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Highlights
• Using the Hilbert complex of nonlinear elasticity, we identify the solution spaces of the independent unknown fields: The

displacement in H1, the displacement gradient in H(curl), the first Piola–Kirchhoff stress in H(div), and a pressure-like field
in L2 (only for incompressible elasticity).

• To improve the stability of the proposed finite element methods without compromising their consistency, we introduce some
stabilizing terms in the mixed formulations, which can also help formulate convergent mixed methods with a fewer degrees
of freedom.

• CSFEMs satisfy the Hadamard jump condition and the continuity of traction on all the internal faces of the mesh, which,
in particular, makes them quite efficient for modeling heterogeneous solids.

• CSFEMs are capable of modeling problems with very large strains and accurately approximating stresses. Moreover, they
seem to be free from numerical artifacts such as checkerboarding of pressure, hourglass instability, and locking.

Abstract

A new family of mixed finite element methods — compatible-strain mixed finite element methods (CSFEMs) — are
introduced for three-dimensional compressible and incompressible nonlinear elasticity. A Hu–Washizu-type functional is
extremized in order to obtain a mixed formulation for nonlinear elasticity. The independent fields of the mixed formulations
are the displacement, the displacement gradient, and the first Piola–Kirchhoff stress. A pressure-like field is also introduced
in the case of incompressible elasticity. We define the displacement in H1, the displacement gradient in H (curl), the stress
in H (div), and a pressure-like field in L2. In this setting, for improving the stability of the proposed finite element methods
without compromising their consistency, we consider some stabilizing terms in the Hu–Washizu-type functional that vanish at
its critical points. Using a conforming interpolation, the solution and the test spaces are approximated with some piecewise
polynomial subspaces of them. In three dimensions, this requires using the Nédélec edge elements for the displacement gradient
and the Nédélec face elements for the stress. This approach results in mixed finite element methods that satisfy the Hadamard
jump condition and the continuity of traction on all the internal faces of the mesh. This, in particular, makes CSFEMs quite
efficient for modeling heterogeneous solids. We assess the performance of CSFEMs by solving several numerical examples, and
demonstrate their good performance for bending problems, for bodies with complex geometries, and in the near-incompressible
and the incompressible regimes. Using CSFEMs, one can capture very large strains and accurately approximate stresses and

∗ Corresponding author at: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail address: arash.yavari@ce.gatech.edu (A. Yavari).

https://doi.org/10.1016/j.cma.2019.112610
0045-7825/ c⃝ 2019 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2019.112610
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2019.112610&domain=pdf
mailto:arash.yavari@ce.gatech.edu
https://doi.org/10.1016/j.cma.2019.112610


2 M.F. Shojaei and A. Yavari / Computer Methods in Applied Mechanics and Engineering 357 (2019) 112610

the pressure field. Moreover, in our numerical examples, we do not observe any numerical artifacts such as checkerboarding
of pressure, hourglass instability, or locking.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

It is known that the standard finite elements formulated in terms of the displacement field are not efficient for
various problems in nonlinear elasticity such as nearly incompressible or incompressible solids, bending analyses,
capturing very large strains, and accurate calculation of stress. Developing finite element methods using the mixed
formulations of elasticity is one path to overcome these limitations. However, it is a challenge to develop a robust
and efficient mixed finite element method for nonlinear elasticity free from numerical instabilities and artifacts. This
is more pronounced for problems in 3D as there is a much wider range of deformations in dimension three and
3D problems require more expensive computations. We recently proposed a new family of mixed finite element
methods – compatible-strain mixed finite element methods – for 2D compressible [1] and incompressible [2]
nonlinear elasticity. Our observations in several numerical examples indicated that these mixed methods have
excellent performance in solving various 2D problems and do not suffer from numerical instabilities and artifacts
including the difficulties mentioned earlier. In this paper, we extend these mixed methods to 3D compressible and
incompressible nonlinear elasticity.

Over the years different approaches have been proposed in the finite element literature to capture large
deformations of solids. Here we focus on some well-known works that are based on a mixed formulation and
have proved promising for 3D nonlinear problems (see also our literature reviews in [1,2]). Mixed formulations are
based on a saddle-point variational principle such as the two-field Hellinger–Reissner principle or the three-field
Hu–Washizu principle, see [3] and [4, §1.5]. One of the most commonly used schemes in the literature has been
the enhanced strain method originally introduced by Simo and Rifai [5] for infinitesimal strains and later extended
to 2D and 3D nonlinear elasticity by Simo and Armero [6] and Simo et al. [7]. In these methods, strain is assumed
to be additively decomposed into a compatible part associated with the displacement field, and an enhanced part.
The problem is then written as a two-field mixed formulation in terms of the displacement and the enhanced strain,
which is derived from a three-field Hu–Washizu-type mixed formulation after eliminating the stress assuming that
the enhanced strain and the stress are L2-orthogonal. See [8] for a detailed discussion of early developments of
enhanced strain methods and their locking and stability. Using an interpolation of strain and stress different from
those in the original enhanced strain method, Kasper and Taylor [9] proposed a new mixed method for 2D and 3D
linear elasticity called mixed-enhanced strain method and extended it to nonlinear elasticity in [10]. Lamichhane
et al. [11] proposed a parameter-dependent modification of the standard Hu–Washizu mixed formulation for 2D
linear elasticity and studied its uniform convergence in the incompressible limit for different interpolations. Their
study also incorporates the enhanced strain methods proposed in [5,9]. Chavan et al. [12] extended the approach
introduced in [11] to 3D nonlinear elasticity considering a Mooney–Rivlin material model. By solving several 2D
and 3D problems, they demonstrated the good performance of their method in bending problems and for nearly
incompressible solids. Reese et al. [13] introduced a new reduced-integration stabilized brick element method for
3D finite elasticity whose stabilization is based on the enhanced strain method. Their scheme is numerically efficient
and shows robust performance in bending of thin shells, compression tests, and the near incompressible regime.

The well-posedness of a mixed formulation requires that certain pairs of independent variables are defined in
compatible spaces. This is commonly written as an inf–sup condition also known as the LBB condition named
after Ladyzhenskaya [14], Babuška [15], and Brezzi [16]. At the discrete level, satisfaction of LBB condition is
a necessary condition for the stability of mixed finite element methods. Thus, only particular combinations of
finite element spaces for the independent variables result in convergent methods. Because of these difficulties,
extending the mixed formulations of 2D problems to 3D problems is not trivial. For example, one cannot use a
mixed formulation with finite element spaces that converge in 2D and simply switch the 2D elements with their
counterpart 3D elements to obtain a convergent method. In [2] we formulated 96 different four-field mixed finite
element methods for 2D incompressible nonlinear elasticity by considering different combinations of the first and the
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second-order finite element spaces to independently approximate displacement, displacement gradient, stress, and
pressure. By examining the linearized discrete systems of those mixed methods, we showed that 75 out of 96 of them
result in singular tangent stiffness (Jacobian) matrices for any mesh and that only the remaining 21 cases may result
in convergent schemes. In this paper, using the same approach, we show that in 3D all the 96 possible choices of
the first and the second-order four-field mixed methods lead to singular tangent stiffness matrices for any mesh and
regardless of its size. To overcome this difficulty, we add some stabilization terms to the mixed formulations without
compromising the consistency of their discretization schemes. This can also help to introduce a convergent mixed
method with a fewer degrees of freedom, which is greatly beneficial for computationally expensive 3D problems.
An example of such modification is the work of Hughes et al. [17] on the Stokes problem, where they introduced
a stabilized mixed finite element method using an equal-order C0 interpolation of both velocity and pressure.
Furthermore, inspired by the work of Hughes et al. [17], Franca et al. [18] developed a mixed finite element method
for nearly incompressible linear elastic solids by adding stabilization terms to the weak formulation associated with
the critical point of the Hellinger–Reissner principle. Klaas et al. [19] developed a stabilized displacement–pressure
mixed finite element method for 3D finite elasticity by using linear shape functions for both displacement and
pressure. In these works, the combinations of the finite element spaces are unstable according to the LBB condition
and result in unphysical solutions. However, adding the stabilization terms resulted in convergent mixed methods.

This paper is organized as follows. In Section 2, we discuss the mixed formulations that are used in the
3D CSFEMs. In Section 2.1, we review some preliminaries and definitions. In Section 2.2, by defining suitable
Hu–Washizu-type energy functionals we derive a three-field mixed formulation for compressible elastostatics
and a four-field mixed formulation for incompressible elastostatics. In Section 3, we discuss the finite element
approximations for the proposed mixed formulations. In Section 3.1, we define the finite elements (shape functions
and degrees of freedom) for the displacement, displacement gradient, stress, and pressure. In Section 3.2, we define
the finite element approximation spaces and use them to introduce the mixed finite element methods in Section 3.3.
Next, the matrix formulation of the mixed finite elements is discussed in Section 3.4. In Section 3.5, we investigate
singularities of the mixed methods for some combinations of finite element spaces and explain how the stabilizing
terms remove the singularities. To study the performance of the 3D CSFEMs, we present several numerical examples
in Section 4 for both compressible and incompressible solids in dimension three. The paper ends by some concluding
remarks in Section 5.

2. A mixed formulation for nonlinear elasticity

In this section, following [2], we present two mixed formulations one for 3D compressible nonlinear elasticity
and one for 3D incompressible nonlinear elasticity.

2.1. Preliminaries

Suppose X = (X1,X2,X3) ∈ R3 is the position of a material point in the reference configuration B ⊂ R3 with
boundary ∂B. For any vector field U and any

(2
0

)
-tensor field T , one can define

(2
0

)
-tensors grad U and curl T and

a vector field div T with components

(grad U)I J
= ∂U I /∂XJ , (curl T )I J

= εJ K L∂T I L/∂XK , (div T )I
= ∂T I J/∂XJ ,

where εJ K L is the standard permutation symbol, and summation convention for repeated indices is assumed. Suppose
L2(B), L2(TB), and L2(⊗2TB) are the spaces of square integrable scalar fields, vector fields, and

(2
0

)
-tensor fields,

respectively. Consider the following spaces:

H 1(TB) :=
{
U ∈ L2(TB) : grad U ∈ L2(⊗2TB)

}
,

H c(B) :=
{

T ∈ L2(⊗2TB) : curl T ∈ L2(⊗2TB)
}
,

H d(B) :=
{

T ∈ L2(⊗2TB) : div T ∈ L2(TB)
}
.
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In the above spaces, grad, curl , and div are defined in the distributional sense. Recalling that curl (grad Y ) = 0
and div(curl T ) = 0, one writes the following differential complex [20,21]:

displacements →→
↑↑

↓↓

disp. gradients →→
↑↑

↓↓

compatibility
↑↑

↓↓

0 →→ H 1(TB)
grad

→→ H c(B) curl →→
↑↑

↓↓

H d(B) div →→
↑↑

↓↓

L2(TB) →→
↑↑

↓↓

0

stress functions →→ first PK stresses →→ equilibrium

where the first arrow is a trivial operator sending zero to zero, and the last arrow indicates the zero operator mapping
the L2-space to zero. The physical interpretation of this differential complex is as follows: Let U(X) := ϕ(X) − X,
X ∈ B, be the displacement field associated with a motion ϕ : B → R3. Then, K := grad U is the displacement
gradient and curl K = 0 is the necessary condition for the compatibility of K . Moreover, given a first Piola–
Kirchhoff stress tensor P , the equilibrium equation div P = 0 is the necessary condition for the existence of a
stress function Ψ such that P = curlΨ. This holds whenever U ∈ H 1(TB), K ∈ ker(curl ) ⊂ H c(B), and
P ∈ ker(div) ⊂ H d(B). The deformation gradient is defined as F := I + K , where I is the identity tensor,
and J := det F (in Cartesian coordinates for both the reference and current configurations). One can show that
dv = JdV , where dV and dv are the volume elements of the undeformed and deformed configurations, respectively.
For incompressible solids, J = 1. To weakly impose J − 1 = 0, one considers a Lagrange multiplier p as
an independent field variable, which physically is realized as a pressure-like variable. At the discrete level, the
restriction of J to an element is a scalar describing the change of volume of that element [22]. Hence, one can
assume that discrete pressure p is also defined on each element, and in general, is not continuous across the element
interfaces. Therefore, as a discontinuous scalar-valued field, p ∈ L2(B).

2.2. Mixed formulations

Let ρ0 be the mass density of the body B and B be the body force per unit mass. Assume that the boundary
of the body is a disjoint union of two subsets ∂B = Γd ⊔ Γt and is subjected to the displacement boundary
condition U

⏐⏐
Γd

= U and the traction boundary condition (P N)
⏐⏐
Γt

= T , where N is the unit outward normal
vector field of ∂B in the reference configuration. Also, define H 1(TB,Γd ,U) :=

{
U ∈ H 1(TB) : U |Γd = U

}
and H 1(TB,Γd ) := H 1(TB,Γd , 0), where U is of H 1/2-class. Suppose ⟨, ⟩ is the standard inner product of R3

and let ⟨⟨, ⟩⟩ stand for the L2-inner products of scalar, vector, and tensor fields, that is, ⟨⟨ f, g⟩⟩ :=
∫
B f g dV ,

⟨⟨Y , Z⟩⟩ :=
∫
B Y I Z I dV , and ⟨⟨S, T ⟩⟩ :=

∫
B S I J T I J dV . Then, one can define a Hu–Washizu-type functional

I : H 1(TB,Γd ,U) × H c(B) × H d(B) =: D → R as

I(U, K , P) =

∫
B

W (X, K )dV − ⟨⟨P, K − grad U⟩⟩ − ⟨⟨ρ0 B,U⟩⟩ −

∫
Γt

⟨T ,U⟩d A, (2.1)

where W (X, K ) is the stored energy function of a hyperelastic material. For an isotropic solid, the energy function
can be written as W = Ŵ (X, I1, I2, I3), where I1 = tr C, I2 =

1
2 [(tr C)2

−tr C2], and I3 = det C are the invariants of
the right Cauchy–Green deformation tensor C = FT F. For incompressible solids, J =

√
I3 = 1, and one modifies

(2.1) by defining

I(U, K , P, p) = I(U, K , P)
⏐⏐⏐

J (K )=1
+

∫
B

p C
(
J (K )

)
dV, (2.2)

where C : R+
→ R is a smooth function such that C(J ) = 0 if and only if J = 1 and p ∈ L2(B) is a pressure-like

scalar field, to which we may refer simply as pressure. For 3D computations, in order to improve the stability of
the mixed finite element methods, a stabilizing term is added to (2.2) as

J (U, K , P, p) = I(U, K , P, p) +
α

2
⟨⟨K − grad U, K − grad U⟩⟩, (2.3)

where α ⩾ 0 is a penalty constant for enforcing K = grad U with dimension of energy per unit volume. Extremizing
(2.3), as discussed in [2, §2.2], results in the following weak formulation of the boundary-value problem for
incompressible nonlinear elastostatics:
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Given a body force B of L2-class, a boundary displacement U on Γd of H 1/2-class, a boundary traction T on
Γt of L2-class, and a stability constant α ⩾ 0, find (U, K , P, p) ∈ H 1(TB,Γd ,U)× H c(B)× H d(B)× L2(B)
such that

⟨⟨P, gradΥ⟩⟩ + αs1 (U, K ,Υ) = f (Υ), ∀Υ ∈ H 1(TB,Γd ),

⟨⟨ P̃(K ), κ⟩⟩ − ⟨⟨P, κ⟩⟩ + ⟨⟨p Q(K ), κ⟩⟩ + αs2 (U, K , κ) = 0, ∀κ ∈ H c(B),

⟨⟨grad U,π⟩⟩ − ⟨⟨K ,π⟩⟩ = 0, ∀π ∈ H d(B),

⟨⟨C(J ), q⟩⟩ = 0, ∀q ∈ L2(B),

(2.4)

where

f (Υ) = ⟨⟨ρ0 B,Υ⟩⟩ +

∫
Γt

⟨T ,Υ⟩ d A, (2.5)

and
s1 (U, K ,Υ) = ⟨⟨grad U, gradΥ⟩⟩ − ⟨⟨K , gradΥ⟩⟩,

s2 (U, K , κ) = ⟨⟨K , κ⟩⟩ − ⟨⟨grad U, κ⟩⟩.
(2.6)

In (2.4)2, P̃(K ) = ∂W̃/∂K with W̃ = Ŵ (X, I1, I2, I3)
⏐⏐

I3=1 is the constitutive part of the stress, and Q(K ) =

∂C/∂K = C ′(J )(F−1)T is the contribution of the incompressibility constraint J = 1. Note that setting α = 0
results in the standard weak formulation of incompressible nonlinear elastostatics [2, §2.2]. The solutions of the
above weak formulation are the critical points of the functional (2.3). Using Green’s formula ⟨⟨divP,Υ⟩⟩ =

−⟨⟨P, gradΥ⟩⟩ +
∫
∂B⟨P N,Υ⟩ d A, ∀Υ ∈ H 1(TB,Γd ) and assuming that

∫
∂B⟨P N,Υ⟩ d A =

∫
Γt

⟨T ,Υ⟩ d A holds,
∀Υ ∈ H 1(TB,Γd ), one can show that (2.4) results in the following set of governing equations for incompressible
nonlinear elastostatics:

divP + ρ0 B = 0,
P = P̃(K ) + p Q(K ),
K = grad U,
J = 1,

⎫⎪⎪⎬⎪⎪⎭ on B,

(a)
(b)
(c)
(d)

U = U, on Γd , (e)
P N = T , on Γt . (f)

(2.7)

Conversely, one can obtain (2.4) from (2.7), see [1, §2.2]. Note that (2.7)(b) is the constitutive relation of an
incompressible solid, which in terms of the Cauchy stress reads σ = P̃(K )FT

+ p̄ I , where p̄ = p C ′(J ). Note
that adding the stabilizing terms (2.6) to the weak formulation (2.4) does not change the set of governing equations
(2.7). In other words, these terms will vanish for the exact solutions of (2.4). Hence, with proper discretization, the
extra terms (2.6) may improve the stability of the resulting mixed finite element methods without compromising
their consistency (see [23] for discussions on consistency and stability). We discuss this further in Section 3.5.

By setting p = q = 0 in (2.4) and replacing P̃(K ) with P̂(K ) = ∂Ŵ/∂K , one can readily arrive at the following
weak formulation of the boundary-value problem of compressible nonlinear elastostatics:

Given B, U , T , and α ⩾ 0, find (U, K , P) ∈ H 1(TB,Γd ,U) × H c(B) × H d(B) such that

⟨⟨P, gradΥ⟩⟩ + αs1 (U, K ,Υ) = f (Υ), ∀Υ ∈ H 1(TB,Γd ),

⟨⟨ P̂(K ), κ⟩⟩ − ⟨⟨P, κ⟩⟩ + αs2 (U, K , κ) = 0, ∀κ ∈ H c(B),

⟨⟨grad U,π⟩⟩ − ⟨⟨K ,π⟩⟩ = 0, ∀π ∈ H d(B).

(2.8)

Similarly, one can show that (2.8) results in the following set of governing equations for compressible nonlinear
elastostatics:

div P + ρ0 B = 0,
P = P̂(K ),
K = grad U,

⎫⎬⎭ on B,
(a)
(b)
(c)

U = U, on Γd , (d)
P N = T , on Γt . (e)

(2.9)
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Fig. 1. The four-node reference element and the edge and face numbers (left), the reference unit tangent and normal vectors (middle), and
the ten-node reference element (right).

3. Finite element approximations

3.1. Finite elements

Suppose Pr (R3) is the space of R-valued polynomials in three variables {X1,X2,X3
} of degree at most r ⩾ 0

and suppose Hr (R3) ⊂ Pr (R3) is the space of homogeneous polynomials of degree r , that is, all the terms of the
members of Hr (R3) are of degree r . For r < 0, these spaces are assumed to be empty. By Pr (TR3) and Pr (⊗2TR3)
we denote the spaces of polynomial vector and

(2
0

)
-tensor fields in R3 with Cartesian components in Pr (R3). The

spaces Hr (TR3) and Hr (⊗2TR3) are defined similarly. Next define the following subspaces of Pr (TR3):

P−

r (TR3) := Pr−1(TR3) ⊕ L1
(
Hr−1(TR3)

)
,

P⊖

r (TR3) := Pr−1(TR3) ⊕ L2
(
Hr−1(R3)

)
,

where (L1(Y ))I
= εI J LXLY J for any vector field Y , and (L2( f ))I

= XI f for any scalar field f . Similarly, one
defines the following subspaces of Pr (⊗2TR3):

P−

r (⊗2TR3) := Pr−1(⊗2TR3) ⊕ L1
(
Hr−1(⊗2TR3)

)
,

P⊖

r (⊗2TR3) := Pr−1(⊗2TR3) ⊕ L2
(
Hr−1(TR3)

)
,

where (L1(T ))I J
= εJ L K XK T I L for any

(2
0

)
-tensor field T , and (L2(Y ))I J

= XJ Y I for any vector field Y . One
can show that

dimPr (⊗2TR3) = 3 dimPr (TR3) = 9 dimPr (R3) =
3
2

(r + 1)(r + 2)(r + 3),

dimP−

r (⊗2TR3) = 3 dimP−

r (TR3) =
3
2

r (r + 2)(r + 3),

dimP⊖

r (⊗2TR3) = 3 dimP⊖

r (TR3) =
3
2

r (r + 1)(r + 3).

Let T̂ be a reference tetrahedral element with coordinates ξ = (ξ 1, ξ 2, ξ 3) shown in Fig. 1. We denote the
edges of T̂ by Êi , i = 1, 2, . . . , 6 and their corresponding lengths by ℓ̂i , i = 1, 2, . . . , 6, and the faces of T̂ by
F̂i , i = 1, 2, 3, 4 and their corresponding areas by Âi , i = 1, 2, 3, 4. For an edge joining two vertices i and j , one
defines a unique orientation as i → j , where i < j . We also define a unit tangent vector t̂i on each edge such that
it agrees with the edge orientation. Moreover, on each face containing three edges Êi , Ê j , and Êk , we define a unit
normal vector n̂l = t̂i × t̂ j , where i < j < k.

Following [24,25], we define a finite element as a triplet (T,P(T),Σ ), where T is a tetrahedron in R3, P(T) is
a space of polynomials on T, and Σ is a set of R-valued linear functionals acting on the members of P(T). The
members of Σ are called the local degrees of freedom (DOF) and the local shape functions form a basis for P(T)
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(see [2, §3.1]). We consider the following reference finite elements for the four field variables:(
T̂,Pr (T T̂),Σ T̂,1

)
, for displacement U,(

T̂,P−

r (⊗2T T̂),Σ T̂,c−
)
,
(
T̂,Pr (⊗2T T̂),Σ T̂,c

)
, for displacement gradient K ,(

T̂,P⊖

r (⊗2T T̂),Σ T̂,d−

)
,
(
T̂,Pr (⊗2T T̂),Σ T̂,d

)
, for stress P,(

T̂,Pr (̂T),Σ T̂,ℓ
)
, for the pressure-like field p.

(3.1)

Note that Pr (̂T) = Pr (R3)
⏐⏐
T̂

and Pr (T T̂), Pr (⊗2T T̂), P−
r (⊗2T T̂), and P⊖

r (⊗2T T̂) are defined similarly. The finite
element for U is based on the standard Lagrange finite elements. For a vector field V : T̂ → R3, the set of
local degrees of freedom is Σ T̂,1

= {V 1(ξ 1), V 2(ξ 1), V 3(ξ 1), . . . , V 1(ξm), V 2(ξm), V 3(ξm)}, where ξ i contains the
coordinates of the i th node of the m-node T̂, where m = 4 (m = 10) for r = 1 (r = 2). For r = 1, 2, a basis of
the polynomial space Pr (T T̂) includes

hT̂
3i−2 =

⎡⎣lr
i
0
0

⎤⎦ , hT̂
3i−1 =

⎡⎣0
lr
i
0

⎤⎦ , hT̂
3i =

⎡⎣0
0
lr
i

⎤⎦ , i = 1, 2, . . . ,m. (3.2)

The Lagrange polynomials lr
i for the four-node reference tetrahedron T̂ are

l1
1 = 1 − ξ 1

− ξ 2
− ξ 3, l1

2 = ξ 1, l1
3 = ξ 2, l1

4 = ξ 3. (3.3)

For the ten-node T̂, the Lagrange polynomials are l2
i = l1

i (2l1
i − 1) for the nodes at the vertices i = 1, 2, 3, 4 and

l2
k = 4l1

i l1
j for the middle node of each edge joining vertices i and j as shown in Fig. 1. We will use Pr (T T̂), r = 1, 2

spanned by hT̂
l , l = 1, 2, . . . , 3m to construct the approximation space of U . To interpolate K ∈ H c, we define

two finite elements given in (3.1)2 based on the Nédélec 1st-kind edge elements in R3 (NE1) [26] and the Nédélec
2nd-kind edge elements in R3 (NE2) [27], respectively. Let

−→
T I :=

[
T I 1 T I 2 T I 3

]T be a vector containing the
elements of the I th row of a

(2
0

)
-tensor T . The set of the local degrees of freedom Σ T̂,c− (Σ T̂,c) in (3.1)2 is defined

as
{
φ
T̂,Êk
I,J , φ

T̂,F̂l
I,J , φ

T̂,T̂
I,J

}
, where

φ
T̂,Êk
I,J (T ) =

∫
Êk

f J ⟨
−→
T I , t̂k⟩ dŝ, ∀ f J that form a basis for Pr−1(R3)

⏐⏐
Êk

(
Pr (R3)

⏐⏐
Êk

)
,

φ
T̂,F̂l
I,J (T ) =

∫
F̂l

⟨
−→
T I × Y J , n̂l⟩ d Â, ∀Y J that form a basis for Pr−2(TR3)

⏐⏐
F̂l

(
P−

r−1(TR3)
⏐⏐
F̂l

)
,

φ
T̂,T̂
I,J (T ) =

∫
T̂

⟨
−→
T I , Z J ⟩ dV̂ , ∀Z J that form a basis for Pr−3(TR3)

⏐⏐
T̂

(
P⊖

r−2(TR3)
⏐⏐
T̂

)
.

(3.4)

We next discuss the corresponding local shape functions of the two finite elements given in (3.1)2. Let v
T̂,Êk
J , v

T̂,F̂l
J ,

and v
T̂,T̂
J denote the shape functions of those Nédélec edge elements that are associated to the k-th edge of T̂, the

l-th face of T̂, and the entire T̂, respectively. We consider these vector-valued polynomials in R3 as row vectors
and define the following tensorial shape functions:

r T̂,Êk
1,J =

⎡⎣v
T̂,Êk
J
0
0

⎤⎦
3×3

, r T̂,Êk
2,J =

⎡⎣ 0
v
T̂,Êk
J
0

⎤⎦
3×3

, r T̂,Êk
3,J =

⎡⎣ 0
0

v
T̂,Êk
J

⎤⎦
3×3

. (3.5)

Similarly, we define r T̂,F̂l
I,J and r T̂,T̂I,J for I = 1, 2, 3 using v

T̂,F̂l
J and v

T̂,T̂
J , respectively. The polynomial spaces

P−
r (⊗2T T̂) and Pr (⊗2T T̂) in (3.1)2 are spanned by a basis

{
r T̂,Êk

I,J , r T̂,F̂l
I,J , r T̂,T̂I,J

}
that are respectively based on the
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shape functions of NE1 and NE2. Moreover, the following relations hold:

φ
T̂,Êp
M,N

(
r T̂,Êk

I,J

)
=

{
1, if p = k and I = M and J = N ,
0, otherwise,

φ
T̂,Êp
M,N

(
r T̂,F̂l

I,J

)
= φ

T̂,Êp
M,N

(
r T̂,T̂I,J

)
= 0,

φ
T̂,F̂q
M,N

(
r T̂,F̂l

I,J

)
=

{
1, if q = l and I = M and J = N ,
0, otherwise,

φ
T̂,F̂q
M,N

(
r T̂,Êk

I,J

)
= φ

T̂,F̂q
M,N

(
r T̂,T̂I,J

)
= 0,

φ
T̂,T̂
M,N

(
r T̂,T̂I,J

)
=

{
1, if I = M and J = N ,
0, otherwise,

φ
T̂,T̂
M,N

(
r T̂,Êk

I,J

)
= φ

T̂,T̂
M,N

(
r T̂,F̂l

I,J

)
= 0.

(3.6)

Later in this section, we will provide explicit expressions for some of the above shape functions that are used in our
numerical examples. To interpolate P ∈ H d, we define the two finite elements given in (3.1)3 based on respectively
the Nédélec 1st-kind face elements in R3 (NF1) [26], and the Nédélec 2nd-kind face elements in R3 (NF2) [27].

We denote the set of the local degrees of freedom Σ T̂,d− (Σ T̂,d) by
{
ψ

T̂,F̂l
I,J , ψ

T̂,T̂
I,J

}
, where

ψ
T̂,F̂l
I,J (T ) =

∫
F̂l

f J ⟨
−→
T I , n̂l⟩ d Â, ∀ f J that form a basis for Pr−1(R3)

⏐⏐
F̂l

(
Pr (R3)

⏐⏐
F̂l

)
,

ψ
T̂,T̂
I,J (T ) =

∫
T̂

⟨
−→
T I , Z J ⟩ dV̂ , ∀Z J that form a basis for Pr−2(TR3)

⏐⏐
T̂

(
P−

r−1(TR3)
⏐⏐
T̂

)
.

(3.7)

We denote the set of the local shape functions of (3.1)3 by
{

sT̂,F̂l
I,J , sT̂,T̂I,J

}
. Both sT̂,F̂l

I,J and sT̂,T̂I,J are defined similar

to (3.5) but using the vector-valued shape functions of Nédélec face elements, which we denote by uT̂,F̂l
J and uT̂,T̂

J .
Also, one has

ψ
T̂,F̂q
M,N

(
sT̂,F̂l

I,J

)
=

{
1, if q = l and I = M and J = N ,
0, otherwise,

ψ
T̂,F̂q
M,N

(
sT̂,T̂I,J

)
= 0,

ψ
T̂,T̂
M,N

(
sT̂,T̂I,J

)
=

{
1, if I = M and J = N ,
0, otherwise,

ψ
T̂,T̂
M,N

(
sT̂,F̂l

I,J

)
= 0.

(3.8)

For the reference finite element of pressure (3.1)4, we have Σ T̂,ℓ
= {ωT̂

i }, where ωT̂
i ( f ) =

1
Â

∫
T̂

pi f dV̂ for all the
polynomials pi that form a basis for Pr (R3)

⏐⏐
T̂

. Also, the set of local shape functions
{
t T̂i

}
, which spans Pr (̂T), is

{1} for r = 0, {1, ξ 1, ξ 2, ξ 3
} for r = 1, and {1, ξ 1, ξ 2, (ξ 1)2, (ξ 2)2, (ξ 3)2, ξ 1ξ 2, ξ 1ξ 3, ξ 2ξ 3

} for r = 2. Choosing pi

properly, one can show that ωT̂
i (t T̂j ) = δi j .

To extend 2D CSFEMs [2] to 3D, we first followed the same approach we had proposed in [2] and considered
r = 1, 2 for the finite elements of U , K , and P and r = 0, 1, 2 for the finite elements of p in (3.1). This provides
96 combinations of elements for discretizing the boundary-value problem (2.4). Using the matrix formulation of
the linearization of (2.4) for α = 0 using the approach discussed in [2, §3.5], we concluded that all the 96 choices
lead to singular or unstable methods in 3D. We will discuss this further in Section 3.5. To overcome this singularity
issue, we modify a suitable combination of elements among the aforementioned unstable 96 choices and propose
the following convergent finite elements for U , K , P , and p:(

T̂,P2(T T̂),Σ T̂,1
)
,

(
T̂,P3(⊗2T T̂),Σ

T̂,c
)
,

(
T̂,P⊖

1 (⊗2T T̂),Σ T̂,d−

)
,(

T̂,P0 (̂T),Σ T̂,ℓ
)
,

(3.9)

where P3(⊗2T T̂) := P1(⊗2T T̂) ⊕ span
{

r T̂,T̂I,J

}
I,J=1,2,3

for r T̂,T̂I,J ∈ P−

3 (⊗2T T̂), and Σ
T̂,c

is the union of Σ T̂,c for

r = 1 and
{
φ
T̂,T̂
I,J

}
I,J=1,2,3

⊂ Σ T̂,c− for r = 3. The schematic diagram of (3.9) is illustrated in Fig. 2. Moreover,
the shape functions for the finite element of U in (3.9) are given by (3.2) for r = 2 and m = 10, and the shape
function for the finite element of p in (3.9) is simply t T̂ = 1. We use the results of Arnold et al. [28] to provide
the explicit expression for the shape functions for the finite elements of K and P . The finite element of K in (3.9)
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Fig. 2. The schematic diagrams for the finite elements (3.9). The elements from left to right are for U , K , P , and p. The total number of
DOF is 88.

has 6 shape functions associated to each edge Êk of T̂ and 9 shape functions associated to T̂. Let us ignore the
superscript of l1

i , i = 1, 2, 3, 4 in (3.3) and consider ∇li =
[
∂li/∂ξ

1 ∂li/∂ξ
2 ∂li/∂ξ

3
]

as a row vector. Then,
for an edge Êk joining two vertices i and j as shown in Fig. 1, the 6 shape functions r T̂,Êk

I,1 , r T̂,Êk
I,2 , I = 1, 2, 3 are

obtained using (3.5) and the following vector-valued shape functions for NE2 of order 1 [28]:

v
T̂,Êk
1 = li∇l j , v

T̂,Êk
2 = l j∇li .

The 9 remaining shape functions r T̂,T̂I,1 , r T̂,T̂I,2 , r T̂,T̂I,3 , I = 1, 2, 3 are obtained similar to (3.5) and using the following
vector-valued shape functions for NE1 of order 3 [28]:

v
T̂,T̂
1 = l3l4w12, v

T̂,T̂
2 = l2l4w13, v

T̂,T̂
3 = l2l3w14,

where wi j = li∇l j − l j∇li . The finite element of P in (3.9) has 3 shape functions sT̂,F̂l
I , I = 1, 2, 3 associated to

each face F̂l of T̂ that contains the three vertices i , j , and k according to Fig. 1. These shape functions are obtained
similar to (3.5) and using the following vector-valued shape function for NF1 of order 1 [28]:

uT̂,F̂l = li∇l j × ∇lk − l j∇li × ∇lk + lk∇li × ∇l j .

Next we explain how to calculate the shape functions in an arbitrary element in a mesh using the shape functions
of the reference finite elements. Let Bh be a triangulation of the reference configuration B consisting of arbitrary
tetrahedra T such that the intersection of any two distinct tetrahedra is either empty or a common face/edge/vertex
of each. The discretization parameter h is defined as h := max diamT, ∀T ∈ Bh . We define a local ordering for
vertices of each T ∈ Bh by assigning the numbers 1, 2, 3, 4 to them. We then denote the Cartesian coordinates of
the i th vertex of T by a column vector XT

i = [X1,T
i X2,T

i X3,T
i ]T and define the following affine transformation:

TT : T̂ −→ T, TT(ξ ) := JTξ + XT
1 , (3.10)

where JT = [XT
2 −XT

1 XT
3 −XT

1 XT
4 −XT

1 ]3×3. Note that TT is bijective and JT is invertible. For an element T ∈ Bh ,
we denote its edges by ET

i = TT (̂Ei ), i = 1, 2, . . . , 6, and its faces by FT
i = TT(F̂i ), i = 1, 2, 3, 4. We assume that

ET
i inherits the orientation of its reference counterpart Êi . Moreover, the tangent vector ti defined on ET

i inherits
the orientation of ET

i , and the normal vector on FT
l containing three edges ET

i , ET
j , and ET

k such that i < j < k is
defined as nl = ti × t j . One can show that ti = JT t̂i and ni = det JTJ−T

T n̂i . For efficient assembly of the finite
elements of K ∈ H c and P ∈ H d, we use the numbering scheme discussed in [29]. Using this scheme, one first
assumes that every vertex in a mesh Bh has a distinct global number and then the local ordering of four vertices of
every tetrahedron in that mesh T ∈ Bh agrees with the ascending order of the global numbers of its four vertices.
Considering the edge orientations of the reference element shown in Fig. 1, the orientation of every edge in the
mesh is from a vertex with a smaller global number to a vertex with a larger global number. The advantage of this
scheme is that the orientation of a common edge between elements in a mesh is uniquely defined and is identical
to that of the edge in any of those elements. It follows that some elements in a mesh sharing a common edge have
an identical tangent vector on that edge, and any two elements with a common face have an identical normal vector
on that face. For an illustration of this, see [29, Figure 5.2]. Note that using this scheme, the normal vectors of
some of the exterior faces of the mesh are not pointed outward, and oT = sign (det JT) can be either 1 or −1.
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Consider the following mappings:

T1
T : C0(T T̂) −→ C0(TT), T1

T(V̂ ) := V̂ ◦ T−1
T ,

Tc
T : H c(T T̂) −→ H c(TT), Tc

T(V̂ ) := J−T
T V̂ ◦ T−1

T ,

Td
T : H d(T T̂) −→ H d(TT), Td

T(V̂ ) :=
1

det JT

JT V̂ ◦ T−1
T ,

TℓT : L2 (̂T) −→ L2(T), TℓT( f̂ ) := f̂ ◦ T−1
T ,

(3.11)

where Tc
T and Td

T are known as the Piola transforms. For a
(2

0

)
-tensor T , one calculates the Piola transforms

separately for each row:

Tc
T(T ) :=

⎡⎢⎣Tc
T(

−→
T 1)T

Tc
T(

−→
T 2)T

Tc
T(

−→
T 3)T

⎤⎥⎦ ,
and Td

T(T ) is calculated similarly. Using [2, Proposition 8], (3.11), and the local shape functions in the reference
element T̂, one can obtain the local shape functions in any element T ∈ Bh enabling one to locally interpolate
the four field variables (U, K , P, p) over that element. In particular, the local shape functions for U are obtained
as hT

k = T1
T

(
hT̂

k

)
; the local shape functions for K are rT,Ek

I,J = Tc
T

(
r T̂,Êk

I,J

)
, rT,Fl

I,J = Tc
T

(
r T̂,F̂l

I,J

)
, and rT,TI,J =

Tc
T

(
r T̂,T̂I,J

)
; the local shape functions for P are sT,Fl

I,J = Td
T

(
sT̂,F̂l

I,J

)
and sT,TI,J = Td

T

(
sT̂,T̂I,J

)
; and tTi = TℓT

(
t T̂i

)
gives

the local shape functions for p. Using [2, Proposition 8] and (3.11), one can also obtain the local degrees of freedom
for the finite elements of any element T ∈ Bh . For example, considering (3.7), ψT,Fl

I,J (T ) =

(
ψ

T̂,F̂l
I,J ◦ Td

T

−1
)

(T )

and ψT,T
I,J (T ) =

(
ψ

T̂,T̂
I,J ◦ Td

T

−1
)

(T ) are the degrees of freedom for the finite element of T that we use for P .
The other degrees of freedom can be written similarly using their reference counterparts. In this work, the traction
boundary conditions are imposed weakly through (2.5); one does not need to impose them directly by calculating
the related degrees of freedom on the boundary of the mesh. Thus, in practice, all degrees of freedom, even those
on the boundary of the mesh, are obtained by solving the final discrete system; calculating their explicit expressions
are not required.

3.2. Finite element spaces

Next, some conforming finite element spaces are introduced in order to discretize (2.4) and (2.8). Let Fi
h be

the set of all interior faces of a 3D mesh Bh . Given a face F ∈ Fi
h , there are two elements T,T′

∈ Bh such that
F = T∩T′. Suppose V is a vector-valued function and T is a tensor-valued function both defined on Bh with limits
on both sides of ∀F ∈ Fi

h . We define the following notions of jump across a face F ∈ Fi
h :

JV KF := VT′ − VT, JtTKF := (TT′ − TT) t, JnTKF := (TT′ − TT)n, (3.12)

where VT := V |T , TT := T |T , and V ′

T and TT′ are defined similarly. t (n) is a unit vector tangent (normal) to F.
We write JtTKF = 0 (JnTKF = 0), if the jump is zero for any unit vector t (n) on F. Note that all the above jumps
are vector-valued functions in 3D. Consider the following finite element spaces:

V 1
h,r :=

{
V h ∈ L2(TBh) : ∀T ∈ Bh, V h |T ∈ Pr (TT), ∀F ∈ Fi

h, JV hKF = 0
}
,

V c−
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h |T ∈ P−

r (⊗2TT), ∀F ∈ Fi
h, JtT hKF = 0

}
,

V c
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h |T ∈ Pr (⊗2TT), ∀F ∈ Fi

h, JtT hKF = 0
}
,

V d−

h,r :=
{

T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h |T ∈ P⊖

r (⊗2TT), ∀F ∈ Fi
h, JnT hKF = 0

}
,

V d
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h |T ∈ Pr (⊗2TT), ∀F ∈ Fi

h, JnT hKF = 0
}
,

V ℓ
h,r :=

{
fh ∈ L2(Bh) : ∀T ∈ Bh, fh |T ∈ Pr (T)

}
.
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Note that the above spaces are conforming, i.e., V 1
h,r ⊂ H 1(TBh), V c−

h,r ⊂ V c
h,r ⊂ H c(Bh), V d−

h,r ⊂ V d
h,r ⊂ H d(Bh),

and V ℓ
h,r ⊂ L2(Bh). Recalling the definition of P3(⊗2TT) in (3.9), we define

V
c
h,3 := V c

h,1 ⊕

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h |T ∈ span

{
rT,TI,J

}
I,J=1,2,3

⊂ P−

3 (⊗2TT)
}
. (3.13)

Note that
(
rT,TI,J t

)⏐⏐
F

= 0 for I, J = 1, 2, 3, and for every F in the mesh and V
c
h,3 ⊂ H c(Bh).

3.3. The compatible-strain mixed finite element methods

We write the following mixed finite element method for the boundary-value problem of incompressible nonlinear
elastostatics (2.4) based on the reference elements (3.9) and the corresponding approximation spaces (V 1

h,2, V
c
h,3,

V d−

h,1 , V ℓ
h,0) defined in the previous section:

Given a body force B of L2-class, a boundary displacement U on Γd of H 1/2-class, a boundary traction T
on Γt of L2-class, and a stability constant α ⩾ 0, find (Uh, K h, Ph, ph) ∈ V 1

h,2(Γd ,U) × V
c
h,3 × V d−

h,1 × V ℓ
h,0

such that

⟨⟨Ph, gradΥh⟩⟩ + αs1h (Uh, K h,Υh) = fh(Υh), ∀Υh ∈ V 1
h,2(Γd ),

⟨⟨ P̃(K h), κh⟩⟩ − ⟨⟨Ph, κh⟩⟩ + ⟨⟨ph Q(K h), κh⟩⟩ + αs2h (Uh, K h, κh) = 0, ∀κh ∈ V
c
h,3,

⟨⟨grad Uh,πh⟩⟩ − ⟨⟨K h,πh⟩⟩ = 0, ∀πh ∈ V d−

h,1 ,

⟨⟨C(Jh), qh⟩⟩ = 0, ∀qh ∈ V ℓ
h,0,

(3.14)

where

fh(Υh) = ⟨⟨ρ0 B,Υh⟩⟩ +

∫
Γt

⟨T ,Υh⟩ d A,

and
s1h (Uh, K h,Υh) = ⟨⟨grad Uh, gradΥh⟩⟩ − ⟨⟨K h, gradΥh⟩⟩,

s2h (Uh, K h, κh) = ⟨⟨K h, κh⟩⟩ − ⟨⟨grad Uh, κh⟩⟩.

Similarly, one can define the following mixed finite element method for the boundary-value problem of compressible
nonlinear elastostatics (2.8):

Given B,U, T , and α ⩾ 0, find (Uh, K h, Ph) ∈ V 1
h,2(Γd ,U) × V

c
h,3 × V d−

h,1 such that

⟨⟨Ph, gradΥh⟩⟩ + αs1h (Uh, K h,Υh) = fh(Υh), ∀Υh ∈ V 1
h,2(Γd ),

⟨⟨ P̂(K h), κh⟩⟩ − ⟨⟨Ph, κh⟩⟩ + αs2h (Uh, K h, κh) = 0, ∀κh ∈ V
c
h,3,

⟨⟨grad Uh,πh⟩⟩ − ⟨⟨K h,πh⟩⟩ = 0, ∀πh ∈ V d−

h,1 .

(3.15)

The above mixed finite element methods are extensions of the compatible-strain mixed finite element methods
(CSFEMs) introduced in [1,2] to three dimensional problems.

Remark 1 (Compatibility of Strain and Continuity of Traction).

(i) Recalling (3.12) and considering a displacement gradient field K h on a 3D mesh Bh , the Hadamard jump
condition is defined as the zero jump JtK hKF = 0 for any tangent vector on F and the three edges enclosing
F. A necessary condition for the existence of Uh ∈ H 1(TBh) such that K h = grad Uh is that the Hadamard
jump condition holds ∀F ∈ Fi

h [30]. By construction, the mixed finite element methods (3.14) and (3.15)
satisfy this necessary condition as K h ∈ V

c
h,3 ⊂ H c(Bh).

(ii) Let Ph be a stress field on a 3D mesh Bh . The localization of the balance of linear momentum requires that
JnPhKF = 0, ∀F ∈ Fi

h , that is, the traction vector associated with Ph is continuous across all the internal
faces of Bh . By construction, (3.14) and (3.15) satisfy this requirement as Ph ∈ V d−

h,1 ⊂ H d(Bh).
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3.4. Matrix formulation of CSFEMs

The procedure of obtaining the matrix formulation of (3.14) or (3.15) is similar to that of 2D CSFEMs, which we
discussed in detail in [2, §3.4]. In this section, we only write the final formulations needed for the implementation
and studying the stability of the 3D CSFEMs. One can write (3.14) in the following matrix form

KhQh + Nh(Qh) = Fh, (3.16)

where

Kh =

⎡⎢⎢⎣
αM11

h αM1c
h K1d

h 0
αMc1

h αMcc
h Kcd

h 0
Kd1

h Kdc
h 0 0

0 0 0 0

⎤⎥⎥⎦ , Qh =

⎡⎢⎢⎣
q1

h
qc

h

qd
h

qℓh

⎤⎥⎥⎦ , Nh(Qh) =

⎡⎢⎢⎣
0

Nc
h(qc

h,q
ℓ
h)

0
Nℓ

h(qc
h)

⎤⎥⎥⎦ , Fh =

⎡⎢⎢⎣
F1

h + F1
Γt

0
0
0

⎤⎥⎥⎦ .
The column vectors q1

h , qc
h , qd

h , qℓh contain all the unknown global degrees of freedom for U , K , P , and p,
respectively. Let n be the total number of nodes in Bh except those lying on the displacement boundary Γd , and
let nE, nF, and nT be the total numbers of edges, faces, and elements in Bh , respectively. The number of degrees
of freedom in q1

h , qc
h , qd

h , and qℓh is 3n, 6nE + 9nT , 3nF, and nT , respectively, see Fig. 2. The total number of
degrees of freedom is N = 3n + 6nE + 3nF + 10nT . The size of Kh is N × N , and the size of Qh , Nh , and Fh

is N × 1. Let us define VT := V h |T and TT := T h |T for any discrete vector field V h and any discrete tensor
field T h . The global sparse matrices M11

h , M1c
h , Mcc

h , K1d
h , and Kcd

h in Kh are the result of assembling a set of nT

local matrices that are obtained from calculating respectively ⟨⟨grad UT, gradΥT⟩⟩, −⟨⟨KT, gradΥT⟩⟩, ⟨⟨KT, κT⟩⟩,
⟨⟨PT, gradΥT⟩⟩, and −⟨⟨PT, κT⟩⟩, ∀T ∈ Bh . Moreover, Kh is a symmetric matrix and Mc1

h = (M1c
h )T, Kd1

h = (K1d
h )T,

and Kdc
h = (Kcd

h )T. For given qc
h and qℓh , one obtains the global vectors Nc

h(qc
h,q

ℓ
h) and Nℓ

h(qc
h) in Nh by assembling

a set of nT local vectors that are obtained form calculating the nonlinear terms ⟨⟨ P̃(KT) + pT Q(KT), κT⟩⟩ and
⟨⟨C(JT), qT⟩⟩, ∀T ∈ Bh , respectively. Similarly, for a given body force B, one obtains F1

h in Fh by calculating
⟨⟨ρ0 B,ΥT⟩⟩, ∀T ∈ Bh . Finally, for a given traction T on Γt , one obtains F1

Γt
in Fh through assembling all the

local vectors obtained from
∫
FT

t
⟨T ,Υ|FT

t
⟩ d A for every face FT

t lying on Γt . See [2, (3.21)-(3.33)] for details of
calculating the local matrices and vectors in each element. To obtain the matrix form of (3.15) for compressible
solids, we modify (3.16) by setting ph = 0 (qℓh = 0) and removing the fourth row and the fourth column of Kh

and the fourth entries of Qh , Nh , and Fh . We also use P̂(K ) instead of P̃(K ) in our calculations.
Using Newton’s method, one can approximate the solution of the nonlinear equation (3.16) iteratively using

Q(i+1)
h = Q(i)

h − K−1
th (Q(i)

h ) Rh(Q(i)
h ), where Rh(Qh) = KhQh + Nh(Qh) − Fh is the residual vector and Kth is the

tangent stiffness matrix (Jacobian matrix) given by

Kth (qc
h,q

ℓ
h) =

⎡⎢⎢⎣
αM11

h αM1c
h K1d

h 0
αMc1

h αMcc
h + Hcc

h (qc
h,q

ℓ
h) Kcd

h Hcℓ
h (qc

h)
Kd1

h Kdc
h 0 0

0 Hℓc
h (qc

h) 0 0

⎤⎥⎥⎦ . (3.17)

The matrix Hcc
h (qc

h,q
ℓ
h)

(
Hcℓ

h (qc
h)

)
contains the derivative of components of Nc

h(qc
h,q

ℓ
h) in Nh with respect to

components of qc
h (qℓh). Also, Hℓc

h (qc
h) contains the derivative of components of Nℓ

h(qc
h) in Nh with respect to

components of qc
h . Linearizing ⟨⟨ P̃(K ) + p Q(K ), κ⟩⟩ in (2.4)2 at a given displacement gradient K 0

∈ H c(B) and
a given pressure p0

∈ L2(B) gives ⟨⟨ Ã(K 0, p0) : K , κ⟩⟩ + ⟨⟨p Q(K 0), κ⟩⟩, where Ã is the elasticity tensor and ( Ã :

K )I J
= ÃI J M N K M N . Also, linearizing ⟨⟨C(J (K )), q⟩⟩ in (2.4)4 at K 0 results in ⟨⟨ Q(K 0) : K , q⟩⟩ = ⟨⟨K , q Q(K 0)⟩⟩,

where Q : K = Q I J K I J . After discretization, for given K 0
h and p0

h (or qc
h and qℓh), one can calculate the local

matrices for ⟨⟨ ÃT(K 0
T, p0

T) : KT, κT⟩⟩, ⟨⟨pT Q(K 0
T), κT⟩⟩, and ⟨⟨KT, qT Q(K 0

T)⟩⟩ ∀T ∈ Bh to assemble Hcc
h , Hcℓ

h ,
and Hℓc

h , respectively. For more details, see [2, (3.36)], and note that Hcℓ
h = (Hℓc

h )T. For compressible solids, (3.17)
simplifies to

Kth (qc
h) =

⎡⎣αM11
h αM1c

h K1d
h

αMc1
h αMcc

h + Ĥcc
h (qc

h) Kcd
h

Kd1
h Kdc

h 0

⎤⎦ , (3.18)

where Ĥcc
h (qc

h) is obtained by linearizing ⟨⟨ P̂(K h), κh⟩⟩ in (3.15)2.
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We use neo-Hookean materials for our numerical examples. However, note that our formulation can use any
elastic constitutive equation. For compressible solids, we use the energy function

Ŵ (I1, I3) =
µ

2
(I1 − 3)−

µ

2
ln I3 +

κ

8
(ln I3)2, (3.19)

where µ and κ are the shear and bulk moduli at the ground state, respectively. Recalling that F = I + K , the
constitutive relation reads

P̂(K ) = µ
(

F − F−T
)

+ κ ln J F−T.

To calculate Kth defined in (3.18), one needs to compute the elasticity tensor Â(K ) by taking the derivative of
components of P̂(K ) with respect to components of K . In the implementation (see [2, (3.36)]), it is more convenient
to represent the elasticity tensor as a matrix Â, whose size is 9 × 9 in 3D. Let ⌈T⌉ be a vector representation of a
tensor T , and let [V ]× be a skew-symmetric matrix representing a vector V that are defined as

⌈T⌉ :=
[
T 11 T 12 T 13 T 21 T 22 T 23 T 31 T 32 T 33

]T
, [V ]× :=

⎡⎣ 0 −V 3 V 2

V 3 0 −V 1

−V 2 V 1 0

⎤⎦ .
Considering (3.19), one obtains

Â(K ) = µI + (µ− κ ln J + κ)
⌈

F−T⌉⌈
F−T⌉T

−
µ− κ ln J

J
S(F),

where I is the 9 × 9 identity matrix and

S(F) :=

⎡⎢⎢⎢⎣
0 −

[
−→
F 3

]
×

[
−→
F 2

]
×[

−→
F 3

]
×

0 −

[
−→
F 1

]
×

−

[
−→
F 2

]
×

[
−→
F 1

]
×

0

⎤⎥⎥⎥⎦
9×9

.

For incompressible solids with I3 = 1, the following neo-Hookean energy function is used.

W̃ (I1) =
µ

2
(I1 − 3). (3.20)

The constitutive part of stress is P̃(K ) = µ(I + K ). To impose the incompressibility constraint J = 1, we use
the constraint functions C1(J ) = J − 1 or C2(J ) = ln J ; we choose the function that results in a better numerical
performance of the method in a given example. To compute Nh in (3.16) and Kth in (3.17), one needs the following
matrices:

Q1(K ) = J F−T, Ã1(K , p) = µI + p S(F),

Q2(K ) = F−T, Ã2(K , p) = µI − p
⌈

F−T⌉⌈
F−T⌉T

+
p
J

S(F).

3.5. Solvability and stability

Theorem 2. Let N 1, N c, N d , and N ℓ be the numbers of degrees of freedom in q1
h , qc

h , qd
h , and qℓh , respectively. For

α > 0, the tangent stiffness matrix Kth of incompressible solids (3.17) is non-singular if and only if the following
conditions hold.

(i) ker(Hcℓ
h ) = {0Nℓ×1},

(ii) ker(K1d
h ) ∩ ker(Bℓc

0 Kcd
h ) = {0Nd×1},

(
ker(Kcd

h ) ⊆ ker(Bℓc
0 Kcd

h )
)
,

(iii) ker
(
Hcc

h + αMcc
h − αMc1

h

(
M11

h

)−1 M1c
h

)
∩ ker

(
Kdc

h − Kd1
h

(
M11

h

)−1 M1c
h

)
∩ ker

(
Hℓc

h

)
= {0N c×1},

where Bℓc
0 is a matrix whose rows form a basis for ker(Hℓc

h ). For α = 0, Kth is non-singular if and only if (i) and
(i i) and the following conditions hold.

(iii)′ ker(Kd1
h ) = {0N 1×1},

(iv)′ ker(Hcc
h ) ∩ ker

(
B1d

0 Kdc
h

)
∩ ker

(
Hℓc

h

)
= {0N c×1},

where B1d
0 is a matrix whose rows form a basis for ker(K1d

h ).
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Proof. Rearrange the rows and the columns of Kth to obtain

Kth =

[
Ah BT

h
Bh 0

]
, Ah =

[
Hcc

h 0
0 0

]
+ α

[
Mcc

h Mc1
h

M1c
h M11

h

]
, Bh =

[
Kdc

h Kd1
h

Hℓc
h 0

]
, BT

h =

[
Kcd

h Hcℓ
h

K1d
h 0

]
.

Then, according to [31, Theorem 3.2.1], the matrix Kth is non-singular if and only if the following holds:

(1) The restriction of Ah to ker(Bh) is surjective (or equivalently injective),
(2) Bh is surjective (or equivalently BT

h is injective or ker(BT
h ) = {0}).

Consider the following sets:

S1 :=

{[
0N c×1
YN 1×1

]
: 0 ̸= Y ∈ ker(Kd1

h )
}
,

S2 :=

{[
XN c×1
YN 1×1

]
: 0 ̸= X ∈ ker(Hℓc

h ) and Kdc
h X + Kd1

h Y = 0 for some Y ∈ RN1
}
,

S′

1 :=

{[
0Nd×1
YNℓ×1

]
: 0 ̸= Y ∈ ker(Hcℓ

h )
}
,

S′

2 :=

{[
XN d×1
YNℓ×1

]
: 0 ̸= X ∈ ker(K1d

h ) and Kcd
h X + Hcℓ

h Y = 0 for some Y ∈ RNℓ
}
.

One can show that

ker (Bh) =
{
0(N c+N 1)×1

}
⊔ S1 ⊔ S2, and ker

(
BT

h

)
=

{
0(N d+Nℓ)×1

}
⊔ S′

1 ⊔ S′

2.

Therefore, the requirement (2) (ker(BT
h ) = {0}) is equivalent to S′

1 = S′

2 = ∅. It is straightforward to show that S′

1 =

∅ is equivalent to (i). We write S′

2 = ∅ as ker(K1d
h )∩s ′

2 = {0}, where s ′

2 =

{
X : Kcd

h X = −Hcℓ
h Y for some Y ∈ RNℓ

}
.

Using Im(Hcℓ
h ) = ker(Hℓc

h )⊥, where the superscript ⊥ indicates the orthogonal complement, one can readily show
that s ′

2 =
{
X : bT

0 Kcd
h X = 0,∀b0 ∈ ker(Hℓc

h )
}
. Let Bℓc

0 be a matrix whose rows form a basis for ker(Hℓc
h ), then

s ′

2 = ker(Bℓc
0 Kcd

h ). Therefore, S′

2 = ∅ is equivalent to (i i). Next, we assume that α > 0 and show that (1) is
equivalent to (i i i). For α > 0, one can write

ker(Ah) =

{[
XN c×1
YN1×1

]
: X ∈ ker

(
Hcc

h + αMcc
h − αMc1

h

(
M11

h

)−1 M1c
h

)
and Y = −

(
M11

h

)−1 M1c
h X

}
,

where use was made of the fact that M11
h is a Gram matrix and positive-definite by construction (and hence injective).

Note that (1) is equivalent to ker(Ah) ∩ ker(Bh) = (ker(Ah) ∩ {0}) ⊔ (ker(Ah) ∩ S1) ⊔ (ker(Ah) ∩ S2) = {0}, which
is equivalent to ker(Ah) ∩ S1 = ker(Ah) ∩ S2 = ∅. We know that AhQ ̸= 0, ∀Q ∈ S1, due to injectivity of M11

h , so
ker(Ah) ∩ S1 = ∅ is trivial. The remaining condition ker(Ah) ∩ S2 = ∅ simplifies to (i i i). For α = 0, one can write

ker(Ah) =

{[
XN c×1
YN1×1

]
: X ∈ ker

(
Hcc

h

)
and Y ∈ RN 1

}
.

Now, ker(Ah) ∩ S1 = ∅ simplifies to (i i i)′, and ker(Ah) ∩ S2 = ∅ simplifies to (iv)′. □

Corollary 3. For α > 0, the tangent stiffness matrix Kth of compressible solids (3.18) is non-singular if and only
if the following conditions hold:

(i) ker(K1d
h ) ∩ ker(Kcd

h ) = {0Nd×1},
(ii) ker

(
Hcc

h + αMcc
h − αMc1

h

(
M11

h

)−1 M1c
h

)
∩ ker

(
Kdc

h − Kd1
h

(
M11

h

)−1 M1c
h

)
= {0N c×1}.

For α = 0, Kth is non-singular if and only if (i) and the following conditions hold:

(iii)′ ker(Kd1
h ) = {0N 1×1},

(iv)′ ker(Hcc
h ) ∩ ker

(
B1d

0 Kdc
h

)
= {0N c×1}.
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Corollary 4. If the tangent stiffness matrix Kth is non-singular, then

(1) N d ⩽ N c
+ N 1 for α ⩾ 0 and for both compressible and incompressible solids,

(2) N ℓ ⩽ N c only for incompressible solids,
(3) N 1 ⩽ N d only for α = 0.

Proof. Noting that ker(Kcd
h ) ⊆ ker(Bℓc

0 Kcd
h ), both Theorem 2(i i) and Corollary 3(i), imply (1). Theorem 2(i) implies

(2). Both Theorem 2(i i i)′ and Corollary 3 (i i)′, imply (3). □

In view of Theorem 2, one can see how adding (2.6) to the weak formulation (2.4) may improve the stability and
the performance of the resulting finite element methods. Without the stabilization terms (α = 0), the violation of
ker(Kd1

h ) = {0N 1×1} or more strongly having N 1 > N d leads to a singular tangent stiffness matrix Kth . This restricts
the choices of finite elements for the displacement and stress in both 2D and 3D. In particular, considering (Uh, Ph)
in V 1

h,m × V d−

h,n or V 1
h,m × V d

h,n such that m > n results in a singular Kth in both 2D and 3D independent of the size
of the mesh. Adding the stabilization terms (2.6) (α > 0) overcomes this limitation and enables one to improve the
convergence of the displacement field by discretizing it using second-order shape functions without the need for
modifying the finite elements of other fields. For instance, for α = 0, the finite elements (3.9) result in a singular
system, but they converge to correct solutions for large values of α. To avoid the singularity of (3.9) for α = 0,
we have no choice but to approximate the displacement field using first-order polynomials and to compromise the
rate of convergence of the method. Also, note that approximating the displacement U in a second-order polynomial
space leads to a more accurate discretization of K = grad U as the intersection of the image of grad and the
approximation space of K becomes larger at the discrete level.

We next discuss how modifying the finite element of the displacement gradient K in (3.9) and its resulting finite
element space (3.13) lead to solvability of the mixed finite element methods (3.14) and (3.15). Let (Uh, K h, Ph) ∈

V 1
h,m × V c−

h,n (V c
h,n) × V d−

h,k (V d
h,k) for m, n, k = 1, 2, which results in 32 different combinations (note that pressure

is not relevant here). In 3D, all the 32 combinations except V 1
h,m × V c

h,2 × V d−

h,1 ,m = 1, 2 result in a singular Kth .
These combinations either give N d > N c

+ N 1 for any mesh or their smallest singular value of
[
Kdc

h Kd1
h

]T

goes to zero as one refines the mesh (see [2, Remark 16]). Any of these two cases is a violation of Theorem 2
(i i) (or Corollary 3(i)). The two remaining choices V 1

h,m × V c
h,2 × V d−

h,1 ,m = 1, 2 are not practical as they have
poor performances considering their expensive computational cost. V c

h,2 of displacement gradient has 90 degrees of
freedom per element, which significantly increases the computational cost, but paired with the lowest-order space
of stress V d−

h,1 , it cannot improve the overall convergence of the method. To resolve this issue, we proposed V
c
h,3 in

(3.13) and considered (Uh, K h, Ph) ∈ V 1
h,2 × V

c
h,3 × V d−

h,1 . Note that, in each element, V
c
h,3 has only 9 degrees of

freedom more than the first-order space V c
h,1 with 36 degrees of freedom (see Fig. 2). Hence, it does not increase the

computational cost of the method significantly. Moreover, we observe that the smallest singular value of [Kdc
h Kd1

h ]T

for V 1
h,2 × V

c
h,3 × V d−

h,1 remains positive as we refine different arbitrary meshes.
So far, we have discussed that, for α > 0, (3.14) and (3.15) do not result in a singular Kth even if ker(Kd1

h ) ̸=

{0N1×1}, and they result in N d ⩽ N c
+ N 1 and ker(K1d

h ) ∩ ker(Kcd
h ) = {0Nd×1}, which are required for satisfying

Theorem 2(i i) or Corollary 3(i). These have been made possible through studying the linear operators Kcd
h and K1d

h
in Kth , which are independent of the physics of the problem. The stability of (3.14) requires that all the conditions
of Theorem 2 hold as one refines the mesh. However, given the nonlinear nature of the problems of interest here,
this is difficult to check. In particular, the nonlinear operators Hcc

h (qc
h,q

ℓ
h) and Hcℓ

h (qc
h) in Kth depend on the material

properties of the body and its state of deformation. Therefore, one cannot draw a general conclusion for stability
or convergence of the mixed methods only by studying the formulations and without considering the physics of the
problem. Based on the various numerical examples presented in the next section, we have concluded that (3.14) and
(3.15) have an overall good performance in capturing the large deformations of incompressible and compressible
solids in 3D.

4. Numerical examples

In this section, we consider several examples to assess the performance of the mixed finite elements (3.14)
and (3.15) in modeling compressible and incompressible solids in 3D. We use the Frobenius norm ∥T∥ :=

(
∑

I,J T I J T I J )
1
2 for K h and Ph in the deformed configurations. We use the L2-norm for Uh , K h , Ph , and ph

over the entire mesh in the convergence analyses. We use α = 106 N/mm2 in all the examples (the solutions
actually converge for smaller values of α in each example; assuming larger values does not change the solutions).
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Fig. 3. Inflation of a hollow spherical ball: Geometry and four unstructured meshes. The outer boundary of the sphere is traction free.

Example 1: Inflation of a hollow spherical ball. Let us consider an incompressible hollow spherical ball shown
in Fig. 3. We assume that the inner boundary of the ball is subjected to the displacement boundary condition
U in = (λ−1)X, the outer boundary is traction free, and there are no body forces. This is an example of a universal
deformation [32,33] and its exact solution for a neo-Hookean solid reads

Ue(X) =

[
r (R)

R
− 1

]
X, pe(X) = −µ

R4
out

r4(Rout)
+
µ

2
[g(R) − g(Rout)] , (4.1)

where R = ∥X∥, r (R) =
(
R3

+ (λ3
− 1)R3

in

) 1
3 , and g(R) = R

(
3r3(R) + (λ3

− 1)R3
in

)
/r4(R). It follows that

K e = grad Ue, and Pe = P̃(K e) + pe Q(K e). Having the exact solution, we assess the accuracy and convergence
of CSFEM given in (3.14). For our computations, we consider the neo-Hookean energy function (3.20) with
µ = 1 N/mm2, the constraint function C(J ) = J −1, Rin = 0.5 mm, Rout = 1 mm, and λ = 3. Using symmetry, we
model only 1/24 of a hemisphere as shown in Fig. 3. To study the convergence order of (3.14), we plot the relative
errors of the field variables versus h̄ = h/ (Rout − Rin) for some unstructured meshes in a log–log graph in Fig. 4.
The convergence order of the displacement Uh is close to 2, and those of the displacement gradient K h , the stress
Ph , and the pressure-like variable ph are almost 1. Fig. 5 shows the reference and the deformed configurations of
the four unstructured meshes given in Fig. 3 obtained using CSFEM in (3.14) for λ = 3. Colors show the values of
∥K h∥ in the first row and the values of ph in the second row with lighter colors associated with the larger values.

Example 2: 3D Cook’s membrane. In this example, the 3D Cook’s membrane problem depicted in Fig. 6 is analyzed
in order to study the performance of CSFEMs in bending problems. We consider two cases of tractions imposed
on the right side of the membrane (on 16 mm × 10 mm face): T 1 = (0, f, 0) and T 2 = (0, 2 f, f ). We use the
energy function (3.20) with µ = 1 N/mm2 and C(J ) = ln J to impose the incompressibility constraint. Fig. 7
shows the convergence of the vertical displacement of point A indicated in Fig. 6 divided by the height of the
membrane (60 mm) for different values of traction T 1 = (0, f, 0) using the mixed method (3.14). The abscissa is
the maximum diameter h of both 2D and 3D meshes divided by the length of the membrane (48 mm). Since the
membrane deforms in two dimensions, the results of the 3D analysis using (3.14) are compared to those obtained
by a 2D analysis using H2c2d2̄L1 in [2]. The comparison shows a good agreement between the two analyses.
Considering T 2 = (0, 2 f, f ), the membrane deforms in three dimensions, for which a similar convergence graph
for point A is presented in Fig. 8. The convergence of the independent field variables (Uh, K h, Ph, ph) obtained
using the mixed method (3.14) is illustrated in Fig. 9 for different values of T 2 = (0, 2 f, f ). One observes that
Uh and K h have a faster convergence in comparison with Ph or ph . The deformed configurations of the four
meshes in Fig. 6 using the mixed method (3.14) are given in Figs. 10 and 11 for T 1 = (0, 0.3, 0) N/mm2 and
T 2 = (0, 0.2, 0.1) N/mm2, respectively. In both figures, colors indicate the values of ∥Ph∥ in the first row and the
values of ph in the second row with lighter colors corresponding to larger values. It is well-known that the standard
displacement–pressure mixed methods for incompressible materials approximate displacement accurately but suffer
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Fig. 4. Relative L2-norms of errors for approximating displacement, displacement gradient, stress, and pressure versus the maximum diameter
h using (3.14). The dash–dot and the dashed lines have the slopes of 1 and 2, respectively.

Fig. 5. The reference and the deformed configurations of the sphere for λ = 3 using (3.14). Colors indicate values of ∥K h∥ in the first row
and pressure ph in the second row, where lighter colors correspond to larger values.
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Fig. 6. 3D Cook’s membrane: Geometry and four unstructured meshes.

Fig. 7. 3D Cook’s membrane: Vertical displacement of point A in Fig. 6 divided by the height of the membrane for different values of
traction T 1 = (0, f, 0) versus the maximum edge length h of the mesh divided by the length of the membrane using (3.14). The dotted
line indicates the results of H2c2d2̄L1 given in [2].

from numerical artifacts in approximating pressure (they are unable to provide an approximation of stress either).
By contrast, Figs. 10 and 11 clearly show that the mixed method (3.14) does not suffer from any numerical artifacts
in approximating the stresses and the pressure in a large deformation of an incompressible solid even for relatively
coarse meshes.

Example 3. Compression of a near-incompressible block. Let us consider a block under compression as shown
in Fig. 12. The length and the width of the block are 2 mm and its height is 1 mm. The loading square surface
on the upper face of the block has an edge of 1 mm and is subjected to a traction T = (0, 0, f ). The vertical
(horizontal) displacement at the bottom (top) of the block is zero. As shown in Fig. 12, using symmetry the meshes
are generated for only a quarter of the block. In this example we test the performance of the mixed method (3.15)
in the near-incompressible regime. Note that many of the existing finite element methods are unable to solve this
problem or suffer from numerical artifacts. Reese et al. [13] developed a reduced-integration stabilized brick element
and used it to solve this problem. To compare our numerical results with those of [13], we consider the energy
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Fig. 8. 3D Cook’s membrane: Distance of point A from the origin in Fig. 6 for different values of traction T 2 = (0, 2 f, f ) versus the
number of elements in the mesh using (3.14).

Fig. 9. 3D Cook’s membrane: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of elements in the
mesh for different values of traction T 2 = (0, 2 f, f ) using (3.14).

function (3.19) with λ = 400889.806 N/mm2 and µ = 80.194 N/mm2. Fig. 13 illustrates the convergence of the
vertical displacement of point A (see Fig. 12) for different values of T = (0, 0, f ). The results obtained using
(3.15) agree with those reported by Reese et al. [13]. Fig. 14 depicts the deformed configuration of the block for
T = (0, 0, 320) N/mm2. Colors show the values of ∥K h∥, where lighter colors are assigned to larger values.

Example 4. Stretching a heterogeneous block. As was mentioned in Remark 1, CSFEMs (3.14) and (3.15), by
construction, satisfy the Hadamard jump condition and the continuity of traction on all the internal faces in a given
mesh. This provides an efficient framework to model heterogeneous solids provided that the constituent materials
do not slide at their interfaces, i.e., the displacement field is continuous at the material interfaces. One can generate
a 3D mesh such that some of the internal faces of the mesh closely approximate the given material interfaces and
assign the material model of each inhomogeneity to its corresponding region in the mesh. Using CSFEMs guarantees
that the necessary kinematic and kinetic conditions are automatically satisfied at the material interfaces.

We consider an incompressible cubic block of edge 1 mm with a spherical inhomogeneity of diameter 0.5 mm at
its center as shown in Fig. 15. The bottom of the block at Z = −0.5 mm and the top of the block at Z = 0.5 mm
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Fig. 10. The deformed configurations of 3D Cook’s membrane for traction T 2 = (0, 0.3, 0) N/mm2 using (3.14). Colors indicate values of
∥Ph∥ in the first row and pressure ph in the second row, where lighter colors correspond to larger values.

Fig. 11. The deformed configurations of 3D Cook’s membrane for traction T 2 = (0, 0.2, 0.1) N/mm2 using (3.14). Colors indicate values
of ∥Ph∥ in the first row and pressure ph in the second row, where lighter colors correspond to larger values.

are subjected to displacement boundaries (0, 0,−0.5) mm and (0, 0, 0.5) mm, respectively (stretch = 2), and the
other four faces are traction free. Using symmetry, we model only 1/8 of the block as shown in Fig. 15. The
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Fig. 12. Compression of a near-incompressible block: Geometry and three unstructured meshes. The length and the width of the block are
2 mm and its height is 1 mm. The loading square surface on the top has an edge of 1 mm.

Fig. 13. Compression of a near-incompressible block: Absolute value of the vertical displacement of point A in Fig. 12 for different values
of traction T = (0, 0, f ) versus the number of elements using (3.15). Q1SP indicates the results obtained by a reduced-integration stabilized
brick element given in [13].

Fig. 14. The deformed configurations of the near-incompressible block for traction T = (0, 0, 320) N/mm2 using (3.15). Colors indicate
values of ∥K h∥ with lighter colors correspond to larger values.



22 M.F. Shojaei and A. Yavari / Computer Methods in Applied Mechanics and Engineering 357 (2019) 112610

Fig. 15. Stretching a heterogeneous block: Geometry and an unstructured mesh. The block has an edge of 1 mm and the sphere at the center
has a diameter of 0.5 mm. The bottom and the top faces of the block are subjected to equal and opposite vertical displacements resulting
in stretch of the block. The other four faces are traction free.

Fig. 16. Stretching a heterogeneous block: L2-norms of displacement, displacement gradient, and stress versus the number of elements in
the mesh using (3.14). The shear modulus of the incompressible matrix is µ = 1 N/mm2 and µ stands for the shear modulus of the
incompressible spherical inhomogeneity.

energy function (3.20) is considered for the block with µ = 1 N/mm2 for the matrix, and µ = µ̄ for the spherical
inhomogeneity. C(J ) = J − 1 is used for imposing the incompressibility constraint. We study four different cases:
(i) a homogeneous block with µ̄ = 1 N/mm2, (ii) a very soft inhomogeneity with µ̄ = 1e − 5 N/mm2, (iii) a
reinforced block with µ̄ = 4 N/mm2, and (iv) a rigid inhomogeneity with µ̄ = 1e5 N/mm2. Fig. 16 illustrates the
convergence of the L2-norm of the field variables (Uh, K h, Ph, ph) calculated in the matrix for all the four cases
(the values of ph become disproportionately large in the inhomogeneity for case (iv)). One can see that a significant
change in the material properties of the inhomogeneity only slightly changes the convergence of the method.

Fig. 17 shows the deformed configurations of 1/8 of the block for all the four cases for a mesh consisting of
5450 elements. This corresponds to the last points on the convergence graphs given in Fig. 16. Colors indicate
the values of ∥K h∥, ∥Ph∥, and ph in the first, second, and third row, respectively, where the lighter colors are
associated with larger values. As expected, the values of ∥K h∥ (∥Ph∥) in the inhomogeneity decrease (increase)
as the inhomogeneity becomes stiffer. In contrast to case (i), one can see a discontinuous change of color from
the matrix to the inhomogeneity in cases (ii)–(iv). As expected, the values of K h , Ph , and ph are continuous
at the interface of the two regions in case (i) (homogeneous block) but they are discontinuous in cases (ii)–(iv)
(heterogeneous blocks). Nevertheless, in all the four cases, the interface conditions are satisfied, i.e., K h T and
Ph N are continuous at the interface of the two regions, where T and N are respectively a tangent vector field
and a normal vector field on the interface. For case (ii), one observes that ∥Ph∥ is almost uniformly zero in the
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Fig. 17. The deformed configurations of a block with a spherical inhomogeneity for λ = 2 and considering different spherical inhomogeneities
using (3.14). The shear modulus of the incompressible matrix is µ = 1 N/mm2 and µ stands for the shear modulus of the incompressible
spherical inhomogeneity in each column. Colors indicate values of ∥K h∥ in the first row, ∥Ph∥ in the second row, and pressure ph in the
third row, where lighter colors correspond to larger values.

spherical inhomogeneity. Hence, the traction field on the interface of the two regions is zero as well, which must be
the case as a very soft inhomogeneity behaves like a hole. We solved another example by considering a block with
the same geometry and the same boundary conditions but with an actual hole. It was observed that the L2-norm of
all the four field variables are equal to those calculated in the matrix for the case (ii).

Example 5: Stretching a block with randomly distributed holes. Next, we assess the performance of CSFEM for
very large strains in a complex geometry. Let us consider an incompressible cubic block of edge 1 mm with 6
spherical holes as shown in Fig. 18. The coordinates of the centers of the holes are (0.25, 0.6, 0.6), (0.7, 0.5, 0.3),
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Fig. 18. The reference (left) and the deformed (right) configurations of a block with randomly distributed holes. The left face of the block
is fixed, the right face is subjected to a displacement (2, 0, 0) mm (stretch = 3), and the other four faces are traction free. The mesh consists
of 11 756 elements and the deformed configuration is obtained using (3.14). Colors indicate values of ∥K h∥, where lighter colors correspond
to larger values.

Fig. 19. Stretching a block with randomly distributed holes: L2-norms of displacement, displacement gradient, stress, and pressure versus
the number of elements in the mesh for different values of the displacement boundary (u, 0, 0) using (3.14).

(0.6, 0.2, 0.7), (0.2, 0.2, 0.2), (0.3, 0.8, 0.2), (0.8, 0.75, 0.7) and their diameters are respectively 0.4, 0.4, 0.3, 0.3,
0.3, 0.3. The left face of the block is fixed, the right face is subjected to a uniform displacement boundary (u, 0, 0),
and the other four faces are traction free. We use the energy function (3.20) with µ = 1 N/mm2, and C(J ) = J −1
to impose the incompressibility constraint. The reference and the deformed configurations of the block obtained
using (3.14) for u = 2 mm are shown in Fig. 18. The mesh consists of 11756 elements and colors indicate the
values of ∥K h∥ with lighter colors corresponding to larger values. Note that this result corresponds to the last
points on the convergence graphs given in Fig. 19. One can see that all the holes are stretched severely along the
x-axis. Hence, relative to the x-axis, the beginning and the end portions of the boundary of each hole have the lower
values of ∥K h∥ while the middle portion has the larger values of ∥K h∥. Fig. 19 illustrates the convergence of (3.14)
for different values of the displacement boundary condition (u, 0, 0) imposed on the right face of the block. For all
values of u, one observes that CSFEM given in (3.14) has good convergence considering all the four independent
variables (Uh, K h, Ph, ph).
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5. Concluding remarks

A new mixed finite element method for 3D compressible and incompressible nonlinear elasticity was introduced.
This work is an extension of [1] and [2] to three-dimensional nonlinear elasticity problems. We proposed a four-field
mixed formulation for incompressible nonlinear elasticity in terms of the displacement U , the displacement gradient
K , the first Piola–Kirchhoff stress P , and a pressure-like field p. By setting p = 0 in this formulation, one can
readily obtain a three-field mixed formulation for compressible solids. In the present formulation it is assumed that
(U, K , P, p) ∈ H 1(TB) × H c(B) × H d(B) × L2(B). The new formulation has some additional terms compared to
those used for 2D finite elements in [2] that vanish for the exact solutions. Provided with a proper discretization, the
extra terms improve the stability of the resulting mixed finite element methods without compromising consistency.
To obtain the mixed finite element methods, first four conforming finite element spaces were defined and then were
used for approximating the four field variables. The discrete fields of the CSDEMs are: Uh ∈ V 1

h,2 ⊂ H 1(TBh),
K h ∈ V

c
h,3 ⊂ H c(Bh), Ph ∈ V d−

h,1 ⊂ H d(Bh), and ph ∈ V ℓ
h,0 ⊂ L2(Bh). The discrete spaces V 1

h,2, V d−

h,1 , and
V ℓ

h,0 are constructed using the second-order Lagrange elements, the first-order Nédélec 1st-kind face elements, and
the piecewise constant elements, respectively. The discrete space V

c
h,3 is constructed using the first-order Nédélec

2nd-kind edge elements and is enriched by volume-based third-order shape functions of Nédélec 1st-kind edge
elements. Due to interelement continuities of these conforming spaces, our proposed mixed methods by construction
provide a continuous approximation of the displacement field and satisfy both the Hadamard jump condition and
the continuity of traction at the discrete level. We solved several 3D numerical examples using CSFEMs. Our
observations indicate that CSFEMs have a robust performance for bending, tension, and compression problems,
and in the near-incompressible and the incompressible regimes. They are also capable of modeling problems with
very large strains and accurately approximating stresses. Moreover, they seem to be free from numerical artifacts
such as checkerboarding of pressure, hourglass instability, and locking.
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