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We introduce a new family of mixed finite elements for incompressible nonlinear elasticity 
– compatible-strain mixed finite element methods (CSFEMs). Based on a Hu–Washizu-
type functional, we write a four-field mixed formulation with the displacement, the 
displacement gradient, the first Piola–Kirchhoff stress, and a pressure-like field as the 
four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which 
describe the kinematics and the kinetics of motion, we identify the solution spaces of 
the independent unknown fields. In particular, we define the displacement in H1, the 
displacement gradient in H(curl), the stress in H(div), and the pressure field in L2. The test 
spaces of the mixed formulations are chosen to be the same as the corresponding solution 
spaces. Next, in a conforming setting, we approximate the solution and the test spaces 
with some piecewise polynomial subspaces of them. Among these approximation spaces 
are the tensorial analogues of the Nédélec and Raviart–Thomas finite element spaces of 
vector fields. This approach results in compatible-strain mixed finite element methods that 
satisfy both the Hadamard compatibility condition and the continuity of traction at the 
discrete level independently of the refinement level of the mesh. By considering several 
numerical examples, we demonstrate that CSFEMs have a good performance for bending 
problems and for bodies with complex geometries. CSFEMs are capable of capturing very 
large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do 
not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, 
or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework 
for modeling heterogeneous solids.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

It has been known for quite some time in the finite element literature that internal constraints, and in particular, incom-
pressibility constraint should be treated very carefully to avoid numerical artifacts and instabilities. One path for developing 
efficient and robust numerical schemes for incompressible elasticity is the use of mixed finite elements.

For incompressible solids, addition of the incompressibility constraint and the pressure as an extra independent un-
known results in a saddle-point problem. The well-posedness of a saddle-point problem requires that the two independent 
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unknowns, which are the displacement and pressure in this context, are defined in some compatible spaces. This require-
ment is commonly represented by an inf-sup condition referred to as the LBB condition after the celebrated works of 
Ladyzhenskaya [1], Babuška [2], and Brezzi [3]. Satisfaction of this condition at the discrete level is a necessary condition 
for the stability of the finite element method and causes some complications for constructing the finite element spaces of 
displacement and pressure. There are different approaches for constructing finite elements that satisfy the LBB conditions, 
among which are enriching the space of displacement with some bubble functions in each element, e.g., mini element 
(triangular with P1 

⊕
b3 − P1) [4], using quadratic or higher-order shape functions, e.g., quadrilateral Taylor–Hood element 

(Q2 −Q1) [5] or its triangular variant (P2 −P1) [6], with the proof of stability given for both by Bercovier and Pironneau [7], 
pairing a composite displacement element with a piecewise constant pressure element, e.g., [7], and using non-conforming 
displacement elements, e.g., Crouzeix and Raviart [8]. All these well-known methods are mainly developed for the Stokes 
saddle-point problem and the proofs of their stability are given for linear two-field mixed formulations. Although, these ele-
ments can be used for modeling incompressible linear solids, they may not perform well in nonlinear problems, especially in 
capturing large strains. It is shown in [9] that some of the above elements may exhibit some numerical artifacts when used 
in incompressible nonlinear elasticity. It is further highlighted that increasing the amplitude of the external loads and the 
way the incompressibility constraint is imposed may affect the performance of the above elements in nonlinear problems. 
As another example, see the result given in [10, §5.2] obtained by the modified quadratic displacement-linear pressure with 
hourglass control (CPE6MH) in ABAQUS, which shows the shortcomings of the above approaches in capturing large strains 
in incompressible nonlinear elasticity problems.

Over the years different approaches have been presented to avoid the difficulties associated with a saddle-point problem, 
among which are choosing different trial and test spaces (Petrov–Galerkin method), statically condensing out the pressure 
from the corresponding matrix formulations, and stabilizing the system by adding some extra terms to the mixed formu-
lations to alter the saddle-point problem. These approaches may be implemented individually or a combination of more 
than one approach may be used. Another common saddle-point problem in elasticity is the stress-displacement mixed for-
mulation associated with the Hellinger–Reissner principle, which has mostly been implemented for linear elasticity. In this 
method, spaces of stress and displacement must be defined carefully. Inspired by the work of Hughes et al. [11] for the 
Stokes problem, Franca et al. [12] developed a mixed Petrov–Galerkin finite element method for nearly incompressible lin-
ear elastic solids. The method is based on the modification of the weak formulation associated with the critical point of the 
Hellinger–Reissner principle by adding some additional terms to improve stability without compromising consistency. The 
goal in such methods is an equal-order conforming approximation of the displacement and the Cauchy stress.

For the (nearly) incompressible nonlinear elasticity problems, Simo et al. [13] proposed a kinematic splitting of the vol-
umetric and volume-preserving parts of the deformation gradient and used it in a three-field form of the Hu–Washizu 
variational principle. For compressible and near incompressible nonlinear solids, Simo and Armero [14] used an additive 
decomposition of the displacement gradient into a compatible part and an enhanced part. For a continuum problem the en-
hanced part vanishes pointwise. However, they observed that at the discrete level using mixed finite elements the enhanced 
part does not vanish and leads to a better representation of strain. For transversely isotropic incompressible solids, Weiss 
et al. [15] exploited Simo et al. [13]’s idea of splitting the deformation gradient and used the deformation mapping, dilation, 
and pressure as independent variables in their mixed finite element formulation of incompressible transversely isotropic 
solids. For imposing the incompressibility constraint, they used an augmented Lagrangian method. Lamichhane [16] devel-
oped a displacement-pressure mixed finite element method for 2D nearly incompressible nonlinear elasticity. Both the trial 
and test spaces of displacement are discretized using linear Lagrange finite elements enriched with standard cubic bubble 
functions so that the inf-sup condition is satisfied. In addition, using a Petrov–Galerkin approach, the trial space of pres-
sure is discretized by linear Lagrange finite elements, but the shape functions of the test space of pressure are obtained 
by assuming a biorthogonality condition between the trial and test spaces of pressure. Using this setting, one can statically 
condense out the pressure from the corresponding algebraic system and solve a displacement-based problem. Chi et al. [10]
used polygonal finite elements to discretize a two-field mixed formulation of 2D (nearly) incompressible nonlinear elasticity. 
The displacements are interpolated by choosing the barycentric coordinates over each polygon as the shape functions and 
the values of displacements at the polygon vertices as the degrees of freedom, which results in a C0 approximation over 
the entire domain. The pressure is approximated by a piecewise constant scalar over each polygon. Their numerical studies 
showed that the method is stable and is able to capture very large stretches.

The present work is an extension of [17] to incompressible nonlinear elasticity. We write a four-field mixed formulation 
of incompressible nonlinear elastostatics in terms of the displacement, the displacement gradient, the first Piola–Kirchhoff 
stress, and a pressure-like field by extremizing a Hu–Washizu-type functional. Comparing with [17], in this work, we use a 
symmetric mixed formulation, which is computationally more efficient. Eliminating the pressure and the incompressibility 
constraint from the four-field mixed formulation reduces it to a symmetric version of the three-field mixed formulation of 
compressible solids given in [17]. In addition, based on our observation of the numerical examples of both this work and 
[17], we have concluded that the treatment of the boundary conditions in this work improves the accuracy and robustness 
of the mixed FEMs and is also easier to implement. Here, we impose the displacement boundary conditions strongly and the 
traction boundary conditions weakly. More specifically, only the displacement boundary condition is imposed by the stan-
dard elimination approach in the system of algebraic equations; the traction boundary condition is built into the governing 
equations, and hence, there is no need to directly compute the degrees of freedom of stress on the boundary. Furthermore, 
we provide a clearer description of finite element approximations that is easier to implement and is computationally more 
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efficient. In this work, we prove why some of the combinations of the finite element spaces do not result in solvable mixed 
finite element methods, which was also observed in [17] but was not discussed in detail.

We use the Hilbert complexes of nonlinear elasticity [18,19] to identify the spaces of the independent field variables. 
In particular, we define the displacement in H1, the displacement gradient in H(curl), and the stress in H(div). This set-
ting is different from the ones that are commonly used for the mixed formulation of linear elasticity written based on the 
Hellinger–Reissner principle, where the Cauchy stress and the displacement are defined in a symmetric H(div) space and L2, 
respectively, e.g., see [20,21]. Other variants of the mixed stress-displacement method for linear elasticity were introduced 
in [22] and [23]. In [22], the displacement is assumed in H1 and stress in a symmetric L2 space, while in [23] the displace-
ment is assumed in H(curl) and stress is approximated by a symmetric non-conforming H(div) space. Although in some 
aspects the above-mentioned formulations are similar to our work, they cannot be used in drawing any conclusion on the 
convergence or stability; linear and nonlinear elasticity are quite different and the mixed formulation of the present work is 
based on a Hu–Washizu-type functional, which is not directly related to the Hellinger–Reissner principle. The mixed finite 
element methods presented in this work can be considered structure preserving in the sense that the differential complex 
structure of nonlinear elasticity [18] is preserved at the discrete level. In particular, in our mixed finite element methods for 
incompressible nonlinear elasticity both the Hadamard compatibility condition and the continuity of traction are satisfied at 
the discrete level independently of the refinement level of the mesh.

This paper is organized as follows. In §2, we discuss the mixed formulation that we will later use for introducing CSFEMs. 
In §2.1, we first discuss some preliminaries and definitions, and then review the Hilbert complexes that describe the kine-
matics and the kinetics of 2D nonlinear elasticity. In §2.2, we derive a four-field mixed formulation for 2D incompressible 
elastostatics by extremizing a Hu–Washizu-type energy functional. In §3, we discuss the finite element approximation of 
the four-field mixed formulation of §2.2. In §3.1, we define some reference finite elements (shape functions and degrees of 
freedom) for the displacement, displacement gradient, stress, and pressure. Next, we discuss some linear bijective mappings 
and use them to generate the finite elements of an arbitrary element from their reference counterparts. This provides the 
relations necessary for mapping of the shape functions. In §3.2, we define the finite element approximation spaces and 
use them as the trial and test spaces of the four-field mixed formulation of §2.2 to introduce CSFEMs in §3.3. The matrix 
formulation of CSFEMs is the subject of §3.4. In §3.5, we discuss the solvability and stability of CSFEMs for different combi-
nations of trial and test spaces. To assess the performance of CSFEMs, we consider several numerical examples in §4. Some 
concluding remarks and future work are discussed in §5.

2. A mixed formulation for incompressible nonlinear elasticity

In this section, we present a four-field mixed formulation for 2D incompressible nonlinear elasticity, which we will use 
for our mixed finite element methods.

2.1. Preliminaries

We first tersely review some definitions and notation, and then discuss the relations between some Hilbert complexes 
and the kinematics and kinetics of motion in nonlinear elasticity. Next based on these relationships, we define the spaces 
of definition of displacement, displacement gradient, stress, and pressure, the four field variables that we use in our mixed 
formulations.

Let X = (X1, X2) ∈ R2 be the position of a particle in the reference configuration B, where B ⊂ R2 is a bounded domain 
with boundary ∂B. For any vector field U and any 

(2
0

)
-tensor field T on B, we define the following four operators:

(grad(U ))I J := ∂U I/∂X J ,

(div(T ))I := ∂T I J /∂X J ,

(c(T ))I := ∂T I2/∂X1 − T I1/∂X2,

(s(U ))I J := (∂U I/∂X2)δ1 J − (∂U I/∂X1)δ2 J ,

(2.1)

where δI J is the Kronecker delta, and we use the summation convention on repeated indices. Note that c is also known as 
the 2D curl operator. Let L2(B), L2(TB), and L2(⊗2TB) be the spaces of square integrable scalar fields, vector fields, and (2

0

)
-tensor fields on B, respectively. Consider the following spaces:

H1(TB) :=
{

U ∈ L2(TB) : ∂U I/∂X J ∈ L2(B), I, J = 1,2
}

,

Hc(B) :=
{

T ∈ L2(⊗2TB) : (c(T ))I ∈ L2(B), I = 1,2
}

,

Hd(B) :=
{

T ∈ L2(⊗2TB) : (div(T ))I ∈ L2(B), I = 1,2
}

.

In general, H1 is a subset of both Hc and Hd . Note that the partial derivatives and operators in the above spaces are 
defined in the distributional sense (weak sense). For any distribution f one extends the notion of derivative to a linear 
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mapping ∂ f
∂XI : D(B) � φ �−→ ∫

B
∂ f
∂XI φ dA = − 

∫
B f ∂φ

∂XI dA ∈ R, where D(B) is the vector space of smooth functions with 
compact support in B. In the same context, we similarly extend the operators defined in (2.1), e.g., the distributional (or 
weak) divergence is defined as 

∫
B div v φ dA = − 

∫
B〈v, gradφ〉 dA, where 〈, 〉 is the standard inner product in R2.

For any vector field V in H1(TB), one can show that

c(grad(V )) = 0 and div(s(V )) = 0. (2.2)

Owing to the above relations and the definition of the above spaces, one can extend the linear operators of (2.1) to the 
following mappings:

grad : H1(TB) → Hc(B), c : Hc(B) → L2(TB),

s : H1(TB) → Hd(B), div : Hd(B) → L2(TB).
(2.3)

One can concisely rewrite (2.2) and (2.3) using the following Hilbert complexes [18,19]:

0 H1(TB)
grad

Hc(B)
c L2(TB) 0, (2.4a)

0 H1(TB)
s Hc(B)

−div L2(TB) 0, (2.4b)

where the first arrows on the left are trivial operators, which send zero to zero, and the last arrows on the right indicate 
the zero operator, which maps the L2-space to zero. We use −div instead of div in the second complex, so that (2.4b) is 
the dual complex of (2.4a).

Let U , K , and P be the displacement vector, the displacement gradient tensor, and the first Piola–Kirchhoff stress tensor, 
respectively. We choose these fields to be the primary variables in our description of nonlinear elasticity. This mixed for-
mulation allows one to impose compatibility of displacement gradient and to accurately compute stresses by approximating 
them in some proper spaces that are given in (2.4). Note that both K and P are two-point tensors, and hence, it does 
not even make sense to ask if they are symmetric. Therefore, the difficulties associated with imposing the symmetry of a 
tensor in finite element approximation will not be encountered. See [20,21] for the symmetry imposing issues encountered 
in finite element approximation of linear elasticity.

Given a motion of B in 2D, for the displacement field U (X) := ϕ(X) − X at X ∈ B, one has K = grad U , and c(K ) = 0
is a necessary condition for the compatibility of K . Therefore, U belongs to the domain of the operator grad and K
belongs to the kernel of the operator c. According to the Hilbert complex (2.4a), this is the case whenever U ∈ H1(TB)

and K ∈ ker(c) ⊂ Hc(B). Moreover, in the absence of body force, the static equilibrium equation divP = 0 is the necessary 
condition for the existence of a stress function � such that P = s(�). Therefore, P belongs to the kernel of the operator 
div, which gives P ∈ ker(d) ⊂ Hd(B), based on (2.4b). Note that the Hilbert complex (2.4a) is related to the kinematics of 
motion, while the Hilbert complex (2.4b) is related to the kinetics of motion.

Note that the deformation gradient is written as F = I + K , where I is the identity tensor, and J = det F relates the 
volume elements of the undeformed and deformed configurations as dv = JdV . For incompressible solids, we need to 
consider a pressure-like variable p as one more primary field variable, which acts as a Lagrange multiplier to weakly impose 
the incompressibility condition J = 1. In a discrete setting, J assigns a scalar to each element, and hence, it is natural to 
assume that the discrete p is defined on each element as well and has no interelement continuity. In general, pressure is a 
discontinuous scalar-valued field, and thus p ∈ L2(B).

2.2. A four-field mixed formulation for incompressible nonlinear elasticity

Assume that the mass density of the body B is ρ0 and let B be the body force per unit mass. For the sake of simplicity, 
we assume that ∂B is a disjoint union of subsets �d and �t such that the boundary displacement U is imposed on �d

and the boundary traction T is imposed on �t . Let N be the unit outward normal vector field of ∂B in the reference 
configuration. We consider a formulation of nonlinear elasticity in which displacement U ∈ H1(TB), displacement gradient 
K ∈ Hc(B), and the first Piola–Kirchhoff stress P ∈ Hd(B) are the primary variables. We build the displacement boundary 
condition U

∣∣
�d

= U directly into the space of definition of U , and define

H1(TB,�d, U ) := {
U ∈ H1(TB) : U |�d = U

}
and H1(TB,�d) := H1(TB,�d,0),

where U is of H1/2-class. Now, we set U ∈ H1(TB, �d, U ), K ∈ Hc(B), and P ∈ Hd(B) and define a Hu–Washizu functional. 
The traction boundary condition (P N)

∣∣
�t

= T will be built into the functional. Let 〈, 〉 be the standard inner product of R2. 
Also, suppose 〈 〈, 〉 〉 denotes the L2-inner products of scalar, vector, and tensor fields, which are defined as 〈 〈 f , g〉 〉 := ∫

B f g dA, 
〈 〈Y , Z〉 〉 := ∫

B Y I Z IdA, and 〈 〈S, T 〉 〉 := ∫
B S I J T I J dA, respectively. Let D := H1(TB, �d, U ) × Hc(B) × Hd(B) and define a 

Hu–Washizu-type functional I :D →R as

I(U , K , P ) =
∫

W (X, K )dA − 〈〈P , K − grad U 〉〉 − 〈〈ρ0 B, U 〉〉 −
∫

〈T , U 〉ds, (2.5)
B �t



M. Faghih Shojaei, A. Yavari / Journal of Computational Physics 361 (2018) 247–279 251
where W (X, K ) is the stored energy function of a hyperelastic material. In 2D, the energy function of an isotropic solid has 
the form W = Ŵ (X, I1, I2), where I1 = tr C and I2 = det C are the invariants of the right Cauchy–Green deformation tensor 
C = F T F . Our formulation is not restricted to isotropic solids, however, in all our numerical examples we assume isotropic 
solids. Note that J = √

I2. If the material is incompressible, there is no volume change, i.e., J = 1. Accordingly, we modify 
(2.5) by defining

I(U , K , P , p) = I(U , K , P )

∣∣∣
J (K )=1

+
∫
B

p C
(

J (K )
)
dA, (2.6)

where p ∈ L2(B) is a pressure-like scalar field that acts as a Lagrange multiplier in (2.6), to which we may refer simply as 
pressure, and C : R+ → R is a smooth function such that C( J ) = 0 if and only if J = 1. Two examples that have been used 
in the literature are C( J ) = J − 1, and C( J ) = ln J .

Remark 1. One may define a pseudo energy function W (X, K , p) := Ŵ (X, I1, I2)
∣∣

I2=1 + p C( J ), and replace W in (2.5) with 
W to obtain the same I in (2.6).

Remark 2. One may be tempted to think that an incompressible nonlinear elasticity problem can be numerically solved 
using a scheme for compressible nonlinear elasticity. This is not the case; a general constitutive equation for incompressible 
elasticity cannot be recovered from any compressible constitutive equation when some parameter(s) becomes larger and 
larger (or smaller and smaller). Instead, one must enforce the constraint J = 1 and this requires introducing a pressure 
field p.

To find the critical points of I we proceed as follows. Let (U + ε1ϒ, K + ε2κ, P + ε3π , p + ε4q) ∈ D × L2(B) such that 
(U , K , P , p) ∈D × L2(B), εi ∈R for i = 1, ..., 4, and (ϒ, κ, π , q) ∈ H1(TB, �d) × Hc(B) × Hd(B) × L2(B) are arbitrary. Next, 
define

Î(ε1, ε2, ε3, ε4) := I(U + ε1ϒ, K + ε2κ, P + ε3π , p + ε4q). (2.7)

Note that

∂

∂ε2

∫
B

W̃
(
X, I1(K + ε2κ)

)
dA

∣∣∣
ε2=0

= 〈〈 P̃ (K ),κ〉〉, ∂

∂ε2

∫
B

p C
(

J (K + ε2κ)
)
dA

∣∣∣
ε2=0

= 〈〈p Q (K ),κ〉〉,

where W̃ = Ŵ (X, I1, I2)
∣∣

I2=1, P̃ (K ) = ∂W̃ /∂ K is the constitutive part of the stress, and Q (K ) = ∂C/∂ K = C ′( J )(F −1)T

comes from enforcing the incompressibility condition J = 1. Extremizing the Hu–Washizu functional requires that(
∂ Î
∂ε1

,
∂ Î
∂ε2

,
∂ Î
∂ε3

,
∂ Î
∂ε4

)∣∣∣∣∣
εi=0

= (0,0,0,0).

The result is the following weak formulation of the boundary-value problem for incompressible nonlinear elastostatics:

Given a body force B of L2-class, a boundary displacement U on �d of H1/2-class, and a boundary traction T on �t of L2-class, find 
(U , K , P , p) ∈ H1(TB, �d, U ) × Hc(B) × Hd(B) × L2(B) such that

〈〈P ,grad ϒ〉〉 = 〈〈ρ0 B,ϒ〉〉 +
∫
�t

〈T ,ϒ〉ds, ∀ϒ ∈ H1(TB,�d),

〈〈 P̃ (K ),κ〉〉 − 〈〈P ,κ〉〉 + 〈〈p Q (K ),κ〉〉 = 0, ∀κ ∈ Hc(B),

〈〈grad U ,π〉〉 − 〈〈K ,π〉〉 = 0, ∀π ∈ Hd(B),

〈〈C( J ),q〉〉 = 0, ∀q ∈ L2(B).

(2.8)

Note that the solution of the above problem is the critical point of the Hu–Washizu-type functional (2.6). In (2.8), the 
displacement (essential) boundary condition U

∣∣
�d

= U is imposed strongly in the solution space H1(TB, �d, U ) while the 
traction (natural) boundary condition (P N)

∣∣
�t

= T is imposed weakly in (2.8)1.

Remark 3. It is possible to reduce the size of the solution and the test spaces by considering an extra boundary condi-
tion (K T )

∣∣
�d

= (grad U )T , where T is the unit tangent vector field of ∂B in the reference configuration. Then, we define 

Hc(B, �d, U ) :=
{

K ∈ Hc(B) : (K T )
∣∣ = (grad U )T

}
and Hc(B, �d) := Hc(B, �d, 0), and seek the solution (U , K , P , p) ∈
�d
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H1(TB, �d, U ) × Hc(B, �d, U ) × Hd(B) × L2(B) with arbitrary (ϒ, κ, π , q) ∈ H1(TB, �d) × Hc(B, �d) × Hd(B) × L2(B). This 
results in a slightly smaller discrete system. We have observed in our numerical examples that this approach may improve 
the stability of the method at very large strains.

Remark 4. The weak formulation (2.8) corresponds to a saddle point of the Hu–Washizu-type functional (2.6). To see this, 
one needs to calculate the 4 × 4 matrix H =

[
∂2Î

∂εi∂ε j

]
at εi, ε j = 0. It is straightforward to show that H is symmetric and 

has a non-negative determinant. Also, if H is invertible, it has two positive and two negative eigenvalues.

Green’s formula allows one to write

〈〈divP ,ϒ〉〉 = −〈〈P ,gradϒ〉〉 +
∫
∂B

〈P N,ϒ〉ds, ∀ϒ ∈ H1(TB,�d). (2.9)

We assume the following weak statement of the traction boundary condition:∫
∂B

〈P N,ϒ〉ds =
∫
�t

〈T ,ϒ〉ds, ∀ϒ ∈ H1(TB,�d). (2.10)

Then, it is straightforward to show that (2.8) results in the following set of governing equations for incompressible nonlinear 
elastostatics:

(a) divP + ρ0 B = 0,

(b) P = P̃ (K ) + p Q (K ),

(c) K = grad U ,

(d) J = 1,

⎫⎪⎪⎬⎪⎪⎭ on B,

(2.11)

(e) U = U , on �d,

(f) P N = T , on �t .

Conversely, one can show that (2.11) results in (2.8), see [17, §2.2]. Note that (2.11b) is the constitutive equation of an 
incompressible solid. In the current configuration it reads σ = P̃ (K )F T + p̄ I , where p̄ = p C ′( J ) and σ is the Cauchy stress 
tensor.

Remark 5. For a neo-Hookean solid with W̃ = μ
2 (I1 − 2), where μ is the shear modulus at the ground state, one has the 

constitutive equation P = μF + pC ′( J )(F −1)T . In the absence of residual stresses, the body is stress free when there are 
no external forces. Hence, if F = I , then P = 0. This gives us (μ + pC ′(1))I = 0, which implies that p = −μ/C ′(1) in the 
absence of external forces. Therefore, one should be careful to choose C such that C ′(1) �= 0. Also, the choice of the function 
C( J ) may affect the solution of the discrete system and may cause numerical instabilities at large deformations [9]. Our 
numerical examples indicate that our mixed FEMs work well with both C( J ) = J − 1 and C( J ) = ln J .

Remark 6. Assume that the reference configuration of the body B is a non-simply-connected domain. More specifically, it is 
a connected 2D domain that contains nh holes. In this setting, c(K ) = 0 is necessary for the compatibility of K but is not 
sufficient; in addition to c(K ) = 0 the following auxiliary compatibility equations must hold [24]:∫

∂Hi

K T ∂Hi ds = 0, for i = 1,2, ...,nh, (2.12)

where ∂Hi is the boundary of the i-th hole and T ∂Hi denotes the unit tangent vector field of ∂Hi in the reference configu-
ration. Note that ∂Hi is chosen for convenience; the above integral for each hole can be taken over an arbitrary closed-path 
within the domain that encloses only that hole, i.e., any closed path that is homologous to ∂Hi [24]. Note that in our mixed 
formulation we weakly impose K = grad U , and hence, one does not need to impose compatibility.

3. Finite element approximations

3.1. Finite elements

Following [25], we define a finite element as a triplet (T, P(T), Σ), where T is a triangle in R2, P(T) is a space of 
polynomials on T, and Σ is a set of linear functionals {σ1, σ2, ..., σns } acting on the members of P(T) such that ∀p ∈P(T), 
σi(p) ∈ R, and the liner mapping p �−→ (σ1(p), σ2(p), ..., σns (p)) ∈ Rns is a bijection. Equivalently, there exists a unique 
basis {θ1, θ2, ..., θns } in P(T) such that σi(θ j) = δi j , i, j = 1, 2, ..., ns . σi ’s and θi ’s are called the local degrees of freedom 
(DOF) and the local shape functions, respectively. Following [26], in the definition of a finite element, we always implicitly 
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Fig. 1. The three-node reference element and edge numbers and orientations (left), the reference directions for the unit tangent and normal vectors (middle), 
and the six-node reference element (right).

assume that there exits a linear space V (T) of functions v : T → Rm such that P(T) ⊂ V (T), and Σ can be extended to its 
dual space V (T)� . Then, the local interpolation operator is defined as

IT : V (T) −→ P(T), IT(v) =
ns∑

i=0

σi(v)θi .

Note that IT is a projection of V (T) into P(T) that is not bijective, in general. In practice, by having the shape functions, 
we accept IT(v) as an approximation of v and find the degrees of freedom as the unknowns.

Suppose T̂ as shown in Fig. 1 is a reference triangular element with coordinates ξ = (ξ1, ξ2). We denote the edges of 
T̂ by Êi, i = 1, 2, 3 and their corresponding lengths by �̂i, i = 1, 2, 3. For an edge joining two vertices i and j, we define a 
unique orientation as i → j, where i < j. According to Fig. 1, orientations 1 → 2, 1 → 3, and 2 → 3 are assigned to Ê1, Ê2, 
and Ê3, respectively. Moreover, we define a unit tangent vector t̂i and a unit normal vector n̂i on each edge; t̂i must agree 
with the edge orientation, and n̂i is obtained by a 90 degrees clockwise rotation of t̂i , that is n̂i = Rt̂i , where

R =
[

0 1
−1 0

]
. (3.1)

We consider the following reference finite elements for our four field variables:(
T̂,Pr(T T̂),Σ T̂,1

)
for displacement U ,(

T̂,Pr(⊗2T T̂),Σ T̂,c
)

,
(
T̂,P−

r (⊗2T T̂),Σ T̂,c−)
for displacement gradient K ,(

T̂,Pr(⊗2T T̂),Σ T̂,d
)

,
(
T̂,P�

r (⊗2T T̂),Σ T̂,d−)
for stress P ,(

T̂,Pr (̂T),Σ T̂,�
)

for the pressure-like field p.

(3.2)

In the following, our main focus is to provide explicit expressions for some bases of the above polynomial spaces, also 
known as local shape functions. We will consider r = 1, 2 for the corresponding polynomial spaces of U , K and P , and 
r = 0, 1, 2 for the corresponding polynomial space of p.

The Lagrange polynomials on the three-node T̂ are

l11 = 1 − ξ1 − ξ2, l12 = ξ1, l13 = ξ2. (3.3)

Using (3.3), the Lagrange polynomials on the six-node ̂T can be written as l2i = l1i (2l1i −1) and l23+i = 4l1i l1i+1, where i = 1, 2, 3
and l14 = l11. For r = 1, 2, a basis of Pr(T T̂) includes

hT̂
2i−1 =

[
lri
0

]
, hT̂

2i =
[

0
lri

]
, i = 1,2, ...,3r,

and the set of local degrees of freedom is Σ T̂,1 = {
V 1(ξ1), V 2(ξ1), ..., V 1(ξ3r), V 2(ξ3r)

}
, where ξ i is the coordinates of the 

i-th node of the 3r-node T̂ as shown in Fig. 1. We will use Pr(T T̂), r = 1, 2 spanned by hT̂
i to construct the approximation 

space of U .

Remark 7. We have listed some of the common vector-valued finite elements in the literature in the left column of Table 1. 
Nédélec’s original finite elements are in R3 for both H(curl) and H(div) and for arbitrary polynomial degree [27,28]. He 
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Table 1
Tensorial analogues of some classical finite elements for vector fields.

Vector fields Second-order tensors

Nédélec 1st-kind (N1) H(curl) element [27] (T,P−
r (⊗2

TT),ΣT,c−)

Nédélec 2nd-kind (N2) H(curl) element [28] (T,Pr(⊗2
TT),ΣT,c)

Raviart–Thomas (RT) H(div) element [29] (T,P�
r (⊗2

TT),ΣT,d−)

Brezzi–Douglas–Marini (BDM) H(div) element [30] (T,Pr(⊗2
TT),ΣT,d)

Table 2
Vector valued bases for polynomial spaces of N1 denoted by P−

r (T T̂) and N2 denoted by Pr(T T̂) for r = 1, 2.

r P−
r (T T̂) Pr(T T̂)

vT̂,Êk
J vT̂,T̂

J vT̂,Êk
J vT̂,T̂

J

1 w i j li∇l j , l j∇li

2 li w i j , l j w i j l3 w12, l2 w13 l2i ∇l j , l2j ∇li , li l j∇(l j − li) l1l2∇l3, l1l3∇l2, l2l3∇l1

introduced N1 and N2 H(curl) elements for R3. He also generalized RT and BDM elements to R3 by developing H(div) 
version of N1 and N2, respectively. Following his works, the 2D version of H(curl) elements are also called Nédélec elements, 
but as he himself pointed out in the conclusion of [27], in 2D, H(curl) elements can be easily obtained by a 90 degree 
rotation of bases of H(div) elements.

For K ∈ Hc and P ∈ Hd , we write the tensorial analogues of some classical finite elements for vector fields as sum-
marized in Table 1 (also see Remark 7). All the finite element spaces given in the left column of Table 1 are generalized 
by Arnold et al. [31] to two spaces of finite element differential forms with arbitrary order for any degree of polynomials 
and any number of dimensions. Moreover, they derived geometric decomposition of these spaces, which provides explicit 
local bases for them. See [32,33] for a more intuitive generalization of these vector-valued finite elements. Here, based on 
the results of [31], we write some analogues tensorial bases for the reference element T̂ and r = 1, 2. By using Theorem 7 
in [17], one can calculate these tensorial bases implicitly, e.g., see [17, Examples 9 and 10]. Let us ignore the superscript 
of l1i in (3.3) and let ∇li = [

∂li/∂ξ1 ∂li/∂ξ2
]

be a row vector. Also, for each edge of a triangular element with orientation 
i → j, consider the Whitney function

w i j = li∇l j − l j∇li . (3.4)

The bases for polynomial spaces of N1 and N2, which we respectively denote by P−
r (T T̂) and Pr(T T̂) are given in Table 2

for the orders r = 1, 2 [31]. Local shape functions vT̂,Êk
J associated with the edge Êk with orientation i → j, which is 

indicated in Fig. 1, and local shape functions v T̂,T̂
J are associated with the reference element T̂ itself and defined for r ≥ 2. 

The tangent component of a shape function v on an edge Ei is denoted by 〈v, ti〉. For a given r, both P−
r (T T̂) and Pr(T T̂)

contain polynomials of the same order, but{〈
vT̂,Êk

J , tk

〉
: vT̂,Êk

J ∈ P−
r (T T̂), J = 1,2, ..., r

}
is a basis of Pr−1(̂Ek),{〈

vT̂,Êk
J , tk

〉
: vT̂,Êk

J ∈ Pr(T T̂), J = 1,2, ..., r + 1
}

is a basis of Pr (̂Ek),

where Pr (̂Ek) denotes the one-dimensional polynomial space of order r on the edge Êk . Also, for any J , vT̂,T̂
J is a zero-

tangent bubble polynomial of order r on T̂, meaning that its tangent components are zero on all the three edges. Some 
examples of these shape functions are depicted in Fig. 2.

To interpolate K ∈ Hc , we define the following tensorial shape functions:

rT̂,Êk
1, J =

[
vT̂,Êk

J
0

]
, rT̂,Êk

2, J =
[

0

vT̂,Êk
J

]
, rT̂,T̂

1, J =
[

vT̂,T̂
J
0

]
, rT̂,T̂

2, J =
[

0

vT̂,T̂
J

]
. (3.5)

Accordingly, P−
r (⊗2T T̂) in (3.2)2 is defined by spanning the set of local shape functions 

{
rT̂,Êk

I, J , rT̂,T̂
I, J

}
that is obtained 

from P−
r (T T̂). Pr(⊗2T T̂) in (3.2)2 is defined similarly by using Pr(T T̂). The explicit form of the spaces P−

r (⊗2T T̂) and 
Pr(⊗2T T̂) are given in [17, Example 3]. Suppose 

−→
T I := [

T I1 T I2
]T

is a column vector containing the elements of the I-th 
row of a 

(2)-tensor T . The sets Σ T̂,c and Σ T̂,c− in (3.2)2 consist of the following local degrees of freedom:
0
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r P−
r (T T̂) Pr(T T̂)

vT̂,Ê3
1 vT̂,T̂

2 vT̂,Ê3
1 vT̂,T̂

3

1

2

Fig. 2. The illustration of some of the bases given in Table 2.

φ
T̂,Êk
I, J (T ) =

∫
Êk

( ŝ

�̂k

) J−1〈−→T I , t̂k〉dŝ, φ
T̂,T̂
I, J (T ) =

∫
T̂

〈−→T I , v̂ J 〉dÂ, (3.6)

where v̂ J is a vector-valued polynomial in R2, see [17, Theorem 7]. Note that φT̂,Êk
I, J and φT̂,T̂

I, J are associated to the edges 
Êk and the area of the reference triangle T̂, respectively. In practice, degrees of freedom are obtained by numerically solving 
the final discrete system so their direct calculation is needed only when we impose some of the boundary conditions 
strongly. Hence, in 2D, we do not directly compute the degrees of freedom such as φT̂,T̂

I, J that are defined over the area of 
the elements, and hence, specifying v̂ J is not required. Also, we choose the polynomials (ŝ/�̂k)

J−1, J = 1, 2, 3 to simplify 
the calculation of φT̂,Êk

I, J at the domain boundaries. The choice for these polynomials is not unique, in general. In finite 
element approximation, degrees of freedom must be a dual basis for the space spanned by the shape functions. Hence, we 
define some modified shape functions r̄T̂,Êk

I, J by writing a linear combination of rT̂,Êk
I, J over J such that

φ
T̂,Êl
M,N

(
r̄T̂,Êk

I, J

)
=

{
1, if k = l and I = M and J = N,

0, otherwise.
(3.7)

In the case of P−
r (⊗2T T̂), we have r̄T̂,Êk

I,1 = rT̂,Êk
I,1 for r = 1, and the following shape functions for r = 2:

r̄T̂,Êk
I,1 = 4 rT̂,Êk

I,1 − 2 rT̂,Êk
I,2 , r̄T̂,Êk

I,2 = −6 rT̂,Êk
I,1 + 6 rT̂,Êk

I,2 ,

Considering Pr(⊗2T T̂), one obtains

r̄T̂,Êk
I,1 = 4 rT̂,Êk

I,1 + 2 rT̂,Êk
I,2 , r̄T̂,Êk

I,2 = −6 rT̂,Êk
I,1 − 6 rT̂,Êk

I,2 .

for r = 1, and the following for r = 2:

r̄T̂,Êk
I,1 = 9 rT̂,Êk

I,1 − 3 rT̂,Êk
I,2 − 9 rT̂,Êk

I,3 ,

r̄T̂,Êk
I,2 = −36 rT̂,Êk

I,1 + 24 rT̂,Êk
I,2 + 60 rT̂,Êk

I,3 ,

r̄T̂,Êk
I,3 = 30 rT̂,Êk

I,1 − 30 rT̂,Êk
I,2 + 60 rT̂,Êk

I,3 .

Moreover, by choosing v̂ J properly in (3.6)2, one can show that

φ
T̂,Êk
M,N

(
rT̂,T̂

I, J

)
= φ

T̂,T̂
M,N

(
r̄T̂,Êk

I, J

)
= 0,

φ
T̂,T̂
M,N

(
rT̂,T̂

I, J

)
=

{
1, if I = M and J = N,

0, otherwise.

(3.8)

We will use the set of reference shape functions 
{

r̄T̂,Êk
I, J , rT̂,T̂

I, J

}
to approximate K ∈ Hc .
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Table 3
Numbers of local degrees of freedom (DOF) in terms of the order of the corresponding polynomial spaces r.

DOF Number of DOF

For each node For each edge For T Total

ΣT,1 2 0 0 6r
ΣT,c− , ΣT,d− 0 2r 2(r2 − r) 2r(r + 2)

ΣT,c , ΣT,d 0 2(r + 1) 2(r2 − 1) 2(r + 1)(r + 2)

ΣT,� 0 0 (r + 1)(r + 2)/2 (r + 1)(r + 2)/2

In 2D, the spaces of type Hc and Hd are transformed to each other by a 90 degree rotation. To see this, recall the 
definitions of Hc and Hd in the distributional sense and observe that grad(q) = RT s(q), where q is a smooth function. 
Therefore, to construct (3.2)3 for approximating P ∈ Hd , we simply need the following shape functions:

s̄T̂,Êk
I, J = r̄T̂,Êk

I, J RT, sT̂,T̂
I, J = rT̂,T̂

I, J RT. (3.9)

The corresponding local degrees of freedom are

ψ
T̂,Êk
I, J (T ) =

∫
Êk

( ŝ

�̂k

) J−1〈−→T I , n̂k〉dŝ, ψ
T̂,T̂
I, J (T ) =

∫
T̂

〈−→T I ,Rv̂ J 〉dÂ. (3.10)

Note that ψ T̂,Êl
M,N

(
s̄T̂,Êk

I, J

)
= ψ

T̂,Êl
M,N

(
r̄T̂,Êk

I, J RT
)

= φ
T̂,Êl
M,N

(
r̄T̂,Êk

I, J

)
, and thus, the condition (3.7) holds for ψ T̂,Êk

I, J and s̄T̂,Êk
I, J as well. 

Similarly, one can write the condition (3.8) for (3.9) and (3.10). The space P�
r (⊗2T T̂) in (3.2)3 is spanned by the set {

s̄T̂,Êk
I, J , sT̂,T̂

I, J

}
, which is obtained from a 90 degree rotation of the bases of P−

r (T T̂). The same set spans Pr(⊗2T T̂) in (3.2)3

if it is written by a 90 degree rotation of the bases of Pr(T T̂). Also, note that P−
r (⊗2T T̂) and P�

r (⊗2T T̂) in (3.2) are 
transformed to each other by a 90 degree rotation. The explicit expression of these spaces are given in [17, Example 3].

For the reference finite element of pressure (3.2)4, the set of local shape functions 
{

tT̂i
}

, which spans Pr (̂T), is {1} for 
r = 0, {1, ξ1, ξ2} for r = 1, and {1, ξ1, ξ2, (ξ1)2, (ξ2)2, ξ1ξ2} for r = 2. The corresponding local degrees of freedom are of the 
form

ωT̂
i ( f ) = 1

Â

∫
T̂

p̂r
i f d Â, (3.11)

where p̂r
i , i = 1, 2, ..., ns are polynomials of order r on T̂, which can be calculated by solving ωT̂

i (tT̂j ) = δi j . However, as was 

discussed earlier, we do not calculate ωT̂
i directly, and hence, calculating p̂r

i is not necessary.
The numbers of local degrees of freedom (the number of local shape functions) for the four types of finite elements that 

we discussed above are summarized in Table 3. This holds for the reference finite elements (3.2) and any finite elements 
that we will generate from them for an arbitrary triangle T.

Next we explain how to construct a family of finite elements for a given mesh based on the reference finite ele-
ments (3.2). Let Bh denote a triangulation (or simply a mesh) of the reference configuration B, where Bh consists of 
arbitrary triangles T, and h := max diamT, ∀T ∈ Bh . Note that the intersection of any two distinct triangles of Bh can be 
empty, a common edge joining two common vertices, or only a vertex of those two triangles. We locally assign the numbers 
1, 2, 3 to vertices of each T ∈ Bh , to which we will refer as the ordering of vertices. Let Xi = (X1

i , X
2
i ) denote the Cartesian 

coordinates of the i-th vertex of T. The reference triangle T̂ shown in Fig. 1 can be mapped onto any T ∈ Bh by an affine 
transformation TT given by

TT : T̂ −→ T, TT(ξ) := JTξ + aT, (3.12)

where

JT =
[

X1
2 − X1

1 X1
3 − X1

1

X2
2 − X2

1 X2
3 − X2

1

]
and aT =

[
X1

1

X2
1

]
.

The above mapping is bijective and JT is invertible. Let ET
i = TT (̂Ei), i = 1, 2, 3 denote the edges of T. Also, assume that 

ET
i inherits the orientation of Êi , i.e., if the orientation of Êi in terms of the coordinates is ξk → ξ l , then the orientation of 

ET
i is TT(ξk) = Xk → Xl = TT(ξ l). Similar to what we discussed for the reference element, the tangent vector ti defined on 

ET
i accepts the orientation of ET

i , and the normal vector on ET
i is obtained by ni = Rti .

We use the numbering scheme discussed in [34] for convenience in defining global shape functions and degrees of 
freedom of conforming Hc and Hd finite elements and also for their efficient assembly. In this scheme, a global number is 
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assigned to each vertex of the mesh. Then, the ordering of the three vertices of each element T is defined based on the 
ascending order of the global numbers associated to them, i.e., the first vertex of each T has the smallest global number 
among the three vertices and the third vertex has the largest. Using this ordering and the edge orientations of the reference 
element (see Fig. 1), the orientation of every edge in the mesh joining two vertices will be from the vertex with the smaller 
to the vertex with the larger global number. The advantage of this scheme is that the orientation of an edge shared by two 
adjacent elements in the mesh is identical to that of the edge in either of the two elements. More precisely, assume that 
T and T′ are adjacent in Bh and share a common edge E such that E ∩ T = ET

i and E ∩ T′ = ET′
i′ . The scheme guarantees

that ET
i and ET′

i′ inherit an identical orientation from Êi and Êi′ , regardless of their local edge numberings i and i′ . For an 
illustration of this, see [34, Figure 5.1]. It follows that both the tangent and the normal vectors that are defined on ET

i and 
ET′

i′ are identical.
Note that the above scheme violates the standard convention that the three vertices of every element in the mesh have 

a counterclockwise ordering. Therefore, one should keep in mind that not all the normal vectors of the exterior edges lying 
on the boundaries of the mesh are pointed outward, and not all their tangent vectors are oriented in the counterclockwise 
direction. Also, det JT can be either positive or negative, so it would be useful to define the following constant for each 
element:

oT = sign (det JT) .

Note that oT = 1 if the three vertices of T have the counterclockwise ordering, and oT = −1 otherwise.

In a general setting, let 
(
T̂,P (̂T),Σ T̂

)
be a reference finite element and let V (̂T) be a linear space of Rm-valued 

functions in T̂ such that P (̂T) ⊂ V (̂T) and Σ T̂ can be extended to V (̂T)� . Also, for any T ∈ Bh , suppose �T : V (̂T) −→
V (T) is a linear bijective mapping, which preserves the structure between V (̂T) and its counterpart V (T), i.e., �T is an 
isomorphism. Then, by using the reference finite element and the following proposition, one can define a set of finite 
elements for all T in Bh [26].

Proposition 8. Let �T : V (̂T) −→ V (T) be a linear bijection. For any T ∈ Bh, 
(
T,P(T),ΣT

)
defined as⎧⎪⎪⎨⎪⎪⎩

T = TT (̂T)

P(T) =
{
�T(p̂) : p̂ ∈ P (̂T)

}
ΣT =

{
σT

1 ,σT
2 , ...σT

ns
: σT

i (p) = σ T̂
i

(
�−1

T (p)
)
,∀p ∈ P(T), i = 1,2, ...,ns

}
is a finite element with the local shape functions θTi = �T

(
θ T̂i

)
, i = 1, 2, ..., ns, and the local interpolation operator

IT : V (T) −→ P(T), IT(v) =
∑ns

i=0
σT

i (v)θTi . (3.13)

Proof. By assumption, p̂ = �−1
T (p) is bijective, ∀p ∈ P(T), and the mapping p̂ �−→

(
σ T̂

1 (p̂), ..., σ T̂
ns

(p̂)
)

is a bijection, 

∀p̂ ∈P (̂T). Therefore, the composition mapping p �−→ (
σT

1 (p), ..., σT
ns

(p)
)

is bijective, ∀p ∈ P(T), and 
(
T,P(T),Σ T

)
is 

a finite element. θTi ∈PT and σT
j

(
θTi

) = σ T̂
j

(
�−1

T

(
θTi

)) = σ T̂
j

(
θ T̂i

) = δi j , for i, j = 1, 2, ..., ns , and hence, θTi , i = 1, 2, ..ns are 
the local shape functions. Next we show that the local interpolation operator IT is well-defined. If q ∈ P (T), there exists 
q̂ ∈ P (̂T) ⊂ V (̂T) such that q = �T(q̂), so q ∈ V (T), and we conclude that P (T) ⊂ V (T). Also, knowing that σ T̂

i can be 
calculated for elements of V (̂T), one can write σT

i (v) = σ T̂
i

(
�−1

T (v)
)

for any v ∈ V (T), and hence, Σ T can be extended 
to V (T)� . �

Consider the reference finite element of displacement 
(
T̂,Pr(T T̂),Σ T̂,1

)
. Let V (̂T) = C0(T T̂) and define V (T) similarly. 

Use the mapping

T1
T : C0(T T̂) −→ C0(TT), T1

T(V̂ ) := V̂ ◦ T−1
T , (3.14)

and generate the family of finite elements 
{(
T,Pr(TT),ΣT,1

)}
T∈Bh

as described in Proposition 8. Accordingly, the local 

shape functions are hT
k = T1

T

(
hT̂

k

)
. It is straightforward to check that hT

k is a Lagrange polynomial on T, and members of 

the set of degrees of freedom ΣT,1 are the values of the interpolated function at the nodes of T.
The mapping (3.14) does not transform Hc(T T̂) into Hc(TT) or Hd(T T̂) into Hd(TT). Instead, one needs to use the Piola 

transforms. Considering the affine mapping (3.12), the Piola transforms Tc and Td are defined as
T T
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Tc
T : Hc(T T̂) −→ Hc(TT), Tc

T(V̂ ) := J−T
T V̂ ◦ T−1

T , (3.15)

Td
T : Hd(T T̂) −→ Hd(TT), Td

T(V̂ ) := 1

det JT
JT V̂ ◦ T−1

T . (3.16)

For a 
(2

0

)
-tensor T , one calculates the Piola transformations separately for each row:

Tc
T(T ) =

[
Tc
T(

−→
T1)

T

Tc
T(

−→
T2)

T

]
, Td

T(T ) =
[

Td
T(

−→
T1)

T

Td
T(

−→
T2)

T

]
. (3.17)

The Piola mapping Tc
T is an isomorphism of Hc(T T̂) onto Hc(TT), and the Piola mapping Td

T is an isomorphism of Hd(T T̂)

onto Hd(TT). This and other useful properties of these mappings can be summarized in the following Lemma.

Lemma 9. Using the numbering scheme discussed above, assume that T = TT (̂T) is an arbitrary element with edge lengths �k, unit 
tangent vectors tk, and unit normal vectors nk. Let V̂ ∈ Hc(T T̂) and Û ∈ Hd(T T̂), and set V = Tc

T(V̂ ) and U = Td
T(Û ). Also, assume 

that q = q̂ ◦ T−1
T , where q̂ ∈ C0 (̂T). Define v J := oTTd

T(v̂ J ) and p̂k(ŝ) := ∑n
i=0 ai

(
ŝ/�̂k

)i
, and construct pk = p̂k ◦ g−1

k with gk(ŝ) =
(�k/�̂k)ŝ. Recall the linear operators (2.1) and set I = 1, and note that operators with the hat symbol are written with respect to the 
reference element coordinates ξ = (ξ1, ξ2). The following relations hold:

(i)
∫
T

〈
c(V ), q

〉
dA = oT

∫
T̂

〈̂
c(V̂ ), ̂q

〉
dÂ, and

∫
T

〈
V , s(q)

〉
dA = oT

∫
T̂

〈
V̂ , ̂s(q̂)

〉
dÂ,

(ii)
∫
T

〈
div(U ), q

〉
dA = oT

∫
T̂

〈
d̂iv(Û ), ̂q

〉
dÂ, and

∫
T

〈
U , grad(q)

〉
dA = oT

∫
T̂

〈
Û , ̂grad(q̂)

〉
dÂ,

(iii)
∫
Ek

pk
〈
V , tk

〉
ds = ∫

Êk
p̂k

〈
V̂ , ̂tk

〉
dŝ, and

∫
T

〈
V , v J

〉
dA = ∫

T̂

〈
V̂ , v̂ J

〉
dÂ,

(iv)
∫
Ek

pk
〈
U , nk

〉
ds = ∫

Êk
p̂k

〈
Û , ̂nk

〉
dŝ, and

∫
T

〈
U , Rv J

〉
dA = ∫

T̂

〈
Û , Rv̂ J

〉
dÂ,

(v)
∫
T

〈
U , V

〉
dA = oT

∫
T̂

〈
Û , ̂V

〉
dÂ.

Proof. The second identities in (iii) and (v) can be derived directly form the assumptions. Other identities are the conse-
quences of the following relations:

(i) c(V ) = 1
det JT

ĉ(V̂ ) ◦ T−1
T , and s(q) = 1

det JT
JT ŝ(q̂) ◦ T−1

T ,

(ii) div U = 1
det JT

d̂iv Û ◦ T−1
T , and grad(q) = J−T

T ĝrad(q̂) ◦ T−1
T ,

(iii) tk = �̂k
�k

JT t̂k ,

(iv) nk = �̂k
�k

(det JT)J−T
T n̂k , and 1

det JT
RJT = J−T

T R. �
Consider the two reference finite elements for displacement gradient 

(
T̂,Pr(⊗2T T̂),Σ T̂,c

)
and 

(
T̂,P−

r (⊗2T T̂),Σ T̂,c−
)

. 

Let V (̂T) = Hc(̂T) and V (T) = Hc(T), and use the Piola mapping (3.15), and relation (3.17)1. Then, based on Proposition 8, 
construct two families of finite elements 

{(
T,Pr(⊗2TT),ΣT,c

)}
T∈Bh

and 
{(

T,P−
r (⊗2TT),ΣT,c−

)}
T∈Bh

. The local shape 

functions are r̄T,Ek
I, J = Tc

T

(
r̄T̂,Êk

I, J

)
, rT,T

I, J = Tc
T

(
rT̂,T̂

I, J

)
, and the local degrees of freedom read φT,Ek

I, J (T ) =
(
φ
T̂,Êk
I, J ◦ Tc

T
−1

)
(T )

and φT,T
I, J (T ) =

(
φ
T̂,T̂
I, J ◦ Tc

T
−1

)
(T ). Lemma 9, (iii) implies that φT,Ek

I, J and φT,T
I, J are in fact (3.6) with all the hat symbols 

removed.
Similarly, by using the Piola mapping (3.16), (3.17)2, and Proposition 8 generate two families 

{(
T,Pr(⊗2TT),ΣT,d

)}
T∈Bh

and 
{(

T,P�
r (⊗2TT),ΣT,d−

)}
T∈Bh

from the two reference finite elements for stress 
(
T̂,Pr(⊗2T T̂),Σ T̂,d

)
and(

T̂,P�
r (⊗2T T̂),Σ T̂,d−

)
. The local shape functions read s̄T,Ek

I, J = Td
T

(
s̄T̂,Êk

I, J

)
, sT,T

I, J = Td
T

(
sT̂,T̂

I, J

)
. Also, according to Lemma 9, 

(iv), the local degrees of freedom ψT,Ek
I, J , ψT,T

I, J are (3.10) without the hat symbols.

Recall the reference finite element of the pressure-like field (̂T, Pr (̂T), Σ T̂,�). Set V (̂T) = L2(̂T) and V (T) = L2(T). Then, 
use the mapping

T�
T : L2(̂T) −→ L2(T), T�

T( f̂ ) := f̂ ◦ T−1
T . (3.18)

and Proposition 8 to generate 
{(
T,Pr(T),ΣT,�

)}
T∈Bh

. The local shape functions become tTi = T�
T(tT̂i ), and by recalling 

(3.11), it is straightforward to show that the local degrees of freedom are ωT( f ) = 1 ∫
pr f dA, where pr = p̂r ◦ T−1.
i A T i i i T
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3.2. Finite element spaces

In order to define suitable conforming finite element spaces, we first define the following notions of jump across the 
edges of a 2D mesh for vector and tensor fields. We denote the set of all interior edges of the mesh by Ei

h . For an edge 
E ∈ Ei

h , there exist two elements T, T′ ∈ Bh such that E = T ∩ T′ . Also, let n be the unit normal vector of E such that it 
points from T to T′ . Let V be a vector-valued function and T a tensor-valued function that are both defined on Bh and 
have limits on both sides of the edge E. We define the jump of V across E as

�V �E := V T′ − V T,

where V T = V |T and V T′ = V |T′ . Recall that t = RTn is the unit tangent of E and set T T = T |T and T T′ = T |T′ . Then, the 
jump of the tangent traction and the normal traction of T across E are defined as

�tT �E := (T T′ − T T) t,

�nT �E := (T T′ − T T)n.

Note that all the above jumps are vector-valued functions in 2D and their domain is the set of interior edges of the mesh.
We are now in a position to define the following finite element spaces:

V 1
h,r :=

{
V h ∈ L2(TBh) : ∀T ∈ Bh, V h|T ∈ Pr(TT), ∀E ∈ Ei

h, �V h �E = 0
}

,

V c−
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h|T ∈ P−

r (⊗2TT), ∀E ∈ Ei
h, �tT h �E = 0

}
,

V c
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h|T ∈ Pr(⊗2TT), ∀E ∈ Ei

h, �tT h �E = 0
}

,

V d−
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h|T ∈ P�

r (⊗ 2TT), ∀E ∈ Ei
h, �nT h �E = 0

}
,

V d
h,r :=

{
T h ∈ L2(⊗2TBh) : ∀T ∈ Bh, T h|T ∈ Pr(⊗2TT), ∀E ∈ Ei

h, �nT h �E = 0
}

,

V �
h,r :=

{
fh ∈ L2(Bh) : ∀T ∈ Bh, fh|T ∈ Pr(T)

}
.

In addition, let V̆ c
h,r be either V c−

h,r or V c
h,r , and let V̆ d

h,r be either V d−
h,r or V d

h,r . The above spaces are conforming according 
to the following theorem.

Theorem 10. V 1
h,r ⊂ H1(TBh), V̆ c

h,r ⊂ Hc(Bh), V̆ d
h,r ⊂ Hd(Bh), and V �

h,r ⊂ L2(Bh).

Proof. V �
h,r ⊂ L2(Bh) is trivial. For proof of V 1

h,r ⊂ H1(TBh) see [26, Proposition 1.74]. V̆ c
h,r ⊂ Hc(Bh) and V̆ d

h,r ⊂ Hd(Bh) can 
be proved similarly by following the steps of the proof for V 1

h,r ⊂ H1(TBh) and recalling the distributional definitions of the 
operators c and div and the Green’s formulas (2.9) and

〈〈c(M), V 〉〉 = 〈〈M, s(V )〉〉 +
∫
∂B

〈M T ∂B, V 〉ds,

where M is a 
(2

0

)
-tensor, V is a vector, and T ∂B is the oriented unit tangent vector field of ∂B. �

To interpolate the four field variables (U , K , P , p) over the entire mesh Bh , we next define the global shape functions 

analogous to the local shape functions 
({

hT
k

}
,
{

r̄T,Ek
I, J , rT,T

I, J

}
,
{

s̄T,Ek
I, J , sT,T

I, J

}
,
{

tTi
})

of an element T. Let HN
I , I = 1, 2 denote 

the two global shape functions of each node N ∈ Bh . HN is defined on Bh such that

HN
I

∣∣∣
T

=
{

hT
2(i−1)+I if N ∩ T = Ni,

02×1, if N ∩ T = ∅,
∀T ∈ Bh,

where Ni is i-th node of T. Hence, the support of the function HN
I in its domain Bh is all those adjacent elements of Bh that 

share the node N. Considering properties of the Lagrange polynomials, one can show that HN
I is continuous everywhere 

in Bh , and hence HN
I ∈ V 1

h,r . If we interpolate a vector-valued function on Bh by using V 1
h,r , the global degree of freedom 

associated with HN is the value of the I-th component of that vector-valued function at the node N.
I
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Fig. 3. The nonzero row of the global shape functions RE
1,1 ∈ V c−

h,1 (left) and SE
1,1 ∈ V d−

h,1 (right), where E is the common edge of the two adjacent elements. 
Observe that SE

1,1 = RE
1,1RT . The tangent (normal) components of the fields, which are shown with red arrows, are continuous across E in the left (right) 

plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Let RE
I, J , RT

I, J be the global shape functions corresponding to r̄T,Ek
I, J , rT,T

I, J . We define them on Bh such that

RE
I, J

∣∣∣
T

=
{

r̄T,Ek
I, J , if E∩ T = Ek,

02×2, if E∩ T = ∅,
∀T ∈ Bh, and RT

I, J =
{

rT,T
I, J , on T,

02×2, otherwise.

Note that Ek is an edge of T and k ∈ {1, 2, 3} is its local numbering in T. If E is an exterior edge, i.e., E ∈ ∂Bh , the 
support of RE

I, J in Bh is only one element that contains E, and if E is an interior edge, the support of RE
I, J are two 

adjacent elements that have E in common. Let LE be the union of the support boundaries of RE
I, J and the corre-

sponding edge E, and let tL be the unit tangent vector field on LE . On LE the function RE
I, J is multi-valued. However, 

RE
I, J tL is continuous (single-valued) across LE . Here, we emphasize that the above description of RE

I, J is valid if we 
use the numbering scheme discussed in Section 3.1. The support of the global shape function RT

I, J in Bh is the cor-

responding element T. RT
I, J is multi-valued on ∂T while RT

I, J t∂T is continuous across ∂T. Based on the above discus-

sion, one can conclude that �tRE
I, J �E′ = 0 and �tRT

I, J �E′ = 0, ∀E′ ∈ Bh , and hence RE
I, J , R

T
I, J ∈ V̆ c

h,r . Let us now define 
the global degrees of freedom. Suppose T and T′ are adjacent in Bh such that their common edge E is numbered 
Ek in T and Ek′ in T′ , where k is not necessary equal to k′ . The numbering scheme of Section 3.1 guarantees that 
φ
T,Ek
I, J = φ

T′,Ek′
I, J , ∀I, J . This equivalence enables one to use either of them for calculating the global degrees of free-

dom for E (this is also necessary for the assembly of finite elements). Therefore, it is well-defined to write �E
I, J :

V̆ c
h,r −→ R, �E

I, J (T h) := φ
T,Ek
I, J (T h|T) as the global degree of freedom associated with RE

I, J . Also, the global degree of 
freedom associated with RT

I, J is �T
I, J : V̆ c

h,r −→ R, �T
I, J (T h) := φ

T,T
I, J (T h|T). Note that �E

I, J , �
T
I, J ∈ (V̆ c

h,r)
� , but they can be 

extended to Hc(Bh)
� .

Similarly, one can define the global shape functions SE
I, J , ST

I, J and the global degrees of freedom �E
I, J ,�T

I, J based on 

the corresponding local shape functions s̄T,Ek
I, J , sT,T

I, J and degrees of freedom ψT,Ek
I, J , ψT,T

I, J . One can also obtain the global 
shape functions directly as SE

I, J = RE
I, J R

T and ST
I, J = RT

I, J R
T . Therefore, �nSE

I, J �E′ = 0 and �nST
I, J .�E′ = 0, ∀E′ ∈ Bh , and 

SE
I, J , S

T
I, J ∈ V̆ d

h,r . In Fig. 3, we illustrate the first (nonzero) rows of RE
1,1 ∈ V c−

h,1 and SE
1,1 ∈ V d−

h,1 on their supports. See vT̂,T̂
2

and vT̂,T̂
3 in Fig. 2 for some examples of nonzero rows of RT

I, J on its support.

To define the global shape function analogous to tTi , consider the function TT
i on Bh with support T such that TT

i = tTi
on T. It is straightforward to show that TT

i ∈ V �
h,r . For interpolating a scaler field f on Bh using V �

h,r , one simply uses 
ωT

i ( f |T) as the global degree of freedom associate with TT
i .

Theorem 11. 
{

HN
I

}
N∈Bh

is a basis for V 1
h,r , 

{
RE

I, J , R
T
I, J

}
E,T∈Bh

is a basis for V̆ c
h,r , 

{
SE

I, J , S
T
I, J

}
E,T∈Bh

is a basis for V̆ d
h,r , and {

TT
i

}
T∈Bh

is a basis for V �
h,r .

Proof. See [26, Lemma 1.77 and Proposition 1.78] for the proof of the first statement. The other three statements can be 
proved similarly considering [26, Lemma 1.86, Proposition 1.87, Lemma 1.92, and Proposition 1.93]. �
3.3. Compatible-strain mixed finite element methods

Using the approximation spaces defined in the previous section, one writes the following mixed finite element methods 
for (2.8):
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Fig. 4. The schematic diagrams for some first-order and second-order mixed finite elements.

Given a body force B of L2-class, a boundary displacement U on �d of H1/2-class, and a boundary traction T on �t of L2-class, find 
(U h, K h, P h, ph) ∈ V 1

h,m(�d, U ) × V̆ c
h,n × V̆ d

h,r × V �
h,s such that

〈〈P h,grad ϒh〉〉 = 〈〈ρ0 B,ϒh〉〉 +
∫
�t

〈T ,ϒh〉ds, ∀ϒh ∈ V 1
h,m(�d),

〈〈 P̃ (K h),κh〉〉 − 〈〈P h,κh〉〉 + 〈〈ph Q (K h),κh〉〉 = 0, ∀κh ∈ V̆ c
h,n,

〈〈grad U h,πh〉〉 − 〈〈K h,πh〉〉 = 0, ∀πh ∈ V̆ d
h,r,

〈〈C( Jh),qh〉〉 = 0, ∀qh ∈ V �
h,s.

(3.19)

Remark 12 (Compatibility of strain and continuity of traction).

(i) Let K h be a displacement gradient field on Bh . The zero jump �tK h �E = 0 is known as the Hadamard jump condition 
along the edge E. If K h ∈ V̆ c

h,r ⊂ Hc(Bh), the Hadamard jump condition is satisfied for all the internal edges of Bh
independently of the refinement level of the mesh. This is a necessary compatibility condition for the existence of a 
displacement field U h ∈ H1(TBh) (continuous along edges) such that K h = grad U h [35].

(ii) Suppose P h is a stress field on Bh . The zero jump condition �nP h �E = 0 indicates that traction vector associated 
with P h is continuous across the edge E. If P h ∈ V̆ d

h,r ⊂ Hd(Bh), the continuity of traction holds for all the internal 
edges of Bh independently of the refinement level of the mesh. This is required by localization of the balance of linear 
momentum.

Inspired by Remark 12 (i), we call the finite element methods introduced in (3.19) the compatible-strain mixed finite 
element methods (CSFEMs). We also use the following notation for referring to (3.19):

Hmcn(n̄)dr(r̄)Ls in the case of V 1
h,m × V c

h,n(V c−
h,n) × V d

h,r(V d−
h,r ) × V �

h,s,

where m, n, r = 1, 2 and s = 0, 1, 2. This results in 96 possible choices of CSFEMs. However, since (3.19) corresponds to 
a saddle point of a variational problem (see Remark 4) not all these choices lead to convergent (consistent and stable) 
methods as the solution and test spaces need to satisfy certain conditions. We will discuss this further in Section 3.5 and in 
the first numerical example. We will conclude that the well-performing choices of CSFEMs among the first and second-order 
elements are H1c1d1̄L0 and H2c2d2̄L1. The schematic diagrams of these two cases are given in Fig. 4.

3.4. Matrix formulation

In this section, we focus on the implementation of CSFEMs. In particular, we discuss how to represent (3.19) as a 
nonlinear system of algebraic (polynomial) equations, which can be solved using Newton’s method. We define the vec-
tor representation of a second-order tensor T and the matrix representation of a vector V with 4 entries by

�T � := [
T 11 T 12 T 21 T 22

]T
and [V ] :=

[
V 1 V 2

V 3 V 4

]
.
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One can show that 〈 〈Y , Z〉 〉 = 〈 〈�Y �, �Z�〉 〉 = ∫
B�Y �T�Z�dA = ∫

B�Z�T�Y �dA. Let �V̆ c
h,r� :=

{�T h� : T h ∈ V̆ c
h,r

}
and define 

�V̆ d
h,r� similarly. Then, (3.19) can be rewritten as

Find (U h, �K h�, �P h�, ph) ∈ V 1
h,m(�d, U ) × �V̆ c

h,n� × �V̆ d
h,r� × V �

h,s such that

∫
Bh

�grad ϒh�T�P h�dA −
∫
Bh

ρ0ϒ
T
h B dA −

∫
�t

ϒT
h T ds = 0, ∀ϒh ∈ V 1

h,m(�d),

∫
Bh

�κh�T (⌈
P̃ (K h)

⌉ + ph
⌈

Q (K h)
⌉)

dA −
∫
Bh

�κh�T�P h�dA = 0, ∀�κh� ∈ �V̆ c
h,n�,

∫
Bh

�πh�T⌈grad U h
⌉

dA −
∫
Bh

�πh�T�K h�dA = 0, ∀�πh� ∈ �V̆ d
h,r�,

∫
Bh

qh C( Jh)dA = 0, ∀qh ∈ V �
h,s.

(3.20)

The local shape functions are discussed in Section 3.1. Here, to be consistent with (3.20), we define the following vector 
representations of the local shape functions:

g1
T, j(X) :=

⌈
grad hT

j (X)
⌉
,

bc
T,k(X) :=

⌈
r̄T,Ei

I, J (X)
⌉
, bc

T,l(X) :=
⌈

rT,T
I, J (X)

⌉
,

bd
T,k(X) :=

⌈
s̄T,Ei

I, J (X)
⌉
, bd

T,l(X) :=
⌈

sT,T
I, J (X)

⌉
,

(3.21)

where j = 1, 2, ..., 2r for U h ∈ V 1
h,r , and the numberings k and l are specified as

k := I + 2( J − 1) + 2(i − 1)max J , l := I + 2( J − 1) + max k, (3.22)

where i = 1, 2, 3 and I = 1, 2. For K h ∈ V c−
h,1 and P h ∈ V d−

h,1 , we have J = 1, using V c
h,1, V c−

h,2, V d
h,1, and V d−

h,2 we have 
J = 1, 2, and J = 1, 2, 3 for V c

h,2 and V d
h,2. Note that in (3.21), bd

T,l and bc
T,l are defined only for second or higher-order 

finite element spaces, i.e., V̆ c
h,r and V̆ d

h,r with r ≥ 2. These relations can also be realized from Table 3. Let us write the 
following sparse matrices using the local shape functions of displacement and pressure and (3.21):

B1
T =

[
hT

1 hT
2 · · · hT

n1

]
2×n1

,

G1
T =

[
g1
T,1 g1

T,2 · · · g1
T,n1

]
4×n1

,

Bc
T = [

bc
T,1 bc

T,2 · · · bc
T,nc

]
4×nc ,

Bd
T =

[
bd
T,1 bd

T,2 · · · bd
T,nd

]
4×nd

,

B�
T =

[
tT1 tT2 · · · tT

n�

]
1×n�

,

(3.23)

where n1, nc , nd , and n� depend on the order of the corresponding approximation spaces and are given in the last column 
of Table 3. For a solution or test variable V h , one defines V T := V h|T . Next, recalling (3.13), one writes the following local 
interpolation operators for each T:

UT = B1
Tq1

T,
⌈

grad UT

⌉ = G1
Tq1

T, �KT� = Bc
Tqc

T, �PT� = Bd
Tqd

T, pT = B�
Tq�

T,

ϒT = B1
Tt1

T,
⌈

grad ϒT

⌉ = G1
Tt1

T, �κT� = Bc
Ttc

T, �πT� = Bd
Ttd

T, qT = B�
Tt�T,

(3.24)

where t1
T , tc

T , td
T , and t�T are some column vectors containing arbitrary real numbers. These vectors are associated with the 

corresponding test spaces. q1 , qc , qd , and q� are vectors of the unknown local degrees of freedom, that is
T T T T
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q1
T =

[
q1
T,1 q1

T,2 · · · q1
T,n1

]T
, q1

T,m = U J
h (Xi),

qc
T = [

qc
T,1 qc

T,2 · · · qc
T,nc

]T
, qc

T,k = φ
T,Ei
I, J (KT), qc

T,l = φ
T,T
I, J (KT),

qd
T =

[
qd
T,1 qd

T,2 · · · qd
T,nd

]T
, qd

T,k = ψ
T,Ei
I, J (PT), qd

T,l = ψ
T,T
I, J (PT),

q�
T =

[
q�
T,1 q�

T,2 · · · q�
T,n�

]T
, q�

T,i = ωT
i (pT).

(3.25)

Note that U J
h (Xi), J = 1, 2 is the value of the displacement at the i-th node of T, and m := J + 2(i − 1). Also, φT,Ei

I, J , φT,T
I, J

and ψT,Ei
I, J , ψT,T

I, J are given in (3.6) and (3.10) with the hat symbols removed. The numberings k and l are defined in (3.22), 
and the size of the vectors (q1

T , qc
T , qd

T , q�
T ) and (t1

T , tc
T , td

T , t�T ) is (n1, nc, nd, n�). Inserting (3.24) into the restriction of 
(3.20) to an element T, and then summing over T ∈ Bh results in the following representation of (3.20):∑

T∈Bh

(t1
T)T

(
K1d
T qd

T − F1
T − F1

ET
t

)
= 0,

∑
T∈Bh

(tc
T)T

(
Nc
T(qc

T,q�
T) + Kcd

T qd
T

)
= 0,

∑
T∈Bh

(td
T)T

(
Kd1
T q1

T + Kdc
T qc

T

)
= 0,

∑
T∈Bh

(t�T)T
(

N�
T(qc

T)
)

= 0.

(3.26)

The new local matrices and vectors used in the above relations are defined as

K1d
T =

∫
T

(G1
T)TBd

T dA, Kd1
T = (K1d

T )T, (3.27)

Kcd
T = −

∫
T

(Bc
T)TBd

T dA, Kdc
T = (Kcd

T )T, (3.28)

Nc
T(qc

T,q�
T) =

∫
T

(Bc
T)T

(⌈
P̃
([Bc

Tqc
T])⌉ + (

B�
Tq�

T

)⌈
Q

([Bc
Tqc

T])⌉)
dA, (3.29)

N�
T(qc

T) =
∫
T

(B�
T)TC

(
JT(qc

T)
)

dA, JT(qc
T) = det(I + [Bc

Tqc
T]), (3.30)

F1
T =

∫
T

(B1
T)Tρ0 B dA, (3.31)

F1
ET

t
=

{ ∫
ET

t
(B1

ET
t

)T T ds, if T ∩ �t = ET
t ,

0n1×1, otherwise.
(3.32)

The term ET
t in (3.32) denotes the edge of T that lies on the traction boundary �t . Also, to define B1

Et
in (3.32), consider 

a zero matrix of size 2 × n1, and then substitute 1D Lagrange polynomials over ET
t into those columns that are associated 

with ET
t . Let K1d

T̂
= ∫

T̂(G1
T̂
)TBd

T̂
dÂ and Kcd

T̂
= − 

∫
T̂(Bc

T̂
)TBd

T̂
dÂ be the counterparts of (3.27) and (3.28) for the reference 

finite element T̂, where G1
T̂

, Bc
T̂

, and Bd
T̂

are obtained according to (3.23) but using the reference local shape functions. For 
all T ∈ Bh , Lemma 9, (ii) and (v) imply the following relations:

K1d
T = oTK1d

T̂
, Kcd

T = oTKcd
T̂

. (3.33)

Therefore, the local matrices K1d
T , Kd1

T , Kcd
T , and Kdc

T are independent of the geometry of T and depend only on the ordering 
of the three vertices of T. In practice, the relations (3.33) enable one to obtain (3.27) and (3.28) ∀T ∈ Bh with much less 
computational cost. It is also practical to change the domain variables of the integrals (3.29)–(3.32) from X ∈ T to ξ ∈ T̂. For 
example, (3.29) and (3.31) can be obtained as

Nc
T(qc

T,q�
T) = ∣∣det JT

∣∣ ∫
̂

(B̄
c
T)T

(⌈
P̃
([B̄c

Tqc
T])⌉ + (

B�

T̂
q�
T

)⌈
Q

([B̄c
Tqc

T])⌉)
dÂ,
T
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F1
T = ∣∣det JT

∣∣ ∫
T̂

(B1
T̂
)Tρ0(B ◦ TT)dÂ,

where B̄c
T = Bc

T ◦ TT , and B�

T̂
and B1

T̂
are actually B�

T and B1
T but are written using the reference local shape functions.

Next we assemble (3.27)–(3.32) for all T ∈ Bh and then accordingly write the global counterparts of the vectors of the 
local degrees of freedom (3.25) and t1

T , tc
T , td

T , and t�T . We use the subscript h for both the assembled and the global matrices 
and vectors, e.g., we denote the assembled form of Kcd

T and F1
T by Kcd

h and F1
h , respectively, and the global counterparts of 

q1
T and t1

T by q1
h and t1

h , respectively. Next, according to (3.26), one defines

Qh =

⎡⎢⎢⎢⎣
q1

h

qc
h

qd
h

q�
h

⎤⎥⎥⎥⎦ , Th =

⎡⎢⎢⎢⎣
t1
h

tc
h

td
h

t�h

⎤⎥⎥⎥⎦ , Kh =

⎡⎢⎢⎢⎣
0 0 K1d

h 0

0 0 Kcd
h 0

Kd1
h Kdc

h 0 0
0 0 0 0

⎤⎥⎥⎥⎦ , Nh(Qh) =

⎡⎢⎢⎣
0

Nc
h(q

c
h,q�

h)

0
N�

h(q
c
h)

⎤⎥⎥⎦ , Fh =

⎡⎢⎢⎣
F1

h + F1
�t

0
0
0

⎤⎥⎥⎦ , (3.34)

where Qh includes all the unknown degrees of freedom of the problem and a few known degrees of freedom in its q1
h , 

which comes from the displacement boundary U |�d = U . Th is a vector of arbitrary real numbers with a few fixed zero 
elements in its t1

h as a result of ϒ|�d = 0. Suppose n is the total number of nodes in the mesh except those lying on �d , 
and nE and nT are the total numbers of edges and elements in the mesh, respectively. After imposing the displacement 
boundary conditions, the total number of degrees of freedom is

N = 2n + (ec + ed)nE + (ac + ad + a�)nT,

where ec (ed) and ac (ad) are the numbers of local degrees of freedom for displacement gradient K (stress P ), which 
are defined on each edge and on each element, respectively. Also, a� is the number of local degrees of freedom for the 
pressure-like variable p, which is defined only on each element. These numbers depend on the choice of CSFEMs and the 
orders of their approximation spaces; ec and ed can be read from the third column of Table 3 and ac , ad , and a� from its 
fourth column. Recalling nc and nd in (3.23), we have nc = 3ec + ac and nd = 3ed + ad . The size of the sparse matrix Kh is 
N × N , and the size of the vectors Th , Qh , Nh , and, Fh is N × 1. Let N1 = 2n, Nc = nEec + nTac , Nd = nEed + nTad , and 
N� = nTa� . Then, the size of the global vectors 

(
q1

h,qc
h,qd

h ,q�
h

)
and 

(
t1
h, tc

h, td
h , t�h

)
is (N1, Nc, Nd, N�).

Remark 13. From (3.33), the symmetric sparse matrix Kh does not depend on the geometry and dimensions, but only 
on the connectivity and numbering of the elements of the mesh. That is, the matrix Kh is identical for homeomorphic 
(topologically equivalent) meshes.

By using (3.34), one can write (3.26) as TT
h

(
KhQh + Nh(Qh) − Fh

)
= 0. Since Th is arbitrary, one obtains the following 

nonlinear system of algebraic equations:

KhQh +Nh(Qh) = Fh. (3.35)

Define Rh(Qh) :=KhQh +Nh(Qh) −Fh as the residual of the nonlinear equation (3.35). Using Newton’s method, the solution 
of (3.35) can be obtained iteratively by Q(i+1)

h = Q(i)
h − K−1

th

(
Q(i)

h

)
Rh

(
Q(i)

h

)
starting form an initial guess, where i is the 

iteration number and Kth is the tangent stiffness matrix (Jacobian matrix) given by

Kth =

⎡⎢⎢⎢⎣
0 0 K1d

h 0

0 Hcc
h Kcd

h Hc�
h

Kd1
h Kdc

h 0 0

0 H�c
h 0 0

⎤⎥⎥⎥⎦ .

Here, H�c
h = (Hc�

h )T , and Hcc
h and Hc�

h are obtained by assembling the following matrices for all T ∈ Bh:

Hcc
T (qc

T,q�
T) =

∫
T

(Bc
T)TÃ

(
Bc
Tqc

T,B�
Tq�

T

)
Bc
T dA, Hc�

T (qc
T) =

∫
T

(Bc
T)T

⌈
Q

([Bc
Tqc

T])⌉B�
T dA, (3.36)

where Ã(K , p) in 2D is a 4 × 4 matrix representation of the 4th-order elasticity tensor obtained form the derivative of 
components of the constitutive relation P = P̃ (K ) + p Q (K ) with respect to components of K . Note that the tangent 
stiffness matrix Kth is symmetric and indefinite; this is closely related to Remark 4.

For our numerical examples, we consider the incompressible neo-Hookean solid with the energy function

W̃ = μ
(I1 − 2), (3.37)
2
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where μ is the shear modulus at the ground state. The constitutive part of stress reads P̃ (K ) = μ(I + K ). We use the 
following functions to impose the incompressibility condition J = 1: C1( J ) = J − 1, and C2( J ) = ln J . We have observed 
in our numerical examples that C1( J ) has a better performance over C1( J ) in problems with tension loadings, while in 
bending problems with very refined meshes C2( J ) has a better performance over C1( J ). We need the following relations 
for calculating (3.36):

Q 1(K ) = J F −T, Ã1(p) = μI − pI,

Q 2(K ) = F −T, Ã2(K , p) = μI − p

J
I − p

⌈
F −T⌉⌈F −T⌉T

,

where I is the 4 × 4 identity matrix, and I denotes an anti-diagonal matrix with non-zero components I
14 = I

41 = −1 and 
I
23 = I

32 = 1. One can show that F −T = 1
J (I + RK RT).

3.5. Solvability and stability

Theorem 14. The tangent stiffness matrix Kth is invertible (non-singular) if and only if the following four conditions hold:

(i) ker(Kd1
h ) = {0N1×1},

(ii) ker(Kcd
h ) ∩ ker(K1d

h ) = {0Nd×1},

(iii) ker(Hc�
h ) = {0N�×1},

(iv) ker(Hcc
h ) ∩ K = {0Nc×1}, where K = {

X ∈ ker(H�c
h ) : YTKdc

h X = 0,∀Y ∈ ker(K1d
h )

}
.

Proof. Rearrange the rows and the columns of Kth to obtain

Kth =
[
Ah BT

h

Bh 0

]
, Ah =

[
Hcc

h 0
0 0

]
, B =

[
H�c

h 0

Kdc
h Kd1

h

]
, BT

h =
[

Hc�
h Kcd

h

0 K1d
h

]
.

Then, apply [36, Theorem 3.2.1] and use an argument similar to that of [36, §3.2.5]. �
Corollary 15. The tangent stiffness matrix Kth is invertible, only if 0 ≤ Nd − N1 ≤ Nc and N� ≤ Nc.

Proof. Theorem 14, (i), (ii), and (iii) imply that N1 ≤ Nd , Nd ≤ Nc + N1, and N� ≤ Nc , respectively. �
Remark 16. Given a matrix Am×n , there exist two unitary matrices Um×m and Vn×n and a rectangular diagonal matrix 
Sm×n with non-negative entries on the main diagonal such that A = USV∗ , where the superscript ∗ denotes the conjugate 
transpose. The diagonal entries of S, Si, j with i = j, are known as the singular values of A. It is straightforward to show that 
ker(A) = {0}, if and only if the smallest singular value of A is non-zero. This can be used to numerically check the conditions 
of Theorem 14. In particular, one can compute the smallest singular values of sparse matrices Kd1

h and 
[

Kdc
h Kd1

h

]T
to check 

(i) and (ii), respectively.

Remark 17. Conditions of Theorem 14 can be rewritten as inf-sup conditions. For example, ker(Kd1
h ) = {0N1×1}, where Kd1

h :
RN1 → RNd

, is equivalent to the following statement:

∃βh > 0, such that inf
X∈RN1

sup
Y∈RNd

YTKd1
h X

‖X‖
RN1 ‖Y‖

RNd
≥ βh.

Also see [26, Lemmas A.39 and A.40] and note that RNd� can be identified with RNd
. One can also show that βh is the 

smallest singular value of Kd1
h , see [26, Remark 2.23] and [36, §3.4.3].

Recall that Hc�
h (qc

h) and Hcc
h (qc

h, q�
h) are nonlinear operators. They depend on the state of deformation of the body and 

vary at each iteration of Newton’s method. Hence, it is difficult to draw a general conclusion for invertibility of Kth based 
on the conditions (iii) and (iv) of Theorem 14 without considering the physics of the problem. On the other hand, Kcd

h

and K1d
h are linear operators and remain unchanged throughout the deformation. Therefore, in the following discussions, we 

focus on conditions (i) and (ii) of Theorem 14.
Considering different meshes with few elements and counting the total degrees of freedom (N1, Nc, Nd, N�), one can 

check that all the possible mixed formulations of the first and the second order satisfy N� ≤ Nc . However, many of them 
violate 0 ≤ Nd − N1 ≤ Nc , and hence, result in a singular tangent stiffness matrix Kt . Those are H2cm̄d1̄Ln, H2cmd1̄Ln, 
h
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H2cm̄d1Ln, H2cmd1Ln, H1c1̄d1Ln, Hmc1̄d2̄Ln, Hmc1̄d2Ln, Hmc1d2̄Ln, Hmc1d2Ln, and Hmc2̄d2Ln for m = 1, 2 and n = 0, 1, 2. 
In addition, considering several arbitrary meshes and computing the smallest singular value of 

[
Kdc

h Kd1
h

]T
, we conclude 

that ker(Kcd
h ) ∩ ker(K1d

h ) = {0Nd×1} does not hold, in general, for Hmcn̄dn̄Lr and HmcndnLr with m, n = 1, 2 and r = 0, 1, 2. 
The cases mentioned above are 75 out of 96 possible first and second order mixed methods. These cases have solvability 
issues for any mesh regardless of its size h.

In [17] based on the observations in several numerical examples it was reported that only 7 out of the 32 possible 
choices of the first and second-order CSFEMs for compressible solids result in solvable algebraic systems. Those observa-
tions agree with the above arguments because all the remaining 25 mixed methods violate one or both of the necessary 
conditions ker(Kd1

h ) = {0N1×1} and ker(Kcd
h ) ∩ker(K1d

h ) = {0Nd×1}. In fact, those 25 cases can be obtained directly from the 75 
cases we mentioned above by removing the pressure field and the incompressibility constraint from the mixed formulations.

In view of Theorem 14, (i) and (ii), we have narrowed down the 96 possible choices of mixed FEMs to the following 
21 solvable ones: H1c1d1̄Lm, H1c2̄d1̄Lm, H1c2̄d1Lm, H1c2d1̄Lm, H1c2d1Lm, H1c2d2̄Lm, and H2c2d2̄Lm for m = 0, 1, 2. Sat-
isfaction of the conditions of Theorem 14 for a given mesh is not sufficient; the stability of the method requires that all 
the four conditions hold as the mesh gets refined and h goes to zero. Our numerical examples suggest that H1c1d1̄L0 and 
H2c2d2̄L1 have an overall good performance among the first-order and second-order elements, respectively. These elements 
are illustrated in Fig. 4.

4. Numerical examples

In this section, we consider six different examples to assess the convergence and accuracy of CSFEMs in the analysis of 
incompressible solids. For all the examples, we consider the energy function (3.37). We use the L2-norm to measure the 
values and the errors of the approximated filed variables (U h, K h, P h, ph) over the entire mesh. We also use the Frobenius 

norm of a second-order tensor T , ‖T ‖ :=
(∑

I, J T I J T I J
) 1

2
to show the distribution of the values of K h and P h in the 

deformed configurations.

Example 1: inflation of a cylindrical shell We consider the inflation of an incompressible thick cylindrical shell shown in Fig. 5. 
The inner boundary of the shell is traction free and the outer boundary is subjected to U out = (λ − 1)X. We assume that 
there is no body force, i.e., B = 0. Owing to the incompressibility constraint J = 1, one can obtain the exact solution of the 
problem as follows:

U e(X) =
(

r(R)

R
− 1

)
X,

pe(X) = −μ
R2

r(R)2
+ μ(λ2 − 1)R2

out

2

(
1

r(R in)2
− 1

r(R)2

)
+ μ ln

(
r(R in)

R inr(R)
R

)
,

where r(R) =
√

R2 + (λ2 − 1)R2
out and R = ‖X‖. Having U e and pe , one can obtain K e = grad U e and P e = P̃ (K e) +

pe Q (K e). The exact solution enables one to study and verify the accuracy and convergence of CSFEMs. Note that this 
is an example of a universal deformation [37]. For our numerical analysis, we assume that R in = 0.5 mm, Rout = 1 mm, 
and λ = 3. We also assume μ = 1 N/mm2 in (3.37) and use the constraint function C( J ) = J − 1. Using symmetry of the 
problem, we model only a quarter of the shell in the numerical analysis (see the generated unstructured meshes in Fig. 5). 
Using the symmetry and the numerical solutions of a quarter of the domain, one will be able to recover the solution for 
the entire domain.

As was discussed in §3.5, among the 96 possible choices of the first and second-order CSFEMs, only 21 may result in a 
non-singular tangent stiffness matrix Kth and the remaining 75 CSFEMs have solvability issues. We studied and compared 
the performance of the 21 solvable CSFEMs using the exact solution of this problem. Our numerical experiments indicate 
that the following 8 CSFEMs have good performance: H1c1d1̄L0, H1c2̄d1̄L0, H1c2̄d1̄L1, H1c2̄d1L0, H1c2d1L0, H2c2d2̄L0, 
H2c2d2̄L1, H2c2d2̄L2. We do not consider the reaming 13 CSFEMs further due to their poor performance.

For the four meshes shown in Fig. 5, the relative L2-norm of errors associated with each of the above 8 CSFEMs are 
given in Table 4. Considering the relative errors of the four primary field variables U , K , P , and p, H2c2d2̄L1 (#7) is the 
most accurate method among all CSFEMs. Based on the number of degrees of freedom in the fourth column, H1c1d1̄L0
(#1) has the least computational cost among all CSFEMs. Although for an identical mesh, H1c2̄d1̄L0, H1c2̄d1̄L1, H1c2̄d1L0, 
and H2c2d2̄L2 (#2 − #4 and #8) have (many) more degrees of freedom than H1c1d1̄L0 (#1), none of them has a better 
relative error in approximating the four primary variables. For an identical mesh, H1c2d1L0 and H2c2d2̄L0 (#5 and #6) are 
more accurate than H1c1d1̄L0 (#1) in approximating the four primary variables, but they are computationally much more 
expensive (more number of DOFs). In other words, it may be better to refine the mesh and use H1c1d1̄L0 rather than using 
H1c2d1L0 or H2c2d2̄L0 with a coarser mesh. Therefore, H2c2d2̄L1 and H1c1d1̄L0 (#1 and #7), which are shown in Fig. 4, 
have an overall better performance among all CSFEMs. Between these two methods, if we compare H1c1d1̄L0 with 56298 
#DOF and H2c2d2̄L1 with 34240 #DOF, we conclude that the latter method results in a more accurate solution for less 
computational cost.
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Fig. 5. Inflation of a cylindrical shell: geometry, boundary conditions, and four unstructured meshes.

Fig. 6. Relative L2-norms of errors in approximating displacement, displacement gradient, stress, and pressure versus the maximum diameter h. In each 
diagram, different curves are associated with different CSFEMs. In each diagram, the dash–dot line and the dashed line have the slopes of 1 and 2, 
respectively.

To study the convergence order of CSFEMs, we plot the relative errors of the four primary variables versus the maximum 
diameter h of some unstructured meshes in Fig. 6. Note that our observations in Table 4 also hold for Fig. 6 with regard 
to accuracy. The convergence order of displacement U is close to 2 for all methods. The convergence order of displacement 



268 M. Faghih Shojaei, A. Yavari / Journal of Computational Physics 361 (2018) 247–279
Table 4
Convergence and relative error of different CSFEMs for inflation of a cylindrical shell. DOF denotes the degrees of freedom for each mesh, (U e , F e , P e , pe ) 
is the exact solution, and (U h , F h , P h , ph ) is the approximate solution for each CSFEM.

# CSFEM #Elements #DOF
‖U h−U e‖L2

‖U e‖L2

‖K h−K e‖L2

‖K e‖L2

‖P h−P e‖L2

‖P e‖L2

‖ph−pe‖L2

‖pe‖L2

1 H1c1d1̄L0 52 646 7.38e-03 1.19e-01 3.45e-01 4.98e-01
544 6226 7.03e-04 3.04e-02 8.68e-02 1.67e-01
1052 11902 3.63e-04 2.05e-02 7.43e-02 1.44e-01
5056 56298 7.95e-05 9.54e-03 3.20e-02 5.98e-02

2 H1c2̄d1̄L0 52 854 6.97e-03 1.38e-01 1.76e-01 2.14e-01
544 8402 6.28e-04 3.75e-02 4.11e-02 4.96e-02
1052 16110 3.28e-04 2.61e-02 2.89e-02 3.56e-02
5056 76522 7.20e-05 1.22e-02 1.40e-02 1.57e-02

3 H1c2̄d1̄L1 52 958 7.29e-03 1.46e-01 3.74e-01 7.29e-01
544 9490 6.27e-04 4.02e-02 7.64e-02 1.34e-01
1052 18214 3.21e-04 2.76e-02 5.21e-02 8.92e-02
5056 86634 7.05e-05 1.28e-02 2.25e-02 3.62e-02

4 H1c2̄d1L0 52 1028 7.18e-03 1.06e-01 3.73e-01 4.89e-01
544 10094 6.86e-04 2.66e-02 1.00e-01 1.73e-01
1052 19348 3.56e-04 1.83e-02 8.66e-02 1.44e-01
5056 91860 7.84e-05 8.61e-03 3.75e-02 6.06e-02

5 H1c2d1L0 52 1306 7.32e-03 6.80e-02 6.56e-02 1.34e-01
544 12874 6.57e-04 1.94e-02 1.85e-02 4.34e-02
1052 24690 3.47e-04 1.36e-02 1.27e-02 3.06e-02
5056 117310 7.56e-05 6.28e-03 5.64e-03 1.37e-02

6 H2c2d2̄L0 52 1688 2.74e-03 4.45e-02 3.45e-02 1.09e-01
544 16742 2.70e-04 1.37e-02 1.15e-02 3.84e-02
1052 32136 1.46e-04 1.01e-02 8.29e-03 2.78e-02
5056 152872 3.17e-05 4.64e-03 3.84e-03 1.29e-02

7 H2c2d2̄L1 52 1792 1.16e-03 1.96e-02 5.41e-02 1.21e-01
544 17830 8.51e-05 1.97e-03 8.70e-03 1.88e-02
1052 34240 4.57e-05 1.07e-03 4.91e-03 1.06e-02
5056 162984 1.02e-05 2.75e-04 1.42e-03 3.16e-03

8 H2c2d2̄L2 52 1948 1.32e-03 3.21e-02 3.25e-01 1.07
544 19462 9.42e-05 4.58e-03 1.07e-01 2.69e-01
1052 37396 4.85e-05 2.53e-03 6.42e-02 1.51e-01
5056 178152 1.04e-05 7.03e-04 2.35e-02 5.03e-02

Fig. 7. Cook’s membrane: geometry, boundary conditions, and four unstructured meshes.

gradient K is close to 1 for all methods except H2c2d2̄L1 and H2c2d2̄L2, for which the convergence order is almost 2. 
For the stress P , the convergence order is close to 1 for all methods except H2c2d2̄L1, which has a convergence order of 
almost 2. We also observe that the convergence order of the pressure-like variable p and the stress P are the same for all 
methods. Based on the above discussions, we will use H1c1d1̄L0 and H2c2d2̄L1 in the remaining examples.
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Fig. 8. Cook’s membrane: vertical displacement of point A in Fig. 7 for different values of the shearing force f versus the number of elements in the mesh. 
The dashed and the solid lines are generated using H1c1d1̄L0 and H2c2d2̄L1, respectively. The dotted line indicates the results of [10].

Fig. 9. Cook’s membrane: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of elements in the mesh for different 
values of the shearing force f . The dashed and the solid lines are obtained by using H1c1d1̄L0 and H2c2d2̄L1, respectively.

Example 2: Cook’s membrane To assess the performance of CSFEMs in bending analysis, we consider the standard Cook’s 
membrane problem shown in Fig. 7. We assume μ = 1 N/mm2 and use the constraint function C( J ) = ln J . We investigate 
the pointwise convergence of H1c1d1̄L0 and H2c2d2̄L1 in Fig. 8 by plotting the vertical displacement of point A indicated in 
Fig. 7 for different meshes and for different values of the shearing force f . We also compare our results with those generated 
only for f = 0.1 N/mm2 in the work of Chi et al. [10]. We observe that both CSFEMs provide good approximations for 
relatively coarse meshes and H2c2d2̄L1 converges faster than H1c1d1̄L0. Also, there is a good agreement between CSFEMs 
and the method used in [10].

To study convergence, in Fig. 9, we plot the L2-norms of displacement, displacement gradient, stress, and pressure using 
H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) and for different values of shearing force f . Considering the four 
primary variables and for all values of the shearing force f , one can see that H2c2d2̄L1 converges rapidly. The convergence 
of H1c1d1̄L0 is comparable to that of H2c2d2̄L1 in approximating U and K . However, the convergence of H1c1d1̄L0 in 
approximating P and p becomes slower than that of H2c2d2̄L1 as the value of the shearing force f increases.
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Fig. 10. The deformed configurations of Cook’s membrane for the shear force f = 0.3 N/mm2 using H1c1d1̄L0. Colors indicate values of ‖P h‖ in the first 
row and pressure ph in the second row, where lighter colors correspond to larger values. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Figs. 10 and 11 depict the deformed configurations of Cook’s membrane for the four meshes of Fig. 7 and f = 0.3 N/mm2

by using H1c1d1̄L0 and H2c2d2̄L1, receptively. In both figures, colors indicate the values of ‖P h‖ in the first row and the 
values of the pressure ph in the second row with lighter colors corresponding to larger values. The standard two-field 
mixed formulation of incompressible elasticity in terms of displacement and pressure is unstable if displacement is ap-
proximated by continuous piecewise linear polynomials and pressure with piecewise constant polynomials on triangular 
elements [26,10]. Although H1c1d1̄L0 uses the same low-order polynomial spaces for displacement and pressure, as it can 
be observed from Fig. 10, it is convergent and does not result in any numerical artifacts in the approximation of pressure. 
Note that in the mixed formulation of CSFEMs such as H1c1d1̄L0, displacement and pressure are not coupled directly with a 
bilinear term. In addition, comparing with the standard two-field mixed FEMs, H1c1d1̄L0 provides a more accurate approx-
imation of strain and stress by approximating them directly in their domains of definition. In Fig. 11, one observes the fast 
convergence of H2c2d2̄L1 in approximating stress and pressure and its accuracy even for a coarse mesh with 46 elements.

Example 3: bending of an arch Following [16], for further testing of H1c1d1̄L0 and H2c2d2̄L1 in bending problems, we 
consider bending of the arch shown in Fig. 12. Note that f in Fig. 12 is a uniformly distributed load in the radial direction. 
We assume E = 250 N/mm2 and ν = 0.5 (μ = E/2(1 + ν)) and use C( J ) = ln J as the constraint function. Because of the 
symmetry, we study half of the arch as shown in the generated meshes in Fig. 12. Fig. 13 shows the reference and the 
deformed states of the arch subjected to f = 20 N/mm2 using H2c2d2̄L1 and the mesh with 324 elements in Fig. 12. The 
colors indicate the values of ‖K h‖ with lighter colors corresponding to larger values. As one expects, the middle portion of 
the half of the arch at x = 0.3 (x = −0.3) is narrowed and stretched, and hence, shows large values of ‖K h‖.
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Fig. 11. The deformed configurations of Cook’s membrane for the shear force f = 0.3 N/mm2 using H2c2d2̄L1. Colors indicate values of ‖P h‖ in the first 
row and pressure ph in the second row, where lighter colors correspond to larger values. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 14 shows the convergence of H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) for different values of the load f . 
We observe that both methods converge considering all the four primary fields and for all values of the transverse load f . 
However, H2c2d2̄L1 has a faster convergence, and hence provides a more accurate approximation when using coarse meshes. 
Fig. 15 shows the deformed configurations of half of the arch for f = 20 N/mm2 using the meshes of Fig. 12. The results 
are generated using H2c2d2̄L1 and colors indicate the values of ‖P h‖ in the first row and ph in the second row, where 
lighter colors correspond to higher values. Comparing the mesh with 71 elements with the mesh with 998 elements, one 
can see the accuracy of H2c2d2̄L1 in approximating stress and pressure even when using a coarse mesh.

Example 4: stretching a block with a hole at its center We consider a square block with a hole at its center as shown in Fig. 16. 
The block is subjected to uniform displacement boundaries of (u, 0) at its right and (−u, 0) at its left edge. The top and 
bottom edges are traction free. The goal of this example is to test the performance of CSFEMs at very large stretches. We 
assume μ = 1 N/mm2 and use C( J ) = J − 1. Due to symmetry, we consider only a quarter of the block as shown in the 
generated meshes in Fig. 16. Fig. 17 illustrates the reference and the deformed configurations of the block using H2c2d2̄L1
and the mesh with 184 elements in Fig. 16. The boundary displacement u = 1.5 mm results in a large stretch of 4. The 
colors indicate the values of ‖K h‖ with lighter colors associated with larger values. The maximum of ‖K h‖ is 6.5 at the 
boundary of the hole and x = 0. Fig. 18 illustrates the convergence of H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) for 
different values of the imposed boundary displacement u. We observe that H2c2d2̄L1 converges rapidly considering all the 
primary variables and for all values of u. Also, considering displacement, displacement gradient, and stress, H1c1d1̄L0 has 
a good convergence, but it has a poor performance in approximating pressure for stretch = 4 (u = 1.5 mm). Fig. 19 shows 
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Fig. 12. Bending of an arch: geometry, boundary conditions, and three unstructured meshes.

Fig. 13. The reference and deformed configurations of the arch for the bending load f = 20 N/mm2 using H2c2d2̄L1. Colors indicate values of the norm of 
displacement gradient ‖K h‖, where lighter colors correspond to larger values. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

the deformed configurations of a quarter of the block for u = 1.5 mm using the meshes of Fig. 16. The results are obtained 
using H2c2d2̄L1 and colors indicate the values of ‖P h‖ in the first column and ph in the second column, where lighter 
colors correspond to higher values. As one can observe, even for stretch = 4 and using a coarse mesh with 48 elements, 
H2c2d2̄L1 provides an accurate distribution of stress and pressure.

Example 5: stretching a block with randomly distributed holes Next, we consider a block with randomly distributed holes as 
shown in Fig. 20. The size of the block is 1 mm × 1 mm. The left edge of the block is fixed and the right edge is subjected 
to a uniform displacement boundary (u, 0). The top and the bottom edges are traction free. Similar to the previous example, 
this example tests the performance of CSFEMs at very large stretches but for a more complex geometry. We again consider 
μ = 1 N/mm2 and C( J ) = J − 1. Fig. 21 shows the reference and the deformed configurations of the block using H2c2d2̄L1
and the mesh with 184 elements in Fig. 20. The colors indicate the values of ‖K h‖, where lighter colors correspond to larger 
values. The large values of ‖K h‖ correspond to the boundaries of the middle portion of the holes with maximum ‖K h‖ of 
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Fig. 14. Bending of an arch: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of elements in the mesh for different 
values of the bending force f . The dashed and the solid lines are obtained using H1c1d1̄L0 and H2c2d2̄L1, respectively.

Fig. 15. The deformed configurations of the arch for the bending load f = 20 N/mm2 using H2c2d2̄L1. Colors indicate values of the norm of stress ‖Ph‖ in 
the first row and the pressure ph in the second row, where lighter colors correspond to larger values. For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

approximately 5.5 at (0.6, 0.5). Fig. 22 illustrates the convergence of H1c1d1̄L0 (dashed lines) and H2c2d2̄L1 (solid lines) 
for different values of u. We observe that H2c2d2̄L1 converges considering the four primary variables and for all values of 
u. We also see that H1c1d1̄L0 has good convergence, in general, but it becomes inaccurate in approximating pressure with 
the increase of stretch to 3 (u = 2 mm). Note that we had similar observations in Fig. 14. Using the meshes of Fig. 20 and 
using H2c2d2̄L1, in Fig. 23 we illustrate the deformed configurations of the block for u = 2 mm. The colors indicate the 
values of ‖P h‖ in the first column and ph in the second column with lighter colors corresponding to higher values. This 
mainly shows the stability of H2c2d2̄L1 in approximating the stress and pressure without any numerical artifacts even for 
a complex geometry under a large stretch.

Example 6: rubber reinforced with rigid particles As was discussed in Remark 12, the discrete fields K h ∈ V̆ c
h,r and P h ∈ V̆ d

h,r
naturally satisfy, respectively, the Hadamard jump condition and the continuity of traction on all the internal edges of any 
mesh. This enables one to accurately model heterogeneous solids in which inhomogeneities do not slide at the interfaces, 
i.e., the displacement field is continuous at the interfaces. More specifically, we generate a mesh for the entire heterogeneous 
material such that the interfaces between all inhomogeneities lie completely on some internal edges of the mesh. Then we 
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Fig. 16. Stretching a block with a hole at its center: geometry, boundary conditions, and four unstructured meshes.

Fig. 17. The reference and deformed configurations of a block with a hole for u = 1.5 mm (stretch = 4) obtained by using H2c2d2̄L1. Colors indicate 
values of the norm of displacement gradient ‖K h‖, where lighter colors correspond to larger values such that max ‖K h‖ = 6.5 is indicated by yellow. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Stretching a block with a hole at its center: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of elements 
in the mesh. u in the legend is the horizontal displacement imposed at the right boundary. The left boundary is subjected to −u simultaneously. The 
dashed and solid lines are generated by using H1c1d1̄L0 and H2c2d2̄L1, respectively.
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Fig. 19. The deformed configurations of a quarter of a block with a hole for u = 1.5 mm (stretch = 4) using H2c2d2̄L1. Colors indicate values of the norm 
of stress ‖P h‖ in the first column and the pressure ph in the second column, where lighter colors correspond to larger values. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Three unstructured meshes for a square block with randomly distributed holes.

Fig. 21. The reference and deformed configurations of the block with randomly distributed holes for u = 2 mm (stretch = 3) obtained using H2c2d2̄L1. 
Colors indicate values of the norm of displacement gradient ‖K h‖, where lighter colors correspond to larger values such that max ‖K h‖ = 5.5 is indicated 
by yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Stretching a block with randomly distributed holes: L2-norms of displacement, displacement gradient, stress, and pressure versus the number of 
elements in the mesh. u in the legend stands for the horizontal displacement imposed at the right boundary. The dashed and solid lines are generated 
using H1c1d1̄L0 and H2c2d2̄L1, respectively.

Fig. 23. The deformed configurations of the block for u = 2 mm (stretch = 3) using H2c2d2̄L1. Colors indicate values of the norm of stress ‖Ph‖ in the first 
column and the pressure ph in the second column, where lighter colors correspond to larger values. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

assign a different material model to the patch of elements within each inhomogeneity. Regardless of the refinement level of 
the generated mesh, CSFEMs naturally satisfy all the interface conditions of the heterogeneous solid at the discrete level.

As an application, we consider a square rubber block with edge length of 1 mm reinforced with 16 rigid circular particles 
with area fraction of 20% as it is shown in Fig. 24. The left and the right edges of the block are subjected to uniform traction 
(− f , 0) and (0, f ), respectively, and the top and the bottom edges are traction free. We consider μ1 = 1 N/mm2 for the 
rubber matrix and μ2 = 1e5 N/mm2 for the rigid particles, and we use C( J ) = J − 1 for both of them.

Fig. 25 shows the deformed configuration of the block for the tension load f = 2.8 N/mm2 using H2c2d2̄L1 and the mesh 
with 4428 elements given in Fig. 24. We can see that the stretch due to the imposed boundary tractions is larger than 2. In 
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Fig. 24. An unstructured mesh for a square rubber block with 16 particles with 20% area fraction.

Fig. 25. The deformed configuration of the block for f = 2.8 N/mm2 using H2c2d2̄L1 and the mesh with 4428 elements given in Fig. 24. Colors on the 
matrix indicate values of the norm of displacement gradient in the first plot, the norm of stress in the second plot, and pressure in the third plot with 
lighter colors corresponding to larger values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)
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Fig. 26. Rubber reinforced with rigid particles: L2-norms of displacement over the entire domain and L2-norms of displacement gradient, stress, and 
pressure over the matrix versus the number of elements in the mesh. The results are generated by using H2c2d2̄L1.

the first plot, colors on the matrix indicate values of the norm of the displacement gradient ‖K h‖. As one expects, K h = 0
everywhere in the rigid particles. Furthermore, we observe that the large values of ‖K h‖ occur in the portion of the matrix 
between two rigid particles of almost same vertical positions that were close to one another before deformation. In the 
second plot, colors on the matrix indicate values of the norm of stress ‖P h‖. As can be seen, those points of the matrix at 
the left and right sides of every particle have the large values of stress. The third plot shows the values of pressure ph in 
the matrix. Everywhere in the particles, the computed value of ph is almost −μ2. We observe that the positions of large 
values of pressure and stress in the matrix are almost the same; this is consistent with our observations of all the previous 
examples. Fig. 26 shows that H2c2d2̄L1 is convergent for different values of f .

5. Concluding remarks

We introduced a new class of mixed finite element methods for incompressible nonlinear elasticity – compatible-
strain mixed finite element methods (CSFEMs). This work is an extension of [17] to incompressible nonlinear elasticity. 
Furthermore, this work improves [17] by providing a more practical description of the mixed formulations and the fi-
nite element approximations, especially, a more efficient way to calculate the shape functions. We derived a four-field 
mixed formulation from a Hu–Washizu type functional with the displacement U , the displacement gradient K , the first 
Piola–Kirchhoff stress tensor P , and a pressure-like field p as the four independent unknowns. For solution spaces, we 
assumed (U , K , P , p) ∈ H1(TB) × Hc(B) × Hd(B) × L2(B), and to define the corresponding test spaces, we used the same 
Hilbert spaces. Next, we constructed some conforming finite element (piecewise polynomial) subspaces V 1

h,r ⊂ H1(TBh), 
V̆ c

h,r ⊂ Hc(Bh), V̆ d
h,r ⊂ Hd(Bh), and V �

h,r ⊂ L2(Bh). Then, CSFEMs were obtained by replacing the solution and test spaces 
of the four-field mixed formulation with the generated finite element subspaces. Due to interelement continuities of these 
subspaces, regardless of the refinement level of the mesh, CSFEMs approximate a continuous displacement and satisfy both 
the Hadamard compatibility condition of displacement gradient and the continuity of traction on all the internal edges.

After solving several numerical examples, we observed that CSFEMs are robust and have good performance for different 
geometries and loadings. In particular, CSFEMs perform well in bending problems, do not result in an unphysical approx-
imation of pressure even when using piecewise constant polynomials, and do not suffer from numerical artifacts such as 
locking, checkerboarding of pressure, or hourglass-type instabilities. In capturing the nonlinear effects, we observed that 
CSFEMs remain stable up to very large strains and provide an accurate approximation of stress as an independent variable. 
Moreover, as we demonstrated, CSFEMs provide an efficient framework for modeling inhomogeneous solids undergoing large 
deformations.

In future communications, we will extend CSFEMs to 3D compressible and incompressible nonlinear elasticity by using 
Hc and Hd-conforming tetrahedral elements. Moreover, we will investigate the applicability of CSFEMs in modeling non-
linear solids with distributed finite eigenstrains. Eigenstrains are created due to a host of anelastic phenomena in solids 
such as defects [38], thermal strains [39], biological growth [40], swelling [41], and the presence of inclusions and inho-
mogeneities [42,43]. In particular, we will use the geometric formulation of anelasticity, in which all the anelastic effects 
are buried into the material manifold. In this approach, if one can build a material manifold (where the body is stress-free 
by construction), then the anelasticity problem is transformed to a classical nonlinear elasticity problem provided that the 
nontrivial geometry of the material manifold is taken into consideration properly.
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