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Abstract

Using a mathematical approach, this paper seeks an e�cient solution to the problem of beams bending under
singular loading conditions and having various jump discontinuities. For two instances, the boundary-value problem
that describes beam bending cannot be written in the space of classical functions. In the ®rst instance, the beam is

under singular loading conditions, such as point forces and moments, and in the second instance, the dependent
variable(s) and its derivatives have jump discontinuities. In the most general case, we consider both instances. First,
we study singular loading conditions and present a theorem by which the equivalent distributed force of a general

class of singular loading conditions can be found. As a consequence of obtaining the equivalent distributed force of
a distributed moment, we ®nd a mathematical explanation for the corner condition in classical plate theory. While
plate theory is not the focus of this paper, this explanation is interesting. Then beams with various jump

discontinuities are considered. When beams have jump discontinuities the form of the governing di�erential
equations changes. We ®nd the governing di�erential equations in the space of generalized functions. It is shown
that for Euler±Bernoulli beams with jump discontinuities the operator of the di�erential equation remains
unchanged, only the force term changes so that delta function and its distributional derivatives appear within it. But

for Timoshenko beams with jump discontinuities, in addition to changes in the force terms, the operator of one of
the governing di�erential equations changes. We then propose a new method for solving these equations. This
method which we term the auxiliary beam method, is to solve the governing di�erential equations not in the space

of generalized functions but rather to solve them by means of solving equivalent boundary-value problems in the
space of classical functions. The auxiliary beam method reduces the number of di�erential equations and at the
same time obviates the need to solve these di�erential equations in the space of generalized functions which can be

more di�cult. 7 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

EI ¯exural sti�ness of an Euler±Bernoulli or Timoshenko beam
EI1, EI2 ¯exural sti�nesses of beam segments
GA ' shear sti�ness of a Timoshenko beam
GA '1, GA '2 shear sti�nesses of Timoshenko beam segments
Kr sti�ness of a rotational spring
Kt sti�ness of a translational spring
KS shear correction factor
L length of a beam
M a concentrated moment
M1, M2 bending moments
Mxy twisting moment in a classical plate
M0 a concentrated bending moment or bending moment at a discontinuity point
Mn moment of order n of a distributed force
Mn

0 point moment of order n
P a concentrated force
Q 'x equivalent shearing force distribution for twisting moment in a classical plate
V0 shear force at a discontinuity point
V1, V2 shear forces
W a component of beam de¯ection
ai real coe�cients
m, m0 distributed moments
m, n, r, s integer numbers
q a distributed force (force function)
qP distributed force equivalent to a concentrated force
qM distributed force equivalent to a concentrated moment
qm distributed force equivalent to a distributed moment
u1, u2, u3 displacement components
x longitudinal axis of a beam
x0 position of a discontinuity point
x ÿ0 x0 ÿ e for a very small e
x�0 x0 � e for a very small e
x1, x2 speci®c points on a beam
w de¯ection of an Euler±Bernoulli beam
�w de¯ection of the auxiliary beam of an Euler±Bernoulli beam
wT de¯ection of a Timoshenko beam
�wT de¯ection of the auxiliary beam of a Timoshenko beam
wh, wp components of beam de¯ection
D strength of a jump discontinuity in de¯ection of an Euler±Bernoulli beam
DT strength of a jump discontinuity in de¯ection of a Timoshenko beam
Y strength of a jump discontinuity in rotation of an Euler±Bernoulli beam
Y T strength of a jump discontinuity in rotation of a Timoshenko beam
F rotation in a Timoshenko beam
�F rotation in an auxiliary Timoshenko beam
F1, F2 rotation of Timoshenko beam segments
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1. Introduction

In beam de¯ection problems, one sometimes encounters discontinuous loading conditions. The
classical method for solving these problems is to partition the beam into beam segments between any
two successive discontinuity points. Solving the di�erential equation of each beam segment and applying
boundary and continuity conditions then yields the beam de¯ection equation. The ®rst attempt to
simplify these problems by writing a single expression for the bending moment was published by
Clebsch (1862). Later, Macaulay (1919) introduced the so-called Macaulay's bracket. This method is
also referred to in the literature as the singularity function method. The advantage of this method is
that it reduces an uncoupled system of ordinary second-order di�erential equations to a single ordinary
second-order equation.

Later, the singularity function method was generalized to two-dimensional problems. Wittrick (1965)
analyzed beams with lateral loads and circular plates with axisymmetric lateral loads. Mahing (1964)
used the method for rectangular plates whose opposite sides are simply supported under a point load
and for circular plates with axisymmetric loading. Conway (1980) and Selek and Conway (1983)
generalized the singularity function method to two-dimensional problems governed by partial di�erential
equations.

Arbabi (1991) generalized the singularity function method for a beam with an internal hinge and a
beam with jump discontinuities in ¯exural sti�ness. In these beam de¯ection problems he did not solve
the problem as a boundary-value problem; instead he started the analysis from the bending moment
expression.

Schwarz's distribution theory (Schwarz, 1966) provides a rigorous justi®cation for a number of very
common formal manipulations in the engineering literature. Certain types of distributions, in particular,
the Dirac delta function and its derivatives, were used in engineering problems years before the
development of distribution theory. The delta function dates back to the 19th century and the works of
Hermite, Cauchy, Poisson, Kirchho�, Helmholtz, Lord Kelvin, and Heaviside (Van der Pol and
Bremmer, 1955, pp. 62±66). Dirac (1930) introduced this function in quantum mechanics and since then
the function has been known as the Dirac delta function.

This article uses the distribution theory of Schwarz to analyze beams with various discontinuities.

O ratio of shear and ¯exural sti�nesses of a Timoshenko beam
a, b ratio of ¯exural and shear sti�nesses of two beam segments
e, l, t parameters
D space of test functions
D ' space of distributions
D 'R space of right-sided distributions
H(xÿx0) Heaviside's unit step function
P set of all polynomials
f, g distributions
d(xÿx0) Dirac delta function
d (n)(xÿx0) the nth distributional derivative of Dirac delta function
j a test function
� convolution symbol
h i distribution symbol
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Schwarz's theory is used ®rst to obtain the equivalent force distributions of di�erent singular loading
conditions by presenting a theorem, and then to obtain the equivalent distributed force of a distributed
moment. Then the corner condition phenomenon in classical plate theory is mathematically explained.

The paper continues with an investigation of an Euler±Bernoulli beam having internal jump
discontinuities in slope, de¯ection, and ¯exural sti�ness. In the most general case, it is assumed that at
the point of hinge and shear-free connection there are translational and rotational springs. The
governing di�erential equation of the beam is derived in the space of generalized functions. It is
observed that the form of the operator of governing di�erential equation remains unchanged and only
the force term changes. The auxiliary beam method is then introduced. Using this method, instead of
solving a fourth-order di�erential equation in the space of generalized functions, another fourth-order
di�erential equation is solved in the space of classical functions. Then three examples are solved in order
to show the capability and e�ciency of the method. As an alternative to the classical method, the
equivalent distributed force of a concentrated force and a concentrated moment are obtained using the
discontinuities they produce in the bending moment and shearing forces of an Euler±Bernoulli beam.

The system of di�erential equations of a Timoshenko beam with jump discontinuities in slope,
de¯ection, ¯exural sti�ness, and shear sti�ness is obtained in the space of generalized functions. It is
shown that, in addition to changes in force terms, the form of the operator of one of the governing
di�erential equations changes. Following the same mode of presentation used for the case of an Euler±
Bernoulli beam, the auxiliary beam method is introduced and an example solved to demonstrate the
auxiliary beam method's capability and e�ciency.

Basic de®nitions and theorems of Schwarz's distribution theory appear in Appendix A. Appendices B
and C In some mathematical details are given.

2. Singular loading conditions

In this section the equivalent distributed force for a family of singular loading conditions is found
using Schwarz's distribution theory. Appendix A discusses the basic de®nitions and some theorems of
the distribution theory of Schwarz.

De®nition 1. Suppose that q(x ) is a distributed force. The nth-order moment of q(x ) about a point x0 is
denoted by Mn�x0� and is de®ned as:

Mn�x0� �
��1
ÿ1
�xÿ x0 �nq�x� dx �1�

De®nition 2. Suppose that q(x ) is a distributed force in the small interval �x0ÿe, x0�e). Assume that:

Mn�e� �
��1
ÿ1
�xÿ x0�nqe�x� dx6�0 and

��1
ÿ1
�xÿ x0�mqe�x� dx � 0, m 6�n �2�

Then

Mn
0 � lim

e40

�x 0�e

x 0ÿe
�xÿ x0 �nqe�x� dx �3�
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is called a point moment of order n. Clearly, a concentrated force is a point moment of order zero and
a concentrated moment is a point moment of order one.

A concentrated double moment is the limiting case of two opposite moments acting on two points
apart. This loading condition was introduced by Timoshenko and Woinowsky-Krieger (1959), and
shown by those authors to result in a de¯ection with a discontinuous slope at the point of the
concentrated double moment. We show that the equivalent distributed force (loading function) for this
loading condition can be expressed by:

q�x� � M2

2
d�2��xÿ x0� �4�

where M 2 is the value of the double moment and d�2� is the second distributional derivative of d: This is
not a common loading condition but it will be useful for us in subsequent sections. Here we want to
obtain the equivalent distributed force of a point moment of order n using distribution theory.

Theorem. The equivalent distributed force of a unit moment of order n applied at x � x0 is:

qn�x� �
� ÿ 1n�

n!
d�n��xÿ x0� �5�

where d�n� is the nth distributional derivative of the Dirac delta function. The proof is given in Appendix B.

Corollary 1. The equivalent distributed force for an upward concentrated force of magnitude P is

qP�x� � pd�xÿ x0� �6�

This result was obtained in Timoshenko (1976) and Shames (1989), where a concentrated force is
considered to be the limiting case of a load distributed over a very short portion of a beam. Another
proof of this representation, using the discontinuity a concentrated force causes in the shearing forces of
an Euler±Bernoulli beam, appears in Section 4.4.

Corollary 2. The equivalent distributed force of a clockwise concentrated moment of magnitude M is:

qM�x� �Md�1��xÿ x0 � �7�

The same result was obtained by Shames (1989) in which this loading is considered to be the limiting
case of two concentrated forces M=e, e apart, when e tends to zero. Another proof of this
representation, using the discontinuity a concentrated moment introduces in the bending moment of an
Euler±Bernoulli beam, appears in Section 4.4.

Corollary 3. The equivalent distributed force of a concentrated double moment is given by Eq. (4). As
Timoshenko and Woinowsky-Krieger (1959) mention, this loading results in a de¯ection with a
discontinuous slope at the point of double moment. We see later that, in an Euler±Bernoulli beam with a
jump discontinuity in slope, this forcing function appears.
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3. Equivalent distributed force for a distributed moment and a mathematical explanation for corner
condition in classical plate theory

In this section the equivalent distributed force of a distributed moment is obtained and then a
mathematical explanation for corner condition in classical plate theory is o�ered.

It can be easily shown that the force function of a distributed moment m(x ) can be expressed as the
convolution of m and d�1�:

q�x� �
ÿ
m � d�1�

�
�x� �8�

But it is known from distribution theory that for any function f:ÿ
f � d�n�

�
�x� � f �n��x� �9�

Hence,

q�x� � m�1��x� �10�
Therefore, for a distributed moment, the forcing function is the ®rst distributional derivative of m(x ).
Consider a beam with length L under a distributed moment m0�x� as shown in Fig. 1(a). The moment
distribution function m(x ) can be written as:

Fig. 1. (a) A beam under a distributed moment. (b) The equivalent force system.
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m�x� �
�
m0�x� 0 < x < L
0 LRx or xR0

�11�

Hence,

m�x� � m0�x�
�
H�x� ÿH�xÿ L�� �12�

where H is Heaviside's function. Substituting Eq. (12) into (10) yields:

q�x� � m�1��x� � m 00�x�
�
H�x� ÿH�xÿ L���m0�x�

�
d�x� ÿ d�xÿ L��

� m 0x
�
H�x� ÿH�xÿ L���m0�0�d�x� ÿm0�L�d�xÿ L� �13�

Clearly, the distributed moment is equivalent to a distributed force m 00�x� in (0, L ) and two concentrated
forces m0(0) and ÿm0(L ) at x � 0 and x � L, respectively, as shown in Fig. 1(b). Similarly, if m(x ) is a
partially distributed moment in the interval (x1, x2), it is equivalent to a distributed force in this interval
and two concentrated forces at x � x1 and x � x2:

According to Timoshenko and Woinowsky-Krieger (1959), Kelvin and Tait transformed the twisting
moments along an edge of a classical plate to a system of shearing forces; for example, along an edge
parallel to the y-axis, the equivalent distribution of shearing forces is (Timoshenko and Woinowsky-
Krieger, 1959):

Q 0x �
�
@Mxy

@y

�
x�a

�14�

where Mxy is the twisting moment. It is known, in the framework of classical theory, that polygonal
plates loaded laterally will usually produce concentrated reactions at corner points, in addition to the
distributed reactions along the edges. This phenomenon is known as the ``corner condition,'' and was
physically explained but not mathematically proven by Timoshenko and Woinowsky-Krieger (1959). It
should be mentioned that this phenomenon does not appear in shear deformation plate theories.

According to our previous discussion, Q 0x consists of a system of distributed forces and two
concentrated forces at the corner points. This is a mathematical explanation of the ``corner condition''
according to classical plate theory.

In the subsequent sections, di�erential equation of beams with various jump discontinuities are
obtained and solution procedures are given.

4. Jump discontinuities in slope, de¯ection, and ¯exural sti�ness of an Euler-Bernoulli beam

In this section the di�erential equation of an Euler±Bernoulli beam with jump discontinuities in slope,
de¯ection, and ¯exural sti�ness is obtained in the space of generalized functions. The classical method
of solving this problem is to solve the problem on both sides of the discontinuities and then apply the
boundary and continuity conditions. Here we solve the problem as a single beam using generalized
functions. For the sake of simplicity, only one point of jump discontinuity is considered. The
generalization to the case of an Euler±Bernoulli beam with n singular points is straightforward.

In the Euler±Bernoulli beam theory we have the following displacement ®eld assumptions:

u1�x, y, z� � ÿzdw�x�
dx

�15a�

A. Yavari et al. / International Journal of Solids and Structures 37 (2000) 5675±5705 5681



u2�x, y, z� � 0 �15b�

u3�x, y, z� � w�x� �15c�
where u1, u2, and u3 are displacement components along x, y, and z axes, respectively. The beam is
along the x-axis and the loads are applied along the z-axis. Using Eq. (15) and the principle of virtual
work, the governing equilibrium equation may be expressed as:

d2

dx 2

�
EI

d2w

dx 2

�
� q�x� �16�

where EI is the ¯exural sti�ness and q is a distributed force and is called the loading function. For the
case of constant ¯exural sti�ness, Eq. (16) can be simpli®ed as:

dw4

dx4
� q�x�

EI
�17�

When q is a piecewise continuous function, w and its ®rst three derivatives are continuous and the
fourth derivative is piecewise continuous. However, there are some loading conditions for which the
loading function cannot be expressed as a classical function. A very general class of these loading
conditions was studied in Section 2. However, sometimes displacement of the beam or its derivatives
have discontinuities independent of the loading condition. This is the focus of this section.

The beam shown in Fig. 2 is of length L and has arbitrary boundary conditions at x � 0, L: The
¯exural sti�ness of the beam is changed discontinuously at x � x0: There are also jump discontinuities
in slope and de¯ection at this point. In the most general case we have a combination of an internal
hinge with a rotational spring and a shear-free connection with a translational spring. The spring
constants of the rotational and translational springs are Kr and Kt, respectively. Now let

w
ÿ
x�0
�ÿ w�x ÿ0 � � D �18a�

Fig. 2. A beam with a jump discontinuity in slope, de¯ection, and ¯exural sti�ness with arbitrary boundary conditions under a dis-

tributed force.
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dw
ÿ
x�0
�

dx
ÿ dw�x ÿ0 �

dx
� Y �18b�

The beam is composed of two beam segments, AB and BC. Hence, using Heaviside's function:

w�x� � w1�x� �
�
w2�x� ÿ w1�x�

�
H�xÿ x0� �19�

where w is the de¯ection of the beam and w1 and w2 are the de¯ections of the beam segments, AB and
BC, respectively. After some manipulations, which are given in Appendix C, the governing di�erential
equation of the beam is found to be:

Åd
4
w

dx4
� q�x�

EI
� q�x�

EI

�
1

a
ÿ 1

�
H�xÿ x0� � KtD

EI

�
1

a
ÿ 1

�
d�xÿ x0� � KrY

EI

�
1

a
ÿ 1

�
d�1��xÿ x0�

�Yd�2��xÿ x0 � � Dd�3��xÿ x0 � �20�

where a bar over the di�erentiation symbol implies distributional di�erentiation. As can be seen having
jump discontinuities in slope and de¯ection is equivalent to having double and triple point moments
M2 � 2Y, M3 � 6D at the point of jump discontinuities. Also, continuity conditions can be written as:

EI
d2w�x ÿ0 �

dx 2
� KrY, EI

d3w�x ÿ0 �
dx3

� KtD �21�

Applying the four boundary conditions at x � 0 and x � L and the continuity conditions (21), we
obtain the beam de¯ection w. As can be seen only the force term changes; the form of the operator of
the di�erential equation is the same as that of Eq. (17).

4.1. A solution procedure

A common method of solving di�erential equations in the space of generalized functions is the
Laplace transform method. Here, instead of using the Laplace transform method, we follow the method
proposed by Kanwal (1983). The general solution can be written as:

w�x� � wh�x� � wp�x� �22�
where wh and wp are the solutions of the following di�erential equations:

d4wh

dx4
� q�x�

EI
�23a�

Åd
4
wp

dx4
� q�x�

EI

�
1

a
ÿ 1

�
H�xÿ x0� � KtD

EI

�
1

a
ÿ 1

�
d�xÿ x0� � KrY

EI

�
1

a
ÿ 1

�
d�1��xÿ x0�

�Yd�2��xÿ x0� � Dd�3��xÿ x0� �23b�

For ®nding wp, it is assumed that:

wp�x� �W�x�H�xÿ x0� �24�
Hence:
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Åd
4
wp

dx4
� d4W�x�

dx4
H�xÿ x0� � d3W�x0�

dx 2
d�xÿ x0 � � d2W�x0�

dx 2
d�1��xÿ x0� � dW�x0�

dx
d�2��xÿ x0 �

�W�x0�d�3��xÿ x0� �25�

Equating the coe�cient of the generalized functions in Eqs. (23b) and (25), we obtain:

d4W�x�
dx4

� q�x�
EI

�
1

a
ÿ 1

�
�26a�

d3W�x0�
dx3

� KtD
EI

�
1

a
ÿ 1

�
,

d2W�x0 �
dx 2

� KrY
EI

�
1

a
ÿ 1

�

dW�x0�
dx

� Y, W�x0� � D �26b�

Solving Eq. (26a) and applying the initial conditions (26b), we obtain:

W �W�x, D, Y� �27�
Solving Eq. (23a) for wh, we have four integration constants. Applying the four boundary conditions at
x � 0, L for w � wh � wp and the continuity conditions (21), we obtain the beam de¯ection. Obviously,
this is not an e�cient method and has no superiority over the classical method. A more e�cient method
is proposed here for calculating the beam de¯ection.

4.2. Auxiliary beam method

Suppose that w is the de¯ection of an Euler±Bernoulli beam with jump discontinuities in slope,
de¯ection, and ¯exural sti�ness at a point x � x0: The de¯ection of the auxiliary beam is de®ned as
follows:

�w�x� � w�x� ÿ DH�xÿ x0� ÿY�xÿ x0�H�xÿ x0 � ÿ KrY
2EI

�
1

a
ÿ 1

�
�xÿ x0�2H�xÿ x0�

ÿ KtD
6EI

�
1

a
ÿ 1

�
�xÿ x0�3H�xÿ x0 � �28�

Clearly, w(x ) is a classical function. Substituting Eq. (28) into (20) yields:

d4 �w�x�
dx4

� q�x�
EI
� q�x�

EI

�
1

a
ÿ 1

�
H�xÿ x0� �29�

Also, from Eq. (28) we have:

�w�0� � w�0�, �w�L� � w�L� ÿ DÿY�Lÿ x0� ÿ KrY
2EI

�
1

a
ÿ 1

�
�Lÿ x0�2ÿKtD

6EI

�
1

a
ÿ 1

�
�Lÿ x0�3

�30a�
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d �w�0�
dx
� dw�0�

dx
,

d �w�L�
dx
� dw�L�

dx
ÿYÿ KrY

EI

�
1

a
ÿ 1

�
�Lÿ x0� ÿ KtD

2EI

�
1

a
ÿ 1

�
�Lÿ x0�2 �30b�

d2 �w�0�
dx 2

� d2w�0�
dx 2

,
d2 �w�L�

dx 2
� d2w�L�

dx 2
ÿ KrY

EI

�
1

a
ÿ 1

�
ÿ KtD

EI

�
1

a
ÿ 1

�
�Lÿ x0� �30c�

The continuity conditions for the auxiliary beam are:

d2 �w�x0�
dx 2

� d2w�x ÿ0 �
dx 2

� KrY
EI

,
d3 �w�x0�

dx3
� d3w�x ÿ0 �

dx3
� KtD

EI
�31�

Therefore, instead of solving two di�erential equations for the two beam segments and applying eight
boundary and continuity conditions, only one di�erential equation with six boundary and continuity
equations is solved. To clarify the method, three examples are solved in the next section

4.3. Examples

Here three examples are solved to show the e�ciency of the auxiliary beam method in analyzing
Euler±Bernoulli beams with jump discontinuities.

Example 1. In this example a beam with an internal hinge under a uniform distributed force is
considered. The beam shown in Fig. 3(a) is clamped at x � 0 and simply supported at x � L, and the
¯exural sti�ness is constant. For this beam:

q�x� � ÿq0, a � 1, Kr � Kt � 0, D � 0 �32�
From Eq. (29), the governing di�erential equation of the auxiliary beam is:

d4 �w

dx4
� ÿ q0

EI
�33�

Hence,

�w�x� � ÿ q0
24EI

x4 � a0 � a1x� a2x
2 � a3x

3 �34�

We know that for this beam:

w�0� � dw�0�
dx
� w�L� � d2w�L�

dx 2
� 0 �35�

Hence from Eq. (30), we obtain:

�w�0� � d �w�0�
dx
� 0, �w�L� � �lÿ 1�YL,

d2 �w�L�
dx 2

� 0 �36a�

d2 �w�lL�
dx 2

� 0 �36b�

Thus, from Eqs. (34) and (36), we obtain:
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Fig. 3. (a) A clamped, simply-supported beam with an internal hinge under a uniform distribute force. (b) A clamped±clamped

beam with an internal shear-free connection under a linearly varying distributed force. (c) A simply-supported beam with a jump

discontinuity in ¯exural sti�ness under a uniform distributed force.
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�w�x� � ÿ q0
24EI

�
x4 ÿ 2�l� 1�Lx3 � 6lL2x 2

�
�37a�

Y � �4lÿ 1�q0L3

24�1ÿ l�EI �37b�

Therefore, from Eq. (28) we have:

w�x� � ÿ q0
24EI

�
x4 ÿ 2�l� 1�Lx3 � 6lL2x 2 ÿ �4lÿ 1�

1ÿ l
L3�xÿ lL�H�xÿ lL�

�
�38�

Example 2. The beam shown in Fig. 3(b) has a jump discontinuity in de¯ection at x � lL: For this
beam:

q�x� � ÿq0
L
x, a � 1, Kr � Kt � 0, Y � 0 �39�

From Eq. (39), the governing di�erential equation of the auxiliary beam is:

d4 �w

dx4
� ÿ q0

EIL
x �40�

Thus:

�w � ÿ q0
120EIL

x5 � a0 � a1x� a2x
2 � a3x

3 �41�

For this beam:

w�0� � dw�0�
dx
� w�L� � dw�L�

dx
� 0 �42a�

d2w�x ÿ0 �
dx 2

� d3w�x ÿ0 �
dx3

� 0 �42b�

Thus, using Eq. (30) we have:

�w�0� � d �w�0�
dx
� 0, �w�L� � w�L� ÿ D � ÿD, d �w�L�

dx
� dw�L�

dx
� 0 �43a�

d3 �w�xL�
dx3

� 0 �43b�

From Eqs. (41) and (43), we obtain:

�w�x� � ÿ q0x
2

24EIL

�
2x3 ÿ 20l2L2xÿ 5L3

ÿ
1ÿ 6l2

��
�44a�

D � q0L
4
ÿ
10l2 ÿ 3

�
24EI

�44b�

A. Yavari et al. / International Journal of Solids and Structures 37 (2000) 5675±5705 5687



Hence, from Eq. (28) we have:

w�x� � ÿ q0x
2

24EIL

�
2x3 ÿ 20l2L2xÿ 5L3

ÿ
1ÿ 6l2

��
� q0L

4
ÿ
10l2 ÿ 3

�
24EI

H�xÿ lL� �45�

Example 3. A simply-supported beam under a uniform distributed force with a jump discontinuity in
¯exural sti�ness at x � lL is shown in Fig. 3(c). For this beam:

D � Y � 0, a � 2, q�x� � ÿq0 �46�
and the de¯ection of the auxiliary beam is de®ned as:

�w�x� � w�x� ÿ M0

2EI

�
1

a
ÿ 1

�
�xÿ lL�2H�xÿ lL� ÿ V0

6EI

�
1

a
ÿ 1

�
�xÿ lL�3H�xÿ lL� �47�

The governing di�erential equation of the auxiliary beam may be written as:

d4 �w

dx4
� ÿ q0

EI
� q0

2EI
H�xÿ lL� �48�

The boundary and continuity conditions are:

�w�0� � 0, �w�L� � M0

4EI
�1ÿ l�2L2 �49a�

d2 �w�0�
dx 2

� 0,
d2 �w�L�

dx 2
� M0

2EI
� V0L

2EI
�1ÿ l� �49b�

d2 �w�lL�
dx 2

� M0

EI
,

d3 �w�lL�
dx3

� V0

EI
�49c�

Combining the boundary and continuity equations yields:

�w�0�d
2 �w�0�
dx 2

� 0 �50a�

ÿ �w�L� � �1ÿ l�2L2

4

d2 �w�lL�
dx 2

� 0 �50b�

ÿd2 �w�L�
dx 2

� 1

2

d2 �w�lL�
dx 2

� L�1ÿ l�
2

d3 �w�lL�
dx3

� 0 �50c�

From Eq. (48) we obtain:

�w�x� � ÿ q0x
4

24EI
� q0�xÿ lL�4

48EI
H�xÿ lL� � a0 � a1x� a2x

2 � a3x
3 �51�

Applying the boundary and continuity conditions (50), we obtain:
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�w�x� � ÿ q0
48EI

�
2x4 ÿ 4Lx 3 � L3

�
�1ÿ l�4ÿ6l�1ÿ l�3�2

�
xÿ �xÿ lL�4H�xÿ lL�

	
�52�

From Eq. (49c), we obtain:

M0 � l�1ÿ l�
2

q0L
2, V0 �

�
1

2
ÿ l

�
q0L �53�

Therefore, from Eq. (47) we obtain:

w�x� � ÿ q0
48EI

�
2x4 ÿ 4Lx3 � L3

�
�1ÿ l�4ÿ6l�1ÿ l�3�2

�
x�

�
ÿ �xÿ lL�4

� 6L2l�1ÿ l��xÿ lL� � 4L

�
1

2
ÿ l

�
�xÿ lL�3

�
H�xÿ lL�

�
�54�

Assuming l � 1 in Eq. (54) gives us the de¯ection of a simply-supported beam with a constant ¯exural
sti�ness EI under a uniform distributed force:

w�x� � ÿ q0
24EI

x4 � q0L

12EI
x3 ÿ q0L

3

24EI
x �55�

The advantage of using Macaulay's bracket is that we have only one expression for the bending moment
or loading function. If there are n point loads (either force or moment), and one uses the singularity
function method instead of solving n� 1 di�erential equations and applying 4�n� 1� boundary and
continuity conditions, then only one di�erential equation with four boundary conditions need be solved.

In the case of n jump discontinuities, if one uses the auxiliary beam method presented in this article
instead of solving n� 1 di�erential equations and applying 4�n� 1� boundary and continuity conditions,
then only one di�erential equation with four boundary conditions and 2n continuity conditions need be
solved. In most practical problems, we do not have all three kinds of discontinuities at the same point;
for example, if a beam has n internal hinges, the number of continuity equations is reduced to n.

In Section 4 for ®nding the governing di�erential equation of an Euler±Bernoulli beam with jump
discontinuities, the beam was partitioned to continuous beam segments. The next section uses the same
idea to ®nd the equivalent distributed forces for point forces and point moments.

4.4. Equivalent force function for concentrated force and moment: a nonclassical approach

This section o�ers a nonclassical proof for the representations (6) and (7). We use the fact that a
concentrated force and a concentrated moment introduce respective jump discontinuities into the
shearing force (the third derivative of the beam de¯ection) and the bending moment (the second
derivative of the beam de¯ection) of an Euler±Bernoulli beam. As was mentioned in Section 2, the
classical proof of these representations is based on considering these singular loading conditions as a
distributed force over a very short length of the beam. Fig. 4 shows a beam with a concentrated force
P0 and a concentrated moment M0 applied at x � x0: The beam AC may be assumed to be composed
of two beam segments, AB and BC. The de¯ections of the two beam segments AB and BC are denoted
by w1 and w2, respectively. There is no loading for 0 < x < x0 andx0 < x < L; hence, we have:

d4w1

dx4
� 0; x 2 �0, x0� �56a�
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d4w2

dx4
� 0; x 2 �x0, L� �56b�

The de¯ection of the beam w can be written as:

w�x� � w1�x� �
�
w2�x� ÿ w1�x�

�
H�xÿ x0� �57�

We know that the magnitudes and the ®rst derivatives of w1 and w2 are equal at x � x0; hence:

Åd
2
w�x�

dx 2
� d2w1�x�

dx 2
�
�

d2w2�x�
dx 2

ÿ d2w1�x�
dx 2

�
H�xÿ x0 � �58�

From Fig. 4 we can write:

V2

ÿ
x�0
�ÿ V1�x ÿ0 � � P0 �59a�

M2

ÿ
x�0
�ÿM1�x ÿ0 � �M0 �59b�

Thus,

d3w2

ÿ
x�0
�

dx3
ÿ d3w1�x ÿ0 �

dx3
� P0

EI
�60a�

d2w2

ÿ
x�0
�

dx 2
ÿ d2w1�x ÿ0 �

dx 2
� M0

EI
�60b�

Fig. 4. (a) A beam under a concentrated force and a concentrated moment. (b) Moment and shear discontinuity at the point of the

action of concentrated loads.
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Di�erentiating both sides of Eq. (58) with respect to x yields:

Åd
3
w�x�

dx3
� d3w1�x�

dx3
�
�

d3w2�x�
dx3

ÿ d3w1�x�
dx3

�
H�xÿ x0� � M0

EI
d�xÿ x0� �61�

Also

Åd
4
w�x�

dx4
� d4w1�x�

dx4
�
�

d4w2�x�
dx4

ÿ d4w1�x�
dx4

�
H�xÿ x0� � P0

EI
d�xÿ x0� � M0

EI
d�1��xÿ x0� �62�

From Eqs. (56) and (62), we obtain:

Åd
4
w�x�

dx4
� P0d�xÿ x0� �M0d

�1��xÿ x0 �
EI

�63�

Therefore, the equivalent force function is:

q�x� � qP�x� � qM�x� � P0d�xÿ x0 � �M0d
�1��xÿ x0�: �64�

5. Timoshenko beam with jump discontinuities

In this section we derive the system of governing di�erential equations of a Timoshenko beam with
jump discontinuities in slope, de¯ection, ¯exural sti�ness, and shear sti�ness. For the sake of simplicity,
only one point of jump discontinuity is considered; the generalization to the case of a Timoshenko beam
with n discontinuity points is then straightforward. Timoshenko beam theory (Timoshenko, 1921) is the
simplest shear deformation beam theory, and it is based on the following displacement ®eld:

u1�x, y, z� � zF�x� �65a�

u2�x, y, z� � 0 �65b�

u3�x, y, z� � wT�x� �65c�
where u1, u2, and u3 are displacement components along the x, y, and z axes, respectively, and F is
rotation about the y-axis. The superscript T in wT denotes the de¯ection of the Timoshenko beam. The
governing system of di�erential equations can be written as:

d

dx

�
EI

dF
dx

�
ÿ GA 0

�
F� dw

dx

�
� 0 �66a�

d

dx

�
GA 0

�
F� dw

dx

��
� q�x� � 0 �66b�

where G is the shear modulus, A 0 � KsA is the shear equivalent area of the beam cross-section, and Ks is
the shear correction factor. Now let:
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O � GA 0

EI
�67�

Substituting Eq. (67) into (66) and assuming constant ¯exural and shear sti�nesses yields:

O
dwT

dx
ÿ d2F

dx 2
� OF � 0 �68a�

dF
dx
� d2wT

dx 2
� q�x�

GA 0
� 0 �68b�

Now consider a Timoshenko beam of length L with internal jump discontinuities in slope, de¯ection,
shear sti�ness, and ¯exural sti�ness at x � x0: Using an expression similar to the one used in the case of
an Euler±Bernoulli beam, we can write:

wT�x� � wT
1 �x� �

�
wT
2 �x� ÿ wT

1 �x�
�
H�xÿ x0 � �69a�

F�x� � F1�x� �
�
F2�x� ÿ F1�x�

�
H�xÿ x0 � �69b�

De¯ection and rotation have jump discontinuities at x � x0; i.e:

wT
2 �x0� ÿ wT

1 �x0 � � DT, F2�x0� ÿ F1�x0� � YT �70�
It is known that:

M1�x0� � EI1
dF1�x0�

dx
, M2�x0� � EI2

dF2�x0�
dx

�71a�

V1�x0� � GA 01

�
F1�x0� � dw1�x0�

dx

�
, V2�x0� � GA 02

�
F2�x0� � dw2�x0 �

dx

�
�71b�

Also, equilibrium for an in®nitesimal element including the discontinuity point implies that:

M1�x0� �M2�x0� � KrYT �72a�

V1�x0� � V2�x0� � KtD
T �72b�

where Kt and Kr are the sti�nesses of the translational and rotational springs at x � x0: Comparing Eqs.
(71) and (72), we obtain:

dF2�x0�
dx

ÿ dF1�x0�
dx

� KrYT

EI

�
1

a
ÿ 1

�
�73a�

dw2�x0 �
dx

ÿ dw1�x0�
dx

� KtD
T

GA 0

�
1

b
ÿ 1

�
ÿYT �73b�

where

EI1 � EI, EI2 � aEI �74a�
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GA 01 � GA 0, GA 02 � bGA 0 �74b�

Di�erentiating Eqs. (69a) and (69b), we obtain:

ÅdwT

dx
� dwT

1

dx
�
�

dwT
2

dx
ÿ dwT

1

dx

�
H�xÿ x0� � DTd�xÿ x0� �75a�

Åd
2
wT

dx 2
� d2wT

1

dx 2
�
�

d2wT
2

dx 2
ÿ d2wT

1

dx 2

�
H�xÿ x0� �

"
KtD

T

GA 0

�
1

b
ÿ 1

�
ÿYT

#
d�xÿ x0� � DTd�1��xÿ x0 �

�75b�

and

ÅdF
dx
� dF1

dx
�
�

dF2

dx
ÿ dF1

dx

�
H�xÿ x0� �YTd�xÿ x0� �76a�

Åd
2F

dx 2
� d2F1

dx 2
�
�

d2F2

dx 2
ÿ d2F1

dx 2

�
H�xÿ x0� � KrYT

EI

�
1

a
ÿ 1

�
d�xÿ x0� �YTd�1��xÿ x0� �76b�

The de¯ection and rotation of each beam segment have continuous derivatives and hence they are
governed by Eq. (68); thus:

O1
dwT

1

dx
ÿ d2F1

dx 2
� O1F1 � 0 �77a�

dF1

dx
� d2wT

1

dx 2
� q�x�

GA 0
� 0 �77b�

and

O2
dwT

2

dx
ÿ d2F2

dx 2
� O2F2 � 0 �78a�

dF2

dx
� d2wT

2

dx 2
� q�x�

bGA 0
� 0 �78b�

Now let O1 � O and O2 � �b=a�O: From Eqs. (75)±(78), we obtain the governing system of equilibrium
equations for the beam:

O
ÅdwT

dx
ÿ

Åd
2F

dx 2
� OF�

�
b
a
ÿ 1

�
O

dw2

dx
H�xÿ x0� �

�
b
a
ÿ 1

�
OF2H�xÿ x0�

�
"
ODT ÿ KrYT

EI

�
1

a
ÿ 1

�#
d�xÿ x0� ÿYTd�1��xÿ x0� �79a�
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Åd
2
wT

dx 2
�

ÅdF
dx
� q�x�

GA 0
� q�x�

GA 0

�
1

b
ÿ 1

�
H�xÿ x0� � KtD

T

GA 0

�
1

b
ÿ 1

�
d�xÿ x0� � DTd�1��xÿ x0� �79b�

Multiplying Eq. (69b) by H�xÿ x0� yields:
F�x�H�xÿ x0� � F1�x�H�xÿ x0� �

�
F2�x� ÿ F1�x�

�
H�xÿ x0�H�xÿ x0�

� F1�x�H�xÿ x0� �
�
F2�x� ÿ F1�x�

�
H�xÿ x0�

� F2�x�H�xÿ x0� �80�

Also multiplying Eq. (75a) by H�xÿ x0�, we obtain:

ÅdwT

dx
H�xÿ x0� �

ÅdwT
1

dx
H�xÿ x0� �

�
ÅdwT

2

dx
ÿ

ÅdwT
1

dx

�
H�xÿ x0� � DTd�xÿ x0�H�xÿ x0 �

� dwT
2

dx
H�xÿ x0� � DT

2
d�xÿ x0� �81�

Hence,

dwT
2

dx
�

ÅdwT

dx
H�xÿ x0� ÿ DT

2
d�xÿ x0� �82�

Substituting Eqs. (80) and (82) we ®nd the governing di�erential equations of the Timoshenko beam:

O

�
1�

�
b
a
ÿ 1

�
H�xÿ x0 �

�
ÅdwT

dx
ÿ

Åd
2F

dx 2
� O

�
1�

�
b
a
ÿ 1

�
H�xÿ x0�

�
F

�
(
O

�
1� 1

2

�
b
a
ÿ 1

��
DT ÿ KrYT

EI

�
1

a
ÿ 1

�)
d�xÿ x0� ÿYTd�1��xÿ x0� �83a�

Åd
2
wT

dx 2
�

ÅdF
dx
� q�x�

GA 0
� q�x�

GA 0

�
1

b
ÿ 1

�
H�xÿ x0� � KtD

T

GA 0

�
1

b
ÿ 1

�
d�xÿ x0� � DTd�1��xÿ x0� �83b�

Eq. (83) is the system of governing di�erential equations for a Timoshenko beam with one point of
jump discontinuities in the space of generalized functions. As can be seen for the ®rst di�erential
equation the operator of the di�erential equation has changed. For the special case when O1 � O2 �a �
b� the governing di�erential equations have a simpler form:

O
ÅdwT

dx
ÿ

Åd
2F

dx 2
� OF �

"
ODT ÿ KrYT

EI

�
1

a
ÿ 1

�#
d�xÿ x0� ÿYTd�1��xÿ x0� �84a�

Åd
2
wT

dx 2
�

ÅdF
dx
� q�x�

GA 0
� q�x�

GA 0

�
1

b
ÿ 1

�
H�xÿ x0� � KtD

T

GA 0

�
1

b
ÿ 1

�
d�xÿ x0� � DTd�1��xÿ x0� �84b�

As was done in the case of an Euler±Bernoulli beam, an auxiliary beam method is introduced to solve

A. Yavari et al. / International Journal of Solids and Structures 37 (2000) 5675±57055694



the governing equilibrium equations (84). For the more general case when a 6�b it is easier to solve the
di�erential equations directly rather than referring to the auxiliary beam.

5.1. Auxiliary beam method

In this section an auxiliary beam is de®ned for a Timoshenko beam with internal jump discontinuities.
The de¯ection and rotation of the auxiliary beam are de®ned as:

�wT�x� � wT�x� ÿ DTH�xÿ x0� ÿ
"
KtD

T

GA 0

�
1

b
ÿ 1

�
ÿYT

#
�xÿ x0 �H�xÿ x0� �85a�

�F�x� � F�x� ÿYTH�xÿ x0� ÿ
"
KrYT

EI

�
1

a
ÿ 1

�#
�xÿ x0�H�xÿ x0� �85b�

Substituting Eq. (85) into (84) yields:

O
d �wT

dx
ÿ d2 �F

dx 2
� O �F � ÿO

"
KTD

T

GA 0

�
1

b
ÿ 1

�
� KrYT

EI

�
1

a
ÿ 1

�
�xÿ x0�

#
H�xÿ x0� �86a�

d2 �wT

dx 2
� d �F

dx
� q�x�

GA 0
� q�x�

GA 0

�
1

b
ÿ 1

�
H�xÿ x0� � ÿKrYT

EI

�
1

a
ÿ 1

�
H�xÿ x0� �86b�

The boundary conditions for the auxiliary beam can be obtained using the following relations:

�wT�0� � wT�0�, �wT�L� � wT�L� ÿ DT ÿ
"
KtD

T

GA 0

�
1

b
ÿ 1

�
ÿYT

#
�Lÿ x0� �87a�

d �wT�0�
dx

� dwT�0�
dx

,
d �wT�L�

dx
� dwT�L�

dx
ÿ
"
KtD

T

GA 0

�
1

b
ÿ 1

�
ÿYT

#
�87b�

and

�F�0� � F�0�, �F�L� � F�L� ÿYT ÿ
"
KrYT

EI

�
1

a
ÿ 1

�
ÿYT

#
�Lÿ x0� �88a�

d �F�0�
dx
� dF�0�

dx
,

d �F�L�
dx

� dF�L�
dx
ÿ
"
KrYT

EI

�
1

a
ÿ 1

�#
�88b�

The continuity conditions may be expressed as:

d �F�x0�
dx

� KrYT

EI
,

d �w�x0 �
dx

� �F�x0� � KtD
T

GA 0
�89�

In the next section an example clari®es the method.
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5.2. Example

Suppose that the beam in Example 1 is a Timoshenko beam; thus, from Eqs. (86) and (32), we have:

O
d �w

dx
ÿ d2 �F

dx 2
� O �F � 0 �90a�

d2 �w

dx 2
� d �F

dx
ÿ q0

GA 0
� 0 �90b�

The boundary and continuity conditions for this beam may be written as:

�wT�0� � 0, �wT�L� � YTL�1ÿ l�, �F�0� � 0,
d �F�L�

dx
� 0 �91a�

d �F�lL�
dx

� 0 �91b�

By solving this system of di�erential equations and applying the boundary and continuity conditions
(91), we obtain:

�F�x� � q0
12EI

�
2x3 ÿ 3�1� l�Lx 2 � 6lL2x

�
�92a�

�wT�x� � ÿ q0
24EI

�
x4 ÿ 2�1� l�Lx 3 � 6lL2x 2 ÿ 12

O

�
x 2 ÿ �1� l�Lx

��
�92b�

YT � ÿ L3q0

24�1ÿ l�EI

�
ÿ 1� 4l� 12l

O

�
�92c�

From Eq. (85) we obtain:

wT�x� � �wT�x� ÿYT�xÿ lL�H�xÿ lL� �93a�

F�x� � �F�x� �YTH�xÿ lL� �93b�
Hence

wT�x� � ÿ q0
24EI

�
x4 ÿ 2�1� l�Lx 3 � 6lL2x 2 ÿ 4lÿ 1

1ÿ l
L3�xÿ lL�H�xÿ lL�

ÿ 12

O

�
x 2 ÿ �1� l�Lxÿ lL3

1ÿ l
�xÿ lL�H�xÿ lL�

��
�94a�

F�x� � q0
24EI

�
4x3 ÿ 6�1� l�Lx 2 � 12lL2xÿ L3

1ÿ l

�
ÿ 1� 4l� 12l

O

�
H�xÿ lL�

�
�94b�

As shear sti�ness tends to in®nity the e�ect of shear deformation diminishes until it disappears entirely.
From Eqs. (37b) and (92c) it is seen that:
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lim
O41

YT � ÿY �95�

Therefore, in this limit case, the two theories describe the slope discontinuity due to the hinge, at the
hinge point, as exactly the same except for the sign, which is always di�erent. Also from Eqs. (38) and
(94a) we obtain

lim
O41

wT�x� � w�x� �96�

Wang (1995) obtained relationships between the bending solutions of the Euler±Bernoulli beam theory
and the Timoshenko beam theory to ®nd response quantities of a Timoshenko beam using the Euler±
Bernoulli beam solutions. Reddy et al. (1997a, 1997b), generalized the method for the third-order beam
theory. Wang et al. (1998), presented relationships between Euler±Bernoulli and Timoshenko
nonuniform beams which are applicable for beams with a discontinuity in ¯exural sti�ness. However,
here we have found that, in the case of a Timoshenko beam with jump discontinuities, it is easier to
solve the governing equilibrium equations directly than to refer to the Euler±Bernoulli beam solutions.
Also, the Timoshenko beam element given by Reddy et al. (1997a) and Reddy et al. (1997b) can be used
to solve the class of Timoshenko beam problems considered in this paper.

6. Conclusions

In this paper we present some applications of the distribution theory of Schwarz to problems in beam
bending. In the most general case, the equivalent distributed force of a point moment of order n is
represented by the nth distributional derivative of the Dirac delta function. The equivalent distributed
force for a distributed moment is shown to be a system comprised of a distributed force and two
concentrated forces. Using this result, we o�er a mathematical explanation of the corner condition in
Kirchho�'s plate theory.

The governing di�erential equation of an Euler±Bernoulli beam with jump discontinuities in slope,
de¯ection, and ¯exural sti�ness is derived in the space of generalized functions. We ®nd that the
operator of the governing di�erential equation has the same form that the classical one does. However,
the force term changes and the delta function and its ®rst two distributional derivatives appear in the
new force term. The auxiliary beam method is introduced to solve this problem. When the auxiliary
beam method is used, instead of solving the governing di�erential equation for the beam in the space of
generalized functions, one can solve another di�erential equation for the auxiliary beam in the space of
classical functions. Examples demonstrate the e�ciency of the auxiliary beam method.

The equivalent distributed force for a concentrated force and a concentrated moment is obtained with
another method, using the discontinuities these forces introduce in an Euler±Bernoulli beam.

The governing system of di�erential equations of a Timoshenko beam with jump discontinuities in
slope, de¯ection, ¯exural sti�ness, and shear sti�ness is obtained in the space of generalized functions. It
is shown that the operator of one of the governing di�erential equations changes so that for both
equations the delta function and its ®rst distributional derivative appear in the new force terms. As was
done in the case of an Euler±Bernoulli beam, the auxiliary beam method is introduced and an example
solved to show its capability.

The beam-bending problem with jump discontinuities is already being solved practically for design
challenges. The contribution of this paper is that it o�ers a deepened understanding of the mathematical
description of this class of problems. In conclusion, this paper's use of the theory of generalized
functions both deepens the understanding of beam-bending problems with discontinuities and gives the
corresponding boundary-value problems a more compact form.
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Appendix A. Schwarz's distribution theory

This appendix gives some de®nitions and operations in the Schwarz theory of distributions that are
used in this paper. We restrict our discussion to distributions with a one-dimensional independent real
variable. For more details, the reader may refer to Zemanian (1965), Kanwal (1983), Stakgold (1969)
and Lighthill (1958).

The Heaviside function H�xÿ x0� is de®ned as:

H�xÿ x0� �

8>>><>>>:
0 x < x0

1

2
x � x0

1 x > x0

�A1�

It has a jump discontinuity at x � x0: Its value at x � x0 is usually taken to be 1/2. Clearly,

H�x0 ÿ x� � 1ÿH�xÿ x0 � �A2�
The Heaviside function is very useful in the study of functions with jump discontinuities. For example,
let F(x ) be a function that is continuous everywhere except for the point x � x0, at which it has a jump
discontinuity:

F�x� �
�
F1�x�, x < x0

F2�x�, x > x0
�A3�

Then the function can be written as:

F�x� � F1�x�H�x0 ÿ x� � F2�x�H�xÿ x0 �

� F1�x� �
�
F2�x� ÿ F1�x�

�
H�xÿ x0� �A4�

Test functions are real-valued functions j�x� with the following two properties: (1) j is in®nitely
smooth; (2) j is zero outside a ®nite interval; i.e., j has compact support. The space of the test
functions is denoted by D.

A distribution is a continuous linear functional on the space D of test functions. The space of all
distributions is denoted by D '; D ' is itself a linear space and is called the dual space of D and is a larger
space than D. The space D ' forms a generalization of the class of locally integrable functions because it
contains functions that are not locally integrable. Here the terms ``distribution'' and ``generalized
function'' are used interchangeably.

A locally integrable function is integrable in the Lebesgue sense over every ®nite interval. Every
locally integrable function f(x ) generates a distribution by means of the formula:
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hf, ji �
��1
ÿ1

f�x�j�x� dx �A5�

This is called a regular distribution. All other distributions are called singular distributions.
Two distributions, f and g, in D ' are said to be equal if:

hf, ji � hg, ji �A6�
for every test function j�x� in D.

The Dirac delta function is a singular generalized function de®ned as:

hd�xÿ x0�, j�x�i � j�x0� �A7�
The nth derivative f �n��x� of any generalized function f(x ) is given by:

hf �n��x�, j�x�i � hf�x�, � ÿ 1�nj�n��x�i, j 2 D �A8�
The nth distributional derivative of the delta function is therefore de®ned as:

hd�n��xÿ x0�, j�x�i � hd�xÿ x0�, � ÿ 1�nj�n��x�i � � ÿ 1�nj�n��x0� �A9�

Corollary.

hH �1��xÿ x0�, j�x�i � hH�xÿ x0�, ÿ j�1��x�i � ÿ
��1
x 0

j�1��x� dx

� j�x0� � hd�xÿ x0 �, j�x�i �A10�

Hence:

Åd

dx
H�xÿ x0 � � d�xÿ x0� �A11�

Theorem 1. If f(x ) is a classical function and

f�x� � a0d�xÿ x0 � � � � � � and�n��xÿ x0� � 0 �A12�
on the whole axis, ÿ1 < x < �1, then f �x� � 0 and a0 � � � � � an � 0:

Theorem 2. Let a function f(x ) be n times continuously di�erentiable; then:

f�x�d�n��xÿ x0� � � ÿ 1�nf �n��x0�d�xÿ x0 � � � ÿ 1�nÿ1nf �nÿ1��x0�d�1��xÿ x0 �
� � ÿ 1�nÿ2 n�nÿ 1�

2!
f �nÿ2��x0 �d�2��xÿ x0� � � � � � f�x0�d�n��xÿ x0� �A13�

Corollary.
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�
f�x�H�xÿ x0�

��n�� f �n��x�H�xÿ x0 � � f �nÿ1��x0 �d�xÿ x0� � f �nÿ2��x0�d�1��xÿ x0� � � � �

� f�x0�d�nÿ1��xÿ x0� �A14�

The space of distributions D 0R having their supports bounded on the left is called the space of right-sided
distributions, D 0R � D 0 ( proper subspace ).

The Convolution of two right-sided distributions f and g, f � g is de®ned as:

hh, ji � hf � g, ji � hf�x�, hg�t�, j�x� t�ii

� hg � f, ji �A15�

Theorem 3. The convolution of the nth derivative of the delta function with any distribution yields the nth
derivative of that distribution, i.e.,

d�n� � f � f �n� �A16�

Proof.

hd�n� � f, ji � hf � d�n�, ji � hf�x�, hd�n��t�, j�x� t�ii

� hf�x�, � ÿ 1�nj�n��x�i � hf �n��x�, j�x�i

Appendix B. Equivalent distributed force for generalized point moments

In this appendix we present a proof for the theorem presented in Section 2.

Theorem. The equivalent distributed force of a unit moment of order n applied at x � x0 is:

qn�x� �
� ÿ 1�n

n!
d�n��xÿ x0� �B1�

where d�n� is the nth distributional derivative of the Dirac delta function.

Proof. By de®nition��1
ÿ1
�xÿ x0�nqn�x� dx � 1 �B2a�

��1
ÿ1
�xÿ x0�mqn�x� dx � 0, m 6�n �B2b�

Using integration by parts, Eq. (B2a) may be written as:
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�
�xÿ x0�n�1

n� 1
qn�x�

��1
ÿ1
ÿ 1

n� 1

��1
ÿ1
�xÿ x0�n�1q 0n�x� dx � 1 �B3�

Since qn�x� has a compact support, from Eq. (B3) we obtain:��1
ÿ1
�xÿ x0�n�1q 0n�x� dx � ÿ�n� 1� � � ÿ 1�1 �n� 1�!

n!

�� ÿ 1�n
n!
� ÿ 1�n�1 d

dxn�1

h
�xÿ x0�n�1

i
x�x 0

�B4�

Applying integration by parts for Eq. (B4) yields:��1
ÿ1
�xÿ x0�n�2q 00n �x� dx � �n� 2��n� 1� � � ÿ 1�2 �n� 2�!

n!

� � ÿ 1�n
n!
� ÿ 1�n�2 d

dxn�2

h
�xÿ x0 �n�2

i
x�x 0

�B5�

By mathematical induction we get:��1
ÿ1
�xÿ x0�n�kq�k�n �x� �

� ÿ 1�n
n!
� ÿ 1�n�k�n� k�! � � ÿ 1�n

n!
� ÿ 1�n�k

�
d

dxn�k �xÿ x0�n�k
�
x�x 0

�B6�

Similarly, from Eq. (B2b) we have:��1
ÿ1
�xÿ x0�m�kq�k�n �x� dx � 0 � � ÿ 1�n

n!
� ÿ 1�n�k

�
dn�k

xn�k �xÿ x0�m�k
�
x�x 0

, m6�n �B7�

From Eqs. (B6) and (B7) it may be concluded that:��1
ÿ1
�xÿ x0�rq�s�n dx � � ÿ 1�n

n!

�1
ÿ1
�xÿ x0�rd�s�n��xÿ x0� dx or

hq�s�n , �xÿ x0�ri �
� ÿ 1�n

n!
hd�s�n��xÿ x0�, �xÿ x0�ri �B8�

Denote the set of all polynomials by P. Considering Eq. (B8) and the fact that regular distributions are
linear, we conclude that for any polynomial Pm�x� in P:

hq�s�n �x�, Pm�x�i �
� ÿ 1�n

n!
hd�s�n��xÿ x0�, Pm�x�i �B9�

According to the Weierstrass approximation theorem (Rudin, 1964; Stoll, 1997), polynomials are dense
in the space of all continuous functions; hence one may approximate any test function uniformly by a
polynomial. Therefore, Eq. (B9) implies that:

hq�s�n �x�, j�x�i �
� ÿ 1�n

n!
hd�s�n��xÿ x0 �, j�x�i 8j 2 D �B10�

Thus,

q�s�n �x� �
� ÿ 1�n

n!
d�s�n��xÿ x0 � �B11�
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Therefore, from Eqs. (B2a) and (B11) we conclude that:

qn�x� �
� ÿ 1�n

n!
d�n��xÿ x0� �B12�

B.1. The Weierstrass approximation theorem

If f is a continuous real-valued function on the interval [a, b ], then for given e > 0, there exists a
polynomial P such that:

jf�x� ÿ P�x�j < e 8x 2 �a, b� �B13�
An equivalent version of the theorem may be stated as: If f is a continuous real-valued function on [a,
b ], then there exists a sequence fPng of polynomials such that:

f�x� � lim
n41Pn�x� uniformly on �a, b� �B14�

The reader can refer to Stoll (1997) for more details and the proof.

Appendix C. Governing di�erential equation of an Euler±Bernoulli beam with various jump discontinuities

This appendix gives the mathematical details of obtaining the governing di�erential equation of an
Euler±bernoulli beam with jump discontinuities.

The beam shown in Fig. 2 is composed of two beam segments AB and BC. By using Heaviside's
function:

w�x� � x1�x� �
�
w2�x� ÿ w1�x�

�
H�xÿ x0� �C1�

where w is the de¯ection of the beam and w1 and w2 are the de¯ections of the beam segments, AB and
BC, respectively.

The governing di�erential equations of beam segments can be written as

d4w1

dx4
� q�x�

EI1
0Rx < x0 �C2a�

d4w2

dx4
� q�x�

EI2
x0 < xRL �C2b�

Di�erentiating both sides of Eq. (C1), we obtain:

Ådw

dx
� dw1

dx
�
�

dw2

dx
ÿ dw1

dx

�
H�xÿ x0� � �w2 ÿ w1 �d�xÿ x0�

� dw1

dx
�
�

dw2

dx
ÿ dw1

dx

�
H�xÿ x0� � �w2 ÿ w1�x�x 0

d�xÿ x0�
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� dw1

dx
�
�

dw2

dx
ÿ dw1

dx

�
H�xÿ x0� � Dd�xÿ x0� �C3�

and

Åd
2
w

dx 2
� d2w1

dx 2
�
�

d2w2

dx 2
ÿ d2w1

dx 2

�
H�xÿ x0� �

�
dw2

dx
ÿ dw1

dx

�
x�x 0

d�xÿ x0� � Dd�1��xÿ x0�

� d2w1

dx 2
�
�

d2w2

dx 2
ÿ d2w1

dx 2

�
H�xÿ x0� �Yd�xÿ x0� � Dd�1��xÿ x0� �C4�

where a bar over the di�erentiation symbol means distributional di�erentiation. We know that:

M1�x0� �
�
EI1

d2w1

dx 2

�
x�x 0

, M2�x0� �
�
EI2

d2w2

dx 2

�
x�x 0

�C5�

Therefore,

d2w1�x0 �
dx 2

� M1�x0�
EI1

,
d2w2�x0 �

dx 2
� M2�x0�

EI2
�C6�

Assuming I1 � I, I2 � aI, and also considering M1�x0� �M2�x0� � KrY, we have:

d2w1

dx 2
� KrY

EI
,

d2w2

dx 2
� KrY

aEI
�C7�

Therefore, di�erentiating both sides of Eq. (C4) yields:

Åd
3
w

dx3
� d3w1

dx3
�
�

d3w2

dx3
ÿ d3w1

dx3

�
H�xÿ x0� �

�
d2w2

dx 2
ÿ d2w1

dx 2

�
x�x 0

d�xÿ x0� �Yd�1��xÿ x0�

� Dd�2��xÿ x0�

� d3w1

dx3
�
�

d3w2

dx3
ÿ d3w1

dx3

�
H�xÿ x0� � KrY

EI

�
1

a
ÿ 1

�
d�xÿ x0� �Yd�1��xÿ x0� � Dd�2��xÿ x0�

�C8�
We also know that:�

EI1
d3w1

dx3

�
x�x 0

�
�
EI2

d3w2

dx3

�
x�x 0

� V�x0� � KtD �C9�

Therefore, di�erentiating both sides of Eq. (C8), we obtain:

Åd
4
w

dx4
� d4w1

dx4
�
�

d4w2

dx4
ÿ d4w1

dx4

�
H�xÿ x0� �

�
d3w2

dx3
ÿ d3w1

dx3

�
x�x 0

d�xÿ x0� � KrY
EI

�
1

a

ÿ 1

�
d�1��xÿ x0� �Yd�2��xÿ x0� � Dd�3��xÿ x0� �C10�

Hence,
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Åd
4
w

dx4
� d4w1

dx4
�
�

d4w2

dx4
ÿ d4w1

dx4

�
H�xÿ x0� � KtD

EI

�
1

a
ÿ 1

�
d�xÿ x0�

� KrY
EI

�
1

a
ÿ 1

�
d�1��xÿ x0� �Yd�2��xÿ x0 � � Dd�3��xÿ x0 � �C11�

Therefore, considering Eqs. (C2a) and (C2b), the governing equilibrium equation of the beam can be
written as:

Åd
4
w

dx4
� q�x�

EI
� q�x�

EI

�
1

a
ÿ 1

�
H�xÿ x0� � KtD

EI

�
1

a
ÿ 1

�
d�xÿ x0� � KrY

EI

�
1

a
ÿ 1

�
d�1��xÿ x0�

�Yd�2��xÿ x0 � � Dd�3��xÿ x0 � �C12�

Eq. (C12) is the governing di�erential equation of an Euler±Bernoulli beam with one point of jump
discontinuity in the space of generalized functions. The continuity conditions can be expressed as:

EI
d2w�x ÿ0 �

dx 2
� KrY, EI

d3�wÿ0 �
dx3

� KtD �C13�

Applying the four boundary conditions at x � 0 and x � L, and the continuity conditions in Eq. (C13),
gives us the beam de¯ection w.

For a beam, if Y � 0 and/or D � 0, the governing equilibrium equation of the beam must be
modi®ed. Consider the case of a beam with only a change in ¯exural sti�ness. Other cases are treated
similarly. Now let:

M1�x0� �M2�x0� �M0 �C14a�

V1�x0� � V2�x0� � V0 �C14b�

Therefore,�
d2w2

dx 2
ÿ d2w1

dx 2

�
x�x 0

� M0

EI

�
1

a
ÿ 1

�
�C15a�

�
d3w2

dx3
ÿ d3w1

dx3

�
x�x 0

� V0

EI

�
1

a
ÿ 1

�
�C15b�

Hence,

Åd
4
w

dx4
� q�x�

EI
� q�x�

EI

�
1

a
ÿ 1

�
H�xÿ x0� � V0

EI

�
1

a
ÿ 1

�
d�xÿ x0� � M0

EI

�
1

a
ÿ 1

�
d�1��xÿ x0� �C16�

In this case, continuity conditions can be written as:

EI
d2w�x ÿ0 �

dx 2
�M0, EI

d3w�x ÿ0 �
dx3

� V0 �C17�
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