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Abstract. In this paper, we formulate a theory for the coupling of accretion mechanics and thermoelasticity. We present
an analytical formulation of the thermoelastic accretion of an infinite cylinder and of a two-dimensional block. We develop
numerical schemes for the solution of these two problems, and numerically calculate residual stresses and observe a strong
dependence of the final mechanical state on the parameters of the accretion process. This suggests the possibility to predict
and control thermal accretion processes of soft materials by manipulating thermal parameters, and therefore, to realize
additively manufactured soft objects with the desired characteristics and performances.
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1. Introduction

Accretion is the growth of a deformable solid by the gradual addition of material on its boundary.
Unlike in bulk growth, where the material points are preserved, the set of material points in accretion
problems is time dependent. We refer by thermal accretion to the class of processes and phenomena where
thermal effects cannot be neglected in the characterization of the final accreted body, or where the growth
process itself is driven by the temperature field through a change of phase. Additive manufacturing and
solidification are important examples of thermal accretion. In order to formulate a thermoelastic accretion
model, one needs to couple thermoelasticty and accretion mechanics.

Additive manufacturing, most commonly known as 3D printing, is unarguably a central part of what
seems to be a revolutionary era in manufacturing and it is playing an ever increasing role in our everyday
lives. It has already found many applications ranging from hobbyist art to precise manufacturing in
various industries such as mechanical, aerospace, and medical [21,25,27]. Additive manufacturing was
initially introduced in the 1980s for rapid prototyping. However, given its high efficiency, flexibility, and
the mass customization possibilities, it was further developed for precise on-demand manufacturing and is
now even considered a viable alternative to traditional manufacturing technologies [14,21,25,29]. Additive
manufacturing is further regarded as the pioneering production/manufacturing technology for “The Third
Industrial Revolution” [42,58]. Despite its tremendous potential and commercial success, many challenges
have yet to be overcome before additive manufacturing can be fully integrated in industry [2,15,19,21].
From a mechanics point of view, understanding and being able to predict and control the residual stresses
is crucial in order to tailor and design the process in such a way that the manufactured piece meets the
required properties in its working conditions. As a matter of fact, the high temperatures and natural
cooling that a piece undergoes during the additive manufacturing process causes large strains and can
result in a high level of residual stresses [35,45,46,53]. This may lead to severe part distortion, dimensional
inaccuracies, and even cracks in the final manufactured piece [4,6,7,28]. Such conditions put the additive
manufacturing problem beyond the scope of the application of linearized elasticity. However, to the best
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of our knowledge, most of the existing works on additive manufacturing in the literature are based on
linearized elasticity and/or are purely computational [2,5,13,18,22,23,30–32,34,36,60].

The other main example of thermal accretion is the processes in which the material experiences a
phase change (solidification) of the melt pool as it becomes part of the growing body. To this extent
additive manufacturing technologies can be seen as a particular case of solidification, as new layers of
material are deposited atop of old ones and fused together by melting the new material. In solidification
problems, the growth surface is a phase change interface, on which a Stefan condition is imposed (see
[22,26,41,44,51,57] and references therein).

The formulation of the initial-boundary value problems of accretion processes and the mechanics of
accretion at finite strains is still at its infancy. Additive manufacturing advances are good motivations
for building a mathematical theory of the thermomechanics of accretion at finite strains that can be
used in these new technologies. Compared to bulk growth (see [9,17,59] and the book by Goriely [20]
summarizing the recent developments in bulk growth in biology), the mechanics of accretion is much less
developed mainly because of the complexities involved in modeling the kinematics of accretion, especially
for finite deformations, and the intrinsic incompatible nature of accreting bodies. Recently, Tomassetti et
al. [54] have modeled a spherically symmetric accretion of a hollow spherical ball made of an incompress-
ible nonlinear elastic solid, coupling nonlinear elasticity, accretion and diffusion. A theory of diffusive
accretion has recently been presented in [1]. Swain and Gupta [52] formulated the thermodynamics of
accretion by considering the diffusion of nutrients. In their formulation, the growth surface is treated
as an interface whose motion is coupled with the other degrees of freedom. In another recent work on
growth and accretion, Ganghoffer and Goda [16] used configurational forces in the setting of irreversible
thermodynamics. In [56] the accretion-induced incompatibilities are studied. In [48], a geometric theory
of nonlinear accretion mechanics for symmetric surface growth of cylindrical and spherical bodies was
introduced. This theory was used for the analysis of several model problems. Sozio and Yavari [49] for-
mulated a geometric nonlinear theory of the mechanics of accretion without any symmetry assumptions.
In this theory, a body is represented by a time-dependent Riemannian manifold with a time-independent
metric that at each point depends on the state of deformation at that point at its time of attachment to
the body, and on the way the new material is added to the body. The accretion-induced incompatibilities
were studied by calculating the curvature of the material metric, and the initial-boundary value problem
of accretion was formulated. Some analytical results were provided for some special cases of accretion,
and several nonlinear accretion problems were solved numerically. In this paper, the theory of Sozio and
Yavari [48,49] will be extended to take into account the thermal effects. It should be emphasized that our
focus in the present work is on the formulation of a geometric model that is able to take into account the
attachment of new particles to a solid undergoing finite deformations (accretion) together with the heat
conduction and thermal expansion effects; we do not consider phase transition phenomena or chemical
reactions.

This paper is structured as follows. In Sect. 2, we formulate the coupling of nonlinear thermoelas-
ticity with nonlinear accretion; we show how to build a material manifold taking into account thermal
expansion/contraction together with the incompatibilities arising from the addition of new material and
encoding everything into the material metric. In Sect. 3 we look at the radial thermoaccretion of an
infinite cylinder under the assumption of axi-symmetry. This is a one-dimensional problem that we solve
using the finite difference method. In Sect. 4, we consider the vertical growth of a two-dimensional block
and solve it using an efficient discretization of a weak formulation of the problem. Conclusions, some final
comments, and a brief discussion of future work are given in Sect. 5.
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2. Coupling of thermoelasticity and accretion

In this section, we review some elements of nonlinear thermoelasticity and accretion mechanics. For
more details on geometric nonlinear elasticity, see [33], on thermoelasticity [40,43], and on nonlinear
accretion mechanics [48,49]. Let S be the three-dimensional Euclidean ambient space, and g its usual
scalar product. We indicate with Bt the configuration representing the accreting body at time t. Once
Bt is defined, our goal is to endow it with an a priori unknown inner product G representing its fully
relaxed state. Note that this state may not be realizable in the physical three-dimensional Euclidean
space, whence the presence of residual stresses. We denote by {XA} and {xa} the local coordinates on
Bt and S, respectively. ∇G and ∇g are the Levi-Civita connections of (Bt,G) and (S, g), repectively. We
denote their respective Christoffel symbols by ΓA

BC , and γa
bc in the local coordinate charts {XA} and

{xa}, respectively. We also adopt Einstein’s repeated index summation convention.

2.1. Kinematics of accretion

During an accretion process, the material manifold representing a growing body is not fixed in time.
Indeed, new material points are attached to the part of the boundary of the body called the growth
surface. The growing body is identified with a time-dependent three-dimensional manifold Bt. We assume
that t = 0 corresponds to the start of the growth process and tf to the end. In light of this discussion,
an accreting body is modeled as a connected S-embeddable 3-manifold M together with a smooth map
τ : M → [0, tf ], called the time of attachment map [49]. The body at time t is represented by the set

Bt = {X ∈ M | τ(X) ≤ t}, (1)

while the level surface Ωt = τ−1(t) is the aforementioned growth surface at time t. The motion of a
body subject to accretion is a time-dependent map with a time-dependent domain, i.e., a family of maps
ϕt : Bt → S, with t ∈ [0, tf ]. The so-called deformation gradient F t is the derivative map of ϕt defined as
F t(X) = Tϕt(X) and is a two-point tensor F t(X) : TXB → Tϕt(X)S. The frozen deformation gradient
is a two-point tensor F̄ defined as F̄ (X) = F τ(X)(X), recording the deformation gradient of each point
X at its time of attachment τ(X). Note that, in general, F̄ is not the tangent map of a deformation,
i.e., it is not a deformation gradient. We indicate with U the velocity of the material motion describing
the evolution of the layers Ωt in time, representing the growth velocity in the material manifold. Note
however that the material motion is not unique; it can be shown that there is some freedom in its choice
within a class of material motions that leave the accretion initial-boundary value problem unaltered [49].
We denote the growth surface in the deformed configuration by ωt = ϕt(Ωt), i.e., the part of the deformed
boundary where material points are added. The total velocity of the growth surface ω in the deformed
configuration has two contributions: one due to accretion, and one due to deformation. Its velocity w is
called the total velocity and can be written as w = F̄U + v. The term F̄U represents the contribution
of accretion, while v is the standard velocity of points as material particles moving in the ambient space
via ϕt.

We assume that at time t one can univocally identify a vector field ut on ωt called the growth velocity
that describes the rate and direction at which new material is being added. Alternatively, for every
material point X, we define a time-independent growth “velocity” u : B → TS by assigning to each
point X the growth velocity at its time of attachement to the body, i.e., u := uτ(X) ◦ ϕτ(X). Contrary to
our intuition, F̄U and u are two different objects, although there are some cases (such as traction-free
growth surface) in which they coincide [49]. Note that the growth velocity u can be seen as a parameter
of the additive manufacturing process. Note also that we have assumed that the growth velocity is a given
vector field on the boundary of the deformed body. However, in a coupled theory of accretion, it would
be one of the unknown fields.
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2.2. The material metric

A material metric G is constructed to give at every time t an abstract Riemannian material manifold
(Bt,G) , where the distances measured by G correspond to a fully relaxed state. Note that this state
may not be realizable in the physical three-dimensional Euclidean space, but it is indeed realizable as an
abstract Riemannian manifold. The material metric explicitly depends on the history of loading during
the surface growth process as well as the temperature field T = T (X, t) and the thermal expansion
proprieties of the solid. In thermoelasticity, one may write the material metric as [40,43]1

G(X,T ) = eω�(X,T )G0(X)eω(X,T ). (2)

Here, ω = ω(X,T ) is a (11)-rank temperature-dependent tensor characterizing the thermal extension
properties of the solid. It depends on the thermal expansion characteristics of the material and is such that
ω(X,T0(X)) = 0, where T0(X) is a reference temperature field. Therefore, one has G0 = G(X,T0). In
components, (2) reads GAB = eωCA (G0)CD eωDB . In the particular case of isotropic thermal expansion,
the material metric reduces to

G(X,T ) = e2ω(X,T )G0(X), (3)

where ω = ω(X,T ) is a scalar, with ω(X,T0(X)) = 0. The coefficient of thermal expansion reads
α(X,T ) = ∂ω(X,T )/∂T , so one has

ω(T ) =

T∫

T0

α(η)dη. (4)

In thermal accretion, we choose the field T0 = T0(X) as the temperature at which the new material is
added so that G0 is a temperature-independent metric that depends only on the history of loading during
the accretion process. Note that when the material metric is written in the form (2), the thermoelasticity
effects are fully encoded in ω while the accretion and history of loading during growth are fully encoded
in G0.

In order to calculate G0, we define the accretion tensor Q as the time-independent two-point tensor
field given by [49]

Q = F̄ + (u − F̄U) ⊗ dτ, (5)

which agrees with the frozen deformation gradient F̄ on each layer, and is such that QU = u. The
accretion tensor can be understood as the gradient of a mapping that takes a layer of material in the
material manifold and maps it to its current configuration right before attachment. For this reason, we
define the material metric on Bt as the pullback of the Euclidean ambient metric g through Q, i.e., as

G0(X) = Q�(X) g(ϕ(X, τ(X)))Q(X). (6)

In components, one has (G0)IJ = Qi
Igij Qj

J . Plugging (2) into (6), one then obtains

G(X,T ) = eω�(X,T )Q�(X) g(ϕ(X, τ(X)))Q(X) eω (X,T ). (7)

When the growth surface is traction-free, one can show that if the energy function is rank-1 convex, then
Q = F̄ [49].2 Note that in this case F̄U = u, as QU = u by construction.

1We denote by T � the dual of the (11)-rank tensor T : operating on a 1-form λ , it contracts its upper index with λ ,

i.e., T �λ = T B
AλBdXA. It should not be confused with the adjoint operator T, cf. footnote 3.

2Rank-1 convexity allowed Sozio and Yavari [49] to use an energetic argument to show that the absence of in-layer
deformation and the vanishing of out-of-layer stress (tractions) imply F̄ = Q . Note that being an isometry, the accretion
tensor Q represents an undeformed state.
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By virtue of (2), the Riemannian volume form for G in the isotropic case reads dV = etr ω dV0, where
dV0 is the Riemannian volume form for G0. The Jacobian J relates the material and spatial Riemannian
volume elements dV and dv as dv = JdV. It can be shown that

J =

√
det g

det G
det F =

det F

det Q
e− tr ω , (8)

where use was made of (7). Note that in the isotropic case one has etr ω(X,T ) = e3ω(X,T ), or etr ω(X,T ) =
e2ω(X,T ) in 2D problems.

In the setting of nonlinear mechanics, incompatibility is quantified by either the curl of the accretion
tensor Q, or by the curvature of the material metric G. This is studied in [49] when thermal effects are
ignored. In the present paper, we do not focus on the study of incompatibility, which is implicitly encoded
in the tensor Q (or in some cases F̄ ).

2.3. Balance of mass

Let ρ and 
, respectively, denote the material and spatial mass densities. Although mass conservation
does not hold globally for a body undergoing accretion, mass is locally conserved in the body away from
the growth surface. For any subbody U in Bt, conservation of mass is written as∫

ϕt(U)


dv =
∫

U
ρdV =

∫

U
ρ0 dV0, (9)

where ρ0(X) is the material mass density at T = T0(X)—the temperature field corresponding to the
stress-free metric G0. Localizing the above equation gives the local form of mass conservation

ρ(X, t) = J(X, t)
(X, t), (10)

where the material mass density ρ is related to the reference material mass density ρ0 via

ρ0(X) = etr ω(X,T (X,t))ρ(X, t), (11)

so that ρ0 = Jetr ω 
.

2.4. Stress tensors and the balance of linear momentum

The right Cauchy–Green deformation tensor is defined as C = F TF ;3 in components, CA
B = GAKF a

Kgab

F b
B . Note that C� is the pull-back of the spatial metric g by ϕ, i.e., C� = ϕ∗g, where � denotes the

flat operator for lowering tensor indices. The left Cauchy–Green deformation tensor (also called Finger
tensor) is defined as b = FF T; in components, ba

b = F a
AF c

BGABgcb. Note that b� agrees with the
pushforward of the inverse material metric G� by ϕ, i.e., b� = ϕ∗G�, where � denotes the sharp operator
that is used for raising tensor indices.

We assume that the body is made of a hyperelastic material, so that the constitutive model is given
by an energy function W = W̃(X,T,F , g,G) per unit undeformed volume, and the Cauchy and the first
Piola–Kirchhoff stress tensors are defined as

σ =
2
J

∂W̃
∂g

, P =
∂W̃
∂F

, (12)

3We denote the adjoint of F by F T and it is defined such that g(F W , w ) = G(W , F Tw ) for any pair (W , w ) ∈
TXBt × Tϕt(X)S. In components, (FT)A

a = gabF
b
BGAB .
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where Jσ = PF �. If the material is incompressible, we have J = 1 and the Cauchy stress tensor is
written as

σ = 2
∂W̃
∂g

− p g�, P =
∂W̃
∂F

− p g�F −�, (13)

where p is the Lagrange multiplier associated with the incompressibility constraint. For neo-Hookean
incompressible materials the energy density is written as

W̃(X,T,F , g,G) =
μ(T )

2
tr C, (14)

where C and J depend on the temperature through the material metric G (see Appendix A). The Cauchy
and the first Piola–Kirchhoff stress tensors are expressed as

σ = μb� − pg�, P = μFG� − pg�F −�. (15)

We consider slow accretion processes. Ignoring the inertial term, the balance of linear momentum reads

div σ + 
f = 0, Div P + ρf = 0, (16)

where div denotes the spatial divergence operator with respect to the metric g, Div the material divergence
operator with respect to the metrics g and G, and f denotes the body force per unit mass.

2.5. The heat equation

Starting from the fundamental laws of thermodynamics, one can find the following generalized heat
equation [8,43]

Div H = −ρcE Ṫ +
1
2
T

∂S

∂T
:Ċ

�
+ ρR, (17)

where H is the material heat flux vector per unit area, cE denotes the specific heat capacity at constant
strain, and R is the external specific heat supply. For a thermally isotropic solid, the heat flux response
function has the following representation [55, p. 358]

H = (φ0C
−� + φ1G

� + φ2C
�)dT,

where dT = ∂T
∂XA dXA, and φk = φk(X,T,dT,C,G), k = −1, 0, 1, are scalar functions. If we set K =

−(φ0C
−� + φ1G

� + φ2C
�), then by the reduced form of the Clausius–Duhem inequality 〈dT,H〉 ≤ 0,4

and hence, K is a positive semi-definite symmetric material (20)-tensor (the heat conductivity tensor).
One can write a generalized version of the Fourier’s law of thermal conduction as H = −KdT. In our
numerical examples, we consider the simple model K = KG�, where K is the heat conduction coefficient,
while we call D = K

cEρ the diffusivity coefficient. Therefore, the heat equation (17) is simplified to read5

Div(KG�dT) = ρcE Ṫ − 1
2
T

∂S

∂T
:Ċ

� − ρR. (18)

4In Appendix D we discuss the derivation of this inequality.
5Note that G�dT = Grad T .
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Fig. 1. Configurations of a radially symmetric accreting hollow cylinder on a rigid substrate (inner disk in gray). Top
two disks: material and deformed configurations at time t1, 0 < t1 < tf . Bottom left two disks: material and deformed
configurations at the final time tf . Bottom right disk: when accretion is completed one unloads and lets the cylinder cool
down. The result is a residually stressed configuration

3. Accretion of a hollow cylinder

In this section, we present a simplified formulation of the thermoelastic problem for the radially symmetric
accretion of an infinitely long hollow cylinder (see Fig. 1). We assume that the material is initially added
on the outer surface of a rigid and infinitely long cylindrical substrate of radius R0 and that the growing
cylinder is sitting in an ambient temperature Ta. We assume that stress-free cylindrical layers of new
material are continuously and uniformly formed on the outer boundary of the cylinder at a temperature
Tm—its melting temperature—greater than Ta. The growth velocity is assumed to be normal to the
growth surface and has magnitude u(t). The added rings are made of the same homogeneous isotropic
incompressible material, with a uniform isotropic coefficient of thermal expansion α(T ), and a uniform
isotropic coefficient of heat conduction K(T ). Assuming an infinitely long cylinder, the problem is reduced
to studying a cross section of the cylinder, i.e., the surface growth of a two-dimensional annulus. Let (R,Θ)
and (r, θ) be the polar coordinates in the material manifold Bt—which has yet to be constructed—and
the ambient space S, respectively. The ambient space metric g is represented in polar coordinates by a
diagonal matrix diag(1, r2).

3.1. The material manifold

The first task is to construct a time-dependent material manifold Bt resulting from the addition of the
new rings. We denote by S(t) the material external radius of the growing cylinder, so that

Bt = {(R,Θ) : R0 < R ≤ S(t), 0 ≤ Θ < 2π} . (19)

Note that since we are concerned with a model for continuous accretion with no ablation, S(t) is assumed
to be a continuous bijective mapping. One can hence define its inverse map τ = S−1 assigning to each
ring at R ≥ R0 its time of attachment τ(R) as defined in Sect. 2.1. Assuming that accretion starts at
t = 0, it follows that τ(R0) = 0 and equivalently that S(0) = R0. We define the material growth velocity
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U(t) = Ṡ(t), which yields S(t) = R0 +
∫ t

0
U(ν)dν . In what follows, we choose S(t) such that U(t) = u(t),6

which means that in the time interval [t, t + dt] the external radii of both the material and spatial disks
grow by the amount u(t)dt (see Fig. 1). Hence, S(t) = R0 +

∫ t

0
u(ν)dν.

Kinematics of the accreting cylinder. We assume that the growing cylinder deforms in a radially sym-
metric fashion, i.e., we take motions ϕt of the kind (r(R, t),Θ). The deformation gradient reads

F (R, t) =
[
r,R(R, t) 0

0 1

]
, (20)

where a subscript comma denotes partial differentiation, e.g., r,R(R, t) = ∂r
∂R (R, t). As was mentioned

earlier, as the growth surface R = S(t) is traction-free, Q = F̄ , and hence, u = F̄U . Therefore, the
material growth speed U and the spatial growth speed u are related as

u(t) = r,R(S(t), t) U(t). (21)

This is equivalent to assuming the absence of traction on the outer boundary, see [49]. Having already
assumed U(t) = u(t), Eq. (21) gives us

r,R(S(t), t) = 1, or r,R(R, τ(R)) = 1, (22)

so that the frozen deformation gradient reads F̄ = I; see Sect. 2.1. We introduce the notation s(t) =
r(S(t), t); see Fig. 1, and r̄(R) = r(R, τ(R)), so that one has s = r̄ ◦ S, or r̄ = s ◦ τ . Finally, the rate of
change of the spatial radius of the growing cylinder s(t) = r(S(t), t), representing the radial and the only
nonzero component of the total velocity w, is written as

ṡ(t) =
d
dt

[r(S(t), t)] = r,R(S(t), t)Ṡ(t) + r,t(S(t), t) = Ṡ(t) + r,t(S(t), t), (23)

where r,t = ∂r/∂t is the radial and only nonzero component of the standard velocity v. From (23), it
follows that the velocity of the accretion boundary is the result of two contributions: Ṡ(t) = U(t) = u(t),
due merely to accretion, and the standard velocity r,t(S(t), t) .

3.2. The material metric

As was discussed earlier, given a material manifold Bt, first one constructs a metric G0 for Bt taking
into account the history of loading during the accretion process. Next, given the actual evolution of the
temperature field T in the growing body, the material metric can be constructed following (2) and (4) as
G = e2ω(T )G0. Hence, following Sozio and Yavari [48], a material metric for a ring of the material annulus
Bt under the uniform temperature Tm is given by the pullback of g by ϕ at its time of attachment τ(R)
as in (6). Therefore, as we showed Q(R) = F̄ (R) ≡ I, and hence, one obtains

G0(R) =
[
1 0
0 r̄2(R)

]
. (24)

Note that the reference temperature field is T0 = Tm. Then, by virtue of (7) and (24), the material metric
reads

G(R, t) = e2ω(T (R,t))

[
1 0
0 r̄2(R)

]
, (25)

where the function ω(T ) is discussed in Appendix A.

6There are many other choices that will result in the same stress calculation. As a matter of fact, for isotropic solids
the geometric theory suggests that the material body is represented by a class of infinitely many isometric Riemannian
manifolds. The anisotropic case is slightly more complicated as one needs to look at the symmetry group for the constitutive
equation, but there is still some arbitrariness. This was discussed in detail in [48,50].
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3.3. Governing equations

From (20) and (25), the incompressibility condition J = 1 is written as

r(R, t) r,R(R, t) = e2ω(T )r̄(R, t). (26)

Thus, it follows that

r2(R, t) =

R∫

R0

2r̄(ξ)e2ω(T (ξ,t))dξ + R0
2. (27)

As for the balance of linear momentum, we first compute the Finger deformation tensor, viz.

b� =
[

r̄2e2ω

r2 0
0 1

r̄2e2ω

]
. (28)

Therefore, following (15), the Cauchy stress tensor reads

σ =
[

μr̄2e2ω

r2 − p 0
0 μ

r̄2e2ω − p
r2

]
, (29)

where p is the pressure field associated with the incompressibility condition, and the shear modulus μ
depends on the temperature field and therefore on the radial coordinate and time, i.e., μ = μ(T (R, t)).
The radial component of the equilibrium equation (16) is simplified to read

σrr
,R +

r,R

r

(
σrr − r2σθθ

)
= 0, (30)

from which, by (29), it follows that

σrr
,R =

μ

r̄

(
1 − r̄4e4ω

r4

)
. (31)

Since σrr(S(t), t) = 0, one obtains the following expression for the radial stress:

σrr(R, t) = −
S(t)∫

R

μ(T (ξ, t))
r̄(ξ)

[
1 − r̄4(ξ)e4ω(T (ξ,t))

r4(ξ, t)

]
dξ. (32)

On the other hand, it follows from (29) that

σθθ =
σrr

r2
+

μ

r2

[
r2

r̄2e2ω
− r̄2e2ω

r2

]
, (33)

where r is given by (27).7 Note that at R = S(t), one has r̄ = r, and T = Tm—whence ω = 0. Therefore,
the stress-free boundary condition for the hoop stress, i.e., σθθ(S(t), t) = 0, is trivially satisfied.8 Once
accretion is completed, one can calculate the residually stressed configuration r̃(R) through (27) and (32)
by imposing uniform T = Ta and traction-free boundary conditions. The residual stresses are denoted by
σ̃rr and σ̃θθ (see Fig. 4).

7If the inner boundary is subject to a traction (pressure) pi, the condition σrr(S(t), t) = −pi(t) gives the following

equation
S(t)∫

Ri

μ(T (ξ, t))

r̄(ξ)

[
1 − r̄4(ξ)e4ω(T (ξ,t))

r4(ξ, t)

]
dξ = pi(t). (34)

8Note that σθθ(S(t), t) = 0 is not assumed; it is anticipated by virtue of Q = F̄ .
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Assuming that there is no external heat supply and neglecting the coupling term, the heat equation (18)
simplifies to read

Div(KG�dT) = ρcE Ṫ . (35)

Recalling from (11) that ρ(R, t) = ρ0(R)e−2ω(T (R,t)), and from Appendix C, Eq. (35) is simplified to read

K

r̄

(
r̄(R)

∂T

∂R

)
,R

+
dK

dT
T,R

2 = ρ0cEṪ . (36)

We assume a Neumann boundary condition on the inner boundary R = R0:

[K(T )T,R − ha(T − Ta)](R0,t) = 0, (37)

where ha is the heat transfer coefficient between the cylinder and the ambient air inside the hollow
cylinder. On the growth surface R = S(t), the temperature boundary condition is T = Tm.

3.4. Numerical results

In the numerical examples the growth velocity is assumed constant in time, i.e., u(t) ≡ u. This implies
S(t) = ut and τ(R) = R−R0

u . We take Lo = R0, To = Tm, while growth is assumed to stop when the
material external radius is 3Lo. This implies that u = 2Lo/to. The values of all the parameters involved
in the calculations are shown in Table 1, while plots of the numerical results are shown in Figs. 2, 3
and 4. Note that in the numerical examples we show the residually stressed configurations for which
temperature is uniform. This means that incompatibility (or residual stress) is not caused directly by
thermal expansion/contraction. However, the residual stresses indirectly depend on the thermal strains
during the accretion process through the accretion tensor Q, which depends on the history of deformation
localized on the growth surface.

For the numerical calculations, we use a discrete time domain with a constant time interval h. In each
time interval, we use a two-step numerical scheme based on the finite difference method to solve (26)
and (36). The scheme is schematically illustrated in Fig. 5. We consider an equally distanced grid for
R, and at the beginning of every time interval, we add a new point to the grid. At the time step i − 1,
a layer of hot material is added to the outer boundary of the cylinder. In the first step, we solve the
thermal problem by discretizing (36) using the finite difference method. Let T be a vector containing the
values of the temperature field T at all the grid points and let Ṫ = F(T) be the discretization of (36). We
approximate the time derivative with an implicit backward Euler formula as T(i) − T(i−1) = hF(T(i)),
where i is the time interval number. One can solve this equation with a linear solver to obtain T(i),
provided that T (i) = Tm at the new outer grid point, T(i−1) is available from the previous time interval,
and the boundary condition (37) is imposed at the grid point corresponding to R = R0. In the second step,

Table 1. Parameters for the numerical calculations of the accreting cylinder

Parameter Symbol Value

Internal material radius R0 1 Lo

Shear modulus μ 1 μo

Accretion time tf 1 to
Melting temperature Tm 1 To

Substrate temperature Ts 0 To

Thermal expansion coefficient at Ta αa 0.25 T−1
o

Heat transfer coefficient hs 2 μoLo
toTo

Diffusivity coefficient D 1
L2

o
to
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Fig. 2. The accreting cylinder at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The lighter colors indicate higher temperatures.

Note that the gray circle at the center representing the rigid internal substrate for the growing cylinder is identical in all
the four figures; if the reader sees a difference, it is due to the Delboeuf illusion (color figure online)

Fig. 3. Left: radial and circumferential stresses σrr (red) and σθθ (blue) at three different times 1
3
tf , 2

3
tf , tf . Note that

σθθ has the dimension of a stress over an area, i.e., it is not a physical component. Its physical representation is r2σθθ,
which is very close to σθθ as its highest value is at R = 1. Notice that both components of stress vanish at the outer surface,
i.e., for R = S(t), for any t. Right: temperature at three different times 1

3
tf , 2

3
tf , tf (color figure online)

we use the same grid to discretize (26). Note that ω(T ) in (26) is calculated using T(i) obtained in step
1. Next, we impose r(R0) = R0, and from (22), r,R = 1 at the outer grid point and use Newton’s method
to solve the discretization of (26) to obtain r at all the grid points. We use the values of r obtained in the
previous time interval as the initial guess for Newton’s method. We repeat the two steps for the next time
interval. When we reach tf , we remove the constraints, impose Ta everywhere, and calculate the residually
stressed configuration (see Fig. 4). We do this by using a load control procedure that gradually applies
the change of material metric given by (25) multiplying G0 by e2ω(T (R,tf )) + η

[
e2ω(Ta) − e2ω(T (R,tf ))

]
,

as η increases form 0 to 1.

4. Accretion of a two-dimensional block

In this section, we consider the thermoelastic accretion of a two-dimensional block. We assume that the
material starts being added on a rigid substrate. The initial width of the accreting body is L and might
change in time due to finite deformations. The growing body is sitting in an ambient temperature Ta

and the substrate is at temperature Ts, while stress-free layers of new material are continuously and
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Fig. 4. Left: time-independent quantities at the end of accretion. The radial coordinate R, the external radius at the time
of attachment r̄(R), the “cooled-down” external radius at the time of attachment eω(Ta)r̄(R) at the ambient temperature
Ta, and the relaxed r̃(R) corresponding to the residually stressed configuration. Right: radial and circumferential residual
stresses σ̃rr (red) and σ̃θθ (blue). Note that σ̃θθ is not a physical component, but is very close to r2σ̃θθ as its highest value
is at R = 1. Note also that the values of both components of residual stress are comparable with the respective values of
the thermal stresses during accretion shown in Fig. 3 (color figure online)

Fig. 5. A two-step computational scheme for a layered manufacturing process. The top row of plots represents the temper-
ature T (R). The bottom row of plots represents configuration r(R). Si−1 is the external material radius at time ti−1, Si

denotes the external material radius at time ti, Sf is the external material radius at the final step tf , si−1 is the external
deformed radius at time ti−1, and si denotes the external deformed radius at time ti

uniformly added on the upper boundary of the block at a temperature Tm. We assume that Ta < Tm

and Ts < Tm. This means that during the accretion process the growing body experiences deformations
that are induced by differential thermal expansion. At time t, the material is added with a vertical flux
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Fig. 6. Configurations of an accreting block

of mass on the upper boundary of the body, which will constitute at each time the accretion surface ωt.9

The rate at which new material is added to the body at the time t is given by the scalar function u(t).
It should be emphasized that in the case of finite deformations the growth velocity is not necessarily
normal to the growth surface throughout the accretion process. We neglect the effect of body forces
and assume that the material is added in a stress-free state. We assume that the block is made of a
uniform isotropic incompressible solid, with a uniform isotropic coefficient of thermal expansion α(T ),
and a uniform isotropic coefficient of heat conduction K(T ). We choose Cartesian coordinates (x, y) in the
ambient space, so that the material is initially deposited on the line segment [−L

2 , L
2 ] × {0} representing

ω0. The ambient metric g in Cartesian coordinates is represented by the diagonal matrix diag(1, 1).

4.1. The material manifold

We take a rectangle with a time-dependent height S(t) as the material manifold, viz.

Bt =
{

(X,Y ) ∈ R
2
∣∣∣ − L

2
≤ X ≤ L

2
, 0 ≤ Y ≤ S(t)

}
. (38)

In doing so we assume that the accretion process does not change the topology of the body. We define
the time of attachment map τ = S−1, assigning to each layer of vertical coordinate Y ≥ 0 its time of
attachment τ(Y ). Assuming that accretion starts at t = 0, it follows that τ(0) = 0, and equivalently,
S(0) = 0. The material growth velocity U(t) is then vertical and has norm U(t) = u(t). This means that
the thickness U(t)dt of the added ring in the material manifold is equal to the thickness u(t)dt of the
added ring in the spatial manifold, as shown in Fig. 6. Therefore the height of Bt is S(t) =

∫ t

0
u(η)dη.

The material metric G will be constructed in order to obtain the Riemannian material manifold (Bt,G)
as an abstract representation of the relaxed state of the accreting body.

9It is assumed that throughout the whole accretion process the configuration of the accretion surface is given by points
(x, f(x, t)), for some time-dependent f , so that the vertical addition of material on the whole upper boundary will always
be possible.
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4.2. Kinematics of the accreting body

Let (X,Y ) and (x, y) be the Cartesian coordinates in the material manifold Bt and the ambient space
S, respectively. A motion for Bt is therefore a map (x(X,Y, t), y(X,Y, t)).10 Remember that, given a
configuration ϕt : Bt → S with tangent map F (t) = Tϕt, the frozen deformation gradient field F̄ (X,Y ) =
F (X,Y, τ(Y )) “freezes” the deformation gradient at the time of attachment of each layer. One can express
F̄ as

F̄ =

[
∂x
∂X

∂x
∂Y

∂y
∂X

∂y
∂Y

]

t=τ(Y )

. (39)

Note that because the growth surface is traction free the material growth velocity is related to the spatial
growth velocity as u = F̄U . Therefore, having assumed U(t) = u(t), from (39) one obtains

∂x

∂Y

∣∣∣∣
t=τ(Y )

= 0,
∂y

∂Y

∣∣∣∣
t=τ(Y )

= 1, (40)

which is a two-dimensional analogue of (22). Thus, one can write Eq. (39) as

F̄ =

⎡
⎣

∂x
∂X

∣∣
t=τ(Y )

0
∂y
∂X

∣∣∣
t=τ(Y )

1

⎤
⎦ . (41)

4.3. The material metric

After having chosen a suitable material configuration, one defines a metric G, which depends on the
temperature following (2) and (4) as G = e2ω(T )G0, with the function ω such that ω(Tm) = 0, and so
e2ω(Tm) = 1. The metric G also takes into account the history of loading during the accretion process
following (6) with Q = F̄ . Using the same coordinate charts as above and recalling Eq. (41), one obtains

G0 =

⎡
⎢⎣

∂x
∂X

∣∣2
t=τ(Y )

+ ∂y
∂X

∣∣∣2
t=τ(Y )

∂y
∂X

∣∣∣
t=τ(Y )

∂y
∂X

∣∣∣
t=τ(Y )

1

⎤
⎥⎦ , (42)

and the temperature-dependent reads G = e2ωG0.

4.4. Governing equations

We assume that the material is incompressible, i.e., J = 1, which by virtue of (8) can be written as√
det g

det G
det F =

det F

det F̄
e− tr ω = 1, (43)

since Q = F̄ . Rearranging and emphasizing the dependence on the space coordinates and time, one has

det F (X,Y, t) = e2ω(T (X,Y,t)) det F̄ (X,Y ). (44)

We write the balance of linear momentum in terms of the first Piola–Kirchhoff stress tensor which is
convenient for imposing the boundary conditions. We consider a neo-Hookean model with a temperature-
dependent μ (see Appendix A). The first Piola–Kirchhoff stress tensor can be written using (15) and (6)
as

P aA = μ(T )F a
BGAB − pFA

bg
ab = μ(T )e2ω(T )F a

BF̄A
cF̄

B
bg

bc − pFA
bg

ab. (45)

10Unlike the one-dimensional example of the axi-symmetric infinite cylinder, it is not possible to define s(t) as the
deformation is not uniform along the width of the block.
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Fig. 7. Boundary conditions for the displacement and the stress (left), and for the temperature and the heat flux (right)

We neglect the inertial effects as accretion is a slow process, and the balance of linear momentum is
written as

Div P + 
0f = 0. (46)
The boundary conditions for the balance of linear momentum are shown in Fig. 7. Note that the material
Christoffel symbols vanish since we are using Cartesian coordinates, and so the divergence of P in
coordinates reads

P aA|A = P aA
,A + ΓA

ACP aC , (47)

where the Christoffel symbols ΓA
BC for ∇G can be computed from (42). Once accretion is completed,

one can calculate the relaxed configuration ϕ̃ with residual stress P̃ or σ̃ by imposing uniform ambient
temperature T = Ta and traction-free boundary conditions.

The temperature field T that appears in the governing equations (44) and (45) is governed by Eq. (18).
In the absence of external heat supply and neglecting the mechanical dissipation term, it reads

ρcE Ṫ − Div(KG�dT) = 0. (48)

Using components and assuming a uniform K one obtains

ρcE Ṫ − KGAB

(
∂2T

∂XA∂XB
− ΓC

AB
∂T

∂XC

)
= 0, (49)

with the boundary conditions shown in Fig. 7.

4.5. Numerical results

In the numerical examples the growth velocity is assumed constant, i.e., u(t) ≡ u. This implies that
S(t) = ut and τ(Y ) = Y/u. We take S(tf ) = Lo, and therefore, u = Lo/to. As in the previous example,
the reference temperature To is the melting temperature Tm. We solve the same problem using two
different sets of thermal parameters. In the first case (Figs. 8, 10) the heat flux is driven by heat exchange
with the sides of the block, while in the second case (Figs. 9, 10) the body is cooled down mainly by
the lower side that is in contact with the substrate. Note that for incompressible two-dimensional solids
trC characterizes C as the other invariant is detC = 1. The values of all the parameters involved in the
calculations are given in Table 2.

Here we use an approach similar to that of Sect. 3.4, but with a more sophisticated discretization
method that is suitable for 2D problems. To approximate the temperature and deformation history of a
body in an accretion process, we discretize the time domain into a finite set of equal time intervals h and
design a two-step numerical scheme for each time interval (see Fig. 11). In the first step, we assume that
a layer of new hot material is added to the initial body. We update the grid points and assign to the new
layer a metric G0 as in (42), where x and y are available from the time step i−1. Note that since the new
layer is at temperature Tm, the material metric G is exactly G0. Next, we solve the heat equation (49)
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Fig. 8. The accreting block at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The colors show temperature (top) and tr C (bottom),

lighter colors correspond to higher values. The plots correspond to Case 1: the heat flux is driven by the heat exchange with
the lateral sides of the block, as can be observed from the temperature contour (color figure online)

Fig. 9. The accreting block at four different times 1
4
tf , 1

2
tf , 3

4
tf , tf . The colors show temperature (top) and tr C (bottom),

lighter colors correspond to higher values. The plots correspond to Case 2: The heat flux is driven by the heat exchange
with the rigid substrate at the bottom side of the block, as can be observed from the temperature contour (color figure
online)

to obtain the temperature field on the entire body (old layers and the newly added layer) after one time
interval. Following our approach in Sect. 3.4, let Ṫ = F(T) be the discretization of (49), where T is an
array containing the values of the temperature field T at all points of a two-dimensional grid. The implicit
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Fig. 10. Top: the heat flux is driven by the heat exchange with the lateral sides of the block (Case 1). Bottom: The heat
flux is driven by the heat exchange with the rigid substrate at the bottom side of the block (Case 2). Left: the material
manifold—an L × utf rectangle—with the field of frames representing the Cartesian frame {i, j} deformed by F̄ , i.e., the

moving frame {F̄ i, F̄ j}. In this example, the two-point tensor F̄ is the analogue of the plastic part of the deformation
gradient in multiplicative plasticity. Center: The configuration at the final time of accretion tf . Right: The residually stressed
configuration after thermal and mechanical relaxation, i.e., relative to the uniform temperature T = Ta and traction-free
boundary conditions. Note that the residually stressed configurations in the two cases are completely different

backward Euler formula gives T(i) −T(i−1) = hF(T(i)). Note that the grid points have been updated after
adding the new layer, and thus, we interpolate T(i−1) on the new grid points. We choose the interpolated
T(i−1) as the initial guess of Newton’s method for T(i). Then, to obtain T(i), we impose the boundary
conditions and solve the above equation using Newton’s method considering a numerical Jacobian matrix.
In the second step, we use the computed temperature T(i) to update the temperature-dependent material
metric G and then numerically solve the equations of nonlinear elasticity (46) subjected to change of
G = e2ωG0 with G0 given in (42). This gives us the deformed configuration of the body after adding
a layer of new hot material. We assume for simplicity that the boundary of the body ∂Bt is a disjoint
union of ∂DBt and ∂NBt and is subjected to the boundary conditions ϕt = ϕ̂t on ∂DBt and PN = t on
∂NBt, where N is the unit outward normal vector field of ∂NBt. For the numerical calculations, we use
the following weak formulation of (46)∫

Bt

Υa|BPa
B dV =

∫

Bt

�0baΥa dV +

∫

∂NBt

taΥa dA,

∫

Bt

(J − 1)q dV = 0,

ϕt = ϕ̂ on ∂DBt,

(50)

where Υ is an arbitrary vector field such that Υ = 0 on ∂DBt, and q is an arbitrary scalar field.
Also, recall that P is given by (45). Next, we discretize (50) using a variational differential quadrature



   87 Page 18 of 24 F. Sozio et al. ZAMP

Table 2. Parameters of the accreting two-dimensional block

Parameter Symbol Value

Width in the reference configuration L 1 Lo

Shear modulus μ 1 μo

Accretion time tf 1 to
Melting temperature Tm 1 To

Thermal expansion coefficient at Ta αa 0.2 T−1
o

Case 1 Case 2
Ambient temperature Ta 0.5 To 0 To

Substrate temperature Ts 0 To 0.5 To

Diffusivity coefficient D 0.2
L2

o
to

1
L2

o
to

Heat transfer coefficient (ambient) ha 10μoLo
toTo

1μoLo
toTo

Heat transfer coefficient (substrate) hs 1μoLo
toTo

10μoLo
toTo

Note that the diffusivity coefficient is defined as D = K
ρ0cE

Fig. 11. A two-step computational scheme for a layered manufacturing process

(VDQ) method [10] and obtain a set of algebraic equations. The 2D domain is discretized by Chebyshev–
Gauss–Lobatto grid points along the two axes. Over the entire 2D grid points, the derivatives in (50)
are approximated using the generalized differential quadrature (GDQ) method [47] and the integrals are
approximated by the relation given in [10, Appendix B]. The boundary conditions in (50)3 are imposed
using the standard elimination approach. At time step i, the discretized material metric G(i) changes due
to the new distribution of temperature T(i). We use Newton’s method to solve the resulting algebraic
equations from (50) in a load control procedure that gradually applies the change of material metric by
G(i−1) + η[G(i) − G(i−1)] as η increases form 0 to 1. We observed that using the same grid points for
approximating the spatial coordinates (x, y) and the pressure p results in a singular method. This is due
to violation of Ladyzhenskaya-Babuška-Brezzi (LBB) condition. To overcome this issue, we used a coarser
grid for approximating p relative to that of (x, y). To improve the efficiency, we calculate the Jacobian
matrix analytically by linearizing (50). We repeat the two steps for the next time interval.

5. Conclusions

In this paper, we formulated a theory for the coupling of accretion and thermoelasticity. We focused on the
analytical formulation of the thermoelastic accretion of an infinite cylinder and of a two-dimensional body.
These two examples represent very simple one-dimensional and two-dimensional benchmark problems for
thermoelastic accretion. We developed numerical schemes for the solution of these two problems. The
numerical calculations allowed us to show the main features of thermal accretion, e.g., the presence
of residual stress in accreted bodies, and the dependence of their final characteristics on the history of
deformation. This in turn implies the dependence of the mechanical characteristics of an accreted body on
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the parameters of the accretion process. In particular, in the two-dimensional case, changing the boundary
conditions for the heat equation, we were able to show the strong dependence of the characteristics of the
accreted body on the thermal parameters of accretion. This suggests a new approach to control accretion
through tailoring the thermal parameters in order to achieve specific mechanical characteristics.

Extending the present theory to include changes of phase will be the subject of a future communication.
As a matter of fact, solidification represents a very important example of accretion, and to the best of our
knowledge, the nonlinear Stefan problem of a body undergoing large deformations has not been studied
to this date. As we mentioned earlier, it would be interesting to see how one can design specific accretion
processes in order to achieve desired shapes and mechanical properties in an accreted body. This could be
done through the manipulation of parameters such as growth velocity, heat transfer coefficients, ambient
temperature, etc. A further extension of the present work would be the development of an efficient finite
element framework that can be used to simulate more complex accretion problems. In particular, one
can modify (50) by considering F and P as independent variables and use the mixed finite element
methods for compressible and incompressible nonlinear elasticity introduced in [11,12] to solve accretion
problems. Finally, it would be interesting to consider different ways of addition of material in order to
address additive manufacturing processes more specifically.
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A A nonlinear thermoelastic constitutive model

In this appendix, we present a thermoelastic model following the works of Chadwick [3], Ogden [37–39],
and Holzapfel and Simo [24]. See [43] for more details. For a homogeneous isotropic solid, we denote by κ0,
μ0 and β0, the bulk modulus, the shear modulus, and the volumetric coefficient of thermal expansion at T0,
respectively, with β(X,T ) = ∂

∂T trω(X,T ), while in the isotropic case β(X,T ) = 3 ∂
∂T ω(X,T ) = 3α(X,T )

in 3D, and β(X,T ) = 2 ∂
∂T ω(X,T ) = 2α(X,T ) in 2D. We consider the following constitutive model

W̄(T, Ĩ, J) =
μ0

2
T

T0
(Ĩ − 3) +

κ0

2
T

T0
(J − 1)2 − κ0β0(J − 1) (T − T0) − ρ

T∫

T0

cE(η)
T − η

η
dη, (51)

where Ĩ = J−2/3I, I = tr C, J =
√

det C, and cE is the specific heat capacity at constant strain. In the
incompressible case, we have the constraint J = 1 associated with the pressure field p as the Lagrange
multiplier and the constitutive model transforms to read

W̄(T, I) =
μ0

2
T

T0
(I − 3) − ρ

T∫

T0

cE(η)
T − η

η
dη, (52)

plus the Lagrange multiplier part p(J − 1)2. Note that the shear modulus is linear in temperature, i.e.,

μ(T ) = μ0
T

T0
. (53)
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The simplest thermoelastic model for the expansion coefficients is given by a constant α, viz.

α(T ) = α0, ω(T ) = ω0
T

T0
, ω0 = α0T0. (54)

B A remark on the material metric

Equation (2) is a generalization of the isotropic case that appeared in [40]. In section 2.1 of [43], due to
a mis-manipulation of the musical operators for raising and lowering indices, the representation of the
material metric using the (11)-tensor ω was mistakenly presented as

G(X,T ) = G0(X)e2ω (X,T ). (55)

Indeed, this representation may violate the symmetry requirement for the Riemannian metric G, while
the representation (2) ensures its symmetry. In what follow, we provide a correction of the proof appearing
in section 2.1 of [43]. The manifold (B,G0)—which corresponds to the stress-free temperature field
T0 = T0(X)—is flat. Hence, there exists a local coordinate chart {Y A} in which

G0 = δABdYA ⊗ dYB . (56)

Following Ozakin and Yavari [40], the temperature-dependent material metric can be written as

G(X,T ) =
∑
K

e2ωK(X,T )dYK ⊗ dYK , (57)

where {ωA}A=1,2,3 describes the thermal expansion properties of the material such that ωK is related to
the thermal expansion coefficient αK in the direction ∂

∂Y K by

αK(X,T ) =
∂ωK

∂T
(X,T ), (58)

and ωK(X,T0) = 0. Let the change of basis between {Y A}A=1,2,3 and some arbitrary local coordinate
chart {XA}A=1,2,3 be written as

dYK = AK
JdXJ , (59)

which also reads as
∂

∂Y K
= (A−1)I

K
∂

∂XI
. (60)

Then it follows that

G =

(∑
K

e2ωK AK
IA

K
J

)
dXI ⊗ dXJ . (61)

Let ω be the (11)-tensor

ω =
∑
K

ωK
∂

∂Y K
⊗ dYK =

∑
K

(A−1)I
KωKAK

J
∂

∂XI
⊗ dXJ . (62)

However, in {XA}, one has
G0 = δABAA

IA
B

JdXI ⊗ dXJ . (63)

Hence, the material metric transforms to

G(X,T ) = eωL
I (G0)LM eωM

J dXI ⊗ dXJ , (64)

where (G0)LM are the components of G0 in {XA}. This is the coordinate representation of (2). Note that
even though the general representation for the material metric used in [43] had this symmetry fallacy,
the results of the paper and the examples were not affected and remain valid.
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C Christoffel symbols for the accreting cylinder

First note that denoting with (Γ0)A
BC the Christoffel symbols relative to G0 as in (6), one obtains

ΓA
BC = (Γ0)A

BC + (G0)AD[(G0)DBω,C + (G0)DCω,B − (G0)BCω,D]. (65)

Therefore, as G�
0 : G0 = dim B, one has

ΓB
BC = (Γ0)B

BC + (dim B) ω,C . (66)

Under the assumption of a uniform material one has ω,C = ∂ω
∂T T,C = α T,C , i.e., dω = α dT , so one writes

ΓB
BC = (Γ0)B

BC + (dim B)α T,C . (67)

Now we compute the Christoffel symbols for the material metric G of (25). The only nonzero Christoffel
symbols are

ΓR
RR = T,Rα(T ),

ΓR
ΘΘ = −r̄(R) [r̄′(R) + r̄(R)T,Rα(T )] ,

ΓΘ
RΘ =

r̄′(R)
r̄(R)

+ T,Rα(T ).

(68)

Now one can compute the material divergence Div[K(T )G�dT] for the heat equation as

Div[K(T )G�dT] =
[
K(T )GABT,B

]
|A

=
[
K(T )GAB

]
|A T,B + K(T )GAB [T,B ]|A

= [K(T )]|A GABT,B + K(T )GAB
[
T,AB − ΓC

ABT,C

]

=
dK
dT

T,R
2GRR + K(T )

[
T,RRGRR − (

ΓR
RRGRR + ΓR

ΘΘGΘΘ
)
T,R

]

=
[
dK
dT

T,R
2 +

K(T )
r̄(R)

∂

∂R

(
r̄(R)

∂T

∂R

)]
e−2ω(T ).

(69)

D The reduced form of the Clausius–Duhem inequality in thermoelastic accretion

In this appendix, we discuss the restrictions that the second law of thermodynamics imposes on consti-
tutive equations. In particular, we correct a mistake in [43],11 which fortunately did not affect any of the
results or conclusions of that work. The localized form of the Clausius-Duhem inequality reads

ρṄ ≥ ρ
R

T
− Div

(
H

T

)
+ ρ

∂N
∂G

:Ġ, (70)

where N = N (X,T,C�,G) is the specific entropy. Expanding Eq. (70) and multiplying by T > 0 one
obtains

ρT

(
∂N
∂T

Ṫ +
∂N
∂C�

:Ċ
�
)

≥ ρR − DivH +
1
T

〈dT,H〉 , (71)

where in a local coordinate chart {XA}, the 1-form dT has the representation dT = ∂T
∂XA dXA. The

specific free energy function has the form Ψ = Ψ(X,T,C�,G). The internal energy is defined as the

11AY is grateful to Prof. Marshall Slemrod for a discussion that helped us find and correct this mistake.
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Legendre transform of the free energy with respect to the conjugate variables T and N , i.e., E = TN +Ψ,
and hence, E = E(X,N ,C�,G) . Therefore12

∂E
∂G

= T
∂N
∂G

+
∂Ψ
∂G

,
∂E
∂C�

= T
∂N
∂C�

+
∂Ψ

∂C�
. (72)

The localized balance of energy reads [43]

ρĖ = S :D − Div Q + ρR + ρ
∂E
∂G

:Ġ. (73)

This can be rewritten in terms of the specific entropy as

ρ

(
N +

∂Ψ
∂T

)
Ṫ + ρT

∂N
∂T

Ṫ + ρT
∂N
∂C�

:Ċ
�
+

(
ρ

∂Ψ

∂C�
− 1

2
S
)

:Ċ
�
= ρR − Div H. (74)

Substituting (74) into (71) one obtains

ρ

(
N +

∂Ψ
∂T

)
Ṫ +

(
ρ

∂Ψ

∂C�
− 1

2
S
)

:Ċ
�
+

1
T

〈dT,H〉 ≤ 0. (75)

This inequality must hold for all deformations ϕ and metrics G . Therefore13

N = −∂Ψ
∂T

, S = 2ρ
∂Ψ

∂C�
, 〈dT,H〉 ≤ 0. (76)
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