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In this paper we first classify and formulate various types of defects with respect to their symmetries and
then show that with this general formulation, one can study the structures and energetics of defects in
different crystalline materials effectively. We present all the calculations for the embedded-atom-type
potentials but the formulation can, in principle, be applied for any many-body interatomic potential.
As examples of defects in crystals with many-body interactions, we study point defects, free surfaces
and grain boundaries in fcc Cu and grain boundaries in NiAl. We discuss free surface modelling by relax-
ing both a semi-infinite lattice and a slab with increasing finite thickness. We demonstrate through sev-
eral numerical examples that our general framework of anharmonic lattice statics can be used for
comparing different interatomic potentials in terms of the structure and energy they predict for a given
defect. In the case of fcc Cu, we show how both the structures and energetics of different defects can
strongly depend on the choice of potentials.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In nature crystalline solids always have defects of different
types. In other words, a mathematical crystal is, in general, an ideal
configuration and in crystalline materials one can almost always
find symmetry-breaking objects, i.e. defects, such as point defects,
free surfaces, twin boundaries, dislocations, etc. Presence of defects
in crystalline materials plays an important role in determining
their physical, thermal and mechanical properties.

In the case of multi-scale simulation methods, atomistic simu-
lations are restricted to a reduced domain. The exterior region to
the atomistic domain is usually a continuum domain that sur-
rounds the fine atomistic domain. There are two major types of
coupled atomistic-continuum methods: (1) methods that explicitly
use finite elements for the continuum domain, and (2) methods
that use Green’s function technique for the continuum domain to
eliminate degrees of freedom associated with the exterior region.
Among the works on the first type of coupled methods, the works
by Kohlhoff et al. [62] and Tadmor et al. [87] can be mentioned.

To completely eliminate degrees of freedom associated with the
continuum domain and directly model the atomistic region, a
Green’s function approach can be used. This type of coupled atom-
istic-continuum methods are often called the flexible boundary
ll rights reserved.

: +1 404 894 2278.
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methods. Among such methods the work by Sinclair et al. [82],
who introduced a flexible boundary method and applied it to a
2-D straight dislocation, and the work by Rao et al. [79], in which
they extended this technique to study 3-D dislocation problems,
should be mentioned. In some recent works [68], this method is
used to derive a formulation for quasi-static multi-scale boundary
conditions and then is applied to atomistic simulations [81].
Although in all these coupled atomistic-continuum methods of
simulation of defects, the coupling of continuum region identifies
a flexible boundary condition to the atomic-scale region and is in-
tended towards a more accurate solution, a discrete method of
solution for the core region with atomistic interactions also plays
a key role in the solution. It is noteworthy to mention that in any
partially symmetric defective crystal, both the atomistic and the
continuum regions would naturally have the same symmetry and
therefore, the dimension of both regions can be reduced similarly.
In this paper, we are interested in a systematic formulation of the
atomistic region and identification of a flexible boundary condition
is not our objective. However, a flexible boundary condition can be
applied to our method of simulation with coupling a continuum re-
gion exterior to the atomistic region.

Here, we formulate different types of defects in crystalline
materials systematically using their symmetries to reduce the or-
der of their corresponding governing difference equations and
show the effectiveness of our formulation in several numerical
examples. The idea of symmetry reduction in defective crystals
has been known for a few decades and has been exploited in differ-
ent solution methods for crystal defects. However, to our best
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knowledge, this technique has not been systematically formulated
for defective crystals.

The only available technique suitable for generating analytic
and semi-analytic3 solutions for defective crystals is the method
of lattice statics [12]. In this paper, we present a formulation of lattice
statics that is capable of semi-analytical modelling of defects in crys-
tals with many-body interactions. As an example of many-body
potentials, we work with embedded atom potentials, although any
other interatomic potential can be treated similarly. We show how
one can do semi-analytical lattice calculations for different types
of defects. We also show that our lattice statics technique can be
used as a tool for comparing different interatomic potentials in terms
of the defect structures and energetics that they predict. Our major
goals of working within this framework and its advantages are:

� Anharmonic lattice statics can be used to analyze the structures
and energetics of different defects very efficiently and fast using
symmetry conditions. Our method does not assume any period-
icity and hence our calculations will be free of any spurious peri-
odicity effects.

� This framework can be used as a tool for comparing different
interatomic potentials in terms of the structures and energetics
they predict for different defects. To our best knowledge, this
has not been done systematically in the literature of computa-
tional physics.

� Modelling defective crystals as discrete boundary-value prob-
lems, one can learn certain details about a specific defect that
may not be possible using purely numerical techniques. We will
see this clearly in the case of free surfaces.

� In this paper, we are mainly interested in the static configura-
tions of defects at T = 0 and will not consider any finite temper-
ature effects. The appropriate method for studying the
thermodynamics of defects at low temperatures is the method
of lattice dynamics (see [63,92,2,3,74], and references therein).
Establishing a framework for T = 0 calculations with a clear
structure is a first step in thermodynamic analysis of defects
at low temperatures, when MD cannot be used. Extension of
the present work to finite temperatures will be the subject of
a future communication.

This paper is organized as follows. In Section 2, given a refer-
ence configuration we find the linearized governing equations for
a system of interacting particles with possible many-body interac-
tions. Partial symmetry and symmetry reduction of the governing
equations are also briefly discussed. In Section 3 we study several
defect problems. We will discuss the solution methods and some
subtleties in modelling these defects as discrete boundary-value
problems. Conclusions are given in Section 4.

2. Defective crystals and symmetry reduction in a collection of
atoms with many-body interactions

Consider a collection of atoms L with the current configuration
fxigi2L � R3. We assume that, in addition to pairwise interactions,
many-body interactions are also present. A large class of materials
can be modelled by embedded atom (EAM) potentials [20] and
hence we present our formulation for EAM-type potentials, how-
ever, without excluding other possibilities. For a system governed
by an embedded-atom-type potential, the total energy of the col-
lection L has the following form4
3 Here by a ‘‘semi-analytic” method we mean a method that can obtain a fully
nonlinear solution for an anharmonic lattice defect iteratively using exact harmonic
solutions in each iteration.

4 We should emphasize that the present formulation can be applied to long-range
interactions as well. See Yavari et al. [98] for some relevant discussions.
Eðfxigi2LÞ ¼ Epairðfxigi2LÞ þ Ecohesiveðfxigi2LÞ

¼ 1
2

X
i;j2L
j–i

/ijðj xi � xj jÞ þ
X
i2L

FiðqiÞ; ð2:1Þ

where

qi ¼
X
j2L
j–i

wijðj xi � xj jÞ
ð2:2Þ

and /ij, Fi, and wij are real-valued functions. Assuming that there is a
discrete field of body forces fFigi2L acting on the defective lattice, a
necessary condition for the current configuration fxigi2L � R3 to be
in equilibrium is

� oE

oxi
þ Fi ¼ 0 8i 2L: ð2:3Þ

These discrete governing equations are highly nonlinear, in general.
In order to be able to obtain semi-analytical solutions, we first lin-
earize the governing equations with respect to a reference configu-
ration B0 ¼ fxi

0gi2L. Note that this is the discrete analogue of
linearizing the equations of nonlinear elasticity about a given mo-
tion [70,99]. One should also note that in molecular mechanics,
there is no well-defined notion of reference configuration and all
the existing interatomic potentials are defined in the current config-
uration (see [100] for a similar discussion). This is in contrast to
elasticity where one always assumes a well-defined reference con-
figuration, which may be thought of as a natural configuration of
the material. However, in general, reference configuration could
be any embedding of the material body in the physical space. Here,
for us, reference configuration is some configuration of atoms that is
not necessarily a local minimum of the total energy. We leave the
reference configuration unspecified and will choose different refer-
ence configurations for different defects. At this point it would be
enough to know that we usually choose the reference configuration
to be a nominal defect configuration [97,98].

Taylor expansion of the governing equations for atom i, Eq.
(2.3), about a reference configuration B0 ¼ fxi

0gi2L reads

� oE

oxi
þ Fi ¼ � oE

oxi
ðB0Þ �

o2E

oxi oxi
ðB0Þ � ðxi � xi

0Þ

�
X
j2L
j–i

o2E

oxj oxi
ðB0Þ � ðxj � xj

0Þ � . . .þ Fi ¼ 0: ð2:4Þ

Ignoring terms that are quadratic and higher in fxj � xj
0g, we obtain

o2E

oxi oxi
ðB0Þ � ðxi � xi

0Þ þ
X
j2L
j–i

o2E

oxj oxi
ðB0Þ � ðxj � xj

0Þ

¼ � oE

oxi
ðB0Þ þ Fi 8i 2L: ð2:5Þ

Here � oE
oxi ðB0Þ

n o
i2L

is the discrete field of unbalanced forces. Note

that fpair
i ¼ � oEpair

oFxi ; and fcohesive
i ¼ � oEcohesive

oxi are translation-invariant
functions and thus one has the following relations for stiffness sub-
matrices for pairwise and many-body interactions.

o2Epair

oxi oxi
¼ �

X
j2L
j–i

o2Epair

oxj oxi
;
o2Ecohesive

oxi oxi
¼ �

X
j2L
j–i

o2Ecohesive

oxj oxi
; ð2:6Þ

i.e.,

Kpair
ii ¼ �

X
j2L
j–i

Kpair
ij ;Kcohesive

ii ¼ �
X
j2L
j–i

Kcohesive
ij :

ð2:7Þ
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The total substiffness matrix is now written as

Kij ¼ Kpair
ij þ Kcohesive

ij : ð2:8Þ

In many defective crystals one can simplify the calculations by
exploiting partial symmetries. A defect, by definition, is anything
that breaks the translation-invariance symmetry of the crystal.
However, it may happen that a given defect does not affect the
translation invariance of the crystal in one or two directions. With
this idea, one can classify defective crystals into three groups: (i)
defective crystals with 1-D symmetry reduction, (ii) with 2-D sym-
metry reduction and (iii) with no symmetry reduction [97]. Exam-
ples of (i), (ii) and (iii) are free surfaces, dislocations, and point
defects, respectively. By convention, a perfect crystal is a defective
crystal with 0-D symmetry reduction, i.e., it can be reduced to a unit
cell.

Assume that the defective crystal L has a 1-D symmetry reduc-
tion, i.e., it can be partitioned into two-dimensional equivalence
classes as

L ¼
G
a2Z

GN
I¼1

LIa; ð2:9Þ

where LIa is the equivalence class of all the atoms of type I and in-
dex a with respect to the defect. Here we assume that L is a mul-
tilattice of N simple lattices. For example, each equivalence class is a
set of atoms lying on a plane parallel to the free surface. Fig. 1 sche-
matically shows the idea of symmetry reduction for the case of
N = 3. Each line represents an equivalence class, which can be a
plane of atoms, a spherical shell of atoms, etc.

Using this partitioning (2.9) one can write

X
j2L
j–i

o2E

oxj oxi ðB0Þ � ðxj � xj
0Þ ¼

X0
a2Z

XN

I¼1

X
j2LIa

o2E

oxj oxi ðB0Þ � ðxIa � xIa
0 Þ;

ð2:10Þ

where the prime in the first sum in the right-hand side means that
the term a = 0, I = i is omitted. The linearized discrete governing
equations can be written as

X0
a2Z

XN

I¼1

KiIauIa þ �
X0
a2Z

XN

I¼1

KiIa

 !
ui ¼ f i; ð2:11Þ

where

KiIa ¼
X

j2LIa

o2E

oxj oxi
ðB0Þ;

f i ¼ �
oE

oxi
ðB0Þ þ Fi; ð2:12Þ

uIa ¼ xIa � xIa
0 ¼ xj � xj

0 8j 2LIa:
I=1
I=2

I=3

α=0α=-1α=-2α=-3 α=1 α=2 α=3

Fig. 1. Schematic partitioning of a defective multi-lattice with a 1-D symmetry
reduction into equivalence classes for the case of N = 3.
Unit cell displacement vectors are defined as

Um ¼
u1

m

..

.

uN
m

0
B@

1
CA 2 R3N: ð2:13Þ

Now the governing equations in terms of unit cell displacements
are written asX
a2Z

AaðmÞUmþa ¼ Fm m 2 Z; ð2:14Þ

where

AaðmÞ 2 R3N�3N ;Ua;Fm 2 R3N: ð2:15Þ

This is a linear vector-valued ordinary difference equation with var-
iable coefficient matrices. The unit cell force vectors and the unit
cell stiffness matrices are defined as

Fm ¼
F1m

..

.

FNm

0
B@

1
CA; AaðmÞ ¼

K11a K12a � � � K1Na

K21a K22a � � � K2Na

..

. ..
.

� � � ..
.

KN1a KN2a � � � KNNa

0
BBB@

1
CCCA 8m 2 Z:

ð2:16Þ

Note that, in general, Aa need not be symmetric [97]. Note also that
Aa explicitly depends on m only close to the defect.

3. Semi-analytic analysis of single defects in crystals

Our goal in this paper is to develop a general framework in
which one can study the structures and energetics of different
types of defects in crystals with possibly many-body interactions.
In order to demonstrate the capability of our anharmonic lattice
statics formulation in serving as such a framework, we solve sev-
eral defect problems in the sequel.

Another use of our formulation is its ability in serving as a tool
for comparing different interatomic potentials. An interatomic po-
tential can be thought of as a ‘‘discrete constitutive equation” and
hence different interatomic potentials would, in general, predict
different structures and energetics for a given defect in a material
system. This interesting and important problem of qualitatively
and quantitatively comparing different interatomic potentials has
been overlooked in the literature of computational physics. As
we will see in the sequel, our general framework is capable of mak-
ing quantitative and qualitative comparisons of different inter-
atomic potentials for a given crystalline material. We will also
see that, in general, two different interatomic potentials predict
different structures and energies for the same defect in a given
crystalline solid.

We will work on the following four examples:

� Point defect in fcc Cu.
� (001) surface defect in fcc Cu.
� R(5) symmetric twin boundary in fcc Cu.
� R(5) symmetric twin boundaries in the shape memory alloy

NiAl.

The first three examples, although have different partial sym-
metries, can all be reduced to 1-D defect problems and the last
problem is an example of defects in multi-lattices. In the following,
the interatomic potentials used in our numerical examples are
briefly explained.

3.1. Potentials used in the examples

It is well known that two-body interatomic potentials such as
the classical Lennard-Jones type potentials have serious limitations
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and cannot represent interatomic interactions in most real crys-
tals; failure of the Cauchy relations is an example [83,12].

However, by using many-body potentials such as those pro-
posed by Daw and Baskes [21], Finnis and Sinclair [29] and Erco-
lessi et al. [25], these restrictions can be overcome. Although
these potentials were proposed with different physical motiva-
tions, the static crystal energy in all of them can be written gener-
ically as

Estat ¼ 1
2

X
i;j2L
j–i

/ijðrijÞ þ
X
i2L

FiðqiÞ; ð3:1Þ

where Fi(qi) represents the energy of ‘‘embedding” atom i in the
electric density qi created by all other atoms in the crystal. The
core–core repulsion between atoms i and j is represented by /ij,
which depends on the type of atoms i and j and the distance be-
tween them. The electron density qi is the sum of the electron den-
sity contributions of all other atoms at the nucleus of atom i and is
written as

qi ¼
X
j2L
j–i

wijðrijÞ; ð3:2Þ

where wij(rij) is the electron density contribution from atom j at a
distance rij from atom i.

The following potentials are used in our calculations.
Sutton–Chen potential (SC potential). This is a potential of the

EAM type developed by Sutton and Chen [86] (see also [59]), where
the following functions represent the pairwise and many-body
interactions in Eq. (3.1), respectively

/ijðrijÞ ¼
�an

rn
ij

; FiðqiÞ ¼ �c�
ffiffiffiffiffi
qi
p

; wijðrijÞ ¼ amr�m
ij : ð3:3Þ

For copper we use the following numerical values [59,78]

n ¼ 9; m ¼ 6; � ¼ 1:2386� 10�2 eV; c ¼ 39:755; a ¼ 3:616 A�:

ð3:4Þ

Quantum Sutton–Chen potential (QSC potential). In this potential
[86,59], the same functions (3.3) are used for the pairwise and
many-body interactions but for copper the following potential
parameters [59,78] are used.

n ¼ 10; m ¼ 5; � ¼ 5:7921� 10�3 eV; c ¼ 84:843; a ¼ 3:593 A�:

ð3:5Þ

Barrera et al. potential (B potential). As the third potential of the
EAM type, we chose the potential developed by Barrera et al. [6].
For the electronic densities, the following simple exponential func-
tion is used

wijðrijÞ ¼ A exp
�rij

re

� �
; ð3:6Þ

which is associated with the following embedding energy

Fj ¼ �C
ffiffiffiffiffi
qj

p
: ð3:7Þ

The repulsive or the pairwise potential is of a simple exponential
form

/ijðrijÞ ¼ B exp
�rij

rr

� �
: ð3:8Þ

For fcc copper we have the following numerical values [6] for this
potential

B ¼ 7076:56 eV; rr ¼ 0:241535 A�; A ¼ 188:542;
re ¼ 0:536562 A�; C ¼ 1 eV; a ¼ 3:6149 A�: ð3:9Þ
NiAl EAM potential. We use the second-moment interatomic po-
tential for Al, Ni and Ni–Al alloy of EAM type developed by Papani-
colaou et al. [77]. In this potential, the electron density function
has the following exponential form:

wijðrijÞ ¼ n2
ab exp �2qab

rij

rab
0

� 1

 !" #
ð3:10Þ

associated with the following embedding energy

Fj ¼ �C
ffiffiffiffiffi
qj

p
: ð3:11Þ

The repulsive pairwise potential is of the form

/ijðrijÞ ¼ Aab exp �pab

rij

rab
0

� 1

 !" #
: ð3:12Þ

The potential parameters for Al–Al, Ni–Ni, and Ni–Al interactions
are:

Al� Al : nab ¼ 0:9564 eV; Aab ¼ 0:05504 eV; qab ¼ 1:5126;

pab ¼ 10:9011; rab
0 ¼ 2:8310 Å;

Ni�Ni : nab ¼ 1:4175 eV; Aab ¼ 0:07415 eV; qab ¼ 2:2448;

pab ¼ 13:8297; rab
0 ¼ 2:4307 Å; ð3:13Þ

Ni� Al : nab ¼ 1:4677 eV; Aab ¼ 0:09493 eV; qab ¼ 3:8507;

pab ¼ 10:9486; rab
0 ¼ 2:7424 Å:

We choose a force tolerance of f = 0.05 eV/Å for the calculations of
the distorted atomic configurations. However, we will numerically
study the effect of the force tolerance on the structure and energy
of point defects.

3.2. Example 1: a single point defect in fcc copper

Distortion of a crystal lattice due to point defects, e.g., substitu-
tional or interstitial atoms or vacant lattice sites has been a prob-
lem of interest for a long time. The very first attempt to model
this problem was to treat the point defect as a center of dilatation
in an infinite isotropic elastic medium [69,26]. In early 1950s the
interaction of the boundaries and point defects was considered
by Eshelby, and Johnson [26,27,50]. Kanzaki [55,56] proposed a
method for the calculation of distortions around a point defect in
an fcc crystal without any reference to continuum solutions. In this
method, a system of equilibrium equations was derived using an
appropriate pair potential, and then with application of the dis-
crete Fourier transform (DFT) method the equations were decou-
pled in the reciprocal space. The proposed method and some of
its variations were later on called method of lattice statics and were
used by several other authors for solving similar point defect prob-
lems. The reader is referred to [30,31,33,32,58,34,97,98], and refer-
ences therein for more details.

Another class of methods consider the defective lattice discrete
close to the defect and continuum far from the defect
[42,91,8,53,51,54,50,52]. Hall [42] was among the first who explic-
itly exploited the radial symmetry of point defects in fcc lattices in
his numerical calculations. In his work, for pure metals, atoms of
equal distances from the defect, all have radial displacements
and forces of equal magnitudes [42,51]. Some other authors ob-
tained the relaxed configuration in an iterative process by relaxing
the shells of atoms successively using the force constants until con-
vergence was achieved [44,39,40,53,51,54,50,52].

An alternative approach to obtain the fully nonlinear solutions
of point defect problems was proposed by Flocken [35], where
the first and second shells were relaxed successively, while the rest
of atoms were relaxed using the standard method of lattice statics.
In this method, the forces were calculated exactly in contrast to the
standard lattice statics method. Another method for solving point
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defect problems is the method of lattice Green’s function (see
[23,22,90] and references therein). It can be seen that point defects
in crystals have been analyzed more or less using heuristic ap-
proaches and not within a general framework. In the following,
we study a single point defect in an infinite simple lattice and show
how its governing equations can be reduced using symmetry
conditions.

Symmetry reduction in a point defect problem. It turns out that in
the case of a single point defect in fcc Cu displacements with re-
spect to the reference configuration are radial, i.e. those atoms that
are equidistant from the vacant site have the same unbalanced
forces and displacements [42]. This is also the case in the contin-
uum approach for the solutions of point defect problems, where
the point defect is considered to be the center of dilatation in the
elastic medium and all the atoms are constrained to have O(1/r2)
displacements, where r is distance from the defect. In our numer-
ical calculations, the material body is partitioned into two regions:
Region I contains atoms in the vicinity of the defect and Region II
contains the atoms away from the defect. The atoms in Region I
are relaxed according to their individual equivalence classes. Re-
gion II atoms are relaxed with displacements proportional to 1/r2.

The radial symmetry of the point defect problem enables one to
reduce the discrete governing equations to an ordinary difference
equation on N. Each equivalence class is a set of atoms lying on a
spherical shell and this partitions the lattice L as

L ¼
G1
n¼1

Ln: ð3:14Þ

For atoms in the equivalence class Ln we know that

ui ¼ unr̂i 8i 2Ln; ð3:15Þ

where r̂i ¼ xi
0=jxi

0j. In the equilibrium configuration B ¼ fxigi2L one
has

oE

oxi
¼ 0 8i 2L: ð3:16Þ

Because all atoms in an equivalence class have the same magnitude
of force this is equivalent to

oE

oxI
¼ 0 8I 2 N; ð3:17Þ

where I is a representative of the equivalence class LI . Linearization
of equilibrium equations about a reference configuration
B0 ¼ fxi

0gi2L yields

X1
n¼1

X
j2Ln

o2E

oxj oxI
ðB0Þ � uj ¼ f I 8I 2 N: ð3:18Þ

Or

X1
n¼1

kIn � unr̂I ¼ f I 8I 2 N; ð3:19Þ

where fI is the unbalanced force on the representative of the equiv-
alence class LI and

kIn ¼
X
j2Ln

o2E

oxj oxI
ðB0Þr̂j: ð3:20Þ

Relaxation method. The anharmonic solution of the point defect
problem is obtained using the following algorithm. First, we con-
struct a reference configuration by creating a vacant site preferably
at the center of a finite but large perfect crystal (material body).
Then, we choose a spherical volume of an appropriate size con-
tained in the material body (smaller in size than the material body)
centered at the vacant site and call it the relaxation volume. Atoms
in this volume are classified according to their distances from the
vacant site, and therefore atoms of the same class lie on the same
shell centered at the vacant site. The relaxation volume contains a
collection of shells, where each shell represents an equivalent class
of atoms. The atoms inside the relaxation volume are relaxed
through an iterative process, where in each iteration the force
and stiffness for an individual shell is calculated exactly and then
all the atoms on that individual shell are displaced accordingly.

In the relaxation process, when the absolute values of all the
unbalanced forces in the configuration are less than a certain small
positive number (force tolerance), the iterative process is stopped.
This force tolerance is usually chosen in the interval 0.01–0.05 eV/
Å. The choice of the force tolerance strongly affects the relaxed
configuration and also the energetics. Therefore, for any choice of
the force tolerance a sensitivity test has to be conducted to accu-
rately identify the minimum necessary radius of the region around
the point defect with atomic interactions (the relaxation volume
size) so that the displacements of the atoms in the volume exterior
to the relaxation volume is invariant under choices of relaxation
volumes with radii larger than the minimum radius determined.

In particular, for smaller values of the force tolerance larger
relaxation volumes have to be chosen. Therefore, the relaxed con-
figuration strongly depends on the potential and also on the choice
of the force tolerance, in general. A measure of the importance of
the relaxation volume size is DE0/W0, where DE0 is the relaxation
energy and W0 is the energy of formation of a vacancy without dis-
tortion under zero pressure. Increasing the volume size, the ratio
DE0/W0 increases until a plateau is reached. Any size larger than
this threshold is appropriate. As an example, it is seen in [42] that
DE0 varies from 1.78% to about 12% of W0 as the reduced volume
decreases from 1.0 to 0.4, where the reduced volume corresponds
to the reduced radius, which is the radius normalized by the first
nearest neighbor distance.

In the case of a vacancy, in some previous works (for example,
[39]) where the interatomic interactions were pairwise, only the
nearest and next nearest neighbors from the vacancy needed to
be considered in energy calculations. However, this is not necessar-
ily the case when many-body interatomic interactions are present;
this is geometry and material dependent and given an interatomic
potential it should be numerically studied.

Numerical results. Girifalco and Weizer [40] reported the re-
duced displacement values (the displacement normalized by the
first nearest neighbor distance) for the first and second nearest
neighbors from the vacant site and the energies of relaxation were
mentioned to be �2.24%, 0.4% and 0.56 eV, respectively (negative
sign means displacement towards the vacant site or contraction
of the shell). We choose this work as a reference for comparison.
We calculated the distortion around a vacancy with two force tol-
erances of 0.05 eV/Å and 0.02 eV/Å, using all the three previously
mentioned potentials to demonstrate the sensitivity of the relaxed
configuration and its energy to the choice of force tolerance and
potential.

Using SC potential and the choice of f = 0.05 eV/Å we obtained
�0.7%, and 0.0% for the reduced displacements of the first and sec-
ond nearest neighbors, respectively, and 0.486 eV for the relaxa-
tion energy, while the choice of f = 0.02 eV/Å resulted in the
reduced displacements of �1.4%, and �0.05% for the first and sec-
ond nearest neighbors, respectively, and 1.395 eV for the relaxa-
tion energy. It is also noteworthy to mention that the first choice
of the force tolerance resulted in distortion of only the first nearest
neighbor atoms from the vacant site with respect to the reference
configuration while the second choice resulted in the distortion of
atoms in the first four nearest shells from the vacant site and a con-
figuration with lower energy.

The QSC potential with the choice of f = 0.05 eV/Å resulted in
�0.87%, and 0.0% reduced displacements of the first and second
nearest neighbors, respectively, and 0.679 eV for the relaxation
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energy, while the choice of 0.02 eV/Å for the force tolerance re-
sulted in �1.8%, and �0.03% for the first and second nearest neigh-
bors, respectively, and 1.906 eV for the relaxation energy. Using
QSC Potential, and the choice of f = 0.05 eV/Å a relaxed configura-
tion with distortions in only the first nearest neighbor atoms from
the vacant site was obtained, while the choice of f = 0.02 eV/Å re-
sulted in a relaxed configuration with distortions in atoms in the
first 11 shells.

We also calculated the reduced displacements of the first and
second nearest neighbors of magnitudes �1.9%, and 0.0% and the
relaxation energy of 1.77 eV for f = 0.05 eV/Å and �2.5%, and
�0.4% and the relaxation energy of 1.69 eV for f = 0.02 eV/Å using
the B potential. Using B potential, the first choice of force tolerance
resulted in the distortion of atoms in the first 11 shells from the va-
cant site while for the second force tolerance choice it resulted in
the distortion of the first 80 shells. It is apparent that our results
are reasonably close to the results of Girifalco and Weizer [40]
although in that work only pairwise interactions were considered.
The sensitivity of the calculated relaxed configuration and in par-
ticular the size of the distorted volume and relaxation energy on
the choice of the force tolerance and potential is clearly seen in
these numerical calculations.

Now, it is easy to compare the results from the three different
potentials. As it is seen in Figs. 2 and 3, in the case of 0.05 eV/Å
force tolerance, the results from SC and QSC potentials are very
close to each other and only the nearest neighbor atoms from
the vacant site are distorted, while using the B potential results
in distortion of atoms in the first 11 shells closest to the vacant site.
This is also the case with the 0.02 eV/Å choice of force tolerance,
where SC and QSC predicted distortion of atoms in the first 4 and
11 shells, respectively, while for the B potential the distortions oc-
cur in the first 80 shells. This means that the distortion volume
strongly depends on the choice of the potential and for some
potentials (B potential), the distortion volume is much larger than
other choices of potentials (SC and QSC potentials).

3.3. Example 2: (001) surface defect in fcc copper

Structures, energetics and in general study of surface defects is
of fundamental importance, as any real crystal is finite and has free
surfaces. Theoretical calculations of the effects of surface forces on
defects within a crystal as well as formation and migration ener-
gies of defects on the crystal surfaces have been of interest for
quite sometime.
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Fig. 2. Anharmonic displacements of atomic shells with respect to the reference
configuration.
In the so-called direct space method, one starts with a perfect
lattice with a boundary surface of proper orientation. Then the sur-
face is relaxed by an iterative process until the net force on each
atom is less than a force tolerance. This method was used by Wyn-
blatt and Gjostein in calculation of migration and formation ener-
gies for surface defects in copper [95] and tungsten [94], by
Bonneton and Drechsle [11] in their calculations of atomic relaxa-
tion near a (112) surface in W, Mo, and Ta, and by Jackson [48] in
calculation of the relaxations of atoms in a number of fcc and bcc
metals (see also [61]). The advantage of using the direct-space
method is that forces can be calculated explicitly using a reliable
potential. However, the number and complexity of the governing
equations rapidly increases as the size of the model increases.

Another method is the Green’s function method where one con-
siders a supercell with N atoms that contains the defect and then
periodically repeats it in space. The resulting 3N � 3N set of equi-
librium equations in each supercell is then solved using DFT. Feu-
chtwa [28] developed a comprehensive formalism to determine
atomic displacements near surfaces in fcc lattices using the Green’s
function method. Corciove et al. [17] in an attempt to determine
the general characteristics of atomic displacements near surfaces
in fcc lattices employed the Green’s function method, where all
the anharmonic effects are neglected and the static displacements
are directed along the normal to the surface in order to satisfy the
invariance requirements. Detailed calculations were done for a fi-
nite slab in the nearest neighbor approximation and the periodic
boundary conditions were applied.

An advantage of using Green’s function method is that the
supercells can be made very large and thus the Fourier sums can
be converted into integrals that would lead to some asymptotic
solutions for defects. This idea was developed by Hardy and Floc-
ken [45], Flocken [34], and Boyer and Hardy [14], and later used
by Flocken [36] for surface defect problems. One disadvantage of
this method is that it can be used only for harmonic lattices. Tew-
ary [88] and Tewary and Bullough [89] developed a method to car-
ry out the entire calculation in the reciprocal space without the
direct-space potential being known explicitly. For more examples
of relevant analyses of the surface defect problems see
[66,46,57,93,43,41,47,101–103] and references therein.

Another method that employs both hypotheses of Green’s func-
tion method and the direct-space method and is able to capture
anharmonic effects is called the modified lattice statics method
[37]. In the modified lattice statics method, for free surfaces, the
first few layers (usually the first two layers) are successively
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relaxed using the direct-space method and the remainder of the
lattice is relaxed iteratively using the Green’s function method.

The most common result in all the above-mentioned works was
the oscillatory behavior of the interlayer spacings close to a free
surface in the relaxed configuration. Starting from an undistorted
configuration of a free surface with perfect lattice spacings, the re-
sults confirmed a decrease in the interlayer spacing between the
first and second layers (assuming that the first layer is the bound-
ary) and an increase in the interlayer spacing between the second
and the third layers in the relaxed configuration [7,66,57,93,16].
Bab�uska and his coworkers [4] were among the first who studied
simple defects in harmonic lattices and proposed a general method
of solution of the governing equations using the method of discrete
Fourier transform [5].

Discrete boundary-value problem of a free surface. Before discuss-
ing the boundary-value problem of an arbitrary free surface, let us
first look at a simple half chain of atoms with first and second near-
est neighbor interactions with respective spring constants k1 and
k2 (see Fig. 4). In a real free surface, these force constants can be
obtained by exploiting symmetry conditions and linearizing the
governing equations with respect to a reference configuration.
We assume that unbalanced forces are nonzero only for the first
two layers and denote them by f0 and f1. The bulk equilibrium
equation is written as (see also [15] for similar discussions)

n P 2 : k1ðxnþ1 � 2xn þ xn�1Þ þ k2ðxnþ2 � 2xn þ xn�2Þ ¼ 0: ð3:21Þ

The boundary equations are

n ¼ 0 : k1ðx1 � x0Þ þ k2ðx2 � x0Þ ¼ f0; ð3:22Þ
n ¼ 1 : k1ðx2 � 2x1 þ x0Þ þ k2ðx3 � x1Þ ¼ f1: ð3:23Þ

Assuming that xn = ckn is a solution one obtains the following char-
acteristic equation [1,24,65]

k2 þ k1k� 2ðk2 þ k1Þk2 þ k1k
3 þ k2k

4 ¼ 0: ð3:24Þ

The above fourth order polynomial has the following four roots

k1 ¼
�k1 � 2k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1 þ 4k2Þ

p
2k2

; k2 ¼ k3 ¼ 1;

k4 ¼
�k1 � 2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1 þ 4k2Þ

p
2k2

ð3:25Þ
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Fig. 4. Harmonic displacements for a half-chain model of a free surface.
and the general solution is now written as

xn ¼ c1k
n
1 þ c2nþ c3 þ c4k

n
4 n P 0: ð3:26Þ

Note that jk1j > 1 and jk4j < 1. Let us first assume that displacements
are bounded at infinity. Thus

xn ¼ c3 þ c4k
n
4 n P 0: ð3:27Þ

Boundary equations read

c4½�ðk1 þ k2Þ þ k1k4 þ k2k
2
4� ¼ f0; ð3:28Þ

c4½k1 � ð2k1 þ k2Þk4 þ k1k
2
4 þ k2k

3
4� ¼ f1: ð3:29Þ

This means that f0 and f1 cannot be arbitrary and have to satisfy the
following relation

f0

f1
¼ �ðk1 þ k2Þ þ k1k4 þ k2k

2
4

k1 � ð2k1 þ k2Þk4 þ k1k
2
4 þ k2k

3
4

¼ �1; ð3:30Þ

i.e., the external forces must be self-equilibrated. Arbitrariness of c3

is a consequence of translation invariance and we can choose c3 = 0.
Let us now assume the numerical values k1 = 1, f0 = 1 and calculate
the harmonic displacements of the atomic layers in the vicinity of
the surface defect for choices of k2 = 1, k2 = 0.5, k2 = 0.25, and
k2 = 0.1. The harmonic displacements are shown in Fig. 4. Note that
even this very simple model exhibits the oscillatory displacement
behavior observed in real crystal surfaces and more interestingly,
smaller values of k2/k1 result in larger displacements of the first
layer but faster decay of displacements away from the free surface.

If the force system {f0, f1} is not self-equilibrated, physically we
expect a uniform expansion or compression in addition to the
above localized displacements. This means that in (3.26) c2 – 0.
Note that

xnþ1 � xn ¼ c2 þ c4k
n
4ðk4 � 1Þ n P 0: ð3:31Þ

This means that

j xnþ1 � xn j<1 as n!1 ð3:32Þ

i.e., the field of discrete strains is bounded at infinity. Imposing the
boundary conditions (3.28) and (3.29), we obtain

c2 ¼
f0 þ f1

k1 þ 4k2
; c4 ¼

2ðf0 � f1Þk2 � f1k1

ðk1 þ 4k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1 þ 4k2Þ

p : ð3:33Þ

Note that the uniform expansion/compression term is nonzero only
if the pressure f0 + f1 is nonzero (see [38] for a similar discussion). It
is also seen that, in general, the displacement field is the superposi-
tion of a uniform expansion/compression and a localized surface
displacement field.

A (100) free surface is an example of a defective lattice with a
1-D symmetry reduction. Therefore, the governing equations can
be written for a chain of representative unit cells (atoms in the case
of Cu simple lattice). A natural approach for solving this problem is
to write the linearized governing equations for a half chain of
atoms, i.e.

Xm

a¼�m

AaXnþa ¼ Fn; n P mþ 1 ð3:34Þ

with m boundary equations, where m is the range of unit cell inter-
actions, i.e., unit cell n interacts with its first m nearest-neighbor
unit cells. One also needs to impose boundedness of displacements
at infinity (or the weaker condition of boundedness of displacement
differences) and should also fix the translation invariance of the
defective lattice by fixing an atom. Thus, all one needs to have are
stiffness matrices and unbalance forces fFngn2N. Given any inter-
atomic potential, one can calculate forces close to the free surface
and because the far field is the bulk configuration, forces would de-
cay to zero away from the free surface. In summary, the discrete
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boundary-value problem (DBVP) of a free surface has the following
form

Xm

a¼�m

AaXnþa ¼ Fn n P mþ 1; ð3:35Þ

Xm

a¼�m

AaðnÞXnþa ¼ Fn n ¼ 0;1; . . . ;m; ð3:36Þ

lim
n!1
kXnþ1 � Xnk <1: ð3:37Þ

To further investigate the state of forces near a surface defect we
used a 2-D model of a complex lattice with a Lennard-Jones type
potential [60]. The diatomic lattice has two stable atomic configura-
tions which are hexagonal and complex square lattices. For this
numerical study we choose the square complex lattice with two
types of atoms A,B. The following are the LJ potential and the
parameters chosen

UabðxabÞ ¼ 4eab
rab

xab

� �12

� rab

xab

� �6
" #

;

eAB ¼ eBB ¼ eAA ¼ 2:5� 10�10 m;rAA ¼ rBB ¼
ffiffiffi
2
p

rAB ¼ 10� 10�19 J;

where only the first and second nearest neighbor interactions are
considered. The results of our force calculation confirms that the
forces on a half lattice are not self-equilibrated and we obtained
forces of magnitude 4.1377 � 10�8 N for each atom on the surface
and forces of magnitude 1.37923 � 10�8 N on each atom on the sec-
ond layer from the surface. This can be numerically checked for
more complicated lattices and in all the numerical examples we
have studied, forces near a free surfaces are not self-equilibrated.
Let us consider a finite cubic part of a cubic lattice (Fig. 5 shows a
planar projection). If this cube is large enough, forces would be non-
zero only in the gray regions close to free surfaces. Because of sym-
metry forces on the face 1, for example, would cancel forces on face
2. Therefore, to analyze a free surface one can extend the cube to
infinity in two directions and consider a slab. Again, forces would
be nonzero only in the gray regions shown in the figure. It turns
out that, in general, forces on one face are not self-equilibrated
and that is why one should expect a uniform expansion/compres-
sion in addition to the localized surface displacements.
(a)

(b)

1 2

3

4

Fig. 5. (a) A finite crystal with free surfaces. One can study the structure of free
surfaces by moving faces 3 and 4 to infinity and solving a slab problem. (b) A point
defect in a finite crystal. Increasing the size of the crystal, one can assume that a
single point defect is embedded in an infinite crystal.
Nevertheless, one can consider the atoms in the white region,
far enough from the free surface and to a good approximation
not distorted. Therefore, those atoms far from the free surface
can be fixed to their perfect lattice positions (bulk lattice) and
the atoms in the vicinity of the surface can be displaced to obtain
the relaxed configuration and model a free surface as a semi-infi-
nite lattice.

In the case of a point defect, for example, one can again consider
a finite crystal centered at the defect (see Fig. 5b). For a large en-
ough cube, one can find a smaller cube centered at the defect
where the free surface effects are absent. Thus, in the limit, one
can assume that there is a point defect in an infinite crystal.

Simultaneous harmonic relaxation. As we discussed earlier, to
model a free surface one might either consider a slab of finite
dimension (in this case a sensitivity test should be conducted to as-
sure the correct choice of the slab size) or a semi-infinite lattice.
Therefore, the first step would be to construct the material body
as we did in the previous example. We construct the material body
from a finite perfect crystal, where atoms are in their perfect crys-
tal lattice sites. We also perform a sensitivity test to make sure that
the size of the slab is chosen reasonably so that there are some
atomic layers in the middle region of the slab not affected (with re-
spect to the force tolerance) by the free surfaces and can be consid-
ered as bulk. We then use the classification method to classify the
atoms in the material body according to their normal distances
from the slab surfaces, so that the atoms of the same distance from
the free surface belong to the same class and in the relaxation pro-
cedure they are displaced together. We relax the atoms in the
material body using an iterative algorithm in which in each itera-
tion force vectors and stiffness matrices of all the classes are calcu-
lated, then evaluate their corresponding displacements, and
update the position of all the atoms in every class. In order to cal-
culate the force vector and stiffness matrix of a class of atoms we
pick an atom from that class as the class representative and calcu-
late its force vector and stiffness matrix. We proceed with itera-
tions until a desired force tolerance is achieved.

It should be mentioned that the choice of the force tolerance is
crucial in the appropriate size of the slab (the sensitivity test would
identify the right size of the slab depending on the choice of the
force tolerance and the potential); if we choose a small force toler-
ance we most likely have to increase the size of the slab.

The following is our simultaneous anharmonic lattice statics
algorithm:
5

rel
Input data: Defective crystal geometry, interatomic
potential, force tolerance, slab size N
.Initialization

.Construct the reference configuration B0

.Calculate unbalanced forces F0 ¼ FðB0Þ

.Assemble substiffness matrices and construct K0

.Calculate displacements U0 ¼ K�1
0 F0

.Do until convergence is achieved
.Bkþ1

0 ¼ Bk
0 þ Uk

.Update substiffness matrices and construct Kk

.Calculate displacements Ukþ1 ¼ K�1
k Fk

.End Do

.

Numerical results. We use all the three potentials to calculate the

corresponding relaxed configurations. Note that some previous
studies suggest the relaxation of the first 8 layers for the low index
surfaces and the first 13 layers for the high index surfaces5 [93]. We
High index surfaces are those for which at least one of the Miller indices is a
atively large number.
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observe that this rule of thumb works, at least for fcc Cu with the
three given EAM potentials; surface structure is independent of slab
thickness for slabs thicker that 21 layers (one layer in the middle and
10 layers on each side). However, this is problem dependent and
should be studied carefully for a given material system.

Our results using all the three potentials confirm the contrac-
tion in the first interlayer spacing and expansion in the second
interlayer spacing of (100) surface defect in fcc copper. For Cu
(100) surface defect, experimental results [18,19,67,72] suggest a
contraction ranging from �1.0% to �2.1% in the first and second
layers, the modified EAM [93] gave �0.83% while the results of
EAM [75] and effective-crystal theory [80] were �3.79% and
�3.7%, respectively. Our calculations predict contraction of the first
interlayer spacing of �3.6% using SC potential, �0.52% using QSC
potential, and�1.98% for the B potential. The results from the B Po-
tential is in very good agreement with the experimental data. The
changes in the interlayer spacings of half of the slab is shown in
Fig. 6. The relaxation energy calculations indicate energy decreases
of 0.0082 eV/Å2, 0.0025 eV/Å2, and 0.0093 eV/Å2, respectively, for
the three potentials, where the changes in the surface energies
due to relaxations are in the order of 0.1% and in good agreement
with results from [93]. It is seen that these three potentials predict
x

y
<

12
0>I

z <001>

Fig. 7. Projection along the tilt axis of the structure of R(5)(210)[001] grain boundary. (a
distortion of the atoms around the boundary after relaxation (white and dark circles co
different structures for the relaxed configuration. Note that the
structures predicted by the SC and B potentials have the shortest
and longest ranges of distortion, respectively.

3.4. Example 3: R(5) symmetric twin boundary in fcc copper

It is known that grain boundary energy plays a key role in many
interface related phenomena [71]. In order to calculate the grain
boundary energies using atomistic models, it is necessary to under-
stand the atomistic structure of grain boundaries. This has been the
subject of many experimental and theoretical investigations
[84,13,64,10].

Using the symmetry reduction idea, one can calculate the re-
laxed configuration of a grain boundary efficiently and fast. Among
all the grain boundaries, one of the most studied ones is the
R(5)(210)[001] tilt boundary in fcc metals [9], where R is the re-
ciprocal density of coincidence sites. We calculate the relaxed con-
figuration of atoms close to a symmetric R(5) tilt boundary using
all the three EAM potentials. The first step, similar to the previous
examples, is to construct the reference configuration of the mate-
rial body. Reference configuration was obtained by rotating two
perfect copper crystals by a relative angle of 53.13� along their
(001) axis while initially their (100) surfaces were facing each
other. As it can be seen in Fig. 7a the grain boundary plane is a mir-
ror plane of symmetry.

The atoms in the reference configuration are classified similar to
the surface defect problem according to their distances from the
twin boundary, which reduces the 3-D problem to a 1-D problem.
In the twin boundary problem, atoms of the same class have dis-
placement vectors with components both parallel (y-direction)
and perpendicular (x-direction) to the twin boundary. The relaxa-
tion method is similar to the method used in the free surface prob-
lem, i.e., we use the simultaneous harmonic relaxation method.
The iterations will continue until all forces have absolute values
smaller than a force tolerance. In the relaxation process, the crystal
is divided into two regions I and II. In Region I, atoms are relaxed
individually, while atoms of Region II have no individual move-
ments; they act as rigid blocks of ideal crystal structure free to
translate in both directions.

Numerical results. We construct the material body in the refer-
ence configuration with 29 atomic layers in Region I. This means
that one of the 29 layers lies on the grain boundary and would have
only displacements parallel to the grain boundary and 14 layers on
each side of the grain boundary that move in the (001) plane and
their displacements are symmetric with respect to the grain
<210>

) Atomic arrangements around the grain boundary in the reference configuration, (b)
rrespond to two (001) planes).
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boundary. We use all the three potentials to relax the atoms from
their reference configuration. Fig. 7b shows atomic distortions in
the vicinity of the grain boundary obtained by QSC potential.

Fig. 8 shows the displacements of the atomic layers in both
directions. The relaxation energy per unit area of the grain bound-
ary for each potential is calculated as 0.432002 eV/Å2 using the SC
Potential, 0.573276 eV/Å2 using the QSC potential, and
0.0332358 eV/Å2 using the B potential. It is seen that energy of
the grain boundary strongly depends on the choice of the potential.
Also both SC and QSC potentials are showing the same range of
atomic distortions (atoms on the grain boundary and the first 10
closest layers from the grain boundary), while the result from B po-
tential shows a longer range of atomic distortions (atoms on the
grain boundary and the first 13 closest layers from the grain
boundary).

3.5. Example 4: grain boundary in shape memory alloy NiAl

The NiAl compound has been of great interest to many material
scientists because of its outstanding physical, chemical and
mechanical properties which make it a promising material for
high-temperature applications [96,73,76]. However, the exploita-
tion of NiAl like many other intermetallic compounds is obstructed
by its severe brittleness, which is believed to be due to the intrinsic
brittleness of its grain boundaries. This explains the intense inter-
est in grain boundaries in NiAl in the computational physics liter-
ature in recent years. Here, as another example, we calculate the
atomic distortions in the vicinity of R(5)(210)[001] symmetric tilt
grain boundary for NiAl for both Ni-centered and Al-centered grain
boundaries.

The method of solution is exactly the same as used in the solu-
tion of the R(5)(210)[001] symmetric tilt boundary problem in fcc
copper. First, we construct a reference configuration for
R(5)(210)[001] symmetric tilt GB using geometrical rules of the
coincidence site lattice (CSL) model [85]. The (210) crystallo-
graphic plane is first aligned parallel to the intended grain bound-
ary, and then a one-half crystal is rotated 180� relative to the other
half crystal about the grain boundary normal. Similar to the prob-
lem of R(5)(210)[001] symmetric tilt boundary in fcc copper, we
divide the reference configuration into two regions: Region I con-
tains atoms in the vicinity of the grain boundary which are allowed
to move in two directions individually, while the atoms in Region II
form a slab and move rigidly. Atoms of Region II serve to insure
that the effect of the free surfaces on the relaxation of the atoms
in Region I can be negligible. Atoms in Region II are constrained
in their perfect lattice positions and are allowed to move as two ri-
gid slabs.
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o

ux SC Potential

u B Potentialx

u QSC Potentialx

uy SC Potential

u B Potentialy

u QSC Potentialyu(
Å

)

n

Fig. 8. Atomic displacements (Å) in the x and y directions close to the
R(5)(210)[001] tilt boundary.
Numerical results. The atomic distortions are calculated for both
Ni-centered and Al-centered grain boundaries. Fig. 9 shows the dis-
placements of the atomic layers for both cases. For Al-centered GB,
indices n = 0,2,4, . . . are occupied by Al atoms and indices
n = 1,3, . . . are occupied by Ni atoms. Similarly, in the Ni-centered
GB, indices n = 0,2,4, . . . are occupied by Ni atoms and indices
n = 1,3, . . . are occupied by Al atoms. We also calculated the relax-
ation energy of �6.05641 eV/Å2 for Ni-centered grain boundary
and �14.3534 eV/Å2 for Al-centered grain boundary.
4. Conclusions

In this paper, we presented a formulation of anharmonic lattice
statics for analysis of defective crystals with many-body interac-
tions. This formulation is able to handle different types of defects
with taking into account the anharmonic effects. This method is
capable of generating semi-analytic solutions for defects (with par-
tial symmetries) at zero temperature. Exploiting partial symme-
tries of defective crystals makes this method efficient and fast. As
demonstrating examples, we used the method for three types of
defects in fcc Cu, namely point defects, (001) free surfaces and
R(5) symmetric twin boundaries. We also looked at grain bound-
aries in the shape memory alloy NiAl.

It is well known that the structure and energy of a defect, in
general, depend on the choice of potentials and we demonstrated
this for fcc Cu, using three different EAM-type potentials. There-
fore, in this sense, the method presented here can be used as a tool
for comparing different interatomic potentials. We also observed
that the choice of force tolerance can affect the predicted struc-
tures away from defects. We clearly observed this in the case of
a point defect in fcc Cu.

As a future extension of this method, we will consider finite
temperatures in a generalized lattice dynamics formulation. Such
a formulation will be very useful in thermodynamic analysis of
defective crystals at low temperatures, where MD cannot be used.
This will be the subject of a future communication. We will also
consider extending these ideas to more complicated situations,
e.g. objective structures [49].
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