)− t) ui (ϕ(Xt , t), t). (2.13)

Therefore, referring to foliation coordinates for material indices and to Cartesian coor-
dinates for spatial indices, one has the following representation for the tangent map
Tqt

∂qit
∂
A

= ∂ϕ̄i

∂
A
+ (τ − t)

∂ui

∂
A
= F̄ i

A + (τ − t)
∂ui

∂
A
, A = 1, 2,

and
∂qit
∂τ
= ui , (2.14)

as on the growth surface T ϕ̄ = F̄. Evaluating at τ = t , one obtains

∂qit
∂
A

∣∣∣∣
τ=t
= F̄ i

A, A = 1, 2, and
∂qit
∂τ

∣∣∣∣
τ=t
= ui . (2.15)

Definition 2.6 The accretion tensor Q is a time-independent two-point tensor field
defined as Q|�t = Tqt |�t , ∀t , which from (2.15) is written as

Q(X) = F̄(X)+ [
u(ϕ̄(X), τ (X))− F̄(X)U(X)

]⊗ dτ(X), (2.16)

for X ∈M.

Note that the accretion tensor can be understood as the tangent of a mapping that
takes a layer of material that is about to be attached to the body from the material
manifold and maps it to its current configuration right before attachment. It has been
constructed layer by layer, however, in such a way that it captures the out-of-layer
part of the mapping as well. Note that QU = u because 〈dτ,U〉 = 1. With respect

to the frame
{

∂
∂
1 ,

∂
∂
2 ,

∂
∂τ
= U

}
induced by the fixed foliation chart (
1, 
2, τ )

in the material manifold M, and a frame
{

∂
∂x1

, ∂
∂x2

, ∂
∂x3

}
induced by a local chart

(x1, x2, x3) in the ambient space S, Q has the following representation

[
Qi

J (X)
]
=

⎡

⎢⎢⎣

∂ϕ̄1

∂
1 (X)
∂ϕ̄1

∂
2 (X) u1(ϕ̄(X), τ (X))

∂ϕ̄2

∂
1 (X)
∂ϕ̄2

∂
2 (X) u2(ϕ̄(X), τ (X))

∂ϕ̄3

∂
1 (X)
∂ϕ̄3

∂
2 (X) u3(ϕ̄(X), τ (X))

⎤

⎥⎥⎦ . (2.17)

Note that the accretion tensorQ, similar to F̄, is not the tangent map of any embedding,
even though it is compatible on each single layer. In particular, Q|� = F̄|� = T ϕ̄|�.

Throughout this paper, we consider accretion as the addition of undeformed mate-
rial. Under this assumption, each mapping qt sending layer t in the material manifold
to its natural state in the ambient space is an isometry. Therefore, in the limit ε → 0,
the set lt,ε represents the natural state of the material. For this reason, we define the
material metric on M as the pull-back of the Euclidean ambient metric g using Q,
i.e.,

G(X) = Q
(X) g(ϕ̄(X))Q(X), (2.18)
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which in components reads

GI J (X) = Qi
I (X) gi j (ϕ̄(X)) Q j

J (X). (2.19)

Note that the material metric G explicitly depends on the deformation at the time
of attachment of each single layer, and on the growth velocity u, that represents a
physical characteristic of the accretion process. Notice that G also depends on the
material motion 	 via the material growth velocity U. As a matter of fact, if one
considers a different material motion, and hence, a different material growth velocity
U′, the material metric defined through (2.16) and (2.18) changes. This means that the
body will be represented by a different Riemannian manifold. One may think that the
elastic response of the body will be altered by this change. Nevertheless, it turns out
that this is not the case. This result, established next in Proposition 2.7, implies that
our accretion model is well defined.

Proposition 2.7 The elastic response of an accreting simple body is invariant with
respect to the choice of the material motion.

Proof Fixing (M, τ ), one can define a map G associating a material metric to any
pair of material and spatial motions, i.e., G = G[	,ϕ]. We claim that for any other
material motion 	′ there exists a diffeomorphism λ :M→M that pulls G[	′, ϕ′]
back to G[	,ϕ], where ϕ′ is the motion such that ϕt = ϕ′t ◦ λ for any t ∈ [0, T ].5 Let
us fix 	′. Given 	 and 	′, one can define the diffeomorphism

λ : X �→ 	′τ(X)

(
	−1τ(X)(X)

)
, (2.20)

sending trajectories of 	 to trajectories of 	′. Therefore, 	′ = λ ◦ 	. Note that
λ(�τ ) = �τ , or equivalently, τ(λ(X)) = τ(X). Now one defines the motion ϕ′
such that ϕt = ϕ′t ◦ λ for any t ∈ [0, T ]. Setting � = Tλ and F′ = Tϕ′, one
has F(X , t) = F′(λ(X), t)�(X). Thus, since τ(λ(X)) = τ(X), one concludes that
F̄(X) = F̄′(λ(X))�(X). Indicating with U′ the material growth velocity induced by
	′, using (2.16) one can define

Q(X) = F̄(X)+ [
u(ϕ̄(X), τ (X))− F̄(X)U(X)

]⊗ dτ(X),

Q′(X) = F̄′(X)+ [
u(ϕ̄′(X), τ (X))− F̄′(X)U′(X)

]⊗ dτ(X).
(2.21)

Note that U′(λ(X)) = �(X)U(X), and as τ(X) = τ(λ(X)), dτ is not affected by this
diffeomorphism, i.e., dτ(X) = dτ(λ(X)))�(X). Hence, one has

Q(X) = F̄(X)+ [
u(ϕ̄(X), τ (X))− F̄(X)U(X)

]⊗ dτ(X)

= F̄′(λ(X))�(X)+ [
u(ϕ̄′(λ((X)), τ (X))− F̄′(λ(X))�(X)U(X)

]⊗ dτ(λ(X))�(X)

= {
F̄′(λ(X))+ [

u(ϕ̄′(λ((X)), τ (X))− F̄′(λ(X))U′(λ(X))
]⊗ dτ(λ(X))

}
�(X)

= Q′(λ(X))�(X). (2.22)

5 Recall that a motion ϕ′ for an accreting body is a time-dependent map with a time-dependent domain,
i.e., ϕ′t : Bt → S.
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Setting G′ = G[	′, ϕ′], from (2.18) it follows that

G(X) = �
(X)Q′
(λ(X)) g
(
ϕ̄′(λ(X))

)
Q′(λ(X))�(X)

= �
(X)G′(λ(X))�(X). (2.23)

Thismeans thatG = λ∗G′, and hence, (M,G) and (M,G′) are isometricRiemannian
manifolds (through λ). Since the body is simple by hypothesis, this isometry implies
that if at a given time t the mapping ϕt satisfies the balance equations for (Bt ,G|Bt ),
then ϕ′t = ϕt ◦ λ−1 will satisfy the balance equations for (Bt ,G′|Bt ).

6 In other words,
the elastic response of the accreting body is independent of the choice of the material
metric. ��
Remark 2.8 Despite what our intuition may suggest, in general w 	= u+ v. In fact, as
shown in (2.10), one has w = F̄U + v, and in general u = QU 	= F̄U. This means
that the growth velocity u is not enough to tell how the growth surface is moved by
the addition of new material; it only provides information on the natural state of the
material that is being added. However, in some cases, e.g., when the growth surface
is subject to no external forces, one has w = u+ v (see Proposition 5.4).

Remark 2.9 The material metric does not change in time. This means that the evolu-
tion of the material manifold simply consists of adding new material points, leaving
the already existing points unaltered and without adding any other sources of incom-
patibility. This feature is referred to as the “non-rearrangement property” of accreting
bodies (Manzhirov and Lychev 2014).7 Of course this ceases to be true if one con-
siders the thermal effects that characterize many accretion problems, e.g., additive
manufacturing or solidification.

We denote by ∇ and ∇g the Levi–Civita connections associated with the Rieman-
nian manifolds (M,G) and (S, g), respectively. The Riemann curvature associated
with (M,∇) is denoted by R , while the curvature tensor for (S,∇g) vanishes. An
algorithm for the construction of the material manifold and all the related quantities
of an accreting body are summarized in Table 1. For some details on Riemannian
manifolds, see Appendix A.

Remark 2.10 In the case of addition of pre-stressed particles, the material metric is
defined in a similar way. The only difference is that the natural distances in the body
at the time of attachment are represented by a metric hi j 	= gi j . For instance, this
metric can be obtained by transforming the Euclidean metric using a pre-deformation
F (which in general is not compatible) so that hi j = FhiFk j ghk . Therefore, setting
GI J = Qi

I hi j Q j
J , one obtains GI J = Qi

I Q j
JFhiFk j ghk . However, in this paper,

we assume that only stress-free particles are attached to the growth surface.

6 In simple bodies the mechanical response at each point only depends on the local state of deformation.
Therefore, in the elasticity of simple bodies, when twomaterial manifolds (B,G) and (B′,G′) are isometric
through λ : B→ B′, if ϕ : B→ S is a solution of the balance equations for (B,G), then ϕ′ = ϕ ◦ λ−1 :
B′ → S is a solution for (B′,G′).
7 In the linear analysis a similar assumption is used, e.g., in Kadish et al. (2005): “We assume that the
material of the sphere behaves elastically once it has accreted.” This means that incompatibility at a material
point is caused only at the time of its attachment (or before), and therefore, one can write ε(x, t) =
εinc(x)+ εcomp(x, t) for t > τ(x) (see also Schwerdtfeger et al. 1998).
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Table 1 Summary of the steps needed in the construction of the material manifold of an accreting body in
terms of the history of deformation and the growth velocity

Construction of the material manifold of an accreting body

1. Choose a pair (M, τ ) representing the material manifold. This pair is problem dependent,
e.g., it must respect the topology of the growing body and its layers

2. Define amaterial motion for the layers inM. This can be done by fixing foliation coordinates
(
1, 
2, τ ), from which the material growth velocity is calculated as U = ∂

∂τ

3. Use u to build the accretion tensor Q using (2.17). Note that Q is expressed in terms of the
configuration map so it is not known a priori; it is an unknown field in the accretion boundary
value problem

4.Express thematerialmetricG using (2.18).Materialmetric explicitly depends on the accretion
tensor Q, and hence, is not known a priori

Remark 2.11 The material manifold M can always be defined as a subset of the
Euclidean space S. Consider Cartesian coordinates {xi } on S with the associated
frame {ei }. Note that, in general, these do not constitute a foliation chart for M. Let
Qi

j and (Q−1) j i be the components of Q and Q−1 with respect to Cartesian coordi-
nates in all the indices. By definition, one hasGi j = Qh

iδhk Qk
j . Consider themoving

frame ēi (X) = (Q−1) j i (X)e j onM. With respect to this frame one has

G
(
ēi , ē j

) = G
(
(Q−1)hieh, (Q−1)k jek

)
= (Q−1)hi (Q−1)k jG (eh, ek)

= (Q−1)hi (Q−1)k j Qm
hQ

m
kδmn = δi j . (2.24)

This means that the moving frame represents the natural distances in the body. In
this sense, we can interpret accretion through a multiplicative decomposition of the
deformation gradient, i.e., F = FeQ, where the accretion tensor Q represents the
anelastic part, and Fe = FQ−1 represents its elastic part. The material metric G
represents the right Cauchy–Green strain tensor associated with Q.

3 An Accreting Body as a Foliation

An accreting body grows as a result of continuous addition of new layers of material
to its boundary. Therefore, it is natural to describe the accreting body in its material
manifold in terms of the geometry of the added layers, i.e., the geometry of foliations
in the language of differential geometry.8 In this section, we describe the geometric
structure of the material manifold in terms of the growth quantities that were intro-
duced in Sect. 2. We follow the ADM formalism of general relativity, for which we
refer the reader to the seminal work (Arnowitt et al. 1959) or to the more recent
review (Golovnev 2013). As for some basic concepts of Riemannian geometry, geom-
etry of surfaces, and foliations, see the appendices.

8 We should mention that the idea of decomposing reference configuration of a body into two-dimensional
subbodies was investigated in the work of Wang (1968) on the so-called laminated bodies.
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N
U

∂
∂Ξ

∂

n
uQ

ϕt(Bt)

Ωt

(M,G)

Bt

ωt

(S,g)

Fig. 7 A two-dimensional sketch of the local frames onM. It should be noted that the material unit normal
vector N is not the unit normal vector to �t in the “standard R

3 sense”; it is with respect to the material
metric G

3.1 TheMetric of theMaterial Foliation

The material manifold representing an accreting body can be seen as a foliated Rie-
mannianmanifold, i.e., as a Riemannianmanifold (M,G) partitioned into a collection
of surfaces (�τ , G̃τ ), τ ∈ [0, T ], with G̃τ being the first fundamental form induced
by G on T�τ . The unit vector normal to each layer �τ pointing in the direction of
increasing τ is denoted by Nτ . Note that �τ is orientable being a subset of the bound-
ary of an orientable three-dimensional manifold, and thus, it is possible to define Nτ

globally. The associated 1-form is denoted by N�
τ . From here on we use letters from

A to G to denote indices in the set {1, 2} (layer indices), and letters from H to Z
for indices in the set {1, 2, 3} (3D indices). For the sake of simplicity, we drop the
subscript τ .

Let us fix some foliation coordinates (
1, 
2, τ ). In the following developments,
we will mainly consider two moving frames—or local bases—onM (see Fig. 7), viz.

F =
{

∂

∂
1 ,
∂

∂
2 ,
∂

∂τ
= U

}
, and F̆ =

{
∂

∂
1 ,
∂

∂
2 ,N
}

. (3.1)

The first frame is holonomic and is the one induced by the foliation coordinates
(
1, 
2, τ ), while the second frame is obtained by substituting U with N, and hence,
is in general anhonolomic. Their associated dual bases are

F∗ =
{
d
1, d
2, dτ

}
, and F̆∗ =

{
θ̆
1
, θ̆

2
, θ̆

3 = N�
}

. (3.2)

Note that d
1 	= θ̆
1
, and d
2 	= θ̆

2
. In fact, setting F = {E1,E2,E3} and F̆ =

{Ĕ1, Ĕ2, Ĕ3}, one can write Ĕ Ĭ = EI AI
Ĭ , where

[
AI

Ĭ

]
=

⎡

⎣
1 0 N 1

0 1 N 2

0 0 N 3

⎤

⎦ ,
[
(A−1) Ĭ I

]
=

⎡

⎢⎢⎣

1 0 − N1

N3

0 1 − N2

N3

0 0 1
N3

⎤

⎥⎥⎦ . (3.3)
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The change of frame in terms of the co-frame fields is written as θ̆
Ĭ = (A−1) Ĭ I θ I ,

with θ I indicating the 1-forms in the basis F∗. Hence

θ̆
1 = d
1 − N 1

N 3 dτ, θ̆
2 = d
2 − N 2

N 3 dτ, N� = 1

N 3 dτ. (3.4)

With respect to the moving co-frame field F̆ the metric is written as

G = G̃11θ̆
1 ⊗ θ̆

1 + G̃22θ̆
2 ⊗ θ̆

2 + G̃12(θ̆
1 ⊗ θ̆

2 + θ̆
2 ⊗ θ̆

1
)+ N� ⊗ N�. (3.5)

Changing basis using (3.3)2 (i.e.,GI J = (A−1) Ĭ I G Ĭ J̆ (A
−1) J̆ J ) one obtains themetric

in the holonomic frame:

G = G̃11d

1 ⊗ d
1 + G̃22d


2 ⊗ d
2 + G̃12
(
d
1 ⊗ d
2 + d
2 ⊗ d
1)

−
(
N 1

N 3 G̃11 + N 2

N 3 G̃12

) (
dτ ⊗ d
1 + d
1 ⊗ dτ

)−
(
N 1

N 3 G̃12 + N 2

N 3 G̃22

) (
dτ ⊗ d
2 + d
2 ⊗ dτ

)

+
[(

N 1

N 3

)2

G̃11 + 2
N 1N 2

(N 3)2
G̃12 +

(
N 2

N 3

)2

G̃22 + 1

(N 3)2

]
dτ ⊗ dτ.

(3.6)

Therefore, the material metric has the following matrix representations in the two
moving frames

[
GĬ J̆

] =

⎡

⎢⎢⎣
G̃ AB 0

0 1

⎤

⎥⎥⎦ , [GI J ] =

⎡

⎢⎢⎣
G̃ AB ηA

ηB G33

⎤

⎥⎥⎦ , (3.7)

where the layer part coincides with the first fundamental form and has the same com-
ponents in the two frames as they share the two layer basis vectors. The components
ηA, coming from the change of co-frames from F̆∗ to F∗, constitute a 1-form η repre-
senting the “shift” of the metric in the coordinates (
1, 
2, τ ). In particular, one has
ηA = GA3 = (A−1) Ĭ AĞ Ĭ J̆ (A

−1) J̆ 3, i.e.,

ηA = −G̃ AB
N B

N 3 . (3.8)

As for the component G33, one has G33 = (A−1) Ĭ 3Ğ Ĭ J̆ (A
−1) J̆ 3, and it reads

G33 = 1

(N 3)2

(
N AN BG̃ AB + 1

)
. (3.9)

Using the same change of frame, one obtains the following representations of the
inverse metric G−1 with respect to the two frames:

[
GĬ J̆

]
=

⎡

⎢⎢⎣
G̃ AB 0

0 1

⎤

⎥⎥⎦ ,
[
GI J

]
=

⎡

⎢⎢⎣
G̃ AB + N AN B N AN 3

sym (N 3)2

⎤

⎥⎥⎦ . (3.10)
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3.2 The Curvature of theMaterial Foliation

Let us consider the following connections: (i) The Levi–Civita connection ∇ on
(M,G), and (ii) the Levi–Civita connection ∇̃τ (or simply ∇̃) on each layer (�τ , G̃τ ).
Since every leaf of the foliation is a surface in (M,G), on each layer the two connec-
tions ∇ and ∇̃ satisfy the Gauss formula:

∇̃YZ = ∇YZ−G(∇YZ,N)N, ∀Y,Z ∈ T�. (3.11)

The connections ∇ and ∇̃ have Christoffel symbols � I
J K and �̃A

BC , respectively.

Remark 3.1 As was explained in Sect. 2, Q|T�t = F̄|T�t = Ft |T�t , so the first
fundamental form of the layer �t is the pull-back of the first fundamental form of ωt

through the configuration map ϕt , i.e., G̃ = ϕt
∗(g|Tωt ) = ϕ̄∗(g|Tωt ). In other words,

�t and ωt are isometric. Therefore, since ∇̃ is the Levi–Civita connection for G̃, it
can be shown that ∇̃WZ = ∇̃ g̃

FW(FZ) for any pair of tangent vectors W, Z (∇̃ g̃ is
the covariant derivative induced on the surface ωt ). The connection ∇̃ is called the
pull-back connection of ∇̃ g̃. This property does not hold for the 3D connections ∇
and ∇g asG is obtained by “pulling back” g usingQ, which does not constitute a real
pull-back because Q is not a tangent map (or a “deformation gradient”).

Remark 3.2 A measure of the anholonomicity of the frame F̆ =
{

∂
∂
1 ,

∂
∂
2 ,N

}
is

given by the commutator coefficients ϒ I
J̆ K̆ = [Ĕ J̆ , ĔK̆ ]I , with Ĕ J̆ being ∂

∂
1 ,
∂

∂
2 ,

or N.9 So one has

ϒ I
AB = 0 , ϒ I

AN = −ϒ I
N A = ∂N I

∂
A
. (3.12)

This means that the anholonomicity of F̆ is given by the nonuniformity of the unit
normal vector with respect to F.10 Since the Levi–Civita connection is symmetric
(� I

J K = � I
K J in a holonomic frame), one can write the commutator coefficients for

the moving frame
{

∂
∂
1 ,

∂
∂
2 ,N

}
as

ϒ̆ Ĭ
J̆ K̆ = �̆ Ĭ

J̆ K̆ − �̆ Ĭ
K̆ J̆ , (3.14)

9 The Lie brackets are defined in Appendix A.
10 The commutator can be calculated entirely with respect to the frame F̆, i.e.,ϒ Ĭ

J̆ K̆ = [Ĕ J̆ , ĔK̆ ] Ĭ , which
has the following components

ϒ̆ Ĭ
AB = 0 , ϒ̆B

AN = −ϒ̆B
N A = ∂N B

∂
A
− N B

N3
∂N3

∂
A
, ϒ̆N

AN = −ϒ̆N
N A = 1

N3
∂N3

∂
A
.

(3.13)

Note that these coefficients do not constitute the components of a tensor, as they vanish in some frames (the
holonomic ones) and are nonzero in some other frames (the non-holonomic ones).
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where �̆ Ĭ
J̆ K̆ are the Christoffel symbols with respect to F̆ = { ∂

∂
1 ,
∂

∂
2 ,N}.11

Since the leaves are the level surfaces of τ , one can write the outward normal
vector N and the associated 1-form N� in terms of the gradient of τ , i.e., in terms of
(Grad τ) = (dτ)�. In particular, one has

N = Grad τ

‖Grad τ‖ , N� = dτ

‖Grad τ‖ . (3.15)

These relations can be easily obtained from (3.10), as (Grad τ)I = GI J τ,J =
GI J δ3 J = GI3. On each layer one defines the second fundamental form K as a(0
2

)
-tensor defined as

K(Y,Z) = G(∇YZ,N), ∀Y,Z ∈ T�, (3.16)

so that Gauss formula (3.11) is written as

∇YZ− ∇̃YZ = K(Y,Z)N. (3.17)

It can be easily shown that K is well defined and is symmetric. Moreover, the Wein-
garten formula reads

K(Y,Z) = −〈∇YN�,Z〉, (3.18)

and in short K = −∇N�. This allows one to obtain the components of the second
fundamental form:

KAB = − ∂NA

∂XB
+ � I

AB NI = � I
AB NI = 1

N 3�3
AB . (3.19)

Remark 3.3 While the material first fundamental form G̃ is the pull-back of the first
fundamental form g|Tωt on ωt , this property does not hold for the second fundamental
form, i.e., K 	= ϕt

∗k. This is due to the fact that unlike the first fundamental form, K
is not an intrinsic object of a surface; it depends on the way the surface is embedded
in its ambient space. In the case of accreting bodies, the two ambient spaces M and
S (respectively for � and ω) are not isometric, as the 3D metric tensors G and g are
mapped by the incompatible map Q. Therefore, for each layer in general K 	= ϕt

∗k,
even though for the first fundamental form one has G̃ = ϕt

∗g̃ (see also Remark 3.1).

11 Note that the Christoffel symbols do not constitute a tensorial object; they transform in the following
way

�̆ Ĭ
J̆ K̆ = (A−1) Ĭ I AJ

J̆ A
K
K̆� I

J K + (A−1) Ĭ I AI
Ĭ ,K̆ ,

where AI
Ĭ represent the change of basis given in (3.3), i.e., eI = (A−1) Ĭ I ĕ Ĭ .
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The Gauss equation relates the tangent part of R, which is represented by only
one independent component, say R1212, to K and R̃, that is represented by R̃1212,
or by the Gaussian curvature g = det(G̃ AC KCB) = R1212/ det G̃, or by the scalar
curvature R̃ = G̃ ABRC

ACB = 2g. It reads

RABCD = R̃ABCD + KADKBC − KACKBD. (3.20)

The Codazzi–Mainardi equations, instead, relateR to ∇̃K, viz.

NHRHBCD = NHRH
BCD = ∇̃DKBC − ∇̃C KBD. (3.21)

These equations express three components ofR, namelyR1212,R1213, andR2123, in
terms of R̃ and K. In other words, they describe the geometry of the non-Euclidean
3D accreted body in terms of the geometry of its layers. Note that the other three
components of the curvature tensor need more information than just the layer-wise
geometry.

3.3 The Geometry of theMaterial Foliation in Terms of the GrowthVelocity

The growth velocity u can be decomposed into its parallel and normal components,
i.e., u = u‖ + unn, where n is the unit normal vector to ω pointing out of the image
of the body, and u‖ is the orthogonal projection of u onto Tω. Recalling that by
construction QU = u, for the material growth velocity U one can write

U = Q−1u = Q−1u‖ + unQ−1n = Q−1u‖ + unN = U‖ +UNN, (3.22)

where we define U‖ = Q−1u‖ andUN = un ◦ ϕ. Note that we have used the fact that
Q−1n = N since the metric is transformed byQ itself.12 Note also thatG(U‖,N) = 0,
and so (3.22) is a unique orthogonal decomposition with respect to the material metric
G and the vector N. One can write U‖ = U A ∂

∂
A , where the U
A’s coincide with the

first two components of U with respect to F̆ =
{

∂
∂
1 ,

∂
∂
2 ,N

}
. In particular, one has

U = U A ∂

∂
A
+UNN. (3.23)

Comparing this with (3.3), one finds

U 1 = −N 1

N 3 , U 2 = −N 2

N 3 , UN = 1

N 3 ,

N 1 = −U
1

U 3 , N 2 = −U
2

U 3 , N 3 = 1

UN
. (3.24)

12 Note that G(Q−1n,Q−1n) = (Q−
GQ−1)(n, n) = g(n,n) = 1. Moreover, for any Y tangent to �

there exists a y = QY tangent to ω, so one hasG(Q−1n,Y) = G(Q−1n,Q−1y) = (Q−
GQ−1)(n, y) =
g(n, y) = 0. Therefore, N = Q−1n.
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Hence

N = −U A

UN

∂

∂
A
+ 1

UN
U, N� = UNdτ. (3.25)

Note that G33 = ‖U‖2G = ‖u‖2g. From (3.8), the shift part is written as13

ηA = G̃ ABU
B . (3.26)

Therefore, the material metric and its inverse in the frame F read

[GI J ] =

⎡

⎢⎢⎣
G̃ AB G̃ ACUC

sym ‖U‖2

⎤

⎥⎥⎦ ,
[
GI J

]
=

⎡

⎢⎢⎢⎣
G̃ AB + U AU B

(UN )2
− U A

(UN )2

sym 1
(UN )2

⎤

⎥⎥⎥⎦ . (3.27)

Using (3.27) to find the second fundamental form through (3.19), one obtains the
following expression in terms of the growth velocity and the first fundamental form
as

KAB = UN�3
AB = 1

2UN
(∇̃AηB + ∇̃BηA − ∂τ G̃ AB)

= 1

2UN
(G̃ AC ∇̃AU

C + G̃BC ∇̃AU
C − ∂τ G̃ AB).

(3.28)

One can now write the derivative of the first fundamental form of each layer with
respect to τ in terms of the material growth velocity, the first, and the second funda-
mental forms as

∂τ G̃ AB = G̃ AC ∇̃AU
C + G̃BC ∇̃AU

C − 2UN KAB . (3.29)

Note that ∂τ G̃ AB are the components of the tensor

LUG̃(X) = d

ds

∣∣∣∣
s=τ(X)

(
	s ◦	−1τ(X)

)∗ {
G̃
(
	s

(
	−1τ(X)(X)

))}
, (3.30)

where 	 indicates the material motion. Note that the map 	s ◦	−1τ(X) is a diffeomor-
phism from {X ∈ M|0 ≤ τ(X) ≤ T − s} to {X ∈ M|s ≤ τ(X) ≤ T }. The Lie
derivative of a

(0
2

)
-tensor is given by (LZS)AB = ∂C SAB ZC+SAC∂B ZC+SBC∂AZC ,

and therefore, one obtains (LUG̃)AB = ∂τ G̃ AB as the layer components of U vanish.

13 Indicating with g̃ab the components of the first fundamental form of ω (with respect to a coordinate
chart (ξ1, ξ2) on the surface), one also has ηA = Qa

AQ
b
B g̃ab(Q

−1)Bcuc = Qa
Ag̃acu

c .
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Now it is possible to write the Christoffel symbols of the connection ∇ in terms
of U, UN , and K (and of the coefficients of ∇̃). In particular, one has the following
expressions

�A
BC = �̃A

BC −
U A

UN
KBC , (3.31)

�3
3A = �3

A3 =
U A

UN
+ KAB

U B

UN
, (3.32)

�A
3B = �A

B3 = −U A

UN
∂BU

N −UN
[
G̃ AD + U AUD

(UN )2

]
KDB + ∇̃BU

A, (3.33)

�3
33 = 1

UN

(
∂τU

N +U A∂AU
N + KABU

AU B
)

. (3.34)

Note that the coefficients (3.32), (3.33), and (3.34) are sums of terms that are tensor
fields in the layer tangent space T�, and hence, they are tensor fields. Note that�A

BC ’s
are not the coefficients of ∇̃, i.e., �A

BC 	= �̃A
BC , as K 	= 0.

As was mentioned earlier, the Gauss equation (3.20) gives R1212 in terms of R̃
and K, while the two Codazzi–Mainardi equations (3.21) express R1213 and R2123 in
terms of ∇̃K. Therefore, we still need to calculate the remaining three independent
components ofR. In order to find them, one substitutes Eqs. (3.31)–(3.34) into (A.18)
and obtains

N I N J RI AJ B = 1

UN

(
∂τ KAB − ∇̃A∇̃BU

N +UN KACK
C
B − LU‖KAB

)
, (3.35)

with an abuse of notation LU‖KAB = (LU‖K)AB . Note that from (3.20), (3.21),
and (3.35) one can obtain all the components of the curvature tensor R of the Rie-
mannian manifold (M,G) in the frame F̆∗. Therefore, we are now able to recover the
geometry of the 3D accreted body from the layer quantities G̃ and K, and from the
material growth velocity U‖ and UN (see Table 2).

Remark 3.4 If one assumes that the growth velocity is normal, i.e.,U‖ = 0, then, (3.35)
is simplified to read

N I N J RI AJ B = 1

UN

(
∂τ KAB − ∇̃A∇̃BU

N +UN KACK
C
B

)
, (3.36)

with KAB = − 1
2UN ∂τ G̃ AB . The expressions (3.20) and (3.21) remain unchanged. If

one also assumes constant UN , then one obtains

N I N J RI AJ B = 1

UN
∂τ KAB + KACK

C
B, (3.37)

with ∂τ KAB = − 1
2UN ∂τ ∂τ G̃ AB .
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Table 2 Summary of the steps needed in the construction of the Riemann curvature tensor of the material
manifold (M,G)

Analysis of the local compatibility of an accreted body

1. Solve the accretion initial boundary value problem. This gives the first fundamental form
G̃, and the unit normal vector field N. Calculate U‖, UN , and the in-layer Christoffel symbols
�̃A

BC . There are some cases, e.g., when the growth surface is fixed, in which one does not
need to solve the accretion initial boundary value problem as the material metric is known a
priori (see Sect. 5.1)

2. Calculate the second fundamental form K using (3.19)

3. Use Gauss’s equation to write the tangent part of the curvature RABCD :

RABCD = R̃ABCD + KADKBC − KAC KBD

4. Use Codazzi–Mainardi equation to find the components NH RH ABC :

NHRHBCD = NHRH
BCD = ∇̃DKBC − ∇̃C KBD

5. Use (3.35) to find the components NH NK RH AK B :

N I N J RI AJ B = 1
UN

(
∂τ KAB − ∇̃A∇̃BUN +UN KAC KC

B − LU‖KAB

)

For the sake of completeness, we calculate the Ricci and scalar curvatures. From
(3.20), (3.21), and (3.35) one can calculate the Ricci curvature tensor. In particular,

we consider components in the frame
{

∂
∂
1 ,

∂
∂
2 ,N

}
, where the material metric has

the representation (3.10). Notice that from the change of frame (3.3), for a 1-form α

one has αN = AI
NαI = N IαI . For the tangential components, one has

RAB = RACBDG̃
CD + N I N J RI AJ B

= R̃AB + KACK
C
B − KC

CKAB + N I N J RI AJ B, (3.38)

where (B.8) was used. The components (N , A) are calculated using (3.21):

N I RI A = N I RIC ADG̃
CD + N I N J N K RI J AK = ∇̃C KC

A − ∇̃AK
C
C , (3.39)

with the term N I N J N K RI J AK = 0 by virtue of the anti-symmetry of R. For the
normal component RNN one writes

N I N J RI J = N I N JRIC J DG̃
CD + N I N J N K N L RI J LK

= 1

UN

(
∂τ K

C
C −UN KC

DK
D
C − �̃UN −UC ∇̃CUN

)
,
(3.40)

where use was made of (3.29) and of the relation (LU‖G̃)AB = G̃ AC ∇̃BUC +
G̃BC ∇̃AUC . Expressions (3.38), (3.39), and (3.40) give the entire Ricci curvature
tensor. Finally, one can calculate the scalar curvature R = RĬ J̆ G

Ĭ J̆ = RABG̃ AB +
N I N J RI J of the material manifold, which reads

R = R̃ − KC
DK

D
C − KC

CK
C
C + 2

UN

(
∂τ K

C
C − �̃UN −UC ∇̃CUN

)
. (3.41)
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4 Balance Laws and the Initial Boundary Value Problem of Accreting
Bodies

In Sect. 2we defined the notion of an accreting body and a family ofmaterialmanifolds
Bt , t ∈ [0, T ]. We also defined a material metric on M, that was studied in detail
in Sect. 3, and that for most accretion problems is an unknown a priori as it depends
on the kinematics of the deforming body during the accretion process. Each of the
material configurationsBt was therefore endowedwith ametric obtained by restricting
G to Bt , resulting in the identification of the pair (Bt ,G|Bt ) at time t ∈ [0, T ]. This
constitutes the first step in formulating the accretion initial boundary value problem
(IBVP). The next step is to discuss balance laws and the constitutive equations for an
accreting body. These, together with initial and boundary conditions, define the IBVP
of accretion for the unknown motion ϕ.

4.1 Balance of Mass

The material manifold is endowed with a volume form dV , that in a coordinate chart
{X I } is defined as dVI J K =

√
detG εI J K , where εI J K is the Levi–Civita symbol in

dimension three. Note that dV is well defined only for orientation-preserving changes
of coordinates. The Jacobian J (X , t) is a scalar on Bt given by

J (X , t) =
√
det g(ϕ(X , t))

detG(X)
det F(X , t). (4.1)

Evaluating at τ(X), one obtains

J̄ (X) =
√
det g(ϕ̄(X))

detG(X)
det F̄(X) =

√
det g(ϕ̄(X))

det
[
Q
(X)g(ϕ̄(X))Q(X)

] det F̄(X)

= det F̄
detQ

= det
(
Q−1F̄

)
. (4.2)

For any point X ∈ M, U(X) points in the direction of increasing τ , and therefore,
points outside of Bτ(X). Hence, the vector F̄(X)U(X) points outside of ϕt (Bt ). By
assumption Q(X) maps U(X) to a vector Q(X)U(X) = u(ϕ̄(X), τ (X)) that points
outside of ϕτ(X)(Bτ(X)), just as F̄(X) does. On TX�τ(X) the two tensors coincide.
Hence, since F̄(X) preserves orientation, so does Q(X). Therefore, detQ(X) > 0.
Since F̄|T� = Q|T�, the tensor FQ−1 has the following representation with respect
to a foliation chart:

[
(Q−1)I i F̄ i

J

]
=

⎡

⎣
1 0 (Q−1)1i F̄ i

3

0 1 (Q−1)2i F̄ i
3

0 0 (Q−1)3i F̄ i
3

⎤

⎦ , (4.3)

and so J̄ = (Q−1)3i F̄ i
3 = 〈dτ,Q−1F̄U〉. The Jacobian relates the volume forms in

the material and the ambient spaces as ϕ∗t dv = JdV , where dv is the standard volume
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form of the Euclidean space S. In this way, since
∫
ϕt (Bt )

f dv = ∫
Bt

( f ◦ ϕt )(ϕ
∗
t dv),

one writes
∫

ϕt (Bt )

f dv =
∫

Bt

J f ◦ ϕt dV . (4.4)

Each layer is in turn endowed with an area form dA, defined as dAI J =
√
det G̃ εI J .

Note that the Jacobian of the map ϕ̄|� is equal to 1 as �t and ωt are isometric.
Therefore, indicating with da the area form on ωt , one has dA = ϕ̄∗da, and hence

∫

ωt

f da =
∫

�t

f ◦ ϕt dA. (4.5)

For an accreting body mass is conserved only away from the growth surface ωt .
Unlike classical elasticity, mass is not conserved globally as new particles are joining
the body on its boundary.We indicate with ρ0(X) the mass density field in the material
manifold M, and with ρ(x, t) the mass density field in the deformed configuration
ϕt (Bt ). The local conservation of mass reads

ρ0(X) = ρ(ϕ(X , t), t)J (X , t), X ∈M, τ (X) ≤ t ≤ T . (4.6)

The total mass of the body at time t is calculated as

M(t) =
∫

ϕt (Bt )

ρ(x, t)dv =
∫

Bt

ρ0(X)dV , (4.7)

where the equality holds by virtue of the local conservation of mass. Recalling the
definition of the frame F̆∗ given in (3.2), one writes

dV = √
det[GI J ] d
1 ∧ d
2 ∧ d
3 =

√
det

[
GĬ J̆

]
θ̆
1 ∧ θ̆

2 ∧ θ̆
3

=
(√

det
[
G̃ AB

]
θ̆
1 ∧ θ̆

2
)
∧ N�, (4.8)

since det[GĬ J̆ ] = det[G̃ AB] from the representation (3.7). Therefore, in the foliated
structure, the material volume form can be written as

dV = dA ∧ N� = UNdA ∧ dτ, (4.9)

as N� = UNdτ by (3.25). Invoking (4.9), one can now express the total mass as

M(t) =
∫ t

0

(∫

�τ

ρ0U
N dA

)
dτ. (4.10)

Aswas explained in Sect. 2.4, when stress-freematerial is added on the growth surface,
the accretion tensorQ is a local isometry, i.e., its Jacobian is 1, and hence, mass density
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Table 3 History of a particle X in terms of the local deformation, Jacobian andmass density in the deformed
configuration right before attachment, at the time of attachment, and after attachment for t ∈ [τ(X), T ]

Local deformation Jacobian Density

Right before attachment Q(X) 1 ρ0(X)

At the time of attachment F̄(X) J̄ (X) = det F̄(X)
detQ(X)

ρ̄(X)

After attachment F(X , t)
√

det g(ϕ(X ,t))
detG(X)

det F(X , t) ρ(X , t)

Note that a particle, in general, experiences a discontinuity in the local deformation at its time of attachment

of a particle before attachment is ρ0 (Table 3 recaps the history of deformation for a
single particle). Therefore, the rate of change of the total mass is written as

Ṁ(t) =
∫

�t

ρ0U
N dA =

∫

ωt

ρ0u
n da, (4.11)

as un ◦ ϕ = UN . This means that the rate of change of the total mass Ṁ(t) is equal to
the flux of mass through the boundary of Bt .

4.2 Constitutive Relations

We work in the context of hyperelasticity, i.e., we assume the existence of an energy
function of somemeasure of strain. The

(0
2

)
right Cauchy–Green strain tensor is defined

asC� = ϕ∗g, and in componentsCI J = Fi
I F j

J gi j . Its
(1
1

)
variantC has components

C I
J = GI HCH J = GI H Fi

H F j
J gi j . One defines F� as (F�)I j = GI H Fh

H ghj ,
so one hasC = F�F. We assume the existence of an energy functionW(X ,C). Using
this function, the second Piola–Kirchhoff stress tensor S, the first Piola–Kirchhoff
stress tensor P, and the Cauchy stress tensor σ are written as

SI J = 2GIK ∂W
∂CK

J
, Pi J = 2Fi

I G
I K ∂W

∂CK
J
, σ i j = 2

J
Fi

I G
I K ∂W

∂CK
J
F j

J .

(4.12)

One can also express the strain energy density as a function of the deformation gradient,
and the metric tensors, i.e., W (X ,F,G, g) = W(F�F).14 Using this function, the
stress tensors are written as

SI J = (F−1)I i gi j
∂W

∂F j
J
, Pi J = gi j

∂W

∂F j
J
, σ i j = 1

J
gi j

∂W

∂F j
J
. (4.13)

Therefore, one obtains the constitutive relations for the stress tensors, e.g., P(X) =
P(X ,F,G, g).

14 Note that while a function W(X ,C) is automatically objective, objectivity needs to be imposed on an
energy function W (X ,F).
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Remark 4.1 The right Cauchy–Green strain tensorC explicitly depends on thematerial
metric G, which is determined by the accretion tensor Q, i.e.,

C I
J = (Q−1)I i gik(Q−1)Hk F

h
H ghj F

j
J . (4.14)

Thus, it is possible to define the energy as a function Ŵ (X ,F,Q, g) =
W (X ,F,G(Q, g), g), which has the same form as the one usually considered in the
context of the multiplicative decomposition of the deformation gradient. As a matter
of fact, as was mentioned in Remark 2.11, this is one of the possible interpretations
of the accretion tensor. The tensor Q is in turn built from F̄ and u. Therefore, one can
define a new energy function, viz. W̌ (X ,F, F̄,u, g) = Ŵ

(
X ,F,Q(F̄,u), g

)
.

4.3 Balance of Linear and Angular Momenta

The local balance of linear momentum can be obtained using covariance arguments
(Marsden and Hughes 1983; Yavari et al. 2006). For any point X in the interior of Bt ,
there exists an open set U ⊂ Bt such that ∂U ∩∂Bt = ∅ and X ∈ U . Balance of energy
for such a subbody U is identical to that of a subbody in classical nonlinear elasticity
with the only difference being that the material metric is not known a priori. However,
this would not affect the covariance arguments. Covariance of energy balance for U
results in all the balance laws, and in particular, the balance of linear momentum,
which in terms of the first Piola–Kirchhoff stress and the Cauchy stress reads

DivP + ρ0B = ρ0A, divg σ + ρb = ρa, (4.15)

where b is the body force referred to spatial coordinates, B = b ◦ ϕ is the body force
referred to material coordinates, and A = a ◦ϕ is the acceleration referred to material
coordinates. In components

∇J P
i J + ρ0B

i = ρ0A
i , ∇g

j σ
i j + ρbi = ρai . (4.16)

If an accretion process is slow, one can ignore the inertial effects. This is what we
will assume in our numerical examples. However, it should be emphasized that the
accretion theory introduced in this paper is not restricted to slow accretion processes.
The local balance of angular momentum follows from covariance of energy balance
as well and is expressed as Pi J F j

J = P j J Fi
J , or equivalently, σ i j = σ j i .

Invoking (4.4) and (4.9), the rate of change of linear momentum of an accreting
body is written as

d

dt

∫

ϕt (Bt )

ρv dv = d

dt

∫

Bt

ρ0V dV = d

dt

∫ t

0

[∫

�τ

ρ0U
NV dA

]
dτ. (4.17)
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From Leibniz’s integral rule d
dt

∫ t
0 f (s, t)ds = f (t, t)+ ∫ t

0
∂ f
∂t (s, t)ds, (4.17) is sim-

plified to read

d

dt

∫ t

0

[∫

�τ

ρ0U
NV dA

]
dτ =

∫

Bt

ρ0A dV +
∫

�t

ρ0U
NV dA. (4.18)

Therefore, one can write the rate of change of linear momentum of an accreting body
as

d

dt

∫

ϕt (Bt )

ρv dv =
∫

ϕt (Bt )

ρa dv +
∫

ωt

ρ0u
nv da. (4.19)

Recalling that ρa = divg σ + ρb, the rate of change of linear momentum reads

d

dt

∫

ϕt (Bt )

ρv dv =
∫

ϕt (Bt )

ρb dv +
∫

∂ϕt (Bt )

t da +
∫

ωt

ρ0u
nv da. (4.20)

Remark 4.2 On the growth surface ωt , the traction vector can be decomposed as a sum
of a non-accretion part tna, due to external loads and constraints, and an accretion part
ta, due to the flux of the new particles. Consider a particle that is about to join the
accreting body. From Table 3, one can write the mass 3-form of the particle before
attachment as dm = ρ0dv = ρ0unda ∧ dt . Since for a particle before attachment
J = 1, one has dm = ρ0dV = ρ0UNdA ∧ dτ . Right before attaching the body this
particle has velocity −u relative to the growth surface, and its absolute velocity is
v− u. After it joins the body it will have velocity v. Balance of linear momentum for
this particle in the time interval [t, t + dt] reads

(ρ0u
Nda ∧ dt)(v − u)+ (−tada) ∧ dt = (ρ0u

Nda ∧ dt)v, (4.21)

where −tada is a vector-valued 2-form representing the force that the body exerts on
the particle. Therefore, the particle exerts the force tada = −ρ0unuda on the accreting
body. Hence

∫

∂ϕt (Bt )

t da =
∫

∂ϕt (Bt )

tna da −
∫

ωt

ρ0u
nu da. (4.22)

Therefore, substituting (4.22) into (4.20), one rewrites the rate of change of linear
momentum of the accreting body as

d

dt

∫

ϕt (Bt )

ρv dv =
∫

ϕt (Bt )

ρb dv +
∫

∂ϕt (Bt )

tna da +
∫

ωt

ρ0u
n(v − u) da. (4.23)

Note thatwhen the growth velocity is small, the term ta can be neglected. If tna vanishes
on ωt , for small growth velocities, one can assume a traction-free growth surface.
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4.4 The Accretion Initial Boundary Value Problem

The motion of an accreting body is determined by solving the governing equations,
which consist of the equation defining thematerialmetricG, the constitutive equations,
and the balance of linear momentum. To complete this set of equations, one needs to
impose initial and boundary conditions. At time t = 0 the accreting body B0 is
represented by the surface �0. We assume that the surface ω0 on which accretion
starts is known a priori, so one imposes ϕ0 = ϕ̊, where ϕ̊ : �0 → S and ϕ̊(�0) = ω0.
We indicate with ∂NBt that part of ∂Bt where traction T is assigned (see Fig. 8). We
set ∂Nϕt (Bt ) = ϕt (∂NBt ). The natural boundary conditions are given by

Pi J NJ = T i on ∂NBt , ∀t ∈ [0, T ],
or equivalently σ i j n j = t i on ∂Nϕt (Bt ), ∀t ∈ [0, T ], (4.24)

where T i = (t i J∂ )◦ϕ. J∂ is the Jacobian of the boundary motion, i.e., ϕ∗t da = J∂d A,
where J∂ = J

√
C I J NI NJ . Note that Pi J NJ = UN Pi3. We indicate with ∂DBt the

part of ∂Bt where ϕ is specified and note that ∂Dϕt (Bt ) = ϕt (∂DBt ). The Dirichlet
(or essential) boundary conditions are given by

ϕt = ϕ̂t on ∂DBt , ∀t ∈ [0, T ], (4.25)

where ϕ̂t : ∂DBt → S is given. We assume that ∂Bt = ∂NBt ∪ ∂DBt . However, in
general, there is no relation between the growth surface and the two portions of the
boundary just defined. In other words, one can have �t ∩ ∂DBt 	= ∅, i.e., one can
impose essential boundary conditions on a portion of the growth surface. In summary,
the motion ϕ of an accreting body is a solution for the following accretion IBVP for
slow accretion:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G = Q
(g ◦ ϕ̄)Q X ∈M,

P = P(F,G, g) 0 ≤ t ≤ T , X ∈ Bt ,

DivP + ρ0B = 0 0 ≤ t ≤ T , X ∈ Bt ,

PN� = T 0 ≤ t ≤ T , X ∈ ∂NBt ,

ϕt = ϕ̂t 0 ≤ t ≤ T , X ∈ ∂DBt ,

ϕ0 = ϕ̊ X ∈ ω0.

(4.26)

In the incompressible case, one needs a pressure field p as the Lagrange multiplier
associated with the internal incompressibility constraint J = 1. The accretion IBVP
in this case reads:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G = Q
(g ◦ ϕ̄)Q X ∈M,

P = P(F,G, g)+ pg�F−
 0 ≤ t ≤ T , X ∈ Bt ,

J = 1 0 ≤ t ≤ T , X ∈ Bt ,

DivP + ρ0B = 0 0 ≤ t ≤ T , X ∈ Bt ,

PN� = T 0 ≤ t ≤ T , X ∈ ∂NBt ,

ϕt = ϕ̂t 0 ≤ t ≤ T , X ∈ ∂DBt ,

ϕ0 = ϕ̊ X ∈ ω0.

(4.27)
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Fig. 8 An accreting body in its
deformed configuration. Natural
boundary conditions are
assigned on ∂NBt , while the
essential boundary conditions
are assigned on ∂DBt t

u

∂Nϕt(Bt)

ϕt(Bt)∂
D ϕ

t (B
t )

In Sect. 2.4 we showed that the Riemannian structure of an accreting body is
independent of the choice of the material motion, as any choice would result in a
material manifold in the same class of isometric Riemannian manifolds. It turns out
that the accretion IBVP is invariant under reparametrizations of the initial andboundary
data.

Proposition 4.3 Let ϕ̊′ : �0 → S be an embedding such that ϕ̊′(�0) = �0. Let
the displacement boundary conditions be modified such that on �0 they read ϕt =
ϕ̂t ◦ ϕ̊−1 ◦ ϕ̊′ and on �t they read ϕt = ϕ̂t ◦	t ◦ ϕ̊−1 ◦ ϕ̊′ ◦	−1t . Then, the solution
ϕ′ of the accretion IBVP is such that ϕ′t (�t ) = ϕt (�t ) for all t ∈ [0, T ].
Proof Let us define the diffeomorphism λ0 = ϕ̊−1 ◦ ϕ̊′ of �0 into itself. This in turn
can be extended to a map λ on the whole M such that λ|�τ = 	τ ◦ λ0 ◦ 	−1τ , with
	 indicating the material motion. It is now possible to define the motion ϕ′ for the
accreting body such that ϕt = ϕ′t ◦ λ for any t . Note that this motion satisfies the
modified boundary conditions, and for t = 0 one recovers the initial condition ϕ̊′.
Moreover, one has

ϕ′t (�t ) = ϕt (�t ), ∀t ∈ [0, τ ], (4.28)

i.e., ϕ and ϕ′ map the body Bt into the same domain in the ambient space S, and
therefore, they define the same foliation on the same deformed configuration. Now
one needs to check if ϕ′ satisfies the accretion IBVP. The motion ϕ′ defines a material
metric G′ through (2.16) and (2.18). Setting Tλ = �, since ϕt = ϕ′t ◦ λ one has
F(λ(X)) = F′(X)�(X). Moreover, note that λ does not change the family of material
trajectories of 	, as it is straightforward to check that λ(	t (X0)) = 	t (λ(X0)) for
any X0 ∈ �0. Therefore, one has

U′(λ(X)) = U(λ(X)) = �(X)U(X). (4.29)

Similar to the proof of Proposition 2.7, one can use Q to show that G = λ∗G′, and
hence, ϕ′ satisfies the accretion IBVP. ��
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Ωt2

Ωt1

Ω0

ΩT

ϕt2

ϕt1

ϕ0

M F̄U = −u

ϕT (M)

ω = ϕ̄(M)
uϕT

S

Fig. 9 Accretion through a fixed surface. Left: the material manifold with layers with the time of attachment
equal to 0, t1, t2 and T . Right: the deformed configuration at time T . All the layers are mapped by ϕ̄ to ω.
The spatial growth velocity points outside of the body and v = −F̄U

Once the Riemannian manifold (M,G) has been determined, one can calculate the
residual stress field by solving the boundary value problem (no time is involved) with
B = 0, and T = 0 on ∂M.

5 Examples of Surface Growth

In this section, we discuss several examples of surface growth. We start with two
classes of accretion problems for which one can find some analytical results. We also
present some numerical examples of nonlinear accretion.

5.1 Accretion Through a Fixed Surface

Let us assume that the growth surface is subject to a constraint on its position (an essen-
tial boundary condition), i.e., at time t the layer �t is mapped to a time-independent
surface ω ⊂ S, viz.

ϕt (�t ) = ω, ∀ t ∈ [0, T ]. (5.1)

This occurs, for example, when new material is generated by some tracking cells
located on a rigid substrate (Skalak et al. 1997). An example of such a problem
was discussed in Tomassetti et al. (2016), albeit in a different framework. Under this
assumption, ϕ̄ is not an embedding as it maps the entire three-dimensional manifold
M to the surface ω (Fig. 9).

By virtue of the invariance under different choices of material motions (see Propo-
sition 2.7), one can define a material motion	 such that the mapping ϕt ◦	t = ϕ̄◦	t ,
that was defined in Sect. 2.2, does not depend on time. This means that given X0 ∈ �0,
all points on the material trajectory 	t (X0) are mapped to the same point x ∈ ω,
∀ t ∈ [0, T ]. With respect to such a material motion, the total velocity vanishes,
w = 0. Hence, from (2.10), one obtains v = −F̄U.
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Proposition 5.1 When the growth surface is fixed, the Riemannian material structure
is independent of the history of deformation during accretion.

Proof Since ϕ̄ is given, Q is determined as Q|T� = T ϕ̄|T�, and of course, QU = u.
Therefore, the material metric G = Q
gQ is known before solving the accretion
IBVP, and so are all the derived quantities, e.g., the material Christoffel symbols, and
curvature tensor. ��

Consider the definition of the Lie derivative of the first fundamental form of the
layers in (3.30). As G̃ = ϕ̄∗(g|Tωt ) (see Remark 3.1), one can write

LUG̃(X) = d

ds

∣∣∣∣
s=τ(X)

(
ϕ̄ ◦	s ◦	−1τ(X)

)∗ {
g|Tωt

((
ϕ̄ ◦	s ◦	−1τ(X)

)
(X)

)}
. (5.2)

Since the map ϕ̄ ◦ 	s does not depend on s by assumption, one has LUG̃ = 0. In
components, ∂τ G̃ AB = 0. Note that even for such a material motion, in general,
∂τ KAB 	= 0 (see Remark 3.3).

Example 5.2 (Stationary growth surface with normal growth velocity). Let us assume
that the growth surface is stationary and that the growth velocity is everywhere normal
to the growth surface, i.e., u‖ = 0. Therefore, one has ∇̃ g̃u‖ = 0. Since ∇̃ is the
pull-back connection of ∇̃ g̃ through Q|T� = F̄|T� (see Remark 3.1) and since U‖ =
Q−1u‖, one has ∇̃U‖ = 0 as well. Therefore, from (3.28) one obtains K = 0 on
every material layer.15 Note that vanishing of the second fundamental form of the
material layers does not imply the flatness of � when the material ambient space is
not Euclidean (this is clear from the Gauss equations). From (3.20), (3.21), and (3.35)
one obtains

RABCD = R̃ABCD, N I RI ABC = 0, N I N J RI AJ B = − 1

UN
∇̃A∇̃BU

N . (5.3)

Knowing thatUN = un ◦ϕ, one has ∇̃A∇̃BU N = F̄a
A F̄b

B∇̃ g̃
a∇̃ g̃

bun (∇̃ is the pull-
back connection of ∇̃ g̃ using F̄). This means that under the hypothesis of stationary
growth surface and uniform tangential growth velocity (or, in particular, pure normal
growth velocity), the material manifold of the accreted body is locally flat if and only
if ω has zero Gaussian curvature and ∇̃ g̃

a∇̃ g̃
bun = 0.

Example 5.3 (Different growth velocities for a fixed planar growth surface). In this
example we compare two problems with growth velocities with the same normal
component and different tangential components. The stationary growth surface is an
infinite plane. Let us consider a Cartesian coordinate chart (x, y, z) for the ambient
space, with the growth surface parametrized by (x, y, 0). We define the following two
growth velocities:

15 In fact, ∇̃U‖ = 0, and so the first two terms of (3.28) vanish. As for the third term, note that since every
point on a τ -line is mapped to the same point on ω, the components of F̄|T� are constant along τ , i.e.,
∂τ F̄ i

A = 0. Therefore, ∂τ G̃ AB = ∂τ (F̄ i
A F̄

j
B gi j ) = 0, as the components of the ambient metric on a

fixed surface are constant along τ as well.
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[
ui
]
=

⎡

⎣
0
0
−u

⎤

⎦ ,
[
(u′)i

]
=

⎡

⎢⎣
− X

L e
− X2

L2 u
0
−u

⎤

⎥⎦ , (5.4)

where L is some characteristic length. From Example 5.2, we know that u induces
zero curvature tensor. As for the case with u′, we take the lower half space as material
manifold, and fix coordinates X , Y and τ = − Z

u . It is straightforward to compute the
accretion tensor and the induced material metric:

[
(Q′)i J (X)

]
=

⎡

⎢⎣
1 0 − X

L e
− X2

L2 u
0 1 0
0 0 −u

⎤

⎥⎦ ,

[
G ′I J (X)

]
(τ ) =

⎡

⎢⎢⎣
1 0 − X

L e
− X2

L2 u
0 1 0

− X
L e
− X2

L2 u 0 u2 + X2

L2 e
−2 X2

L2 u2

⎤

⎥⎥⎦ , (5.5)

and hence, the inverse material metric and the unit normal vector field read

[
(G ′)I J (X)

]
=

⎡

⎢⎢⎣
1+ X2

L2 e
−2 X2

L2 0 X
L e
− X2

L2 1
u

0 1 0

X
L e
− X2

L2 1
u 0 1

u2

⎤

⎥⎥⎦ ,
[
(N ′)I (X)

]
=

⎡

⎢⎣
X
L e
− X2

L2 u
0
1
u

⎤

⎥⎦ .

(5.6)

Thus, one obtains the following layer quantities:

[
G̃ ′AB(X)

]
=

[
1 0
0 1

]
,
[
(U ′)A(X)

]
=

[
− X

L e
− X2

L2 u
0

]
,

(U ′)N (τ ) = u, [KAB(X)] =
[

L2−2X2

L3 e−
X2

L2 0
0 1

]
. (5.7)

Hence, using (3.20), (3.21), and (3.35), the curvature components read

R′1212 = 0, N ′H R′H ABC = 0,
[
N ′H N ′K R′H AK B(X)

]
=

[
− L4−10L2X2+8X4

L6 e−2
X2

L2 0
0 0

]
. (5.8)

In particular, N ′H N ′K R′H1K1(0) = − 1
L2 . Non-vanishing curvature components,

revealing the presence of residual stress, imply that the two descriptions u and u′
are not equivalent. This example shows that it is necessary to take into account the
tangential component of growth velocity if the accretion process requires it. In other
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words, it is not possible to reduce a general accretion problem to a normal flux of
mass.

5.2 Accretion Through a Traction-Free Surface

Let us now assume that the growth surface is traction-free. For this class of problems,
we have the following result.

Proposition 5.4 Let the energy function W be rank-one convex.16 If the growth surface
is traction free, then F̄ = Q. Moreover, on the growth surface the growth velocity u is
tangent to the ϕt images of the material trajectories of 	, and w = u+ v.

Proof The two tensors F̄ andQ already have the same in-layer component, i.e., F̄|T� =
Q|T�. Hence, one only needs to determine the component F̄U.17 Note that Q and F̄
are rank-one connected as F̄ − Q = (F̄U − u)⊗ dτ = z ⊗ dτ , where z = F̄U − u.
Let us define F(s) = (1− s)Q+ s F̄ = Q+ s z⊗ dτ , whereQ = F(0) and F̄ = F(1).
Let us now define the function P̂(s) = P(F(s)) that evaluates the constitutive part of
the first Piola–Kirchhoff stress tensor along the curve F(s). Then one can write

W (F̄) = W (Q)+
∫ 1

0

dW (F(s))

ds
ds = W (Q)+

∫ 1

0
P̂i

J (s)
dFi

J

ds
ds

= W (Q)+
∫ 1

0
P̂i

3(s)zi ds. (5.9)

Rank-one convexity of W implies that the integrand f (s) = P̂i
3(s)zi is monotone

increasing. Note that

f (s) = P̂i
3(s) zi = P̂i

J̆ (s)A3
J̆ z

i = 1

UN
P̂i

N (s) zi , (5.10)

where use was made of the change of frame (3.3). Now one has to make a distinction
between the compressible and the incompressible cases. In the compressible case, the
hypothesis of traction-free growth surface implies P̂i

N (1) = 0, and so f (1) = 0. In

16 An energy function at a point X is rank-one convex if

W (X ,F+ sz⊗ ζ ) ≤ W (X ,F)+ sW (X ,F+ z⊗ ζ ),

for any F, any spatial vector z ∈ TXS, any linear form ζ ∈ T ∗XB, and 0 ≤ s ≤ 1. One can show that
rank-one convexity is equivalent to the monotonicity of the function f (s) = P(X ,F+ sz⊗ ζ ) : (z⊗ ζ ).
Rank-one convexity is a necessary condition for quasiconvexity (and polyconvexity), which is related to
the existence of minimizers of the total energy functional in hyperelasticity (Ball 1976).
17 Note that by hypothesis PN = 0, which in the compressible case readsP(F)N = 0, and provides three
scalar equations for the three unknowns represented by the components of F̄U. A solution is clearly given
by F̄U = u, which means that F̄ = Q as the two tensors already agree on the layer. However, this does
not need to be the only solution because of the nonlinearity of the equations. In the incompressible case,
things are slightly more complicated due to the presence of an unknown pressure field p that changes the
zero-traction condition to PN = P(F)N + p(F−1N)� = 0. We use an energetic argument and rank-one
convexity of the energy function to show that F̄ = Q is the only solution.
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the incompressible case, the zero-traction condition does not apply to the integrand
f (s). However, one can write f (s) = g(s) + h(s), where g(s) = Pi 3(s) zi , and
h(s) = −p(F−1)3i (s) zi . The zero-traction condition is written as g(1) = 0, which
implies that f (1) = h(1). Note that (F−1)3i (1) = (F̄−1)3i , and hence, one has

f (1) = −p
(
F̄−1

)3
i z

i = −p
(
F̄−1

)3
i

(
F̄ i

3 − Qi
3

)
= p

[(
F̄−1

)3
i Q

i
3 − 1

]
.

(5.11)

On the other hand, from incompressibility det F̄/ detQ = 1, or equivalently,
det(F̄−1Q) = 1. From (4.3) one obtains (F̄−1)3i Qi

3 = det(F̄−1Q) = 1, and hence,
f (1) = 0. Therefore, in both the compressible and incompressible cases one con-
cludes that f (s) ≤ 0 for any 0 ≤ s ≤ 1, by virtue of the monotonicity of f . Thus, the
integrand in (5.9) is non-positive and this means that W (F̄) ≤ W (Q). Note that since
the material metric has been built such thatQ is an isometry,18 W attains its minimum
only at Q and at those F’s that are equal to Q up to rotations of the ambient space.
Therefore, W (F̄) = W (Q), and F̄ = RQ, where R is a rotation of the ambient space.
But since F̄|T� = Q|T�, one concludes that F̄ = Q.

Finally note that at any time t the material trajectories are mapped by ϕt to curves
with tangent vector FtU. On the growth surface their tangent vector is simply F̄U,
that we showed is equal to u. Moreover, by virtue of (2.10), when F̄ = Q we observe
that the total velocity can now be written as w = u + v, which is sometimes called
“accretion law” (Metlov 1985). This means that the accretion surface ωt moves with
velocity u+ v, with v being the “standard” spatial velocity. ��

Remark 5.5 In both the compressible and incompressible cases F̄ = Q implies that
the deformation gradient on the growth surface is an isometry. However, while in
the compressible case, one can conclude that the growth surface is stress-free, in the
incompressible case one has P = pg�Q−
, which in general does not vanish.

One may ask if the accretion model is invariant with respect to different spatial
growth velocities in some equivalence class. It turns out that for problemswith traction-
free growth surface the answer is yes. But first one needs to define equivalent growth
velocities. If the growth surface has a boundary, we indicate with tt a vector tangent
to the curve ∂ωt . Two spatial growth velocities u and u′ are said to be equivalent if

(i) 〈d(τ ◦ ϕt
−1),ut 〉 = 〈d(τ ◦ ϕt

−1),u′t 〉, ∀t ∈ [0, T ];
(ii) If ∂ωt 	= ∅, then ∀t the vectors ut , u′t , tt on ∂ωt are linearly dependent.

Note that the map τ ◦ ϕt
−1 defines a foliation on ϕt (Bt ), and hence, property (i)

implies that the two velocities must have the same out-of-layer component in order to
be equivalent. Note that this component does not depend on the map ϕt ; it is the same
for any map ϕ′t that preserves the foliation, viz.

18 Equivalently, one can say that the material metric is the right Cauchy–Green strain tensor associated
with the accretion tensor Q (see Remark 2.11).
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ϕt (�t ) = ϕ′t (�t ) �⇒ d(τ ◦ ϕt
−1) = d(τ ◦ ϕ′t−1). (5.12)

This property can also be expressed as g(ut ,nt ) = g(u′t ,nt ). Property ii) implies that
u′t must lie in the plane spanned by u′t and tt . It can also be expressed as g(tt×ut ,u′t ) =
0. In some cases,u admits an equivalent velocityu′ that is normal to the growth surface.
This is always the case when ωt is boundaryless, e.g., when ωt = ∂ϕt (Bt ), or when u
is normal to ωt on ∂ωt .

When a body grows without undergoing any deformation, one trivially hasQ = F̄,
and v = 0. Therefore, the growth surface moves with velocity w = F̄U = QU = u,
i.e., only due to the addition of newmaterial. In this case the description of the accretion
process is not altered if one replaces the prescribed growth velocityuwith an equivalent
growth velocity u′. Accretion with no deformation is a very special case, so now one
may ask the following question: Is an accretion problem affected by the choice of
equivalent spatial growth velocities? The answer is yes, as was shown in Example 5.3.
Nevertheless, there are some cases in which two equivalent growth velocities give the
same solution for the accretion IBVP. To this extent, the next result tells us that under
the hypothesis u = F̄U one can work with equivalent growth velocities. By virtue of
Proposition 5.4, this means that when accretion occurs through a traction-free surface,
equivalent growth velocities can be used interchangeably, and one can work with a
normal growth velocity, provided that it is equivalent to the prescribed one.

Proposition 5.6 When F̄ = Q, the accretion boundary value problem is invariant
under different choices of equivalent spatial growth velocities.

Proof Let u′ be a spatial growth velocity that is equivalent to u. Take a motion ϕ′ such
that

(i) ϕs(�t ) = ϕ′s(�t ) ∀t ≤ s , (ii) F̄′U = u′ . (5.13)

As a matter of fact, one can always choose a map ϕ′ that satisfies (i). Note that for any
time t the mappings ϕt and ϕ′t define the same foliation on the deformed configuration.
This implies that the two vectors F̄U = u and F̄′U are equivalent because

〈
d
(
τ ◦ ϕ−1t

)
, F̄Ut

〉
=

〈
d(τ ◦ ϕ−1t ),FtUt

〉
= 〈dτ,U〉 =

〈
d(τ ◦ ϕ′t−1),F′tUt

〉

=
〈
d
(
τ ◦ ϕ′t−1

)
, F̄′Ut

〉
, (5.14)

while on ∂ωt the vectors F̄U and F̄′U necessarily differ by a vector tangent to ∂ωt .
Therefore, F̄′U is equivalent to u. Then one simply chooses ϕ′ such that (ii) holds.
The tensor Q′ associated with the motion ϕ′ is given by

Q′(X) = F̄′(X)+ [u(ϕ′(X))− F̄′(X)U(X)] ⊗ dτ. (5.15)

Therefore, one has u(ϕ′(X)) = F̄′(X)U(X). Next define the map

λ :M→M
X �→

(
ϕ′τ(X)

)−1 (
ϕτ(X)(X)

)
,

(5.16)
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which is well defined because of property (i). Note that if ϕ̄ is invertible, one can write
λ = (ϕ̄′)−1 ◦ ϕ̄, satisfying λ(�t ) = �t . Since both ϕ̄ and ϕ̄′ are invertible on each
layer, λ is invertible. Let us define G′ to be the material metric associated with the
motion ϕ′. We claim that G′ = λ∗G. To show this we directly compute the tangent
map � = Tλ:

�I
J = ∂λI

∂X J
=

⎡

⎢⎣
∂
(
ϕ′−1

)I

∂xk

(
∂ϕk

∂X J
+ ∂ϕk

∂t

∂τ

∂X J

)
+

∂
(
ϕ′−1

)I

∂t

∂τ

∂X J

⎤

⎥⎦

t=τ(X)

=
(
F̄ ′−1

)I
k

(
F̄k

J + vk
∂τ

∂X J

)
−
(
F̄ ′−1

)I
kv

k ∂τ

∂X J

=
(
F̄ ′−1

)I
k F̄

k
J . (5.17)

Therefore, one obtains F̄(X) = F̄′(λ(X))�(X). By hypothesis and property (ii)
of (5.13), the material metrics are written as

G(X) = F̄(X)
g(ϕ(X))F̄(X),G′(λ(X)) = F̄′(λ(X))
g(ϕ′(λ(X)))F̄′(λ(X)), (5.18)

and hence

G(X) = �(X)
 F̄′(λ(X))
 g(ϕ(λ(X))) F̄′(λ(X))�(X)

= �(X)
 G′(λ(X))�(X). (5.19)

This means that G = λ∗G′, i.e., the two Riemannian manifolds are isometric. By the
same argument used in the proof of Proposition 2.7, if ϕ is a solution for (M,G), then
ϕ′ will be a solution for (M,G′). ��
Example 5.7 (Radial growth of a cylinder). We now demonstrate how the accretion
theory developed so far can be used in a simple example of accretion through a
traction-free surface, namely the radial outer accretion of an infinitely long cylinder
(see Fig. 10). The simplicity of this example is due to its symmetry, which makes it a
one-dimensional problem. Following the procedure explained in Sect. 2, first one needs
to define amaterialmanifoldwith amaterial foliation (M, τ ). Let us consider cylindri-
cal coordinates (�, Z , R), R ≥ R0, on R3. We define foliation coordinates (�, Z , τ )

with τ = τ(R), which is required to be invertible because of property (iii) of Sect. 2.1,
such that its inverse R(τ ) satisfies ∂R

∂t (t) = u(t), i.e., R(t) = R0 +
∫ t
0 u(ζ )dζ .19 Let

(θ, z, r) be the cylindrical coordinates on the ambient space. We consider only those
configurations for which (�, Z , τ ) �→ (�, Z , r(τ, t)), i.e., those that preserve the
axial symmetry. Therefore, one obtains the following tensors:

19 This can be pictured as a reference cylinder that grows at the same rate as prescribed by the spatial
growth velocity u(t) . This also represents the configuration of the body in the case where no deformation
occurs during the accretion process.
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[
Fi

J (τ, t)
]
= diag

(
1, 1,

∂r

∂τ
(τ, t)

)
,

[
Qi

J (τ )
]
= diag (1, 1, u(τ )) , (5.20)

and so the metric, its inverse, and the unit normal field read

[GI J (τ )] = diag
(
r̄2(τ ), 1, u2(τ )

)
,

[
GI J (τ )

]
= diag

(
1

r̄2(τ )
, 1,

1

u2(τ )

)
,

[
N I (τ )

]
=

[
0 0 1

u(τ )

]
. (5.21)

With these one can calculate all the quantities involved in the accretion IBVP in terms
of the unknown r̄(τ ) and the input u(τ ) (see also Sozio and Yavari 2017), where we
solve the IBVP for accretion problems with cylindrical and spherical symmetry). We
next focus on the layer-wise geometry of the material body described in Sect. 3, and
obtain the following objects:

[
G̃ AB(τ )

]
= diag

(
r̄2(τ ), 1

)
,

[
G̃ AB(τ )

]
= diag

(
1

r̄2(τ )
, 1

)
,

[
U A(τ )

]
= 0, UN (τ ) = u(τ ). (5.22)

The material second fundamental form is calculated using (3.28) and reads

[KAB(τ )] = − 1

2u(τ )

[
∂τ G̃ AB(τ )

]
= diag

(
− 1

u(τ )
r̄(τ )r̄ ′(τ ), 0

)
. (5.23)

Note that all the layer Christoffel symbols �̃A
BC are zero because G̃ does not depend

on the layer coordinates (�, Z), and hence, R̃ABCD = 0. Therefore, the tangential
component of the curvature tensor vanishes, because

R1212 = R̃1212 + K12K21 − K11K22 = 0. (5.24)

Moreover, from (3.21) one has

1

u
R3ABC = ∇̃DKBC − ∇̃C KBD = 0. (5.25)

The only non-vanishing component is given by (3.35) and reads

1

u2
R3232 = 1

u
∂τ K22 + K2C K

C
2 = − r̄

u3
(
u′r̄ ′ − ur̄ ′′

)
. (5.26)

This means that the accreted solid is Euclidean if and only if u′r̄ ′ − ur̄ ′′ = 0, i.e., if
and only if

r̄(τ ) = r0 + w0

∫ τ

0
e
∫ ζ
0

u′(σ )
u(σ )

dσdζ = r0 + w0

u0

∫ τ

0
u(ξ) dξ, (5.27)
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r(R, t)

u(t)dt

S

u(t)dt

Bt

ϕt(Bt)

R(t)
ϕt

U

u

Fig. 10 Radial growth of an infinitely long cylinder. Left: the material manifold at time t . It is chosen such
that the external radius grows at the rate u, the growth velocity in the physical space. Right: the deformed
configuration at time t

where the integration constants are r0 = r̄(0) and w0 = r̄ ′(0), while u0 = u(0).20 In
the case of constant growth velocity u(t) = u0, (5.27) is simplified to read r̄(τ ) =
r0 + w0τ , and the accreted solid is Euclidean if and only if r̄ is linear in time. This
can be achieved when there is no deformation during the growth process, resulting in
r̄(τ ) = r0 + u0τ . Note finally that in the case of non-simply connected bodies like
this one, the vanishing of the curvature tensor alone does not guarantee the absence
of residual stresses; additional conditions need to be satisfied (Yavari 2013).

5.3 Numerical Examples

Next we consider some examples of both fixed and traction-free growth surfaces,
where we numerically solve the accretion initial boundary value problem. In the case
of traction-free growth surface, one needs to solve the IBVP in order to determine
the Riemannian material structure of the accreted body. We will also calculate the
residual deformations and stresses when all the loads are released after completion of
accretion. For solving the numerical examples in this section, we use a finite difference
scheme that has recently been developed for accretion problems (Sozio et al. 2019).
See also Sozio and Yavari (2017), where accretion problems with axial and spherical
symmetry were numerically solved.

We restrict our calculations to neo-Hookean solids. Note that, as was mentioned in
Sect. 4.3, the strain tensor C explicitly depends on the material metric G, which for

20 If the growth surface is traction-free, from Proposition 5.4 one obtains F̄ = Q, i.e., ∂r
∂τ

(τ, τ ) = u(τ ).
Then, one has

w(τ) = r̄ ′(τ ) = ∂r

∂τ
(τ, τ )+ ∂r

∂t
(τ, τ ) = u(τ )+ v(τ),

and so one recovers w = u + v. In Sozio and Yavari (2017), we assumed ∂r
∂τ

(τ, τ ) = u(τ ) a priori, which
is now justified by Proposition 5.4 as we were dealing with a traction-free growth surface. However, we
should emphasize that, in general, this does not hold when traction does not vanish on the growth surface.
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accretion problems is an unknown that is calculated after solving the accretion IBVP.
In particular, for the compressible case we choose the following energy function

W(C) = μ

2
[trC− 3− ln(detC)]+ λ

2

(√
detC− 1

)2
, (5.28)

where λ and μ are two material parameters. Note that detC = J 2. From (4.12) one
obtains the following constitutive equation for the first Piola–Kirchhoff stress tensor:

Pi J = μ

[
GI H Fi

H − gih
(
F−1

)J
h

]
+ λJ (J − 1) gih

(
F−1

)J
h . (5.29)

In the incompressible case, the energy function has the form W(C) = μ
2 [trC− 3],

and the first Piola–Kirchhoff stress tensor then reads

Pi J = μGI H Fi
H + pJgih

(
F−1

)J
h, (5.30)

where p is the Lagrange multiplier associated with the internal incompressibility con-
straint J = 1.21 For two-dimensional elasticity, all the equations for both compressible
and incompressible solids are the same except for the term − 3

2μ in the energy func-
tion (5.28), that becomes −μ in order to have a vanishing energy density for C = I.
It should be emphasized that the Cauchy stress explicitly depends on the material
metric G. It should also be emphasized that we assume that the residually stressed
body is isotropic in its stress-free state; in its current configuration the body may not
be isotropic.

We work with dimensionless quantities normalized with respect to some length
parameter L , the accretion time T , and the shear modulusμ, whose values are problem
dependent. All the contour plots show the value of trC. The lowest values are in purple,
while the highest ones are in yellow.

Example 5.8 (Two-dimensional accretion through a fixed curve). In this example we
consider the accretion of a two-dimensional body through a fixed curve (see Sect. 5.1).
The body undergoes deformation and stress not because of the presence of external
forces, but due to the geometry of accretion constraints. The growth curve ω is a
half circle of unit radius, represented in Cartesian coordinates as the lower half of
the circle {(x, y) ∈ R

2 | x2 + y2 = L, y ≤ 0}. The material ambient space M is
a rectangle on which one defines material coordinates (X , τ ) that map it to the unit
square [− L

2 , L
2 ] × [0, 1]. The material growth surface �t is represented by the line[− L

2 , L
2

] × {t}. Since this is a fixed growth surface problem, one is able to calculate
the material metric before solving the accretion IBVP. The map ϕ̄ sends �t to ω and
can be represented by the time-independent pair (x(X), y(X)) given by

21 The coordinate-free constitutive expression for the
(1
1
)
variant P� of Pwith components Pi

J = gi j P
j J ,

is written as

P� = μ
(
F� − F−1

)
+ λJ (J − 1)F−1, P� = μF� + pF−1,

for the compressible and the incompressible cases, respectively.
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x(X) = L sin
πX

L
, y(X) = −L cos

πX

L
. (5.31)

Note that X can be seen as the angular coordinate on the half circle scaled by the factor
L
π
. We assume that the growth velocity, with components (v,w), is always normal,

although not uniform, viz.

v(X) = −u(X) sin
πX

L
, w(X) = u(X) cos

πX

L
, (5.32)

with u(X) being the norm of the growth velocity. This allows one to write

[
Qi

J (X)
]
=

[
∂x
∂X v(X)

∂ y
∂X w(X)

]
=

[
π cos πX

L −u(X) sin πX
L

π sin πX
L u(X) cos πX

L

]
,

[GI J (X)] =
[

π2 0
0 u2(X)

]
. (5.33)

Note that the material Gaussian curvature reads g(X) = −u′′(X)/u(X), so the
accreted body is Euclidean for growth velocities that are linear in X or in the angle on
the circle. As the body is simply connected, the vanishing of the curvature implies the
absence of residual stress in the relaxed configuration. In the case shown in Fig. 11,
the material is incompressible neo-Hookean. The growth velocity is assumed to be
u(X) = 1.25L/T . Since it is constant, the accreted body is Euclidean and the relaxed
configuration is simply given by [−πL

2 , πL
2 ] × [0, uT ]. The total area at the end of

accretion is therefore πuLT .

Example 5.9 (Two-dimensional accretion through a fixed straight line). Another exam-
ple is given by the accretion of a two-dimensional body through a fixed growth surface
represented by a straight line with a general growth velocity. The fixed growth surface
ω is represented by [− L

2 , L
2 ] × {0}. The material ambient space M is a rectangle on

which one defines material coordinates (X , τ ) in the set [− L
2 , L

2 ] × [0, T ]. The map
ϕt |�t can be represented by the identity on the interval [− L

2 , L
2 ]. Therefore, indicating

with (v,w) the components of the growth velocity, the accretion and material metric
tensors are written as

[
Qi

J (X)
]
=

[
1 v(X)

0 w(X)

]
, [GI J (X)] =

[
1 v(X)

v(X) v(X)2 + w(X)2

]
. (5.34)

The Gaussian curvature reads

g(X) = v(X)v′(X)w′(X)

w(X)3
− v′(X)2 + v(X)v′′(X)

w(X)2
− w′′(X)

w(X)
. (5.35)

When the growth velocity is normal to ω, i.e., when v(X) = 0, one has g(X) =
−w′′(X)/w(X).

We consider two cases, one with a non-uniform normal growth velocity, and one
with a growth velocitywith a uniform normal component and a non-uniform tangential
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Fig. 11 Growth through a fixed half circle: The deformed configuration during accretion at four different
times. The growth velocity is u(X) = 1.0 L

T , and hence, the accreted body is Euclidean and the relaxed
configuration is given by [−π

4 , π
4 ] × [0, u]. The material is incompressible neo-Hookean

Fig. 12 Growth through a fixed straight line: The deformed configuration during accretion at four different
times

Fig. 13 Growth through a fixed straight line with a non-uniform normal growth velocity. Left: the material
manifold with the coordinate frames {∂/∂X , ∂/∂τ } distorted by Q. Right: the residually stressed configu-
ration (the lighter colors correspond to larger values of stress)

component (a two-dimensional simplified version of Example 5.3). In both cases, the
material is incompressible neo-Hookean. The first case is shown in Fig. 12, where we
consider v(X) = 0, w(X) = a cos X

b , with the requirement b > L
π
as w has to be

strictly positive. In particular, we choose a = 3
4
L
T , b = 3

2π L , so that 3
8
L
T < w(X) <

3
4
L
T . Thus, one finds

[GI J (X)] =
[
1 0
0 a2 cos2 X

b

]
, g(X) = 1

b2
. (5.36)

This means that the accreted body is isomorphic to a portion of a sphere of radius b.
Therefore, the accreted body is not Euclidean and once the accreted body is released
(no body forces and tractions) it will be residually stressed (see Fig. 13). The total area
at the end of accretion is 0.620L2. The second case is shown in Fig. 14, andwe consider
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Fig. 14 Growth through a fixed straight line: the deformed configuration during accretion at four different
times

Fig. 15 Growth through a fixed straight line with a non-uniform normal growth velocity. Left: the material
manifold with the coordinate frames {∂/∂X , ∂/∂τ } distorted by Q. Right: the residually stressed configu-
ration (the lighter colors correspond to larger values of stress)

v(X) = − aX
b , w(X) = a. We choose a = 1

2
L
T , b = 2

3 L , and so 0 < v(X) < 3
8
L
T .

Hence

[GI J (X)] =
[

1 − a
b X

− a
b X

a2

b2
X2 + a2

]
, g(X) = − 1

b2
. (5.37)

This means that the accreted body is isomorphic to a portion of a pseudosphere of
radius b. Since the Gaussian curvature is nonzero, the accreted body will be residually
stressed (see Fig. 15). The total area at the end of accretion is L2

2 .

Example 5.10 (Two-dimensional accretion through a traction-free growth curve) In
this example we consider the accretion of a two-dimensional body through a traction-
free surface. We are interested in the effects of external loads on the material
characteristics of the accreted body. We consider a body which is the result of a
vertical deposition process. We assume that the growth surface at time t = 0 is given
by [− L

2 , L
2 ]× {0}. The growth velocity is defined on either the lower or upper bound-

ary of the body ωt and is vertical and constant in time. We assume that throughout
the accretion process the configuration of the accretion surface ωt is given by points
(x, f (x, t)) for some time-dependent function f so that the vertical addition of mate-
rial on the entire upper boundary will always be possible. This allows us to take a
simply connected material manifold, for example the rectangle [− L

2 , L
2 ] × [0, t]. The

accreting body is subject to Dirichlet boundary conditions on either its upper or lower
boundary.
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Fig. 16 Accretion through a traction-free line in the presence of a uniform body force. The growth velocity
and the body force vectors are pointing in the same direction. The deformed configuration during accretion
at four different times

Fig. 17 Accretion through a traction-free line in the presence of a uniform body force. The growth velocity
and body force have opposite directions. The deformed configuration during accretion at four different
times

We consider the example of an accreting body subject to a vertical and uniform body
force. We solve the problem for two cases: (i) when the body force and the growth
velocity have the same direction (Figs. 16, 18), and (ii) when they have opposite
directions (Figs. 17, 19). Note that since this is a traction-free accretion problem, the
Riemannian geometry of the material manifold is not known a priori. In both cases,
the material constitutive model is assumed to be nearly incompressible neo-Hookean,
i.e., the energy function is given in (5.28). We choose λ = 10μ, u(X) = 1.0 L

T and
‖ ρb ‖= 1.5μ

L in tension and 0.95μ
L in compression. Notice from Figs. 18 and 19 that

the outcome of the process in the two cases is different. This is due to the fact that the
load, and hence, the deformation histories are different. For example, the final area is
0.899L2 in case (i), and 1.08L2 in case (ii).

6 Conclusions

In this paper we introduced a geometric model for the nonlinear mechanics of accret-
ing bodies. This problem was studied in the most general framework, without any
symmetry assumptions and allowing finite deformations. This is a highly non-trivial
problem as the final mechanical characteristics of an accreted body depend on the
deformation the body is experiencing at the time at which each layer is added. In this
formulation the stress-free (natural) state of an accreting body is a time-dependent
Riemannian manifold with a time-independent metric that is non-flat, in general, and
is defined through the introduction of a new object—the accretion tensor—that can
be interpreted as the anelastic part of the deformation gradient. The material metric,
and consequently the Riemannian structure of a material manifold, depends on the
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Fig. 18 Accretion through a traction-free line in the presence of a uniform body force. The growth velocity
and the body force vectors are pointing in the same directions. Left: the material manifold with the coordi-
nate frames {∂/∂X , ∂/∂τ } distorted by Q. Center: the residually stressed configuration (the lighter colors
correspond to larger values of stress). Right: the set ϕ̄(M). Note that in this case the map ϕ̄ is an embedding

Fig. 19 Accretion through a traction-free line in the presence of a uniform body force. The growth velocity
and the body force vectors have opposite directions. Left: the material manifold with the coordinate frames
{∂/∂X , ∂/∂τ } distorted by Q. Center: the residually stressed configuration (the lighter colors correspond
to larger values of stress). Right: the set ϕ̄(M). Note that in this case the map ϕ̄ is an embedding

growth velocity and the state of deformation of the body at the time of attachment
of the new material points. In order to express the material metric in terms of the
growth velocity a material manifold is constructed using Riemannian geometry and
the theory of foliations. In this accretion theory the Riemannian material structure is
not known a priori; the material metric is calculated after solving the accretion initial
boundary value problem.We formulated the accretion initial boundary value problem,
which is defined on a time-dependent domain. We studied two classes of accretion
problems where the growth surface is either fixed or traction free. In the first case,
the material structure of the body is known a priori. In the second case, we provided
some analytical results. Solving several numerical examples allowed us to show how
non-Euclidean solids are generated through different types of accretion processes,
and how the material geometrical structure of such bodies are related to the accretion
characteristics.

We should emphasize that our geometric accretion model is not a coupled theory.
We assume that the growth velocity is a given vector field on the boundary of the
deformed body. However, in a coupled theory of accretion, it would be one of the
unknown fields. In this paper we assumed that this vector field is given and focused
our attention on formulating the nonlinear elasticity problem, and in particular, on
the incompatibilities induced by accretion. Extending the present theory to consider
the coupling between mass transport and elasticity will be the subject of a future
communication.
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Appendices

We tersely review someelements ofRiemannian geometry, geometry of surfaces andof
foliations, and the geometric theory of nonlinear elasticity and anelasticity. For more
detailed discussions, see Marsden and Hughes (1983), Camacho and Neto (2013),
Yavari (2010), Yavari and Goriely (2012a).

A Riemannian Geometry

For a smooth n-manifold M, the tangent space to M at a point p ∈ M is denoted
TpM. A smooth vector field W on M assigns a vector Wp to every p ∈ M and
p �→Wp ∈ TpMvaries smoothly.A1-format p ∈M is a linearmapλ : TpM→ R.
In a local coordinate chart {X A} forM, 〈λ,U〉 = λKUK , whereU ∈ TpM. The vector
space of 1-form at p ∈M is denoted with T ∗pM. A smooth differential 1-form assigns

a 1-form λp to every p ∈M and λp ∈ T ∗pM varies smoothly. A type
(r
s

)
-tensor at

p ∈M is a multilinear map

T :
r times︷ ︸︸ ︷

T ∗pM× · · · × T ∗pM×
s times︷ ︸︸ ︷

TpM× · · · × TpM→ R. (A.1)

In a local chart one has

T(λ1, . . . ,λr ,U1, . . . ,Us) = T I1...Ir
J1...Jsλ

1
I1 . . . λrIrU

J1
1 . . .U Js

s . (A.2)

An
(r
s

)
-tensor field is a smoothmap p �→ Tp. ARiemannianmanifold is a pair (M,G)

where G, the metric tensor field, is a field of positive-definite
(0
2

)
-tensors. If U and

W are vector fields on M, then p �→ Gp(Up,Wp) =: 〈〈Up,Wp〉〉Gp is a smooth
function. A metric tensor can be used to raise and lower indices. Given a 1-form λ, we
indicate with λ� the vector with components GI JλJ (the GI J ’s being the components
of the inverse metric, i.e., GI JG JK = δKI ), while given a vector U, we indicate with
U� the 1-form with components GI JU J .

SupposeN is another n-manifold andψ :M→ N is a smooth and invertiblemap.
If W is a vector field on M, then ψ∗W = Tψ ·W ◦ ψ−1 is a vector field on ψ(M)

called the push-forward of W by ψ . Similarly, if w is a vector field on ψ(M) ⊂ N ,
then ψ∗w = T (ψ−1) · w ◦ ψ is a vector field on M that is called the pull-back of
w by ψ . Let us denote F = Tψ . In the local charts {X I } and {xi } for M and N ,
respectively, F (a two-point tensor) has the following representation (when ψ is a
deformation mapping, F is the so-called deformation gradient of nonlinear elasticity)

F = Fi
I

∂

∂xi
⊗ dX I , Fi

I = ∂ψ i

∂X I
, (A.3)
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where
{

∂
∂X I

}
is a basis for TpM and {dX I } is a basis for T ∗ψ(p)ψ(M), the co-tangent

space, i.e., the dual space of Tψ(p)ψ(M), or the space of co-vectors (1-forms). The
push-forward and pull-back of vectors have the following coordinate representations
(ψ∗W)a = Fa

AW A, and (ψ∗w)A = (F−1)Aawa . The push-forward and pull-back of
1-forms are defined as (ψ∗�)a = (F−1)Aa�A, and (ψ∗λ)A = Fa

Aλa .We sometimes
indicate them with (F−1)
� and F
λ, where F
 is the dual of F and is defined as

F
 = Fi
IdX

I ⊗ ∂

∂xi
. (A.4)

The push-forward and pull-back of an
(r
s

)
-tensor field are given by

(ψ∗T)i1...ir j1... js = Fi1
I1 . . . Fir

Ir T
I1...Ir

J1...Js (F−1)J1 j1 . . . (F−1)Js js ,
(ψ∗t)I1...Ir J1...Js = (F−1)I1 i1 . . . (F−1)Ir ir t i1...ir j1... js F j1

J1 . . . F js
Js .

(A.5)

Suppose (M,G) and (N , g) are Riemannian manifolds and ψ : M → N is a
diffeomorphism (smooth map with smooth inverse). Push-forward of the metric G is
a metric on ψ(M) ⊂ N , which is denoted by ψ∗G and is defined as

(ψ∗G)ψ(p)
(
uψ(p),wψ(p)

) := Gp
(
(ψ∗u)p, (ψ

∗w)p
)
. (A.6)

In components, (ψ∗G)i j = (F−1)I i (F−1)J jG I J . Similarly, pull-back of the metric
g is a metric in ψ−1(N ) ⊂M, which is denoted by ψ∗g and is defined as

(
ψ∗g

)
p

(
Up,Wp

) := gψ(p)
(
(ψ∗U)ψ(p) , (ψ∗W)ψ(p)

)
. (A.7)

In components

(ψ∗g)AB = Fa
AF

b
Bgab. (A.8)

If g = ψ∗G, or equivalently, G = ψ∗g, ψ is called an isometry and the Riemannian
manifolds (M,G) and (N , g) are isometric.Note that an isometry preserves distances.

A linear (affine) connection on a manifold B is an operation ∇ : X (B)×X (B)→
X (B), whereX (B) is the set of vector fields on B, such that ∀X,Y,X1,X2,Y1,Y2 ∈
X (B),∀ f , f1, f2 ∈ C∞(B),∀ a1, a2 ∈ R:

i) ∇ f1X1+ f2X2Y = f1∇X1Y+ f2∇X2Y, (A.9)

i i) ∇X(a1Y1 + a2Y2) = a1∇X(Y1)+ a2∇X(Y2), (A.10)

i i i) ∇X( fY) = f∇XY+ (X f )Y. (A.11)

∇XY is called the covariant derivative of Y along X. In a local chart {X I }, ∇∂I ∂J =
�K

I J ∂K , where �K
I J are Christoffel symbols of the connection and ∂K = ∂

∂xK

are natural bases for the tangent space corresponding to a coordinate chart {x A}. In
components the covariant derivative of a tensor field reads
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(∇UW)I = ∂W I

∂XH
UH + � I

HKW
KUH , (A.12)

while for a field of 1-forms one has

(∇Uλ)I = ∂λI

∂XH
UH − �K

H IλKU
H . (A.13)

The previous relations can be generalized to tensors as

(∇UT)I = ∂T I1...Ir J1...Js

∂XH
UH + � I1

HK T
K ...Ir

J1...JsU
H + · · ·

−�K
H J1T

I1...Ir
K ...JsU

H . (A.14)

A linear connection is said to be compatible with a metric G of the manifold if

∇X 〈〈Y,Z〉〉G = 〈〈∇XY,Z〉〉G + 〈〈Y,∇XZ〉〉G , (A.15)

where 〈〈., .〉〉G is the inner product induced by the metric G. It can be easily shown
that ∇ is compatible with G if and only if ∇G = 0. A linear connection is said to be
symmetric if ∇UW − ∇WU − [U,W] = 0, with [U,W] indicating the Lie brackets
of U andW, i.e., ([U,W])I = W I ,J U J −U I ,J W J . The symmetric connection that
is compatible with the metric is called the Levi–Civita connection and its Christoffel
coefficients read

� I
J K = GI H

(
∂GH J

∂XK
+ ∂GHK

∂X J
− ∂GJK

∂XH

)
. (A.16)

The Riemann curvature R associated with (M,∇) is a
(1
3

)
-tensor defined as

R(X,Y)Z = ∇X∇YZ− ∇Y∇XZ− ∇[X,Y]Z ∀X,Y,Z ∈ TM, (A.17)

where R(X,Y)Z stands for the contraction RI
J LM XLY M Z J . In a local coordinate

chart {X A}, the components of the Riemman curvature tensor read

RI
J LM = ∂� I

M J

∂XL
− ∂� I

L J

∂XM
+ � I

LH�H
MJ − � I

MH�H
L J . (A.18)

The Ricci curvatureR is defined as RI J = RH
I H J and is a symmetric

(0
2

)
-tensor. The

scalar curvature R is defined as R = RHKGHK . In dimension three only six compo-
nents ofR are independent and the Ricci curvature fully determines the Riemannian
curvature. In dimension twoR contains only one independent component so it is fully
determined by the scalar curvature. A metric whose Levi–Civita connection has zero
curvature is said to be flat and is locally isometric to Rn (see the different versions of
the Test Case Theorem in Spivak 1999).
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B Geometry of Surfaces

For our purposes, a surface is a two-dimensional submanifold� of a three-dimensional
manifold M (for details see do Carmo 1992). The ambient manifold M is endowed
with a metric G that, in general, is not flat. The surface � inherits a metric G̃ — the
first fundamental form — from G, such that

G̃(Y,Z) = G(Y,Z), ∀Y,Z ∈ T�. (B.1)

On an open set one can define the unit vectorN normal to�, i.e., a vector field such that
i)G(Y,N) = 0 for each tangent vectorY, ii)G(N,N) = 1. It is globally defined only
when � is orientable. We also define the associated 1-form N� such that 〈N�,X〉 = 0
for any X ∈ T�, and 〈N�,N〉 = 1, which can be obtained by lowering the index of
N, i.e., NI = GI J N J .

The two Levi–Civita connections∇ on (M,G), and ∇̃ on (�, G̃) satisfy theGauss
formula

∇̃YZ = ∇YZ−G(∇YZ,N)N, ∀Y,Z ∈ T�. (B.2)

This means that ∇̃ is the tangent projection of ∇. The second fundamental form K is
a
(0
2

)
-tensor defined as

K(Y,Z) = G(∇YZ,N), ∀Y,Z ∈ T�. (B.3)

Then, Eq. (B.2) can be rewritten as

∇YZ− ∇̃YZ = K(Y,Z)N. (B.4)

It can be easily shown that K is well defined and symmetric. Moreover, since
∇Y (G(Z,N)) = ∇Y0 = 0 for any pair Y,Z ∈ T�, one has

K(Y,Z) = G(∇YZ,N) = −G(Z,∇YN) = −〈∇YN�,Z〉, (B.5)

which is known as the Weingarten formula, and in short it reads K = −∇N�.
An adapted chart 
 on U ⊂ M has the property 
(U ∩ �) = V × {0} with

V ⊂ R
2. In other words, the surface is locally given by 
3 = 0 and (
1, 
2) are

coordinate functions on � ∩ U . We use letters from A to G to denote indices that
span {1, 2} (layer indices), and letters from H to Z for indices that span {1, 2, 3} (3D
indices). The components of the second fundamental form can now be obtained using
the Weingarten formula:

KAB = − ∂NA

∂XB
+ � I

AB NI = NI�
I
AB = 1

N 3�3
AB, (B.6)

where all quantities are referred to an adapted chart.
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The Riemann curvature tensorR on (M,G) was introduced in Appendix A. One
can define in the same way the curvature tensor R̃ for (�, G̃). In components one has

R̃ A
BCD = ∂�̃A

DB

∂XC
− ∂�̃A

CB

∂XD
+ �̃A

CE �̃E
DB − �̃A

DE �̃E
CB . (B.7)

The curvature tensor has 16 components but, asmentioned earlier, only one is indepen-
dent. Hence, it can be expressed by the scalar curvature R, or by theGaussian curvature
g = det(G̃ AC KCB). It can be shown that R = 2g and g det G̃ = 1

2 R det G̃ = R1212.

TheGuass equation relates the tangent part ofR to R̃ andK. In components, it reads

RABCD = R̃ABCD + KADKBC − KACKBD. (B.8)

When the ambient space (M,G) is Euclidean the Gauss equation provides an expres-
sion for the curvature of the surface, viz. R̃ABCD = KACKBD − KADKBC . The
Codazzi–Mainardi equations relate R to ∇̃K. In components, they are given by

NHRHBCD = NHRH
BCD = ∇̃DKBC − ∇̃C KBD. (B.9)

When the ambient space (M,G) is Euclidean theCodazzi–Mainardi equations enforce
the symmetry of the tensor ∇̃AKBC with respect to all permutations.

C Geometry of Foliations

LetM be an n-dimensionalmanifold.An (n−1)-foliation (or foliation of codimension
1) is an atlas of charts (Ua, 
a) (a in some index set I) such that 
a(Ua) = Va × Ia
with Va ⊂ R

n−1 and Ia ⊂ R open sets (see Fig. 20). For further details see Camacho
and Neto (2013). The coordinate charts 
a are called the foliation charts. When this
property holds, one obtains a partition of M as a collection {�t }t∈R of embedded
submanifolds of dimension two— the leaves of the foliation. In particular, a Rieman-
nian material manifold (M,G) is partitioned into (n − 1)-dimensional Riemannian
submanifolds (�τ , G̃τ ) with τ ∈ R. The metric G̃τ on the layer �τ is inherited from
G, i.e., it is defined as

τ

τ

Uj

Ui

Ξj

Ξi

Ξj ◦ Ξi
−1

M τΞi

Ui

Vi × Ii

Fig. 20 Foliation charts. Left: sketch of two overlapping local charts in 2D. Right: sketch of a foliation
chart in a 3-manifold
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G̃τ (Yτ ,Zτ ) = G(Yτ ,Zτ ), ∀Yτ ,Zτ ∈ T�τ , (C.1)

and constitutes the first fundamental form of the layer.
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