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Abstract

In this paper we formulate the problems of nonlinear and linear elastodynamic
transformation cloaking in a geometric framework. In particular, it is noted that
a cloaking transformation is neither a spatial nor a referential change of frame
(coordinates); a cloaking transformation maps the boundary-value problem of an
isotropic and homogeneous elastic body (virtual problem) to that of an anisotropic
and inhomogeneous elastic body with a hole surrounded by a cloak that is to be
designed (physical problem). The virtual body has a desired mechanical response
while the physical body is designed to mimic the same response outside the cloak
using a cloaking transformation. We show that nonlinear elastodynamic transfor-
mation cloaking is not possible while nonlinear elastostatic transformation cloaking
may be possible for special deformations, e.g., radial deformations in a body with
either a cylindrical or a spherical cavity. In the case of classical linear elastodynam-
ics, in agreement with the previous observations in the literature, we show that the
elastic constants in the cloak are not fully symmetric; they do not possess the minor
symmetries. We prove that elastodynamic transformation cloaking is not possible
regardless of the shape of the hole and the cloak. It is shown that the small-on-large
theory, i.e., linearized elasticity with respect to a pre-stressed configuration, does
not allow for transformation cloaking either. However, elastodynamic cloaking of
a cylindrical hole is possible for in-plane deformations while it is not possible for
anti-plane deformations. We next show that for a cavity of any shape elastodynamic
transformation cloaking cannot be achieved for linear gradient elastic solids; simi-
lar to classical linear elasticity the balance of angular momentum is the obstruction
to transformation cloaking. We finally prove that transformation cloaking is not
possible for linear elastic generalized Cosserat solids in dimension two for any
shape of the hole and the cloak. In particular, in dimension two transformation
cloaking cannot be achieved in linear Cosserat elasticity. We show that transforma-
tion cloaking for a spherical cavity covered by a spherical cloak is not possible in
the setting of linear elastic generalized Cosserat elasticity. We conjecture that this
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result is true for a cavity of any shape. It should be emphasized that in this paper
we do not consider the so-called metamaterials [70,72].
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1. Introduction

Invisibility has been a dream for centuries. Making objects invisible to elec-
tromagnetic waves has been a subject of intense research in recent years. PENDRY
et al. [89] and LEONHARDT [59] independently showed the possibility of electro-
magnetic cloaking. This was later experimentally verified by SCHURIG et al. [102],
Liu et al. [62], and ERGIN et al. [25].! In many references, including [89], it is
argued that the main idea of cloaking in electromagnetism is the invariance of
Maxwell’s equations under coordinate transformations (covariance). The covari-
ance of Maxwell’s equations has been known for a long time [90]. However, one
should note that covariance of Maxwell’s equations is not the direct underlying
principle of transformation cloaking. In electromagnetic cloaking one maps one
problem to another problem with some desirable response. For example, a domain
with a hole surrounded by a cloak with unknown physical properties is mapped
to a domain without a hole (or with a very small one) made of an isotropic and
homogeneous material. Then one tries to find the transformed fields such that both
problems satisfy Maxwell’s equations [56]. This will then determine the physical
properties of the cloak. In particular, the transformed quantities are not necessarily
what one would expect under a coordinate transformation, i.e., the two problems
are not related by push-forward or pull-back using the cloaking map.

1 One should note the frequency limitation in the existing electromagnetic cloaking works;
the existing works have been limited to microwaves frequencies.
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Fig. 1. Cloaking an object in a hole H by a cloak C. The system b has uniform physical
properties. The cloaking transformation is the identity map outside the cloaking region C

More specifically, the idea of cloaking for electromagnetism is as follows:
suppose one is given a body (domain) £2 with a hole H surrounded by a cloaking
region C (see Fig. 1). The hole can be of any shape and the one shown in Fig. 1 is
assumed to be circular (spherical in 3D). Suppose the physical properties in §2 \ C
are uniform and isotropic. One is interested in designing the cloak C such that an
electromagnetic wave passing through 2 would not interact with . In other words,
C redirects the waves such that the boundary measurements are identical to those
of another body with the same outer boundary as §2 without the hole and made of
the same homogeneous (and isotropic) material. Let us consider a smooth mapping
Yy o §2 — $§2 such that ¥, |o\¢ = id (¥, restricted to the outside of the cloak is
the identity map) and it shrinks the hole 7 to a small circle (sphere) of radius p > 0
(see Fig. 1b). Note that this map is not unique, and hence, many possibilities for a
cloak C. One then transforms the physical fields such that the two problems satisty
Maxwell’s equations. This usually makes the physical properties of the cloaking
region C both inhomogeneous and anisotropic. The perfect cloaking case (the limit
o — 0) may require singular physical properties.

Cloaking in the context of conductivity [40,41], electrical impedance tomog-
raphy, and electromagnetism has been studied rigorously and is well understood
[9,42-44]. Interestingly, the idea of cloaking has been explored in many other
fields of science and engineering, e.g., acoustics [13,18,19,29-31,78,133], optics
[60], thermodynamics (design of thermal cloaks) [46], diffusion [45], quantum me-
chanics [129], and elastodynamics [73]. The recent reviews [53,54] discuss these
applications in some detail. The least understood among these applications is elas-
todynamics. In our opinion, the main problem is that none of the existing works
in the literature has formulated the problem of elastodynamic cloaking properly.
In particular, boundary and continuity conditions and the restrictions they impose
on cloaking maps have not been discussed. In this paper, we formulate both the
nonlinear and linearized cloaking problems in a mathematically precise form. One
should note that transformation cloaking is an inherently geometric problem. This
is explained in the case of optical cloaking and invisibility in [60]. We will see that
this is the case for elastodynamic cloaking as well; geometry plays a critical role
in a proper formulation of elastodynamic transformation cloaking.

The first ideas related to cloaking in elasticity go back to the 1930s and 1940s in
the works of GURNEY [47] and REISSNER and MORDUCHOW [91] on reinforced holes
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in elastic sheets in the framework of linear elasticity. The first systematic study of
cloaking in linear elasticity is due to MANSFIELD [66] who introduced the concept
of neutral holes. Mansfield considered a sheet (a plane problem) under a given (far-
field) load. For the same far-field load applied to an uncut sheet one knows (or can
calculate) the corresponding Airy stress function ¢ = ¢ (x, y). He then put a hole(s)
in the sheet and asked if the hole(s) can be reinforced such that the stress field outside
the hole(s) is identical to that of the uncut sheet. In other words, the reinforcement
hides the hole(s) from the stress field. MANSFIELD [66] showed that the boundary of a
neutral hole is given by the equation ¢ (x, y)+ax+by—+c = 0, wherea, b, c are con-
stants. The reinforcement is a pre-stressed axially-loaded member (no bending stiff-
ness) that may have a non-uniform cross sectional area. Design of such neutral holes
depend on the external loading; unlike the cloaking problem in which a hole is to be
hidden from arbitrary elastic disturbances, the shape of a neutral hole and the charac-
teristics of its reinforcement explicitly depend on the stress field of the uncut sheet.
In other words, a reinforced hole neutral under one far-field load may not be neutral
under another one. In this paper we will present a nonlinear analogue of Mansfield’s
neutral holes for radial deformations in Section 4.2. Another problem related to
cloaking is the idea of neutral inhomogeneities. A neutral inhomogeneity when in-
serted in an elastic medium that is under some far field loading would not perturb the
stress field of the outside medium. This has been extensively studied for spherical
[48,49,51], cylindrical [50], and ellipsoidal [5] inhomogeneities. It should be noted
that the properties of the neutral inhomogeneities depend on the imposed loading.

The main difference between electromagnetic (and optical) cloaking and elas-
todynamic cloaking is that the governing equations of elasticity are written with
respect to two frames and that they are tensor-valued. In elasticity, one writes
the governing equations with respect to a reference and a current configuration;
this leads to two-point tensors in the governing equations. If formulated properly,
both nonlinear and linearized elasticity are spatially covariant, i.e., their governing
equations are invariant under arbitrary time-dependent changes of frame (or coor-
dinate transformations if viewed passively) [110,126]. Invariance under referential
changes of frame is more subtle as can be seen in the work of YAvARI et al. [127],
who showed that the balance of energy is not invariant under an arbitrary time-
dependent referential diffeomorphism. They obtained the transformed balance of
energy that has some new terms corresponding to the velocity of the referential
change of frame. MAzzucATo and RACHELE [69] showed that the balance of linear
momentum is invariant under any time-independent change in the reference con-
figuration. In this paper, we will show that the results of YAvARI et al. [127] and
Mazzucato and RACHELE [69] are consistent and the balance of energy and all
the governing equations of nonlinear elasticity are invariant under arbitrary time-
independent referential coordinate transformations. More recently, motivated by
applications in seismology, AL-ATTAR and CRAWFORD [1] showed the invariance
of the governing equations of elastodynamics under referential changes of frame
that they called particle relabelling transformations, a term borrowed from fluid
mechanics. They also correctly pointed out that the elastic constants with respect
to any equilibrium configuration transform tensorially under a particle relabelling
transformation.
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The goal in elastodynamic cloaking is to make a hole (cavity) invisible to elastic
waves. One idea is to cover the boundary of the cavity by a cloak that has inho-
mogeneous and anisotropic elastic properties, in general. The cloak will deflect
the elastic waves resulting in elastic measurements away from the cavity (more
specifically, outside the cloak) identical to those when the cavity is absent. Pulling
back the homogeneous material properties using a cloaking transformation (that
will be defined later), one may obtain the desired inhomogeneous and anisotropic
mechanical properties of the cloak. To design an elastic cloak one would need
to answer the following questions: (i) Are the governing equations of nonlinear
(and linear) elasticity invariant under coordinate transformations? First, one must
define what a coordinate transformation means in nonlinear elasticity. There are
two types of transformations that have very different physical meanings; (ii) Can
cloaking be achieved using a spatial or referential coordinate transformation? Or is
a cloaking transformation more than a change of coordinates? Related to question
i, note that any properly formulated physical field theory has to be covariant. This
was Einstein’s idea in the theory of general relativity. No coordinate system can
be a distinguished one; nature does not discriminate between different observers
and they all see the same physical laws. In nonlinear elasticity covariance is under-
stood as the invariance of the governing equations under arbitrary time-dependent
coordinate transformations in the ambient space [52,68,127]. Regarding question
ii we will show that a cloaking transformation is neither a spatial nor a referential
change of frame (coordinates); a cloaking transformation maps the boundary-value
problem of an isotropic and homogeneous elastic body (virtual problem) to that of
an anisotropic and inhomogeneous elastic body with a hole surrounded by a cloak
that is to be designed (physical problem).

Traditionally, many workers in solid mechanics start from linear elasticity. This
is appropriate for many practical applications, and linear elasticity has been quite
successful in numerous engineering applications. The governing equations of lin-
ear elasticity are linear partial differential equations, and hence, superposition is
applicable, one can use Green’s functions, etc. However, there are many problems
for which linearized elasticity is not appropriate. The first practical application of
nonlinear elasticity was in the rubber industry in the 1940s and 1950s, which mo-
tivated Rivlin’s seminal contributions [92-98]. In recent years, nonlinear elasticity
has been revived motivated by the biomechanics applications in which biological
tissues undergo large strains [37]. Unlike electromagnetism with only one config-
uration (ambient space), in nonlinear elasticity, there are two inherently different
configurations: reference and current. Linear elasticity does not distinguish between
these two configurations, and this has been a source of confusion in the recent liter-
ature of elastodynamic transformation cloaking. In the reference configuration the
body is stress free and any measure of strain is defined with respect to this configu-
ration.> Consequently, the stored energy of an elastic body explicitly depends on the
reference configuration as well. In the classical formulation of nonlinear elasticity,

2 We should mention that there are recent geometric developments using non-Euclidean
reference configurations that allow for sources of residual stress [23,33-36,86,99,101,106,
107,116-119,123].
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it is well understood that coordinate transformations in the reference and current
configurations are very different. Local referential transformations are related to
material symmetries, while the global transformations of the ambient space (cur-
rent configuration) are related to objectivity (or material frame indifference). This
implies that any cloaking study, even when strains are small, should be formulated
in the framework of nonlinear elasticity.

A classic example of an improper use of the governing equations of linear
elasticity can be seen in almost all the existing discussions on the objectivity of
linear elasticity. It has long been argued that linearized elasticity is not objective,
i.e., its governing equations are not invariant under rigid body translations and
rotations of the ambient space (see [110] for references). This is unnatural and
accepting it, one, at least implicitly, is assuming that linear elasticity is a “special”
field theory. This cannot be true and linear elasticity, like any other field theory, has
to be objective (and, more generally, spatially covariant) if it is properly formulated.
This problem was revisited independently by STEIGMANN [110] and YAvARI and
OzAKIN [126]. These authors showed that if formulated and interpreted properly,
linear elasticity is objective (covariant) as expected. In short, Navier’s equations are
written with respect to one coordinate system and do not have the proper geometric
structure to be used in studying the transformation properties of the balance of
linear momentum in linear elasticity.

The work of Lodge [63,64]. Arthur S. Lodge showed that the static equilibrium so-
lutions of certain anisotropic homogeneous linear elastic bodies can be mapped to
those of isotropic homogenous linear elastic bodies using affine transformations of
position and displacement vectors. In other words, knowing an equilibrium solution
for a homogeneous isotropic linear elastic body, new equilibrium solutions can be
generated for certain anisotropic bodies. We should point out thatin [63,64] and [85]
the matrices of the coordinate and displacement transformations are inverses of each
other. In particular, Lodge [63] in his first paper considered the following transfor-
mations for coordinates and displacements: (x, y, z) — (x/,y',z') = (x, y, v_%z)
and (u,v,w) — ', v, w) = (u,v,v2z), for some v > 0. He showed that the
governing equations of linear elasticity are invariant under these transformations.
Note that these transformations map the equilibrium solution of an isotropic elastic
body to that of another elastic body that is anisotropic. This should not be confused
with the transformation of the governing equations of one given body under refer-
ential or spatial coordinate transformations. In other words, LODGE [64] (see also
[57]) finds an equilibrium solution for an anisotropic body using that of another
elastic body, which is isotropic. The position and displacement vectors are linearly
related. However, the two problems are not related by a coordinate transformation.
OLVER [84] showed that any planar anisotropic linear elastic solid is equivalent
to an orthotropic solid through some linear transformations of coordinates and
displacements that are independent.

LobGE [64]’s idea of mapping the boundary-value problem of an anisotropic
linearly elastic body to that of an isotropic body can be summarized as follows.
The position and the displacement vectors are transformed homogeneously as

X =Ax, U =A"u. (1.1)
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We will refer to the transformation (x',u’) = (Ax, A~Tu) as a Lodge transfor-
mation. Using this pair of linear transformations, strain is transformed as €' =
A TeA L. Assuming that under (1.1), 6’ : € = o : €, stress is transformed as
o' = AcAT. LoDGE [64] assumed that body force transforms like a vector, i.e.,
b’ = Ab. Implicitly, he assumed that mass density transforms like a scalar, i.e., it
remains unchanged: p’ = p. This is similar to the way mass density transforms
under a change of spatial frame. Under these assumptions one can show that

div'e’ 4+ p'b’ = A (dive + pb). (1.2)

The inertial force is transformed as p’a’ = A~ (pa). Therefore, starting from
div o 4+ pb = pa, one obtains the balance of linear momentum for the transformed
body as

div'e’ + p'b’ = AATp'a. (1.3)

Lodge then concluded that the balance of linear momentum is invariant under the
transformation (1.1) when inertial forces are ignored. Under a Lodge transforma-
tion the elastic constants, and hence, the anisotropy type changes. Lodge finally
calculated the matrix A such that the transformed body is isotropic. Using this
transformation, one can generate equilibrium solutions for certain anisotropic bod-
ies having the corresponding solutions for an isotropic linearly elastic body. When
inertial forces are not ignored the balance of linear momentum is invariant only
when AAT = I,i.e., A is a rotation and can be interpreted as a coordinate transfor-
mation.

Remark 1. Fifty years later, not being aware of the work of Lodge, MILTON et
al. [73] for a completely different purpose used the Lodge transformations (1.1)
but with a position-dependent A. They assumed a harmonic time dependence and
ignored the body forces. Let us examine their Eq. (2.4) for a constant matrix A.
Their transformed wave equation in this special case reads

divie' = —w’p'u, (1.4)

where their matrix-valued mass density is defined as p’ = d; 3 pAAT. They justify
a matrix-valued mass density arguing that it has been observed for composites. Two
comments are in order here: (i) Note that the factor ﬁ appears when one uses
the Piola identity as we will discuss in Section 4.1 and Section 4.3. When A is a
constant matrix, div’ o’ is ﬁ times that of Lodge’s; (ii) If the body force term pb
is kept, this matrix-valued mass density would not work unless one assumes that

b’ = A~ Tb, which is different from Lodge’s original transformation.

The work of Milton et al. [73] on elastodynamic cloaking.The first theoretical
study of elastodynamic transformation cloaking is due to MILTON et al. [73]. They
observed that the governing equations of linear elasticity are not invariant under
coordinate transformations (or what they called “curvilinear transformations"), and
hence, the cloaking of elastic waves cannot be achieved using coordinate transfor-
mations. One should note that Navier’s equations are written with respect to one
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coordinate system, and hence, do not have the proper geometric structure to be
used in studying the transformation properties of the governing equations of linear
elasticity under coordinate (or cloaking) transformations. MILTON et al. [73] start
with the wave equation in the setting of linear elasticity, i.e., V - ¢ + w? pou =0,
where 0 = CVu, and C is the elasticity tensor, and consider mappings x — x'(X)
and u(x) — w'(x’). They point out that the two mappings can be chosen freely.
Denoting the derivative of the map x'(x) by A(x), i.e., Ajs; = 9x]/dx;, they as-
sume that instead of W' = A(x)u (assuming that the change of coordinates is a
spatial coordinate transformation), displacement is transformed as u’ = A Tx)u.
MILTON et al. [73] point out that these (Lodge-type) transformations preserve the
symmetries of the elasticity tensor. They finally show that under these changes of
variables the Cauchy stress and the wave equation transform as

dive' = —?p'W +D'VW and ¢ =C'Vu +Sv, (1.5)
where (J = detA)

o 1 9x'? ax'? ax"" Bx/sc_‘
Pars = 7 gxi axd axk axl KD

1ax'? ox'? 92x"" (10
/ _ . _ /
Spar = J ox’ oxJ axkox! Cijkt = Sqrp:
D, = S4p» and the matrix-valued mass density is written as®
’ 1 2 2./
o :Baﬁaﬁ+lax/p C: 07 (1.7)
pq J 3)6,‘ 8x,~ ’

J 0x;0x; ikl Axxox;

Banerjee [4] discusses this in more detail and concludes that: “Therefore, unlike
Maxwell’s equations the equations of elastodynamics change form under a co-
ordinate transformation”. This conclusion is, unfortunately, incorrect; governing
equations of linear elasticity are form-invariant under both spatial and referential
coordinate transformations. However, as we will show cloaking transformations
are not coordinate transformations. It is, nevertheless, correct that transformation
cloaking is not possible in classical linear elastodynamics.

Several authors have looked at in-plane waves arguing that in this particular case
the governing equations are invariant under coordinate transformations (however, it
is not clear what type of coordinate transformations is being considered), and hence,
transformation cloaking can be acheived. In particular, BRUN et al. [8] observed
that for in-plane elastic waves, the balance of linear momentum is invariant under
an arbitrary change of coordinates (they do not distinguish between referential and
spatial transformations), and introduced a cylindrical cloak. They considered an

3 There is a typo in their transformed mass density. The second term does not have the
correct physical dimension. The similar expression in [4] has the correct dimension with a
factor 1 /w2 but has the opposite sign.
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annular cloak of inner and outer radii r¢ and rq, respectively, and used PENDRY et
al. [89]’s coordinate transformation (r, ) — (', 0’) = (+'(r), 0), where

ro+ =20 T <,
r'(r) = m

(1.8)

r, r=ri.

This (singular) transformation maps a disk of radius r; to an annulus of inner
and outer radii ry and rq, respectively, and is the identity transformation outside
the disk. These authors observed that assuming u’ = u, Navier’s equations are

form-invariant, and mass density transforms as p’(r) = @ <r1r—|r0)2 o(r). In the
transformed coordinates, they obtained an elasticity tensor that does not possess
the minor symmetries. Then their recourse is to argue that the transformed body is
made of a Cosserat solid.* We will show in this paper that the map (1.8), which has
been borrowed from the literature of electromagnetic cloaking is not admissible for
elastodynamic cloaking; the derivative of this map is not the identity on the outer
boundary of the cloak, i.e., f'(r;) # 1 (see Section 5.2). Instead of assuming that
the cloak is made of a Cosserat solid without even discussing its elastic constants,
we believe one should assume that both the physical and virtual bodies (that will
be defined in Section 4) are made of Cosserat solids and see if a Cosserat cloak can
be designed while all the balance laws are respected in both bodies. We will show
that the minor symmetries of the elastic constants are not preserved under cloaking
transformations (that will be defined in Section 4.1). Our conclusion is that classical
linear elasticity is not flexible enough to allow for cloaking. A possible solution may
be linearized elasticity with respect to a pre-stressed configuration, i.e., the small-
on-large theory of GREEN et al. [38]. We will show that cloaking is not possible in
this more general framework either. However, we will see that a cylindrical hole
can be cloaked for in-plane deformations provided that the cloak is pre-stressed.
This, however, is not possible for the anti-plane deformations. These observations
would force one to start from some kind of a solid with microstructure. In addition to
finding the classical elastic constants in the cloak, the non-classical elastic constants
must be calculated as well. This has not been discussed in the literature to date. This
is a non-trivial calculation that will be discussed in Section 5. In the literature, it
has been implicitly assumed that the material outside the cloak is a classical linear
elastic solid. We will see that this is not possible (Remark 14).

Starting from linear elasticity, NORRIS and SHUVALOV [80] tried to find the gov-
erning equations in a transformed domain using Lodge-type transformations. Simi-
lar to the work of MILTON et al. [73], they assumed that the displacement field does
not transform the way it does under a spatial coordinate transformation. They refer
to this as a linear gauge change. Unlike that of MILTON et al. [73], their displacement
transformation is completely independent of the coordinate transformation. This
is similar to the transformations that had earlier been used by OLVER [84]. They

4 Surprisingly, in none of the works that accept non-symmetric Cauchy stresses in the
cloak is there any mention of the balance of angular momentum and the distribution of couple
stresses. There is also no discussion on what the extra elastic constants of the Cosserat cloak
should be.
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discussed several possibilities for the displacement transformation and observed a
loss of minor symmetries of the elastic constants in the cloak and assumed that it
is made of a Cosserat solid. However, the balance of angular momentum and the
calculation of the non-classical elastic constants of the Cosserat elastic cloak were
not discussed.

OLssoN and WALL [83] studied time-harmonic cloaking of a finite rigid body
that is fixed, i.e., cannot move, and is embedded in an elastic matrix. In the case of
both a rigid circular disk and a rigid spherical ball they assumed that the matrix is
an elastic medium with inextensible radial fibers. To the best of our knowledge, this
is the first paper on elastic cloaking that actually discusses boundary conditions. In
the physical and virtual bodies (that we will define in Section 4) in both 2D and 3D
they assumed the following relation between displacement vectors: U/R = U / R.
They further observed that the balance of linear momentum of the two configura-
tions have the same form, and that the elastic constants retain their full symmetries.
KHLOPOTIN et al. [55] investigated cloaking a finite rigid body embedded in an elas-
tic medium. Their motivation was cloaking an object in a soft matrix from surface
elastic waves. They assumed that the matrix is a micropolar solid and discussed
boundary conditions. However, in this work there is no discussion on how the non-
classical elastic constants of the cloak should be calculated. In particular, there is
no mention of how the couple stiffness tensor and the couple stress tensor of the
micropolar medium are transformed under a cloaking transformation. We believe
that a proper formulation of linear elastodynamic cloaking should consider both
the physical and virtual bodies to be made of generalized Cosserat solids and all the
elastic constants of the cloak must be calculated. This will be discussed in Section 5.

PARNELL [87] and PARNELL et al. [88] (see also [79] for in-plane deformations)
first considered anti-plane deformations of an isotropic linear elastic solid for which
the displacement field in cylindrical coordinates has the form (0,0, W(R, @)).
They concluded that the balance of linear momentum (wave equation) is form-
invariant under coordinate transformations. The transformed mass density is iden-
tical to that of BRUN et al. [8]. Next, Parnell considered the wave equation in the
small-on-large theory of GREEN et al. [38], which is simply linearization about
a finitely-deformed (and stressed) configuration [81]. He considered a body with
a small hole made of an incompressible neo-Hookean solid. Using a (static) ap-
plied internal pressure the hole is inflated. Parnell showed that the incremental
wave equation with respect to this pre-stressed configuration has anisotropic shear
moduli. However, they are different from those of a cloak. One should also note
that inflating an initially small hole in a body the entire body would deform. In
other words, the small-on-large elasticity of such a body cannot be identical to that
of a stress-free and homogeneous linear elastic body outside any finite region. In
Section 4.4 we will show that in the setting of small-on-large theory cloaking a
cylindrical hole for anti-plane deformations is not possible. However, it is possible
to cloak a cylindrical hole for in-plane deformations.

There have been other efforts in the literature on guiding elastic waves in struc-
tures. We should mention AMIRKHIZI et al. [2], who proposed the idea of redirecting
stress waves by smoothly changing anisotropy of a structure. In particular, they ex-
perimentally and numerically showed that when the direction of a stress wave is
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known and is fixed its propagation in a structure made of a transversely isotropic
material with a varying axis of anisotropy can be guided. Of course, their construc-
tion is restricted and useful only for one specific direction of wave propagation.
Using a pre-stressed neo-Hookean solid CHANG et al. [12] demonstrated the pos-
sibility of manipulating shear waves. SKLAN et al. [105] proposed a symmetrized
elastic cloak by symmetrizing the non-symmetric elastic constants induced from
a cloaking map. They used the symmetrized elastic constants in a cloaking region
around a cylindrical hole in order to shield an object against elastic waves. In their
numerical examples for certain frequencies they observed reduction of average
displacements and elastic energy in the cloaking region. This approach based on
brute-force symmetrization has clear limitations.

Contributions of this paper. In this paper, we investigate the problem of hiding a
hole from elastic waves in both nonlinear and linear elastodynamics. It should be
emphasized that we do not consider the so-called metamaterials [70,72]. We start
by discussing the invariance of the governing equations of nonlinear and linearized
(with respect to any finitely-deformed configuration) elasticity under both arbi-
trary time-dependent spatial changes of frame (coordinate transformations) and
arbitrary time-independent referential changes of frame. We note, however, that
cloaking cannot be achieved using either (or both) spatial or referential coordi-
nate transformations. We define a cloaking map to be a mapping that transforms
the boundary-value problem of an elastic body with a hole reinforced by a cloak
(physical body) to that of a homogeneous and isotropic body with an infinitesimal
hole (virtual body). The cloak needs to be designed while the loads and boundary
conditions in the virtual body are not known a priori. We define a cloaking trans-
formation to be a map between the boundary-value problems of an elastic body to
be designed and a virtual elastic body that has some desired mechanical response.
The main contributions of this work can be summarized as follows:

— We provide a geometric formulation of transformation cloaking in nonlinear
elasticity. It is shown that nonlinear elastodynamic transformation cloaking is
not possible (Proposition 2).

— It is shown that nonlinear elastostatic transformation cloaking may be possible
for special deformations. This is somehow a nonlinear analogue of Mansfield’s
neutral holes. We provide one such example, namely radial deformations in an
infinitely long solid cylinder with a cylindrical hole or a finite spherical ball
with a spherical cavity.

— Classical linear elasticity is not flexible enough to allow for transformation
cloaking (Proposition 3). More specifically, linear elastodynamic cloaking can-
not be achieved because the elastic constants in the cloak lose their minor
symmetries. This is true for a hole of any shape reinforced by a cloak with an
arbitrary shape.

— Transformation cloaking is not possible even in the small-on-large theory, i.e.,
linearized elasticity with respect to a pre-stressed configuration (Proposition
4). This is true for a hole with any shape. We show that a cylindrical hole can
be cloaked for in-plane deformations while it is not possible to cloak it for
anti-plane deformations.
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— Assuming that the virtual body is isotropic and centro-symmetric, elastody-
namic transformation cloaking is not possible in the setting of gradient elasticity
(Proposition 5). This result is independent of the shape of the hole.

— Elastodynamic transformation cloaking is not possible in the setting of gen-
eralized Cosserat elasticity in dimension two (Proposition 6). In particular, in
dimension two transformation cloaking cannot be achieved in Cosserat elastic-
ity (with rigid directors) either. This result is independent of the shapes of the
hole and the cloak. Elastodynamic transformation cloaking is not possible for
a spherical cavity using a spherical cloak in the setting of generalized Cosserat
elasticity (Proposition 8). We conjecture that this result in dimension three is
independent of the shapes of the cavity and the cloak (Conjecture 1).

This paper is structured as follows: in Section 2, we revisit nonlinear elasticity
and discuss the invariance of its governing equations under both arbitrary time-
dependent transformations of the ambient space (current configuration) and arbi-
trary time-independent transformations of the reference configuration. In Section 3,
linearization of nonlinear elasticity is discussed in detail. Then spatial and referen-
tial covariance of the governing equations of linearized elasticity are investigated.
The problems of cloaking for both nonlinear elastodynamics and elastostatics are
formulated in Section 4.1 and Section 4.2, respectively. Transformation cloaking in
classical linear elasticity is investigated in Section 4.3. In Section 4.4, transforma-
tion cloaking in the small-on-large theory is formulated. In Section 5, elastodynamic
transformation cloaking in solids with microstructure is investigated. The impos-
sibility of transformation cloaking in linearized gradient elasticity is discussed in
Section 5.1. Elastodynamic transformation cloaking in generalized Cosserat solids
is formulated and discussed in Section 5.2.

2. Nonlinear Elastodynamics

Kinematics. In nonlinear elasticity, motion is a time-dependent mapping between
a reference configuration (or natural configuration) and the ambient space (see
Fig. 2). Geometrically, we write this as ¢; : B — S, where (B, G) and (S, g)
are the material and the ambient space Riemannian manifolds, respectively [68].
Here, G is the material metric (that allows one to measure distances in a natural
stress-free configuration) and g is the background metric of the ambient space. The
Levi-Civita connections associated with the metrics G and g are denoted as VC
and V2, respectively. The corresponding Christoffel symbols of V& and V2 in the
local coordinate charts { X} and {x%} are denoted by ' e and y9p,, respectively.
These can be directly expressed in terms of the metric components as

1
Ybe = Egak (gkb,c + 8ke,b — gbc,k) ,

1
rpe = EGAK (Gks.c +Gke,s —Gaek) -

@2.1)
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Fig. 2. Motion in nonlinear elasticity is a time-dependent mapping between two Riemannian
manifolds

The deformation gradient F is the tangent map of ¢;, which is defined as F(X, r) =
Tg,(X) : TxB — T,,(x)S. The transpose of F is denoted by FT, where

F(X,1): Tyx)S — TxB,

2.2
(W, FTw)g = (FW,w)g, YW € TxB, w € T, x)S. 22
In components, (F T)Aa = GABFb, gap- The right Cauchy-Green deformation
tensor is defined as C = F'F : TxBB — Tx3, which in components reads C Ap =
FaLFngabGAL-S

The material velocity of the motion is the mapping V : B x RT™ — TS, where
V(X,1) € Ty, (x)S, and in components, V¢(X, ) = %(X, t). The spatial velocity
is defined as v : ¢;(B) x R™ — TS such that v;(x) = V, o gofl(x) e T, S, where
x = @;(X). The convected velocity is defined as ¥, = ¢} (v) = Ty, o Vio@ =
F~! . V. The material acceleration is a mapping A : B x RT — TS defined
as A(X,t) := Dth(X, 1) = V%,(X’I)V(X, 1) € Ty x)S, where Dlg denotes the

covariant derivative along the curve ¢;(X) in S b1In components, AY = Bg/: +

y4 »e VPV, To motivate this definition note that the time derivative of the kinetic
energy density is calculated as’

d 1
—=po(X)(V(X, 1), V(X, 1))g = po(X)(V(X, 1), DFV(X, 1))

dt?2 (2.3)
= po(X)(V(X, 1), A(X, 1))g.

Therefore, A(X, t) is the covariant time derivative of the velocity vector field.

The spatial acceleration is defined as a : ¢;(B) x Rt — TS such that a,(x) =

Ao <pt_1(x) € T, S. In components, it reads a® = % + %vb + y9pevPve. The

spatial acceleration can also be expressed as the material time derivative of v, i.e.,

5 Note that C agrees with the pull-back of the ambient space metric by ¢y, i.e., C = org.
6 This definition is not to be confused with a Lodge transformation.
- . : . d
7 Note that if a connection V is G-compatible, then X YX, D)g = (DX, Y)g +
(X, D;Y) G, where Dy is the covariant time derivative.
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a=v= "—f + V2vy. The convected acceleration is defined as [104]
oY * oY b
o =gl@) =S+ VyEY = =L Vg Y (2.4)

Balance laws. The balance of linear momentum in spatial and material forms reads
divgo + pb = pa, DivP + pyB = poA, 2.5

where o and P are the Cauchy stress and the first Piola-Kirchhoff stress, respec-
tively. pg, B, and A are the material mass density, material body force, and material
acceleration, respectively, and p, b, and a are their corresponding spatial counter-
parts. Note that divg 0 and Div P have the following coordinate expressions:

3 do b G]
dng(T — Uab‘b — < +Uac)/bcb +Gbeach) —

x4 axb dxa 2.6)
A 5xa 9XA <) axa’

In coordinates, Jo® = F@,PP4 where J is the Jacobian of deformation that
relates the deformed and undeformed Riemannian volume elements as dv(x, g) =

JdV (X, G), and
[detg
J = detF. 2.7
det G ¢ @7

One can pull back the balance of linear momentum to the reference configuration,
ie., ¢f (divg @) + ¢} (pb) = ¢/ (pa). This can be written as

diVCb Y+ Qgt = QJZ(;, (28)

where X = @0 is the convected stress, ; = ¢;b is the convected body force,
and o = p o ¢;.

Identifying a material point with its position in the material manifold X € B,
we have x = ¢;(X). When the ambient space is Euclidean one defines the material
displacement field as U = ¢, (X) — X. The spatial displacement field is denoted by
u=Uog, L

The balance of angular momentum in local form reads 6! =0 or FP* = PF*,
where P* and F* are duals of P and F, respectively, and are defined as

9
F:F“Aaa@)dXA, F*:F“AdXA®aa,
5 s o 2.9)
P= PaA_ ® P = aA ® )
axe = XA’ axXA ° gx¢

Note that F* : T* S T¢B, where T; xS and Ty B denote the cotangent
spaces of Ty, (x)S and Tx B, respectively.

Conservation of mass implies that pdv = podV, or pJ = pg, where p, and p
denote the material and spatial mass densities, respectively. In terms of Lie deriva-
tives, conservation of mass can be written as Lyp = 0 [68].
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Constitutive equations. In nonlinear elasticity, the energy function (per unit unde-
formed volume) of an inhomogeneous anisotropic hyperelastic material at a mate-
rial point X is written in the following general form

W=WXC,G,ty.....¢,), (2.10)

where ¢;,i = 1, ..., n are a collection of the so called structural tensors charac-
terizing the material symmetry group at the point X. The inclusion of the structural
tensors, along with C” in the energy function as shown in (2.10) constructs an
isotropic function, i.e., it is invariant under the orthogonal group [61]. Therefore,
(2.10) can be treated as the energy function of an isotropic material, and hence, the
second Piola-Kirchhoff stress tensor is given as

aw

S=2 .
aC°

@2.11)

Alternatively, by the Doyle-Ericksen formula [22], the Cauchy, the first Piola-
Kirchhoff, and the convected stress tensors are expressed as

2 9W aW 2 0W
o= 2 p_ W 20W (2.12)
J og JoF J aCP
where, with a slight abuse of notation, one may write
W(x,Gmp*],g,F,;] o¢71,...,§n0(p71)=W(X,G,go(p,F,Cl,...,{n)
= W(X’ G7 Cba§19"'ﬂ;iz)'
(2.13)

According to Hilbert’s theorem, for any finite number of tensors, there exists a finite
number of isotropic invariants forming a basis called integrity basis for the space
of isotropic invariants of the collection of tensors.® Thus, if / ji»j=1,...,m, form
an integrity basis for the set of tensors in (2.10), one has W = W(X, Iy, ..., I,).
Hence, using (2.11), one obtains

m
a1; oW )
S=212W1jr@, Wi=gp i=loom (2.14)
= .
If the material is isotropic, i.e., W = W(X, I, I, I3), where I} = trC, I =
det Ctr C™!, and I3 = det C are the principal invariants of the right Cauchy-Green
deformation tensor, it follows from (2.14) that

S=2 {WllGﬁ +WiL(LC - BC2) + W13I3C‘1} . (2.15)

8 See [109] for a detailed discussion on integrity basis for a finite set of tensors.
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Fig. 3. Motion of a nonlinear elastic body and spatial and material changes of frame. &; is a
time-dependent spatial change of frame and & is a time-independent material (referential)
change of frame
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2.1. Spatial Covariance of the Governing Equations of Nonlinear Elasticity

It turns out that in continuum mechanics (and even discrete systems) one can
obtain all the balance laws using the energy balance and postulating its invariance
under some groups of transformations. This idea was introduced by GREEN and
RivLIN [39] in the case of Euclidean ambient spaces and was later extended to
manifolds by HUGHEs and MARSDEN [52]. See also [68,103,121,124-127] for
applications of covariance ideas in different continuous and discrete systems.

Consider an arbitrary time-dependent spatial diffeomorphism &; : S — S (see
Fig. 3). Denoting the fields in the transformed configuration by primes, we know
that [68,127]

R'=R, H=H, py=po, T =T, V =6.V+wog, (2.16)

where w = %é, o ¢, is the velocity of the change of frame and T is the traction
vector. Note that A = V%,V, and hence
A =VEV = ViR L EV +Wog)
=&, (V§V + Vg W + VEW + VL V) (2.17)
=&, (A + VR W +2VEW + [W, V]).

It is assumed that body forces are transformed such that [68] B’ — A’ = &.,(B—A).
Similar transformations hold for the spatial quantities. It can be shown that [68,127]

divie’ 4+ p'b’ — p'a’ = &, (dive + pb — pa),

Div' P’ 'p’ I A : (218)
iv P+ ppB — ppA” = &1, (DivP + poB — poA) ,
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i.e., the balance of linear momentum is spatially covariant provided that the Doyle-
Ericksen formula (2.12); is satisfied. This in turn restricts the body to be isotropic.
A way out to have a covariant elasticity theory for anisotropic bodies is to include
structural tensors in the energy function. Note that the balance of angular momentum
(symmetry of the Cauchy stress) is covariant as well, i.e., ¢’ T—o

The main idea in covariant elasticity is that in the ambient space the physical
laws (here, the balance of energy or the first law of thermodynamics) should be
observer-independent.® YAvarI et al. [127] investigated the possibility of the covari-
ance of the energy balance under diffeomorphisms of the reference configuration.
Their motivation was to see if there was any connection between material covari-
ance and balance of the so-called configurational forces. It was observed that the
energy balance is not invariant under material diffeomorphisms, in general. They
obtained a transformation equation for the balance of energy. This is discussed next.

2.2. Material Covariance of the Governing Equations of Nonlinear Elasticity

Note that a spatial diffeomorphism is nothing but a change of observer. In other
words, given an elastic body in (dynamic) equilibrium, a spatial diffeomorphism is
simply representing the same configuration in another frame. For cloaking applica-
tions, one needs to know what the elastic properties of the cloak should be in order
to make a given cavity invisible to elastic waves. This means that given a reference
configuration, one should be looking at material (referential) diffeomorphisms. This
is the motivation for the following discussion.

In this section, we discuss the transformation of the governing equations of non-
linear elasticity for an anisotropic and inhomogenous body under a time-independent
material diffeomorphism. More specifically, consider a diffeomorphism Z : 5 —
B. We use the coordinate charts (X4}, {XA}, and {x“) for the reference configura-
tion, the transformed reference configuration, and the ambient space, respectively,
see Fig. 3. The deformation map ¢; : B — & is transformed under the material
diffeomorphism to ¢; : B—> S , Where ¢; = ¢; 0 & —1 Material velocity with
respect to the new reference configuration reads

-~ 0 - 0 ~ -
VX, 1) = 5@(){, 1) = 5<p(5—1(x), 1) =V(EYX), 0. (2.19)

Thus, V = V o Z~!. Material acceleration with respect to the new reference
configuration reads

AX,n=VEVX,)=VEV(ETX), 0

g - ot . (2.20)

=ViVio BT (X)=A 0 57 (X).
at

9 This is also known as the principle of material objectivity (see, e.g., [77]).
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The deformation gradient F = T'¢; : Tx B — T,,(x)S, under &' is transformed to

F = T¢g :T3B — T¢ (X)S = T,,(x)S, where

F=T¢ =T(p 08 )\=Tg, 0oTE ' =FoF !, 2.21)

and F = TE. Moreover, note that G = Z4G. In coordinates, GAE’ = (I:“_I)AA
(I:" _I)B 5Gap. The right Cauchy-Green deformation tensor is written as C =
¢, *g. Hence, one notes that

~b ~ —~—1\* — — -
C=¢"g= (‘pt o5& 1) g=E.0p g=E.(p*g) = 5,.C°. (222

In coordinates, C ;3 = (F~ DA :(F~) 5Cap.

Material symmetry. The material symmetry group Gy associated with an elastic
body made of a simple material'® with the response function %' at a point X with
respect to the reference configuration (B, G) is defined as

Z (FK) = % (F), VK e Gy, (2.23)

for all deformation gradients F, where K : Ty B — TxB is an invertible linear
transformation. For a hyperelastic solid, objectivity requires that the energy function
depend on the deformation through the right Cauchy-Green deformation tensor C”,
ire., W = W(X, C°, G) at a material point X. Therefore, the material symmetry
group Gx for a hyperelastic solid is defined to be the subgroup of G-orthogonal
transformations Orth(G) such that [24]12

WX, Q*C°Q L, G) =wX,C",G), VQeGy<Orth(G). (2.24)

The symmetry group of the material relative to a transformed reference configu-
ration (B, G) is denoted by G. According to Noll’s rule [14-16,77], the relation
between the two groups is

—5.G=FGF . (2.25)
In other words, in the sense of group theory, at each material point X, G and G are
conjugate subgroups of the general linear group, and hence, isomorphic (g 9).
Note that if F e G, then G = G. Also, the symmetry group is not affected by a
change of reference configuration (Q g) if F = al (pure dllatatlon) for some

positive scalar o [81]. More generally, G = G if and only if F belongs to the

10 The response of a simple material at any material point depends only on the first defor-
mation gradient (and its evolution) at that point [77].

1 Here we assume that Z is the energy function. Response function may be any measure
of stress as well.

12 Note that Orth(G) = {Q TxB— TxB | QT =0Q! ; We use the notation 4 <

¢ when ¢ is a subgroup of J7.
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normalizer group of G within the general linear group.'® It is straightforward to
see that (2.25) is satisfied if and only if it holds for all the generators of the group
G. Therefore, if G is finitely generated, the elements of the generating sets of G
and g denoted by {Q1, ..., Qy} and Q1,....Qul, respectively, are related as

Q; = FQ ]F_ ,j = 1,...,m. The symmetry group can be characterized using
a finite collection of structural tensors'* ¢; of order u;, i = 1,...,n, as follows
[7,61,65,69,130,131]

Q S g < Orth (G) — (Q)/Ll ;1 = {1 LI} <Q>/Ln ;n = ;nv (226)

where the p-th power Kronecker product (Q),, of a G-orthogonal transformation
Q for any p-th order tensor ¢ is defined as'’

Q) 1M = @1y, L @My g, (227)

Note that (2.26) suggests that the material symmetry group G is the invariance
group of the set of the structural tensors §;,i = 1, ..., n. Using (2.25) and (2.26),
one obtains the following relation for the transformed structural tensors under the
material diffeomorphism, which characterize the transformed symmetry group G

~ ~ ~ ~ ~ ~

Qeggamm)¢:(@mg=2h””@ngn=g, (2.28)

where Q = E2,Q= I;TQli‘_l and Ei = 5y, i = 1,..., n. Therefore, the type of
the symmetry group of the material is preserved under a material change of frame

=
(=28

Balance of energy. YAVARI et al. [127] showed that the balance of energy is not
invariant under an arbitrary time-dependent material diffeomorphism. However, it
can be shown that the balance of energy is always invariant under time-independent
material diffeomorphisms. The strain energy function satisfies (2.24) if and only if it
isrepresented as an isotropic function (invariant under the special orthogonal group)
of the structural tensors and C” at a material point X (see (2.29)) [6,24,128]. Thus,
we write the general form of the energy function (per unit undeformed volume) of
an inhomogeneous anisotropic hyperelastic material with a set of structural tensors
¢, i = 1,...,n (cf. (2.26)) characterizing the material symmetry group (at a
referential point X) as

W=WX,C,G. ¢ty ....L,). (2.29)

13 The normalizer group Ny (Q) of a subgroup Q of 4 (Q < ¥) is defined as Ny (Q) =
(g €9 :8Qs ' = Q)

14 Note that such a collection forms a basis for the space of tensors that are invariant under
the action of G.

15 Note that Q) (VI®--®Vy) =QVi®---®Qvyy, wherev; € TyB,i=1,....,m
are arbitrary vectors.
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Similarly, using (2.22) and (2.28), one obtains

W=WXC,GZ¢,....¢)

. (2.30)
= W(E(X), 5,C, 5,G, Ly, ..., B:lL,) = B W.

Using the theory of invariants [108,109], the energy function can be represented
in terms of a finite set of isotropic invariants. It can be shown that these invariants
do not change under material diffeomorphisms, which in turn implies the material
covariance of the energy function, i.e., (see also [65])

W=Woz L (2.31)

Balance of linear momentum. The balance of linear momentum in terms of the first

Piola-Kirchhoff stress reads Div P+ pgB = poA. We now examine the transformed

first and second Piola-Kirchhoff stress tensors, denoted, respectively, by P and S,

and the material acceleration A pertaining to the transformed configuration (B,G)

with the deformation @ = ¢ 0 7. The second Piola-Kirchhoff stress tensor is
oW

written as S = 2@' Therefore, using (2.30), one obtains

- AW _A(EW
S=2—= 2(H—*b). (2.32)
oC B(a*C )

Moreover, employing (2.31) and (2.32), one can write

5 E 7 E; &g E)W
(B A8 = FA FBp S4B o 571 = 2FA,FBp Yo
0Can
s 2z OW 0Crpo08&
=2FAAFBB = BDCH
ICh AB (2.33)
5 = AW oW
= 2FA FBp(F~ DA (F~HE =2

Hence, it immediately follows that S = &,8. Under the diffeomorphism & : B —

BB, the two-point tensor P is transformed to Z,P, where in components
= C _paA _ pA,paA, g1 (2.34)

‘We note that, us~ing (2.21), one has P=FS = (FoIE?’1 )S. Therefore, in components
(cf. (2.34) and S = Z..S), we have

(

A
=Fi,FApsAB o5 = FApPB o5~ = (B, P)4,
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that is, P = &,P. The divergence term has components (DivP)* = AP /IXA +

I g5 P8 4+ (y%. 0 ) F? 4 PEA. Thus, (DIVP)? = 9 P44 /9 XA + FA : ~P“B +
(y? bcogat)Fb P4 Note that F = To, = T((pto Ol ) =Ty o(TE) ' =
Foﬁ—l.Thus,Fof) — FoPoZ ! Ttcanbe shown that 9 P44 /3 X4 = 3 P94 /a X4 o
Z~!. Using the transformation of connection coefficients, it is straightforward to
show that f‘&gé = (ﬁ“’l)BgFAAB 0 &1, Therefore, DivP = DivPo Z~!. From
conservation of mass podV = podV = poJzdV, where

det F. (2.36)

Note that G = E.G, and det G =detG (det F)_z. Hence, Jz = 1, and therefore,
po = po o &~ L. For the spatial mass density, p = p.

Body force is a vector field in the ambient space, i.e., Bx € Ty, (x)S, and
hence, B = u*B = Bo &~ For a time- -independent material diffeomprphism,
V = Vo 5!, and hence, acceleration transforms as A = A o &~ !. Therefore, the
balance of hnear momentum is invariant under the diffeomorphism = : B — B,
ie.,

DivP + goB — oA = &, (DivP + poB — poA)

(2.37)
= (DivP + poB — ppA) o &~

This is identical to what MAzzucATo and RACHELE [69] proved.

Balance of angular momentum. The balance of angular momentum in terms of the
first Piola-Kirchhoff stress reads P4 F?, — pbAFa 4 = 0. It is straightforward
to show that f’“AI:"bA = P“AFbA o &1, Therefore, IsaAl?bA — f’bAF”A =
(PUAFb, — PPAF?,) 0 271, ., the balance of angular momentum is invariant
under material diffeomorphisms.

Conservation of mass. Conservation of mass in local form reads pg — Jpo¢ = 0,
detg

where the Jacobian is written as J = oiC det F. Thus
- det o ~
J= [E8 get=som . (2.38)
det G

Therefore, pg — fﬁ o = Ey(pg—Jpop) = (pg—Jpop)oZ ™", i.e., conservation
of mass is materially covariant.

We next observe that under the diffeomorphism = : B — B, the Cauchy stress
tensor remains unchanged and is transformed as 6 = o o =1, To see this, note
that (cf. (2.34) and (2.38))

5= JFP = (JFF ' FPY o5 =g 05l (2.39)
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3. Linearized Elastodynamics

Classical linear elasticity can be derived from nonlinear elasticity if one lin-
earizes the governing equations of nonlinear elasticity with respect to a stress-free
equilibrium configuration. More generally, nonlinear elasticity can be linearized
with respect to any stressed and finitely-deformed (in either static or dynamic
equilibrium) configuration. This is the so-called small-on-large theory of GREEN
et al. [38]. In the language of geometric mechanics, MARSDEN and HUGHES [68]
presented a geometric linearization of nonlinear elasticity. In particular, in their
formulation elastic constants are properly defined in terms of two-point tensors.
See also [126] for a discussion on covariance in linearized elasticity.

Variation of amap ¢; : B — Sisamap @, : B x I, where I = (—a,a) is
some interval, such that @, (X, 0) = ¢, which we call the reference motion. Let us
denote ¢;  (X) = @;(X, €), and hence, ¢, o0 = ¢;. The variation field is defined as

d
b (X) =UX,1) = T oYX (3.1

The spatial variation (displacement) field is defined asu = U o ¢, Uor u® (x,t) =
U®(X,1). Note that 8¢ € I'(¢~'TS) (see the appendix for the definition of the
induced bundle). The tangent space T(x,¢) (3 x I) of the product manifold B x I
at (X, €) is identified with Ty B® T, 1.

Linearization of the material velocity and acceleration. Material velocity is defined
as Ve(X, 1) = w. Note that V¢ (X, t) € Ty, . (x)S, i.e., for different values of
€, velocity lies in different tangent spaces, and hence, a covariant derivative along
the curve € — ¢; (X) should be used to find the linearization of velocity [68].
Therefore

a(pt,e(X) -V, a@t,e(x)
9t le=0 o de le=0 (3.2)
= V8¢ (X) = D,U(X, 1) = Vi,U=: 1,

SV(X, 1) = Vai

i.e., variation of the velocity field is the covariant time derivative of the displace-
ment field. In the above calculation in the second equality the symmetry lemma
of Riemannian geometry [58] was used. In components, (D,U(X, t))* = U% =

au“ a, byre U _ du® | du® axb _ du g .=
o Tr%be VU Note that 55— = G-+ 75 - Therefore, §v = 57 +Viu = u.

Material acceleration is the covariant time derivative of velocity, i.e., A =
D,V = VyV, which in coordinates reads [68] A% = % + 1Y% Vvbye. Therefore

0 X
SA(X, 1) = viv@‘pf;()
de Ot ot e=0
Igr.e(X dgr.e(X
:ViViL() +Vil (pf,é( )
9 de ot e=0 [36’811 ot =0
9 0\ d¢r (X)
R —, — | ——
* g(Be az) At le=o
01, (X) o 0
=V Vs =S VgV Re (U, V. v)
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= D;D;U+ Vi,V + Re(U, V, V)
= Vi VU + VgV + Re(U, V, V)
=U+ Vi,V + RV, V), (33)

where R is the curvature tensor of the metric g and U= D; D,U is the second
covarlant time derivative of the displacement field. Note that da, = §A; o ¢, -
Uog ! +V[guvv+72g( V).

Linearization of the right Cauchy-Green strain, the Jacobian, and the deformation
gradient. The right Cauchy-Green strain of the motion ¢; . is defined as CZ =
®; <80 ¢r .. Note that CZ e I'B, T*B® T*B) forall €, where I'(B, T*BQ T*B)
is the set of (g)—tensors on 3. Linearization of C” is calculated as

‘e ’ = ¢/ (Lug)
2eCel oo = geret| _y = 9 (Lug 3.4)

= ¢/ (Su®) = ¢/ (VU + (VEU")") = 2¢]e,
where Ly, is Lie derivative with respect to the vector field u and £, is the autonomous
Lie derivative with respect to u (see the appendix). The linearized strain € has the

components 2€,p = Uq|p + Up|a-
The Jacobian for the perturbed motion is written as

b

[detg o ¢ ¢ det Ce¢
Jo =,/ ———detF, = . 3.5
¢ det G et te det G (3-5)

§C” =

Hence
d o
§J = —J. — det cb (3.6)
de™le=0 " 5 /get Gt © de
Using Jacobi’s formula we know that
d b oD by —1n o
et =det€ tr[(Cb) 2¢:‘e] . 3.7)

Note that (C”)~! = (Z)fgﬁ, and hence, the right-hand side of (3.7) is simplified to
read (det éb)gu :€. Therefore, 6 J = Jogj e=J divg u.

Deformation gradient of the motion ¢; ¢ is defined as F; . = ag’; Consider
the vector fields ( ST ) and (0, %) on B x I, and note that

(CONE R

Thus, from (A.8) one can write

d d
V( a@)(pt €x (mv 0) = V((”(LA,O)QDI’E* (Os &) s 3.9
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or

v, e _y , v
e 9 XA A e

(3.10)

Therefore, 6 F4 = ¢4 = U% 4 = F}’AU“\b.Notethat Uty = % + y%pUC.

Linearization of the first and the second Piola-Kirchhoff stresses. For ahyperelastic

solid, given an energy function W = W(X F,G,gogp, ¢, ....¢,),thefirst Piola-
Kirchhoff stress is given as P = gtj . In components, P44 = g“b a%‘: For the
perturbed motion, W, = W (X, F, G, g0¢e, &y,....¢,), and hence
oW,
SP=g'v, —*
e 0F¢ le=0
2w, 3w,
=g . v 3.11
S ook, ViYL T8 pgogar, B¢, 1D
2
L
OFoF

In the above derivation, in the second equality the geometric w-lemma [68], and in
the last equality the metric compatibility of the Levi-Civita connection (V&g = 0)
was used. Therefore, SP = A : VU, where A is the first elasticity tensor [68] with
components
aA B _ apA :gacéz—w. (3.12)
OFbp AFc,0F"p
Thus, in components § P44 = A“A;,BUb|B.
The second Piola-Kirchhoff stress is defined as S48 = (F~1)4, P8 Using
the material frame-indifference (objectivity) the energy function is written as W =

W(X G, C°, Ci,...,¢,). The second Piola-Kirchhoft stress is written as S =
Zg(v:‘é For the one-parameter family of motions ¢; ., one has S = 23W€ where
WE = W(X, G, Cz, &y,...,¢,). Therefore
?2W, d W
§88=2——":—C)| =4——":¢"¢=C:g%, (3.13)
9CC, de “|._y  9CPACP
where C is the second elasticity tensor with components
2w
CABCD —y__ — (3.14)

dCagdCch

In components, & SAB — CABCD (o*¢)cp. It is straightforward to show that the
first and the second elasticity tensors are related as

AALB = CAMBN o\ Fo 6 gon + SAB gu, (3.15)
or

AaAbB CAMBNFa }%bN + SwABgab. (3.16)
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Similarly, the spatial elasticity tensors are defined as a = }(p*A, and ¢ = %(p*c.
In components

1
aacbd — 7FCAFa’BAaAbB ,
3.17
abcd 8O.ab 1 a b c d ABCD ( )
C = —— = —F'F°’gF‘cF'pC .
08cd J

The relation analogous to (3.16) is given by a4, d = o"dél‘j + cced g, Note that

aacbd — abdac

the spatial elasticity tensors have the following symmetries and

Cabcd — Cbucd — Cabdc — Cca’ab

Linearization of conservation of mass. For the family of motions ¢; ¢, conservation
of mass is locally written as po(X) = Je po¢;.« (X). Taking derivatives of both sides
with respect to € and evaluating at € = 0, one obtains 0 = §J po¢;(X) + Jdp 8¢,
where dg is the exterior derivative of the mass density of the reference motion (a
1-form). Thus, d§-u+ 5g°: € = 0. Note that g% : ¢ = g*: Vu’. Hence, the linearized
conservation of mass can be written as, dg - u + Sg°: V8u® = 0. Therefore

Sp = —pe:gh=—pdivgu. (3.18)

Linearization of the balance of linear momentum. The balance of linear mo-
mentum in terms of the first Piola-Kirchhoff stress reads DivP + poB = poA.
Note that the operator Div depends on both G and g and is defined through the
Piola identity (see the appendix) as DivP = Jdivgo. The balance of linear
momentum in terms of the Cauchy stress reads divg o + pb = pa. Using the
Doyle-Ericksen formula, the Cauchy stress is written as [22] ¢ = %%—g, where
W = W(X,F,go¢,G,¢,...,¢,) is the energy density per unit undeformed

2 W

volume. The convected stress tensor X = ;o' can be written as [104] ¥ = 3 755,

where W = W(X, C’, G, ST S )

Linearization of the convected balance of linear momentum. For the one-parameter
family of motions ¢; ¢, one has

diVC‘; Y+ 0eBe =0 . (3.19)

Therefore, the linearized balance of linear momentum is written as

d ..
E [leCZ Z‘E] o

Note that for X € B, all the terms in (3.19) lie in the same tangent space Tx 3, and
hence, linearizing the balance of linear momentum is straightforward when using
the convected stress. It is a simple calculation to show that the linearized convected
stress reads

d

=0 [Qer‘z{e] =0

d
0 + ¢ oe#e] =0 de

de

(3.20)

)

4 2w, .
- _ LO%e (¢ of
=G oGae e @)L (3.21)
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Note that o = ¢;46 X, and hence

) ! 82W (e:g9)6. (3.22)
0= —5——1€— .
J 8g8g

We define the following fourth-order elasticity tensor

4 °wW
= - , (3.23)
J 9gog
which in components reads C*¢¢ = j 3 gib E‘?Z’uz Note that C = ¢,C/J. We now

expand the linearization of each term in (3.20). For the body force term one can
write

d d o d
T A 0T e [(p o ¢r.e)e] D] LZO =800 ¢ B+ [(¢fD)] L:O
= —(& 1) 0 ¢ 0B + 6 ¢} (Lub) (3.24)

Note that 85/86 = 0, and hence, Lul'} = Suf). Therefore, §(0B) = —(gjj 1€)o
G 0B+ @f (Eub) Also note that £,b = Vib — Vgu. Hence

5(0B) = —(g":€)op 6B+ & (VEB - Vfg’u) ) (3.25)

The convected acceleration is linearized as follows

d

= ¢ uae) | _ = ¢io(Su)| = ¢ [VEac — Vu]|

e=0
=Tl o [VuAe = VaU]| _ =Tyl o[DeAc = VaU]

e=0

_1 (3.26)
= Tg; o [DeDV, — Vo, U] L_O
1 0y e
= T(pz,g o| D; D, 9 + V[U,Vg]Ve + ’ng(Uy Ve, Vo) — VAeU
e=0

=57 [D DU + Vi )V + Re(U, V, V) — V4]
Therefore

S(oed) = —(g°:€) o ¢y 0 + OF; - [U + VgV + Re(U V. V) — VAU] .
(3.27)

To calculate § (dchb b)) ) Sapik and Yavari [100] expanded div c Yc.ina
coordinate chart and then took derivatives with respect to € and ﬁnally evaluated
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at € = 0. They also assumed a flat ambient space. Here, we do not assume a flat
ambient space. Note that

d
= —(p,*’€ [divg ae]

d
S(dive %)= = [divcz ):e] -

e=0

=0 (3.28)
0= ¢/ Lu[divgoc] ‘e:O

= ¢/ Lu [divgoe] ~
‘We know that [68,115]
LuVE =VEVEu+u- Ry, (3.29)
where in components, (£4V8)pe = upe + R cpcu’. We also know that [115]

a0y = (Luo D)y + (Laypa)o? + (LuyPpa)o®?

= (La0 )y + W 1pa + R cpatt) " + WP g + R cpau)o®.
(3.30)
Note that R%.pg = —R%cap, and hence, R4 pg0?? = 0. Also, R?pq = RiC.q is

the Ricci curvature. Thus
a0y = (La0 ) + U o + [(ubw),d + ucRiCCd] o, (331)
Therefore

£y (divg 6) = divg (Lu6) + VEVEU : ¢ +d(e:g") - 6 + 6 - Ricg -u. (3.32)

Note that
20W 20W . 2 (9w 2w
=028 ) =220 iy 2 g —LF).
"7 “(J 8g> j2 g ™" +J(8g8g u8F JFog “)
(3.33)
However, £4F = 0, because for any vector W(X) € Tx B, one can write
d
CuFW = S0 (F-W) = g1 - [0 (FueW)]|
€ €= (3.34)
= §01>x<i [(pt*’g ((pt,e* o W)] = (Pt*i [W] = 0.
de =0 de e=0
Hence
4 3w
Lub = — € — (e:89)6. (3.35)
J 0gog
Therefore
S(dives X) = &;“[vgvgu 6 +d(e:g’) -6 +6 - Ricg - u
(3.36)

+di (4 92w e ( gj)oﬂ
iVeg | =——:€ — (e:8")a ) |.
8\ J ogog
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Or
§(dives X) = ¢ [VEVBU 1 6 — (€:g") divg 6 + 6 - Ricg - u + divg (C:€)].
(3.37)

Now the push-forward of the balance of linear momentum by ¢; using (3.25), (3.27),
and (3.37) reads

VEVEu : G — (e:g°)divg 6 + 6 - Ricg - u+ divg (C:€) — g° 1€ 5b
+ 4 (Vﬁb - V§u> = —g’ie pa (3.38)
+p[Uo g+ VE ¥+ Ry(u, ¥, %) - VEu].

We assume that the reference motion is “physical”, i.e., it satisfies all the balance
laws. In particular, divg 6 4+ pb = 4. Thus, we have the following two identities:

—ge ,5[0)+gﬁ:e fa = (gﬁ:e)divg&,

3.39)
v o8 ol o8 _ Ugn . o (
pvﬁu + pViu = V_ﬁ(f,_;,)“ = Vdivg&u = Veu-divgo.
Therefore, the linearized balance of linear momentum is simplified to read
VEVEu : ¢ + VBu - divg 6 + 6 - Ricg - u +divg (C:e€) + BVED
(3.40)

=5 [U oy !+ VE LV 4+ Ryu. ¥, w] .

[u,v

Note that VEVEu : & + VEu - divg6 = divg (VEu - ¢). Hence, the linearized
balance of linear momentum is written as!®

divg (C:€) + divg (VEu - ¢) + 6 - Ricg - u + 3Vib

= p[U0 g + VA ¥+ Ry(u.9.9)].

[u,v

(3.41)

Linearization of the spatial balance of linear momentum. For the motion ¢; ¢, the
balance of linear momentum reads divg 0¢ + pebe = peac. Linearization of the

body force termis calculated as § (ob) = apﬁ+5v§be L 0= —(g* :€)Sb+pVED.
de

Linearization of the inertial force term reads

3(pa) = 3pa + pV" a

de

- (gﬁ:e)ﬁﬁﬂf[iio(ﬁ;l +VE Y4+ R, (u,m)].

=~ :0pa+ 5V a

€= Je e=0

(3.42)

[u,v]

16 For a flat ambient space this is identical to the corresponding equation in [100]. However,
note that even for a flat ambient space this is not identical to what MARSDEN and HUGHES
[68] obtained; they do not have the term divg (V8u - ).
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Note that §(divg o) = V% (divgoe) .
de =

.= V3 (divg ). Knowing that the Levi-
Civita connection is torsion-free, one can write V§ (divg¢) = £y (divg6) +

V8 u= £y (divgd) + V&u - divg 6. Hence, from (3.32), one has §(divg o) =

divg o
divg (Eu&) +divg (Vgu . &) +d(e:gh) - 6+6- Ric, - u. Using (3.35), one obtains
8(divg 0) = divg (VBu - &) + 6 - Ricg - u + divg (C:€) — (€:g") divg 6.
(3.43)
Remark 2. Note that linearizing a convected vector and pushing it forward to the
ambient space is not the same as linearizing the corresponding spatial vector using
a covariant derivative. In particular, we note that
8(divg 0) = @148 (dives X) + VEu - divg g,
8(ob) = ¢1+8(0%B) + pV;u, (3.44)
8(pa) = ¢18(0) + pViu.
g

divg 6+pb—pa
two approaches give the same linearized balance of linear momentum (3.41).

However, note that VEu - divg 6 + ,5V§u — ﬁVégu =V u=020,ie., the

Linearization of the material balance of linear momentum. The balance of linear
momentum in terms of the first Piola-Kirchhoff stress is linearized as follows.
Linearized body and inertial forces are (note that p9 = po(X) has a vanishing

variation) 8(poB) = poVEB, and §(poA) = polU + v[gU v]{’ + Ry(U, V, V).

Note that § (DivP) = §(J divgo) = §J divgd + JO(S(divga) = (e: gti)Din) +
J d(divg o). From (3.43), we know that

J8(divge) = J divg (Veu - 6) + Jé - Ricg - u
+J divg (C:€) — (e:g%)J divg 6. (3.45)

We next use the Piola identity and rewrite the divergence terms with respect to the
reference configuration. Note that

o . 9 o 5
J divg (Veu - 6) = J (u“w&l”)l e = [u“u,J(F—l)BC&bC]w =
‘ (3.46)

. 9 .
- <u“|beB)|B - = Div(VEU - P).

The last term in (3.45) is simplified to read —(e : gﬁ) DivP. The second term
on the right-hand side of (3.45) is simplified as FP* - Ricg o ¢ - U. The sec-

ond divergence term is simplified using the Piola identity as J divg (C:e) =

J ((CadeMc\d)‘b % — [j(]%—l)Bb(Cadeudd]lB % From (3.16), we know that

j(}%—l)Bb(Cabcd — FaMFCPFdQcBMPQ — AchQFdQ _ ﬁngac. Thus
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[j(ﬁvfl)Bb(CabcducldiIlB — (AchQFdQuC|d>|B _ ([")ngacucld)

= (AchQudQ) — (ﬁdBuaw) .
|B |B

Hence, J divg (C:€) = Div(A:VU) —Div(VU-P). Therefore, §(DivP) = Div(A:
vU) + FP* Ricg o ¢ - U. In summary, the linearized material balance of linear
momentum reads

B 3.47)

Div(A:VU) + FP* - Ricg 0 ¢ - U + poVyB
= 00 [U + VgV + Re (U, 0, V)] . (3.48)

Linearization of the balance of angular momentum. In terms of the first Piola-
Kirchhoff stress, the balance of angular momentum in coordinates reads PAAFb, —
PPA 4, Tts linearization reads § P44 F? 4 + PAAUP 4 = §PPAFY 4 + PPAUY 4.
Or

SP-F*+P.(VU* =F.5P* + VU - P*. (3.49)
In terms of the second Piola-Kirchhoff stress, S = C: ¢*¢, the balance of angular
momentum is equivalent to §S* = 8, or CABCP = CBACD [ terms of the first
elasticity tensor, the balance of angular momentum reads

A[aAmMUmlMﬁ‘b]A + Pg[aAUb]‘A =0. (350)

We next discuss the invariance of the governing equations of linear elasticity
under both time-dependent spatial and time-independent referential changes of
coordinates.

3.1. Spatial Covariance of Linearized Elasticity

Consider a spatial change of frame (or a coordinate transformation in the current
configuration) & : & — S. Under this change of frame, the one-parameter family
of deformations ¢  is transformed to (pt’, e =& 0@ B— S Wenext study the
effect of this change of frame on all the fields and governing equations of linear
elasticity. The transformed variation field is defined as

d
S, (X) =U'(X,1) = EL:O& °0¢e(X) =T§ ¢ = k. UX.r). (350

Transformation of the linearized velocity, acceleration, and the deformation gra-
dient. Linearization of the material velocity with respect to the new spatial frame

is calculated as §V/(X, 1) = ng/ ) W v where g’ = £,g. Note that
* e €=l
gl (X) 9 g (X) 0
e = o (X) =TE  ———— + = 0@ (X)
ot Jat ot ot
(3.52)
8€0t,e(X)

= g*T + Wr 0 @1 (X)),
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where w; is the velocity of the change of frame. Thus

0¢r.e(X)

SV(X, 1) = (Vé*aié*T + Vg*%wt o ‘Pt,e(X)) ‘ _

(3.53)
¢, (X)
=& (v, 2 VoW o0 |
de ot e=0
where W; = £w,. Therefore, using (3.2), one obtains
SV (X, 1) =&, (8V(X, t) + VuW; o gZ’J,(X))
=& (D/UX, 1) + VuW, 0 (X)) (3.54)
=& (UX. 1) + VuW, 0 §/(X)) .
The transformed linearized acceleration is calculated as

SA'(X,1) = Vg, V' = Ve V-wop, ENV +wog)
=& [ Vi o (V+ Woun) (3.55)
— EAX, 1) + &, (v‘e,w 0 @1 + Yiwop V + Viyoy, W o (pl) .

We assume that body force is transformed such that A'(X, 1) — B'(X,t) = &
(A(X,t) — B(X, 1)) [68]. Therefore, SA(X,t) — éB(X, 1) = &4«(BA(X,t) — 5B
(X,1)).Note that F; . = T, . = T(§;001.c) = T& - Tor.e = &x+T 1. Therefore

§F = V&%ét*T@t,e

=5V Toe| | =5SF=£VU

€=

(3.56)

Il
=S[0]

- VU.

Transformation of the linearized first and second Piola-Kirchhoff, and Cauchy
stresses. The linearized first and second Piola-Kirchhoff stresses are written as
SP = A: V28U, and 6S = C: ¢*e. We know that both A and C are tensors and
under & : S — S are transformed as

A =g, A AYB_pd (plb, A, C = C. (3.57)
Therefore

SP = £, A:VoBE U =&, (A:VU) = £,P, S =48. (3.58)
In the case of Cauchy stress, o = C:e — (divg u)d, and hence

So' =C'€ — (divg u)o’ = §,C:& € — (dive, g &x0)6140

=& [CIG — (dng ll)&] = &.,.60. (3.59)

Note that the elasticity tensor C is transformed as

&, &, &,
oFVyFE F4 g cabed, (3.60)

a'b'c'd '

Fa
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Transformation of the linearized balance of linear momentum. The linearized spa-
tial balance of linear momentum reads divg (C:€) + divg (VBu-6) + 6 - Ricg -
u + /(8b — §a) = 0. Therefore, in the new spatial frame it reads

divy (C':€) +divy (VEW - 0") +6'- Ricy -u + /(b — sa')
= divg (C':€) + divg,q (V58 - £.6) + £,6 - &,Ricg - £u
+ (b 0 §)«(5b — da)
= &, [divg (C:€) + divg (VBu - 6) 4+ 6 - Ricg -u+ 8(8b — 8a)] =0, (3.61)
i.e., the linearized balance of linear momentum is spatially covariant.
The linearized material balance of linear momentum reads Div(A : V§U) +
FP* - Ricg 0 ¢ - U+ po(8B — §A) = 0. In the new spatial frame this reads
Div/(A': VU') + F'P"* - Ricy o ¢/ - U' + p) (5B’ — 6A") >
—&, [Div(A:VU) +¥P* . Ricgo ¢ U+ po(sB — aA)] _o. 0%

The proofs of the spatial covariance of the balance of angular momentum and
conservation of mass are straightforward.

3.2. Material Covariance of Linearized Elasticity

In this section, we find the transformations of the fields and governing equations
of linearized elasticity under an arbitrary time-independent material diffeomor-
phism (change of coordinates in the reference configuration). Consider a referen-
tial change of frame (or a coordinate transformation in the reference configuration)
& : B — B.Under this change of frame, the one-parameter family of deformations
@1 ¢ is transformed to ¢y ¢ = ¢ c 0 & —1. B — S. The transformed variation field
is defined as

el d . s .

06:(X0) =UX, 0= —-|  @re(81(X) =8¢0 &~1(X) =UE'(X), 1.
(3.63)

Hence, 8¢; = 8¢g; 0 8~ ' =Uo E71.

Transformation of the linearized velocity, acceleration, and deformation gradient.

Linearization of the material velocity with respect to the new reference configura-

tion is calculated as

. 31 (X)

Vv I (B 1(X
VXD =V, _y, W& (X))

=SsV(E~'(X), ).
Jat =0 > ot e=0 ( X, 1)

(3.64)

Thus, 6V =6Vo 8~ =Uo &~
Linearization of the material acceleration with respect to the new reference
configuration is calculated as

.o 3G (X
5A(X,t)=ViV@L()
3 o1 ot e=0
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g (B N(X
_v,v, HrE D)

ot VL

A (271(X))
e=0 [ (f ot
3 9\ dg(EHX))
R
+ g(ae Bt) ot

243

=V, V
ot

e=0
: 3 (B71(X))

ar de
=SsAE7N(X), 1),
ie,5A=06A05E

(3.65)
Deformation gradient for the motion ¢, ¢ is writtenas ¥, c = T¢; c = T (¢;.¢
E-h = Treo (TEJ)_1 = E4T ¢y . Therefore

§F = Ve, 8ulore| =8Vl —=8.0F=
In components, (31:")“14 = (I:" A U s

|63

.VU. (3.66)

Transformation of the linearized first Piola-Kirchhoff stress and the first elasticity
tensor. With respect to the new reference configuration (cf. (2.13))

We = W(X,Fe,G,g0¢, ¢y,

8
= WX, 5.F., 5,G,gop. 05!

s 8481y, E48,) = By
The above relation, in particular, implies that §W
SF. Similarly

(3.67)

€

E.8W. Note that §W =
- AW . AW LW
W=—  F= — EJSF=&5,|E"— -6F ). (3.68)
0 oF oF
Hence
B4 oW
E*— . VU= —-VU, VU (3.69)
oF oF
This implies that
oW oW
— =& . 3.70
oF “SF (3.70)
Therefore
W, W, W
P=g'v, = =g'V,E,—°| =25, (gIi —
e aFe =0 de 8F€ =0
Hence, 6P = A.-VvU = 5,
transformed as

: VU) . 37D
oFoF
A - 2,(VU). In particular, the first elasticity tensor is

(3.72)
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Transformation of the second Piola-Kirchhoff stress and the second elasticity ten-
sor. Note that the second elasticity tensor for hyperelastic solids (for which an

: : : : ABCD 3w _
energy function exists) is defined in components as C =45 CapiCen” Un

der a referential change of coordinates C is transformed to C = Z.,C, which in
components reads

CAB@ﬁ_FAAFBBiécﬁDDCABCDOE_I. (3.73)

It then immediately follows that if C possesses the minor (CABCP = CBACD =

CABDC) and major (CABCP = CCPAB) symmetries, so does C, i.e., the major and
minor symmetries of the elasticity tensor are preserved under a material diffeomor-
phism. The symmetry group Symg (T) of an m-order tensor field T is the subgroup
of G-orthogonal transformations defined as

Q) T=T, VQeSymg(T) < Orth(G). (3.74)

The space of elasticity tensors Ela (consisting of all those fourth-order tensors
satisfying the major and minor symmetries) may be endowed with an equivalence
relation such that

Ci~C, < 3QcOrth(G): (Q)4;C,=C;. (3.75)
Equivalently!’
Ci~C, < 3QeOrth(G): Symg(Ci) =Q Symg(Cy) QT. (3.76)

That is, two elasticity tensors are equivalent if and only if their symmetry groups
are conjugate subgroups of SO(3). Thus, by an abuse of notation, one may write
C; ~ C; if and only if Symg(C;) ~ Symg(C,), where use was made of the
fact that conjugacy is also an equivalence relation. Under this equivalence relation,
Ela is divided into eight equivalence classes, known as symmetry classes, namely
triclinic, monoclinic, trigonal, orthotropic, tetragonal, cubic, transversely isotropic,
and isotropic (for proofs, see [11 ,32]'%). We note that under the material diffeo-

morphsim = the elasticity tensor is transformed such that ¢ = z,€, where € is
the linearized elasticity tensor W1th respect to the reference motion ¢,. Therefore,

from (3.73), it follows that € = (F )4(C o &1, It is straightforward to verify that
[65]

Q € Orth(G) « &,Q = FQF~! ¢ Orth(6) , (3.77)

where G = &,G. Using the properties of the Kronecker product (see, e.g., [132]),
one concludes that

Symg (€) = F Symg (€ F~!. (3.78)

17 Note that (3.75) and (3.76) imply that two elasticity tensors are equivalent (represent
the same type of material anisotropy) if and only if there exists an orthogonal transformation
such that under its action the two elasticity tensors (or their symmetry groups) coincide.

18 Also, see [82] for calculation of the symmetry classes of an even-order tensor space.
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In other words, the symmetry groups of € and € are conjugate, and hence, isomor-
phic.'? It then follows from (3.76) and (3.78) that

€~ 6, « 3Q € Orth(G) : Symg(€)) = Q Symg(€,) QT
< 3Q € Orth(G) : Symg(€1) = Q Sym(€) QT (3.79)

— é1~éz,

where Q = Z,Q. Therefore, (031 ~ éz = 61 ~ 62, i.e., there is a one-to-
one correspondence between the symmetry classes of the elasticity tensors in the
initial and transformed reference configurations. It is important to notice that the
symmetry of a tensor explicitly depends on the metric. In particular, a tensor, e.g.,
the elasticity tensor, may belong to a different type of symmetry class with respect

to a different metric under consideration. Note that if F*GF~! = G,ie,if Fis
G-orthogonal (€ Orth (G)), then the symmetry class is trivially unaffected under a
change of reference configuration. MAazzucATo and RACHELE [69] characterized
the orbits of different symmetry classes of the elasticity tensor (i.e., ¥ *C, where
¥ is a diffeomorphism in the material manifold) with respect to the Euclidean
metric under a change of reference configuration that fixes the boundary to the
first-order. In particular, they found that the orbit of isotropic materials consists of
some orthotropic and some transversely isotropic materials, in addition to isotropic
materials. As they describe the material symmetry groups of C and C with respect
to the Euclidean metric for both configurations, they are implicitly characterizing
the symmetry group of the transformed elasticity tensor C with respect to the
untransformed metric G, i.e., Symg(C).

Next, using (3.78) and (3.79), we show that symmetry classes are preserved
under a change of reference configuration. In other words, the elasticity tensor ¢
belongs to a given symmetry class if and only if ¢ belongs to the same symmetry
class in the transformed reference configuration. For instance, let ¢ belong to the
transversely isotropic symmetry class in the initial reference configuration at a
material point X with the unit vector N € Tx B identifying the material preferred
direction. It follows that the symmetry group of Cis given by

Symg(€) = [Q € Orth (G) : QN = :l:N} . (3.80)

From (3.78)

Symg (€) = {Q e Orth(G) : Q = FQF~!, Q e SymG(é)} . (38D

19 The isomorphism is trivially given by the conjugacy relatlon% as follows. Let ¢
SymG(C) — SymG(C) and let H € SymG(C) Then, ¢p(H) = FHF_ € SymG(C)

It is straightforward to see that ¢ (H{Hp) = ¢ (H;)¢ (Hp) for H1, Hp € SymG(C). Also, it
is straightforward to see that ¢ is one-to-one, and thus, an isomorphism.
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The material preferred direction is transformed to N = f‘N . Clearly, employing
(3.80) and (3.81), VQ € Symg; (C) one has QN = +N. Moreover, if Q € Orth(G)

such that QN = =£N, then from (3.77), there exists Q = 157’1()1% € Orth(G), for
which one concludes that QN = £N; i.e., Q € Sym(C). Thus

Symg () = {Q € Orth(G) : QN = :tN} : (3.82)

and hence, ¢ belongs to the transversely isotropic symmetry class in the transformed
reference configuration. The generalization of this proof to the orthotropic case is
immediate. One only needs to consider three G-orthonormal vectors N1, N, and N3
specifying the orthotropic axes and define the symmetry group in the orthotropic
case as Q € Orth (G) such that QN; = £N;, i = 1,2, 3. One can similarly
prove that other symmetry classes are preserved under material diffeomorphisms
as well. For the isotropic case, it immediately follows from (3.77) and (3.78) that

SymG(é) = Orth (G) <— Symé(é) = Orth(G). Therefore, we have proved
the following result:

Proposition 1. The elasticity tensor C in the reference configuration (B, G) with
respect to the reference motion ¢ : B — S belongs to a given symmetry class if and
only if €, which is the elasticity tensor in the transformed reference configuration
(B, £xG) with respect to the reference motion ¢ : B — S, belongs to the same
symmetry class.

Using (3.13), one can write

- PW. d - 4 o~
(SS = ZWaCZ =0 = E* <4aébaéb :¢*€> = C:¢*€7 (383)
€ € -

where € = 5,C and 5*6 = E,0¢*e = 5,(¢%€), and thus, 8S = 5,C: 5,(9%e).

Transformation of the linearized balance of linear and angular momenta. The
linearized spatial balance of linear momentum with respect to the new reference
configuration reads

divg(C:é) + divg(V®i - 6) + ¢ - Ricg - + (5VEb) 0 £

T R . (3.84)
=5 [U op, + V[u’ﬂv +Rg(u, v, V)] o ET.
Note that
= Ll 1 0y I
C= _;‘p*c =—<(¢o& )« ExC = _QQD*C =C. (3.85)
7 J J

Knowing that all the spatial tensors transform like a scalar, i.e., € = € o & -1

g=goZ ! Ricg = RicgoZ ', i=uoZ ', andé = 6 0 !, one concludes
that the linearized spatial balance of linear momentum is materially covariant.
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Similarly, the linearized material balance of linear momentum transforms like
a scalar, i.e.,

ﬁ\i(/(A:Vﬁ)+Ff’*~ﬁ\iEgo</%-ﬁ+ﬁo

VB
= fo [U +Vg :V]if + R, (0, U, if)] = { Div(A:VU) + FP* - Ricg o ¢ - U

+ poVuB — po [U + V[U’V]V + R (U, T, V)] } o2l =0. (3.86)

The balance of angular momentum transforms like a scalar as well.

Wave equation and its spatial and material covariance. Letusassumethatu(x, ) =
u(x)e %", where w is the frequency. For a Euclidean ambient space, the wave equa-

tion is written as divg (C: €) +divg(VEa-6) +;‘3V§l°) =p [—wzﬁ + Vﬁ_l %]i’f], where

2é = V&’ 4 (VEa")*. Similarly, in material form U(X, r) = U(X)e ', and the
wave equation in material form reads

Div(A: VD) + po VB = po [—a)zﬁ + V[fjﬁ]‘o[] . (3.87)

If the reference motion is static, i.e., V = 0 and body force is ignored, the spatial
and material wave equations are simplified to read

divg(C: VER") + divg(VEii - 6) + pw’ii = 0,

_ ”e (3.88)
Div(A:VU) + pgw U =0.

Note that as a consequence of the spatial and material covariance of the balance of
linear momentum and its linearization, the wave equation is form-invariant under
arbitrary spatial coordinate transformations and arbitrary time-independent refer-
ential coordinate transformations.

4. A Mathematical Formulation of the Problem of Cloaking a Cavity in
Nonlinear and Linearized Elastodynamics

Suppose an object is to be hidden from elastic waves. This object lies in a cavity
inside an elastic body. The hole needs to be reinforced by a cloak, which is a layer of
specially designed inhomogeneous and anisotropic material that will deflect away
any incoming elastic waves from the cloaked object. For an observer away from the
hole the elastic waves are passing through the body as if there was no hole. Let us
assume that the body is homogeneous and is made of an isotropic material. The idea
of elastodynamic transformation cloaking is to first map the stress-free body in its
reference configuration to a corresponding homogeneous and isotropic body in its
stress-free reference configuration. We assume that the homogeneous and isotropic
transformed body (virtual body) has a very small hole of radius € (¢ — 0). Consider
a map that shrinks the hole to a very small hole and is the identity outside the cloak.
Note that there are many such mappings. Next, the important requirement is that the
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physical body with the hole and the homogeneous and isotropic virtual body must
have identical current configurations outside the cloak. In other words, to an elastic
wave the two bodies are identical outside the cloaking region. Inside the cloak we
will impose certain requirements. The last step is to check if these requirements
are enough to specify the elastic properties of the cloak, its mass density, and the
external loads and the boundary conditions in the virtual body, or if they result in an
overdetermined system with no solution. One should also check if all the balance
laws are satisfied in both the virtual and physical bodies. To formulate this problem
the understanding of the transformation properties of the governing equations of
nonlinear and linearized elasticity that we established in the previous two sections
is crucial.

4.1. Nonlinear Elastodynamic Transformation Cloaking

Let us consider a body B with a hole H (see Fig. 4). An object is placed inside
‘H and needs to be hidden from elastic waves. The hole is reinforced by a cloak
C, which we can assume is an annulus. The elastic properties and mass density of
C are, in general, inhomogeneous and anisotropic. For the sake of simplicity and
without loss of generality, let us assume that in B\ C the body is homogeneous
and isotropic. This means that the mass density p is a constant and the body has
an energy function W = W(Iy, I, I3), where I; (i = 1,2,3) are the principal
invariants of the left (or right) Cauchy-Green strain. The motion of B is represented
by a map ¢; : B — S in Fig. 4. A spatial diffeomorphism leaves the governing
equations form invariant. However, spatial diffeomorphisms (spatial coordinate
transformations) would not be useful in designing a cloak because a change of
spatial coordinates corresponds to the same body as seen through a warped lens
— but the material is the same. The cloaking transformation is assumed to be a
time-independent map & : B — B such that the annulus C is transformed to a
disk with a very small hole (or a spherical ball with a very small hole in 3D). The
mapping Z is assumed to be the identity in B\ C. It is also assumed that the virtual
body has the uniform and isotropic mechanical properties of B\ C.

One may be tempted to think that the cloak can be designed using a referential
change of frame (coordinate transformation). We have shown that the governing
equations of both nonlinear and linearized elasticity are spatially and referentially
covariant. In other words, the governing equations of the same body are invariant
under arbitrary time-dependent coordinate transformations in the current configu-
ration and arbitrary time-independent coordinate transformations in the reference
configuration. This, however, is not useful for cloaking applications, because a
change of the material frame does not lead to a new elastic body. In other words,
the two bodies (B, G) and (& (B), &Z+G) are isometric and essentially the same
elastic body with the same mechanical response. One instead needs two different
elastic bodies that cannot be distinguished by an elastic wave in their current con-
figurations outside the cloak. Motion of the virtual (homogeneous and isotropic)
body is represented by a map ¢, as is schematically shown in Fig. 4. The spatial
configurations of the two bodies with their corresponding deformations ¢, and ¢,
are required to be identical outside the cloaking region, i.e., in B\ C. In particular,
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Pt
/\A
Physical Problem @
(B,G) (S.8)
Pt th@ogosﬁ’;l
e
Virtual Problem @

(5,G) (S.8)

Fig. 4. A cloaking transformation & transforms a body with a hole 7 to another body
with an infinitesimal hole that is homogeneous and isotropic. The cloaking transformation
is defined to be the identity map outside the cloak C. Note that = is not a referential change
of coordinates and £ is not a spatial change of coordinates

this implies that any elastic measurements made in the current configurations of
the two bodies outside the cloak are identical, and hence, the two bodies cannot be
distinguished by an observer located in BB \ C. Moreover, in the virtual body 5, the
influence of the hole is negligible as H in 5 is mapped to an infinitesimal hole in
B. 1t is important to notice that our approach does not impose any restrictions on
the size of the hole, and thus, that of the concealment as illustrated in Fig. 4.

Let us consider a body (physical body) that has a material manifold (B, G)
and is in a time-dependent current configuration ¢, (3). Suppose that the stress-free
reference configuration of the body is in a one-to-one correspondence with that of
another body B (virtual body) in its reference configuration (5‘, G) (see Fig. 4).
Let us denote the bijection between the two bodies by & : B — B, which is a
diffeomorphism. We assume that the two stress-free bodies are embedded in the
Euclidean space, and hence, G and G are their corresponding induced Euclidean
metrics. This immediately implies that = is not a simple change of material frame
(referential coordinate transformation) as G # Z,G, in general. The boundary-
value problems related to the motions ¢; : B — S and ¢; : B — & are called the
physical and virtual problems, respectively. The deformation gradients correspond-
ing to the physical and virtual problems are denoted by F = T¢; and F = T ¢,
respectively. The energy function of the physical problem in B\ C is known, while
it is not known a priori in C. The energy function of the virtual body is known
everywhere in 5. The applied loads (body force and traction boundary conditions)
and the essential boundary conditions are given for the physical problem, but are
not, however, known a priori for the virtual problem.

Shifters in Euclidean ambient space. We assume that the reference configurations
of both the physical and virtual bodies are embedded in the Euclidean space. To
relate vector fields in the physical problem to those in the virtual problem we would
need to use shifters. We first consider the physical body B ¢ S = R” (n = 2 or 3).
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Fig. 5. The mapping S is the shifter map, which parallel transports vectors in Ty S to vectors
in Tjg

The maps : TS — TS, S(x, w) = (X, w) is called the shifter map (see Fig. 5).
The restriction of s to x € S is denoted by s, = s(x) : TS — T;S , and shifts w
based at x € S to w based at ¥ € S (shifter map in the reference configuration is
defined similarly). For S and S we choose two global colinear Cartesian coordinates
{z'} and {7} for the virtual and physical deformed configurations, respectively. We
also use curvilinear coordinates {¥%} and {x?} for these configurations. Note that

si; = 81’ One can show that [68]

- axd _ a7 s
§%a(x) = —= (X) - — (0)§; . 4.1
azl 3)6
Note that s preserves inner products, and hence, s' = sl . In components,
(ST)“(; = ga”s”bg&,;. Note also that
. ast, . o axP .
5= =+ 7958 — —= v as’c, 4.2)
aab b b %P
a, _ 9x% 9%k ~a. _ axd gk . : i _
where y%p. = 5 3xPoxe and y9;. = O pehon It is easily shown that s alp = 0,

i.e., the shifter is covariantly constant.

Example 1. Consider cylindrical coordinates (r, 6, z) and (7, 5, Z)atx € R3 and
% € R3, respectively. The shifter map has the following matrix representation with
respect to these coordinates:

cos(@ —0) rsin@@—6) 0
s=|—sin(@ —0)/F rcos(@ —0)/F 0| . (4.3)
0 0 1

Example 2. Consider spherical coordinates (r, 8, ¢) and (7, 0,¢) at x € R3 and
% € R3, respectively. The shifter map has the following matrix representation with
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respect to these coordinates:

cos(d} —¢) sin 6 sin @ + cos  cos 0 r[cos(qs —¢) sind cos 6 — cos 6 sin 0] r sin(q; —¢) sin 6 sin 6
S = [cos(d} —¢) cosfsinf — sinécos(ﬂ/f r[cos(d; —¢) cos 6 cos § + sin 6 sin ol/r r sin(& —¢) cos 0 sin 0/r
—sin(d; — ¢)sinb/(F siné) —r sin(d; —¢)c056/(751n5) rcos(qg —¢)sin6/(?sin§)

(4.4)

Balance of linear momentum in the physical and virtual bodies. The balance of
linear momentum for the physical body reads: Div P+ poB = ppA. We use the Piola
identity and write the divergence term with respect to the reference configuration
of the virtual body. The Piola identity [68] tells us that for a vector field W on 5,
one can write (see the appendix)

DivW = Jz DivW, W= JZ'FW. (4.5)
In components, this reads

WAL = Jz [ gllf"AAWA]M . (4.6)

W is called the Piola transform of W. We use the local coordinate charts {X A} and

(X4} for Band B, respectively. Let us start with Div P and rewrite it with respect to

the reference configuration of the virtual body. In coordinates and using the Piola
identity one can write’

PaAlA = Js ( :1;AAPaA)

e} ‘

=P o g, 4.8)

where

Pho 5 = 7' FA, P4, (4.9)

and Jz is the Jacobian of the cloaking transformation &, which is written as

PRNNLELCCION (4.10)
FTV dwGe ‘

20 Note that the Piola identity can be written as

[JEITEAA]'A —0. “7)

Thus

=}

124 aA —12A aA —12A aA
JZVEA P ]~=[JHF ]~P JSVEA  paA o
[ & A |A Al ts A |A

Therefore, using (4.7), one can write
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However, this is a vector in 7, S. The corresponding vector in T:S is defined using
the shifter s(x) as
P o5 = 5 's, PAFA . @.11)
Note that s9, P“A|A = (Sz‘a P“A)|A. Therefore
so¢DivP = Jz(DivP) o &, (4.12)
where
P=JZ'sogPF, or Pidog = jZ FA,si, pod, (4.13)
Equivalently, the transformed second Piola-Kirchhoff stress reads
So& =J;'F oG sopFSE (4.14)
Note that force on an infinitesimal area d A is calculated as
1"dA = PANydA = PAISVFA AN 1dA = PANGdA = °dA . (4.15)

and hence, Saat“dA = f&dﬁ, i.e., this force is the same in the physical and the
virtual bodies if one assumes that the first Piola-Kirchhoff stress in the virtual body
is given by (4.13). Equivalently, if one assumes that forces on the corresponding
infinitesimal areas in the two bodies are equal, i.e., are related by the shifter map,
then the relation between the stresses is given in (4.13).

Remark 3. Instead of (4.11), i.e., assuming that f’dé = S“},ﬁ‘“‘i o & one may
assume that

piA —wi, pad o 3, (4.16)

where w¢, are the components of some two-point tensor W. Hence

F
_ (wﬁaP“A) FA, +wi, paA (Jg‘ﬁ/‘A) . 4.17)

where use was made of the identity (Jz LpA A)l i = 0. In order to preserve the
form of the balance of hnear momentum under a cloaking map one needs to impose
Jgz P“AW“ ala = Jz I padya ‘;,FbA = 0, which implies that W“a‘b =0,ie,wW
must be a covarlantly constant two-point tensor defined on the Euclidean ambient
spaces S and S. Therefore, when using Cartesian coordinates {z'} and {Z'} for S
and S, respectively, W would have constant components W';. However, knowing
that on the outer boundary of the cloak (and also outside the cloak) forces on the
corresponding infinitesimal areas are equal one concludes that w is the identity,
ie,w; = 81’ Hence, w is the shifter when general coordinate charts are used for
Sand S.
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Now in the virtual body P=1J z so <pr4‘* is the shifted Piola transform of P
and
s OW - LOW

P=g'"—— P=g'"—, (4.18)
oF oF

where W = W(f}, go o, f?) as we assume that the virtual body is isotropic and

homogeneous. To ensure that the relation P=1J z Iso goPF* holds one needs to
define Win B\Cas W|g\c = WoZ,VX € B\C. This is because Z is defined to be
the identity map in 3\ C, and hence, the material outside the cloak will be isotropic
and identical to that of the virtual body. The cloaking region C, nevertheless, will
be anisotropic, in general, i.e., Wg = We(X,G,go ¢, F, ¢,...,¢,,), VX € C,
where ¢4, ..., £, are the structural tensors that characterize the symmetry group
of the material in the cloaking region.?! Note that W must satisfy the relation

— Iz 0@ @odion) [ Loz |F. @19
(8 c@)(gog o) o 2 . (419)

aWe
F

& o @) 3

One can now rewrite the balance of linear momentum Div P 4 pgB = ppA as
DivP + 5B = /oA , (4.20)

where 5p = Jz'ppo B, B = (sop)BoE L, and A = (Sop)Ao E~ 1. In
other words, assuming that in the virtual body the first Piola-Kirchhoff stress is
given by (4.13), the virtual body has the mass density po, is under the body force B,
and has the material acceleration A, the balance of linear momentum is satisfied.
Conversely, if the balance of linear momentum is satisfied for the virtual body with
the above transformed fields, it is satisfied for the physical body as well.

Balance of angular momentum in the physical and virtual bodies. In the physical
body the balance of angular momentum is equivalent to S48 = S84 orS* = S. The
balance of angular momentum must hold in the virtual body as well, i.e., S = S
which holds if and only if

(RS)* = RS, 4.21)

where R = (i‘_l o E)(li‘_1 o@o Z)(so¢)F. In terms of R, the second Piola-
Kirchhoff stress in the physical and virtual bodies are related as

§ = J-'FRSF*, or S=JzR'FISF. (4.22)

Note that assuming that the balance of angular momentum is satisfied in one con-
figuration it may or may not be satisfied in the other configuration. We will see
in Section 4.3 and Section 4.4 that the balance of angular momentum is the ob-
struction to transformation cloaking in both classical linear elastodynamics and the

21 Note that we do not know a priori how many structural tensors are needed and what they
are.
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small-on-large theory. It happens to be the obstruction to transformation cloaking
in linear gradient elasticity and linear generalized Cosserat elasticity as well as we
will show in Section 5.

Remark 4. Note that although we use the same metric for the ambient space for
the two bodies, after deformation, a physical point and its corresponding virtual
point will be mapped to two different points in the ambient space, in general. For
example, in cylmdrlcal coordinates, (R, ©, @) # r(R () @) in general where
Z(R,0,®) = (R, ®, ®). Therefore, when calculating J and J, det g at two
different points is used.

Remark 5. We showed that if G = &G, then the symmetry class of the material
is preserved under & (cf. (2.28) in the nonlinear case and Prop. 1 in the linear case).
However, for general Z and G, the type of the symmetry class of the body B with
respect to the metric G can be quite non-trivial and different from that of the body
B with respect to the metric G. This is a geometric interpretation of the expected
anisotropy of an elastic cloak.

-1

Remark 6. The relation pg = J 5 poo &~ implies that the total mass of the cloak
is equal to the mass of the corresponding transformed region in the virtual structure
with uniform density pog, i.e., m(C) = po volé(é). For example, the mass of a
cylindrical cloak, which is an annulus with inner radius R; and outer radius R, in
the physical body is equal to the mass of the annulus in the virtual body (filled with
a homogeneous solid) with inner radius f(R;) = € and outer radius f(R,) = R,.
Therefore, as the virtual and physical bodies are identical outside the cloak, one
concludes that the two bodies have the same total mass.

Even if the balance of angular momentum is satisfied in both configurations,
it turns out that hiding a hole in a nonlinear elastic medium from arbitrary finite-
amplitude excitations is not possible.

Proposition 2. Nonlinear elastodynamic transformation cloaking is not possible.
In other words, it is not possible to design a cloak that would hide a cavity from
any (finite) time-dependent elastic disturbance (or wave).

Proof. The idea of nonlinear elastodynamic transformation cloaking can be sum-
marized as follows: starting from the balance of linear momentum one assumes the
relation (4.13) between the first Piola-Kirchhoff stresses in the virtual and physical
bodies. The energy function of the virtual body is given while that of the cloak
in the physical body is not known. This implies that to be able to find the en-
ergy function of the cloak one would need to relate the kinematics of the physical
and virtual bodies. This kinematic constraint is the relation between accelerations:
AoZ = (so ¢)A.?? All these will have to be consistent with the balance of angular
momentum (4.21). We start from the relatlon AoE = =(so (p)A and write it in

Cartesian coordinates: Al = S’ Al = ) " Al Thus, VI(E(X), 1) = S’V’ (X, t)+ay,

22 The kinematic relationship in linear elastodynamic cloaking turns out to be UoZ =U.
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where a; is a constant. Assuming that V;(E(X), 0)=0and VI(X,0) =0,a; =0,
and hence, <Z);(E(X), t) = 81’.7<pi(X, t) + ap, where ag is a constant. Knowing that
@ and ¢ satisfy the same essential boundary conditions on 9;8 = 948, ag = 0
(boundary conditions will be discussed in detail in Section 5.2). Therefore, we have
concluded that

F(E(X). 1) =8¢ (X.1). (4.23)

In the virtual body there is a circular (spherical) hole of radius € — 0. (4.23) is
telling us that the deformed configuration of °H is identical to that of the infinites-
imal cavity in the virtual body. This is true for any loading of the physical body,
and even in the limit of vanishing loads. This implies that the hole surrounded by
a cloak in the physical body would collapse to a cavity of radius € — 0 (anti-
cavitation), i.e., the physical body is unstable. Therefore, nonlinear elastodynamic
transformation cloaking is not possible. 0O

However, nonlinear elastostatic transformation cloaking may be possible as
discussed next.

4.2. Nonlinear Elastostatic Cloaking

We ignore inertial forces and explore the possibility of static cloaking in non-
linear elasticity. Note that the virtual body is assumed to be isotropic, and therefore,
its constitutive equation is given by

~ aw . O o, S
S= 2@ =2W; GF +2W; (LC - LC ) +2W C (424
where § is the second Piola-Kirchhoff stress and
il = trC, f2 =detCtrC™! , i3 = deté,

. W 4.25)
and Win = 37’ n=1,2,3.

n

Note that

6_1 — F—lgﬁﬁ«—*’ ("':—2 — C—léé—l’ s—lgti — gﬁs*7 C—l — F_lgtF_*,
(4.26)

Hence, from (4.22), (4.24), and (4.26) one can write

Jz'S¢ = aR7'E*G? + (LB + Ly)C'R* — ACT'R*(E*G)RC™'R*,
(4.27)

where o = 2W1~], B = 2W1~2, and y = 2W,~3. In components

JZ'S8F =a(RTHAu(E*COME + (Lp + By) (€ HAMRE Y

- - (4.28)
— BA(CTHAMRE (2 G kL REp(CTHPORE
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where (£*G)MB = (F hM - (F DR GMN and (8*G)kL = FKKFL Ggi-
Next we consider an 1nﬁn1tely long cylindrical bar (or an infinite body) w1th a
cylindrical hole and a spherical ball (or an infinite body) with a spherical cavity. In
both examples we assume radial deformations. Under this assumption we will find
the constitutive equations of the corresponding cloaks. It should be emphasized that
these static cloaks are the nonlinear analogues of Mansfield [66]’s neutral holes.

Example 1: A static nonlinear cylindrical cloak. Let us consider radial deforma-
tions of an infinitely-long solid cylinder with a cylindrical hole of radius R;. This
hole is covered by a cloak with the outer radius R, > R;. For the physical body
in the cylindrical coordinates (R, @, Z) and (r, 8, z) for the reference configura-
tion and the ambient space, respectively, we consider deformations of the form
(r,0, z) (r(R) e,7Z ) Similarly, for the virtual body in the cylindrical coordi-
nates (R e, Z) and (7, 0, z) we have (7, 0, 7) = (r(R) e, Z) The cloaking map
is assumed radial, i.e., (R, @, Z) =EZ(R,0,Z)=(f(R), O, Z). We will design
a nonlinear elastic cloak of inner and outer radii R; and R, in the physical body
such that the static response of the body with a hole in radial deformations outside
the cloak is identical to that of an isotropic and homogeneous elastic body with an
infinitesimal hole. We assume that f(R;) = €, and f(R,) = R,. As we will see in
§5.2, the function f must satisfy the extra condition f'(R,) = 1. We also assume
that f(R) = R, for R > R,. Let us assume the following relation between the
kinematics of deformations in the physical and virtual bodies>3

r® _r® (4.29)
R R
Therefore
(+0,%7) = (F(R), 0, Z) = <% (R), ©, z) (4.30)
Hence
o L d [f(R) f(R) SR (R
r(R)_f’(R)dR[ ()] Rf/(R)r(R”[1 Rf/(R)} R

431

23 In the case of elastodynamic cloaking the kinematic relation between the physical and
virtual problems was the equality (up to a shift) of acceleration vectors. In elastostatics there
is no such constraint and one has freedom in choosing a kinematic relation between the two
problems. Note that (4.29) is just one choice and one may assume

PR _ (r(R)>,
R R

for any positive and strictly increasing function 4 such that 2(1) = 1. Note also that (4.29)
is a nonlinear analogue of Olsson and Wall [83]’s kinematic assumption.
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In particular, 7(R,) = r(R,), and #(R,) = r'(R,). Note that the spatial shifter
map has the coordinate representation

1 0 0 1 0 0
s=|0r(R)/F(R)O|=|0R/F(R)O| . (4.32)
0 0 1 0 0 1
Therefore
F(RY/Lf(RF(R)] 0 0 1/F(R?* 0 0
R= 0 R/f(R)O|, C!'= 0 1/r(R)?0].
0 0 1 0 0 1
(4.33)
Using (4.27) the constitutive equations of the cloak read
f7/(RF) 0 0 f/(RFF) 0O 0
S=u« 0 f/R* 0 |+ (LB+DhLy) 0o f/rr 0
0 0 ff'/R 0 0 ff'/R
[ f/RF3 0 0
— LB 0 fR%/r* 0 , (4.34)
0 0 ff'/R
where
- s PR - 1, s 12(R) r2(R)
I =14+72(f(R) + TERE I2=§r a1—-7FH+ e 1— = |
2
i3:i2=[’(lf)f’(f(1e))] . (4.35)

It is seen that S is symmetric, and hence, the balance of angular momentum is
satisfied. The surface of the cavity is traction free. The boundary conditions in the
physical and virtual bodies will be discussed in detail in Section 5.2. In particular,
it will be shown that the boundary of the hole is traction-free in the virtual body
if and only if the boundary of the physical hole is traction-free. As an example we
can assume that the physical and virtual bodies have finite outer radii both equal to
R, on which a radial traction is specified.

Note that radial deformations cannot be maintained in an arbitrary compressible
isotropic solid only by applying boundary tractions. This is a result of Ericksen’s
theorem, which states that the only universal deformations in compressible isotropic
solids are homogeneous deformations [26] (see [120] for an extension of this result
to compressible solids with finite eigenstrains). Note, however, that if the radial
stretch is uniform, i.e., 7(R) / R = r(R) /R = A, then the deformation will be
homogeneous, and hence, universal, i.e., it can be maintained solely by applying
boundary tractions in any compressible isotropic solid.
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Example 2: A nonlinear static spherical cloak. Let us consider radial deforma-
tions of a finite solid sphere with a spherical cavity of radius R;. For the physical
body in the spherical coordinates (R, ®, @) and (r, 6, ¢) for the reference con-
figuration and the ambient space, respectively, we consider deformations of the
form (r,0,¢) = (r(R), ©, P). Slmllarly, for the virtual body in the cylindrical
coordmates (R e, d>) and (7, 0, ¢>) we have (7, 9, ¢>) (r(R) o, 45) Notice that
(R cD) = E(R,0,Z) = (f(R), ®, ®). We again assume the following re-
lation between the kinematics of deformations in the physical and virtual bodies:
7(R)/R = r(R)/R. Therefore

(7 0,¢9) = (F(R), O, ) = (M r(R), O, @) (4.36)

Note that 7/(R) is given in (4.31). We will design a nonlinear elastic cloak of inner
and outer radii R; and R, in the physical body such that the static response of the
body with a cavity in radial deformations outside the cloak be identical to that of an
isotropic and homogeneous elastic body with an infinitesimal cavity. The function
f satisfies the following conditions: f(R;) = €, f(R,) = R,, and f'(R,) = 1.
Note that the spatial shifter map has the coordinate representation

1 0 0 1 0 0
s=|0r(R)/F(R) 0 =|0R/f(R) O . (437
0 0 r(R)/F(R) 0 0 R/f(R)
Therefore
[+ (R)/(f'(R)F'(R) O 0
R= 0 R/f(R) 0O ,
0 0 R
- /1 (R) (4.38)
1/r'(R)> 0 0
cl= 0 1/r(R)? 0
|0 0 1/(r(R)?sin?®)
The constitutive equations of the cloak read
A /(RY) 0 0
S=u«a 0 ff'/R3 0
0 0  ff'/(R3sin?®)
 [rH®wP 0 0
+ (LB + Ly) 0 ff'/(Rr?) 0 (4.39)
0 0 ff'/(Rr?sin? ©)
[ R0 0
— LB 0 Rff'/r* 0 ,
0 0  Rff'/(r*sin>®)

where

. 22R) - 1. o TA(R) r*(R)
L=F2f R+ = b= 71 =F+ 5 [1— 2 }
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L=J"= [()”(f(R))} (4.40)

It is seen that S is symmetric, and hence, the balance of angular momentum is
satisfied.

4.3. Linear Elastodynamic Transformation Cloaking

In this section we explore the possibility of transformation cloaking in classical
linear elasticity. Let us assume that the reference motion is static, i.e., V(X 1) =0,
and the ambient space is Euclidean, that is, F{icg = 0. In this special case, the
linearized material balance of linear momentum (3.48) is simplified to read

Div(A:V§U) + poVEB = poU. (4.41)

Now suppose that the reference configuration of the physical body B is mapped
to the reference configuration of the virtual body B, where B and B are endowed
with the Euclidean metrics G(X) and G(X ), respectively. Let us denote the map
between the two stress-free reference configurations by & : B — B. The Jacobian
of this cloaking map is calculated as

_ [detGX (X)) | =

Linearized balance of linear momentum in the physical and virtual bodies. Using
the Piola identity, the divergence term in (4.41) can be rewritten as

| | (4.43)

where
Ut 5= = (F )8 Ut (AAByom = Jo FA,FBpAtA,B . (4.44)

Hence, using the shifter map and knowing that it is covariantly constant one can
write

s (AaAbBUb|B>|A _ (AM B05|3)|~ ’ (4.45)

AAB o = gV FA FB g s, 57l A B, D90 B =% 0 U,

24 Note that transformation of the elastic constants under a cloaking map is different from
that under a material change of coordinates (3.72).
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Therefore
s o0 ¢ Div(A:V5U) = Jz Div(A: V5U) o &, (4.47)

where Uo & = s o0 ¢U, i.e., one assumes that the displacements in the two bodies
are equal at the corresponding points. Again, knowing that the shifter is covariantly

constant, one obtains U = (so <p)U o&~! Similarly, = (Sso <p)U o &~ Substi-
tuting (4.47) into (4.41)1, one can write the linearized balance of linear momentum
in the virtual body as

Div(A: VEU) + j g = po U, (4.48)

m—1

where pyg = JQZI pooZ "and B = so (pB o £7!. In summary, the linearized
balance of linear momentum is form-invariant under the following cloaking trans-
formations:

:SO(i)UoEfl, BzSoéﬁoEil,

<
h

o)

(). (4.49)

~

Slpos, A=(Uz's logFsop AF) 05!

=

=}!

0 =

Linearized balance of angular momentum in the physical and virtual bodies. Sup-
pose that the reference motions of both the physical and virtual bodies are their

corresponding undeformed configurations, i.e., both F and F are identity maps
(there are no 1n1t1a1 stresses). Therefore, for any W € Tx BB, one has FSW = SFW
and hence, S = F Isk (in components sA A= SA s“aé ). Let us next linearize

(4.21) with respect to ¢ and ¢ gp, which reads (RSS)* = RBS, where R = (F_ 0=)S.
In components

(F~1)4 ;84 CMBKL — (F~1)F (84, CMAKL. (4.50)

Clearly, the balance of angular momentum may not be satisfied for a given cloaking
map Z. In terms of the first Piola-Kirchhoff stress, the balance of angular momen-
tum reads P44 Fel, = 0, where 2Pl9AF¢l, = paAFc, — pcAFa, Assuming
that there is no initial stress, the linearized balance of angular momentum reads
spladpel , — 0, or AleAbB I%C]A = 0. Assuming that the balance of angular mo-
mentum in the virtual body is satisfied, i.e., AldAPB F¢] i = 0, the balance of angular
momentum in the physical body requires that

(S—l)[a&ﬁvc]A(S—l)b};(ﬁv—l)AA(I:Z—l)BBAﬁAbB — 0 . (451)

Note that (4.51) is not necessarily satisfied.
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Transformed second elasticity tensor. Using (3.16) and the relation S = F~!sF,
it is straightforward to show that C=1J = 'FSFSCo 5. 1In components one has

CAECD_JH FA SB FCCSD CABCD (4.52)
or2d

We assume that the virtual structure is isotropic, and hence, CABCD _ ) GAB
GCP 4+ W(GACGEP + GAPGEPB)Y are given. Note that the transformed second
elasticity tensor C possesses the major symmetries, i.e., CABCP = CCPAB How-
ever, the minor symmetries are not satisfied, in general. This is in agreement with
the previous works in the literature.

Proposition 3. Classical linear elasticity does not allow for elastodynamic trans-
formation cloaking regardless of the shape of the hole and the cloak. In other words,
elastodynamic transformation cloaking is not possible if the cloak is required to be
made of a classical linear elastic solid.

Proof. The balance of angular momentum in the physical body (4.51) is expanded
to read

(S_l)a&ﬁCA(S_l)bg(l':z_l)AA'(i?_l)BéA&AEé

i . . o (4.54)
= (87D GF A (F DA 3(F~HP jAME
Thus, knowing that Fa, = 8% one obtains
—1Na_ja—I\b_E—1\c _ E—1\B _RAGADB
S 7 (s ~(F (F =A
(87 )% ) (F ) 4(F )75 4.55)

= (s7)a(s Vs (F 1) ;(F)B ;AP v b o B e 1,2,3).

Without loss of generality, we may represent (4.55) in Cartesian coordinates in
which the shifter is the identity, i.e., 8%, = 8. Therefore

(]f:—l)Bé [(f—l)cAAaAbE’ _ (I‘;E-—l)aAAcAbf?] —0,
Ya,b,c,B e {l,2,3}. (4.56)
Knowing that in Cartesian coordinates A‘}‘&Eé = )\5&1&551? + M(5&58’§B + S&B(SE‘&),

for an arbitrary cloaking transformation with components F;; = (f; _l)ij, i,j €
{1, 2, 3}, (4.56) is simplified for i # j # k € {1, 2,3} to read

A+ wFii(Fij — Fji) — n(FijFj; + FixF e + FiiFji) =0, (4.57)

25 When Cartesian coordinates are used in both the physical and virtual bodies one writes

CABCD Jz FA FC 6B(SDCABCD This is identical to NoRRIS and PARNELL [79]’s
Eq.(2.6). See also AL ATTAR and CRrRAWFORD [1]’s Eq.(129).
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w(FijFix — FiiFij) + AF;j(Fix — Fri) =0, (4.58)
w(F +Fh) + 0+ ZM)F?]- — uF;iFjj —AF;jF;; =0. (4.59)
(4.57) can be rewritten as (i <> j)
(+ wFjj(Fji = Fij) — w(FjiFii + FFic + FjFi) = 0. (4.60)
Using (4.57) and (4.60), one obtains

(+w)(Fii + Fjp(Fij —Fji) =0. (4.61)
Note that A + pu = %(3)» +21) + %,u > 0. Thus, either F;; = Fj;, or F;; = —F;;.
Note that F;; = —F;; immediately implies that F;; = 0, and from (4.57), Fj; = 0,
resulting in F! = 0, which is not possible as the tangent map of a cloaking

transformation cannot be singular. Thus, F;; = F ;;, which simplifies (4.57)—(4.59)
to read

FiiFij(Fjj + Fii) + FixFiiFi; = 0, (4.62)
FijFik = FiiFyj (4.63)
F; +F +2F; —FiuFj;;=0. (4.64)
Now, substituting (4.63) into (4.62), one obtains
Fij(F% +F;iFj; + F4) =0. (4.65)

Using this relation and (4.64), one obtains F;; (Fizj —F;;F;;) = 0, which implies that
either F;; = 0, or Fl.zj =F;;iF; i However, Fizj = F;;F; is not acceptable because
from (4.64) one concludes that F!=o0. Therefore, F;; = 0,fori # j € {1,2,3}.

Using (4.64) one concludes that F;; = Fj;, ie, F = BI, where I denotes the
identity and g is a scalar. As the cloaking transformation = must be the identity on
the outer boundary of the cloak 9,C one concludes that 8 = 1, and thus, & = id.
Therefore, transformation cloaking is not possible in classical linear elasticity. O

Remark 7. We observe that the balance of angular momentum is the obstruction to
cloaking, and not the acceleration term. This implies that transformation cloaking
is not possible in classical linear elasticity at fixed frequency or classical linear
elastostatics either.

Remark 8. Note that when ¢ = 0 (a pentamode material [71]) transformation
cloaking may be possible. When i = 0, the only constraint imposed by the balance
of angular momentum for the physical body (cf. (4.57), (4.58), and (4.59)) is that

F be symmetric. One should note that Fisa two-point tensor. However, as the
reference configuration of both the virtual and the physical bodies are embedded in

the Euclidean space, symmetry of F makes sense. For an arbitrary hole surrounded
by acloak (with an arbitrary shape), if the derivative of a cloaking map is symmetric,
the elastic constants of the cloak are fully symmetric. This happens to be the case
for cylindrical and spherical cloaks. As we will see in §5.3, for the virtual and

physical boundary-value problems to be equivalent outside the cloak, F must be

the identity map on the outer boundary of the cloak, i.e., FG‘|3,,C =id.
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Replace with
a cloaking device

(@) (8,G) (b) (8,G) (© (8,6

Fig. 6. Cloaking an object inside a hole H from elastic waves generated by a line source
located at a distance R from the center of the hole. The system a is an isotropic and
homogeneous medium containing a finite hole H. The system c is isotropic and homogeneous
with the same elastic properties as the medium in the reference configuration b outside the
cloaking region C. The configuration b is mapped to the new reference configuration ¢ such
that the hole H is mapped to an infinitesimal hole with negligible effects on the elastic waves.
The cloaking transformation is the identity mapping in B \ C

Next we critically examine a cloaking geometry that has been suggested in
several previous works in the literature. Consider an infinitely-long hollow solid
cylinder that in its stress-free reference configuration has inner and outer radii R;
and R,, respectively (see Fig. 6). Let us transform the reference configuration to the
reference configuration of another body (virtual body) that is a hollow cylinder with
inner and outer radii € and R,, respectively, using a cloaking map = (R, ®, Z) =
(f(R), ®, Z) such that f(R,) = R,. For such a map we have

. [r®oo
F=| 0 10]. (4.66)
0 01

Let us consider an infinitely extended isotropic homogeneous elastic medium with
Lamé constants i and X, and mass density pg containing an infinitely-long cylindri-
cal cavity H with radius R; in its stress-free reference configuration. Let (R, ©, Z)
be the cylindrical coordinates such that R = 0 corresponds to the centerline of
the hole. The cloaking device C is an infinitely-long hollow solid cylinder with
inner radius R; (radius of the hole) and outer radius R,, where R, < R, (R is
the distance of a line source from the origin) surrounding the hole. The elastic
properties of the cloaking device are to be determined. In doing so, the refer-
ence configuration of the physical body 5 is mapped to that of the virtual body
B via a mapping & : B — 1’5’, where for R;, < R < R,, it is defined as,
(R,0,Z)=E(R,0,Z) = (f(R), ®, Z) such that f(R;) = € and f(R,) = R,,
and for R > R, it is the identity map. We assume that the transformed reference
configuration is also isotropic and homogeneous with the same elastic properties
as the medium in the physical reference configuration. Let the reference configu-
rations of B and B be endowed with the flat metric in the cylindrical coordinates,
ie., G = diag(l, R2, 1) and G = diag(1, 152, 1) in the cylindrical coordinates
(R,®,Z) and (I? , 0, Z), respectively. Also, let the ambient space be endowed
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with the Euclidean metric g = diag(1, r2, 1) in the coordinates (r, 0, z). Therefore,
the elasticity tensor for the material in the virtual body is written as

CABC[) _ )LGAEGCD + M(GACG[;[) + (;ADGCB). (4.67)

In Voigt representation, C reads?0

(A +2u AR A0 0 0
A/R®? (A +2w)/R* »/R> 0 0 0
~ P2
é_| * A/R 420 0~2 0 0 4.68)
0 0 0 w/R*0 0
0 0 0 0 u 0
. 0 0 0 0 0 u/R*

As & is the identity mapping for R > R,, we note that C = CinB \ C, for which
R > R,. For R; < R < R, (the cloaking device region C), we have

CAPCP = JEF)A 48T () o8P 5GP o 2 (4.69)

where IET_1 = diag(f'(R)~!, 1, 1), and hence

se = [SLEXE) o L SRSR g k<R, @70)
= det G(X) R

ST

Note that
1 0 0
S=|0R/f(R)O|. 4.71)
0 0 1

Therefore, in the cloaking device (R; < R < R,), the elasticity tensor has the
following non-zero physical components>’

GRRRR _ (A +2u) f(R) 000 _ (A +2W)Rf'(R)

3

)

Rf'(R) F(R)
GRROO _ GOORR _ 5  GRORO _ nf(R) . GOROR _ /‘Rf/(R)’
Rf'(R) F(R)
GORRO _ GROOR _ | GRRZZ _ BZZRR _ kfl(eR)’
EOOZZ _ (22606 _; p(Ry, GZZ2Z _ G+ ZM)JI;(R)f/(R)’

26 Note that in the Voigt notation one has the following bijection between indices:
{11,22,33,23,13,12} — {1,2,3,4,5,6}.
27 Note that the physical components of the elasticity tensor C ABCD gre related to the

components of the elasticity tensor as CABCD —  /GAiJGCEa VGccGppCABED
(no summation) [114].
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GRZRZ _ wuf (R) GZRZR _ wf (R) f'(R)

’

Rf'(R)’ - R
GZRRZ _ ARZZR _ MfIgR) . GzOz6 _ Mf(RI)ef/(R) 7
cozoz _ 1Rf'(R) . Gozz0 _ 52007 _ R 472
® nf'(R). (4.72)

Remark 9. The balance of angular momentumreads § S48 = § S84, where § S48 =
CABCD ¢y and ecp = (¢*€)cp. From (4.72), it is seen that the balance of angu-
lar momentum is satisfied if and only if ege = e9z = erz = 0. In other words, for
the class of infinitesimal deformations with diagonal linearized strains cloaking is
possible. This is the linear analogue of what was discussed for nonlinear elastostatic
cloaking in Section 4.2.

Remark 10. When ¢ = 0 (energy density is not positive-definite anymore), the
elastic constants of the cloak can be written as

GRRRR _ )‘f/(R) . Gooeee _ ARf/(R)’ CRROO _ GOORR _
Rf"(R) f(R)

CRORO COROR CORRO CROOR 0,

GRRZZ _ AZZRR _ )LfI(eR)’ ceezz _ 32206 _ Af'(R), (4.73)

éZZZZ — )‘f(R)f/(R) éRZRZ — éZRZR — CZRRZ — éRZZR =0
R 9 9
CZ@ZG) — é@Z@Z — é@ZZ@ — CZQG)Z =0.

It is seen that in this special case the elastic constants of the cloak are fully sym-
metric. One should note that this can be seen as equivalent to acoustics [78].

Note that p = Jz poZ, and therefore, the mass density in B\ C is homogeneous
and is equal to pg. The mass density in the cloaking device is inhomogeneous and
is given by

F(R)f'(R)
pc(R) = B Ri<R=R,. (4.74)

In the case of anti-plane waves, the only non-trivial equilibrium equation is the
one in the z-direction, which using (3.16) for the physical body in the cloaking
region is written as

19 A oW A *w
2 % (RERZRZ /O __pezoezp RY2 W
RaR( ( )8R + 2 ( )802+pc( Yo’ wrs)

am
= —8(R— Ry)6(0 — 6y),
Ry

where a,, is the amplitude of a time-harmonic line source with frequency w lo-
cated at (Rs, ®y) such that the induced displacement is given as §¢;(R, ®) =
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U(R, ©,1) = (0,0, R[W(R, ®)e']).?® The only non-zero stress components
in the cloak read

(SSRZ CZRRZW‘ 5SZR CRZRZW\R ,
SS@Z — CZOOZW|@ , SSZO — COZOZW‘@ (4.76)

As CZRRZ * CRZRZ ypq C206Z * cezez (cf. (4.72)), the balance of angular
momentum is not satisfied in the simple case of anti-plane waves. One should
note that the imbalance of angular momentum is actually significant as CZ®© % —
COZOZ — | f'(R) [1 i R)] will be unbounded at the inner boundary of the

cloak (R = R;) in the limit of f(R;) = € — 0. Thus, the loss of the minor
symmetry of the elasticity tensor cannot be ignored. For a linear mapping one

has?®
A R — R; A
GRZRZ (py — L GOZOZ(R) = 7
(R) = p—0p (R) "R_R o
pc(R)=R—g<l—&>po. |
(Ry — R;)? R

These are identical to Parnell [87]’s Eq.(2.5). In the next section we will show that
even in the presence of pre-stress elastodynamic cloaking is not possible for anti-
plane deformations. However, pre-stress will allow for elastodynamic cloaking for
in-plane deformations.

Brun et al. [8] and many other researchers have used a linear function for
f(R), which has been borrowed from electromagnetism. However, a linear f(R)
is not acceptable for elasticity as will be explained in Section 5.2. Let us ignore this
condition and use a linear f(R),i.e.,

Ry = BB = Ri) 4.78
f( )—W. 4.78)

28 Using (3.16), one obtains

(AaAZCWz|C> — (CABCNI%aBﬁ-nNansz) — (CABCZ(SQB(SZZ&ZWZ\C>

1A |A |A

Note that
(CABCZW|C> _ (CRBRZW‘R_’_CRB@ZWl@)lR
+<C@BRZW‘R+C@B(~)ZW|@)|@

_ (CRZRZW|R) + (C@Z@)ZW‘@>

|A

IR e

29 This map does not satisfy the required traction continuity condition, i.e., f/(R,) = 1,
but nevertheless has been extensively used in the literature (see Section 5.2).
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For this (inappropriate) choice of f(R) the mass density in the cloak reads

(R)—R—(%(l &> 4.79)
P T ®Re—r2 U TR ) “

which is identical to the mass density in [8]. Our elastic constants in the cloak read

A R—R;, . :
CRRRR A2 l’ C@@@@ A 2 ,
G2 AT TR,

CRR(~)6-) — C@@RR — )L’ C@RR@ — CR@@R =pn (480)

goror _ _ R .

R —R;
which are identical to those in [8]. BRUN et al. [8] and many other authors (e.g.,
Norris and SHUVALOV [80]) have claimed that the lack of minor symmetries in the
elastic constants of the cloak implies that a cloak is made of a Cosserat solid. This
claim is, unfortunately, incorrect. We will show in Section 5.2 that transformation
cloaking is not possible in (generalized) Cosserat solids.

GRORO _ R—Ri
R

El

4.4. Small-on-Large Transformation Cloaking

In this section we formulate transformation cloaking in the small-on-large the-
ory of GREEN et al. [38] and explore the possibility of transformation cloaking
when a cloak can be pre-stressed.

Linearized balance of angular momentum with respect to a stressed initial config-
uration. Note that the form of the linearized balance of linear momentum (4.41)
in the case of a flat ambient space is independent of the initial stress P, ie., the
balance of linear momentum when the initial configuration is pre-stressed is still
(4.41). Next, we explore the possibility of transformation cloaking in linearized
elasticity with respect to a pre-stressed configuration. Let us assume that the initial
configuration of the virtual body is its undeformed stress-free reference configura-
tion, while the initial configuration of the physical body is stressed within the cloak
with the initial second Piola-Kirchhoff stress S. Let us denote the cloak in the ref-
erence configuration by C and in the stressed initial configuration by C. We assume
that the stressed initial configuration is the result of a deformation ¢ : B — S
from the stress-free configuration (B, G). We consider linearized elasticity with re-
spect to the two reference configurations (B, G) and (B, G) and the initial motions
¢o:B—->S andgz% =id : B— S. Assuming that the physical body has an energy
function W with respect to its stress-free configuration the pre-stress Pis expressed
as

jpar _ gab Iw ‘
AFp Ik’
We still assume that the two corresponding variation fields are related through
shifters. The balance of angular momentum S48 = $84 when linearized about

any (stress-free or stressed) initial configuration reads §S48 = 5§84, which is
equivalent to CABCD — CBACD We assume that (,Z’J|B\C° = id, and F|a ¢ = I(note

that 3,C = 3,C).

(4.81)
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Transformed second elasticity tensor. As the form of the balance of linear momen-
tum is not affected by pre-stress, the transformation relation for the first elasticity

tensor is still (4.49), i.c., AiAbB o & = JZUFA  FB g si,5b), ACAPB From (3.16)
we have the following two relations:

AGABB _ CAMBN fra | b SAB gab.

RadbB _ RAMBN fa _ &b (4.82)
a a

A c FoF

When the reference configuration of the physical body is pre-stressed the cloaking
map is not & : B — B;itis the map & : ¢(B) — S (see Fig. 4). Note that

g 2 &, 2 ~ o~ ~

F = F'FF, where F = id, ie., (F)¢ ; = 6%. Using (4.49) and (4.82), one can
. . A .

calculate the second elasticity constants of the physical body as

AP = gz [ Bas ™ [ HPus ]
x [(ﬁ—l)f‘m(5—5’"@6;?’][(?—1)%<5—1)”ﬁ6’§}A“’”? (4.83)

It is observed that under a cloaking map the major symmetries are preserved. Push-
ing forward the elastic constants to the initial configuration, one obtains

(@0 = Jz(s™Ha™hY; [<?—1>amag}[<§—l>cﬁag] AdAPE

— (@) g™

(4.84)

Note that Jz = Jg J , and hence
Cabcd — %(@C)“bcd

= JS I:(;?_l)arh(sfg](s_l)b& [(;_l)cﬁS%](S_l)d}; Afuil;l; (4.85)

_ &acgbd )

The balance of angular momentum in the physical body is equivalent to cl¢?1¢d = (),
which is written as

§ - & ~ o
&[acgb]d — JS |:(F'—1)[ar;l52~1:|(S—l)b]ZZ |:(F—1)Cﬁ$lll§:|(s—l)d5 AaAbB ) (486)

Note that 6%¢ = ¢ is not specified a priori.

From (4.49), the referential mass densities of the physical and virtual bodies
are related as pg = Jzpo o &. Conservation of mass for the virtual and physical
bodies implies that py = pJ° and pgp = p. Therefore, the spatial mass density of
the cloak is given by p = Jg p.
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Proposition 4. In the small-on-large theory, i.e., linearized elasticity with respect to
a pre-stressed configuration, elastodynamic transformation cloaking is not possible
regardless of the shape of the hole and the cloak.

Proof. Let us assume that the physical body is pre-stressed with the initial Cauchy
stress ¢ and the initial body force b. The balance of linear and angular momenta
for the physical body in its initial configuration read

5%, 4+ pb* =0, and &9 =0. (4.87)

Note that ¢ and b are supported on the interior of the cloaking region, i.e., on
C\ {0H U 9,C}. Without loss of generality, we may work in Cartesian coordinates,
where the shifter and the metrics have trivial representations. In Cartesian coordi-

nates, the first elasticity tensor for the virtual body is given by AaAbB _ [ASA‘}(SE’;—i—
(848536 4 54b§Ba)] With an abuse of notationlet F;; = (F~1)';, i, j € {1, 2,3},

and thus, J¢ = [€/mnéijiFitFjm Fk,,]_l. Expanding (4.86), one obtains the follow-
ing relations fori # j # k € {1, 2, 3}

i = Jg [F,»,- (Fij — Fji)  + (Ffi +2F% 4+ P - F,-,~Fjj) u] . (488)
&' = Je [Fie Fi = Fid o+ (F + 2R3+ F% = FuFi) ] . (489)
6" = Jg [Fii (Fji = Fij) 2
+ (Fi;Fjj +2F;iFji + FiFjx — FiiFij) ] (4.90)
& = Jg [Fjj (Fij — Fji) &+ (FiiFji + 2F ;;Fij + FiF
—FjiFii)un] . (4.91)
Fii (Ftj — Fjx) A+ (FijFri — FiFji) =0, (4.92)
Fir (Fji = Fij) 2 + (FiiFjx — FijFix) p = 0. (4.93)
Using (4.90) and (4.91), one has
Je 4w (Fij — Fji) (Fii + Fj;) = 0. (4.94)
Noting that A + © = %(3)» +2u) + %/L > 0, either F;; = Fj;, or F;; = —F;.
If F;; = —Fj;, then it follows that F;; = 0, and from (4.92), F;;Fi; = FitFj;.

Using this relation and (4.93), one obtains AF;;Fy; = (A 4+ u)F;;F;. This relation
holds if F;; = 0. If F;; # 0, then AFy; = (A + p)Fjt. This can be rewritten as
£
AFix = (A 4+ w)Fg;, which implies that F;; = 0. Therefore, F~! = 0, which is not
possible. Thus, F;; = F;;, and hence, using (4.93), F;;F;x = F;;F;;. Therefore,
either Fjp = 0, or F;; = F;;Fi/F . If Fjx = 0, then either F;; = 0 or Fj = 0.
Without loss of generality, let us assume that F; j = 0 for some i # j and Fix #0
(ij = F,‘j =0, Fjx # 0). As Fir # 0, from Fijik = Fjiij, we note that
£
F;; = 0. Therefore, F~! has a zero column vector, i.e., it is singular, which is

£
not possible. Our conclusion is that either all the off-diagonal terms of F~! are
£
zero or they are all non-zero. If F;; = Fj; = Fjx = 0, then F = BI (cf. (4.95))
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for some nonzero scalar B, which means that cloaking is not possible.’’If the
off-diagonal terms are non-zero, then F;; = F;;F;/F i, F;; = Fj;Fji/Fi, and
Fixe = FijFri/Fji. Substituting these relations into JE_I = €lmn€ijkFitF jmFin, it
is straightforward to see that JE_l = 0, i.e., the inverse cloaking map is singular,
which is not possible. O

If one uses linearized elasticity with respect to a pre-stressed configuration the
best one can hope for is cloaking for a restricted class of deformations. In the
following, we will find such an example in the case of a cylindrical cloak.

An example of a pre-stressed linear elastic cloak. Let us consider the cylindrical
cloak example in the presence of the initial stress 6. The cloaking map & transforms
a pre-stressed cylindrical annulus in the physical body with inner and outer radii r;
and r,, respectively, to a cylindrical annulus in the virtual body with inner and outer
radii € and r,, respectively. In cylindrical coordinates let (7, 67, 7)) = &(r,0,72) =
(f(r), 6, z). The tangent map of the cloaking transformation is given by

. [rmoo
F=| 0 10/, (4.96)
0 01

where f(r,) =r, and f(r;) = €. Thus

Jo = |SBEDD) 4§ SOSO) (4.97)
£§= det g(x) B r ’ |

where g = diag(l, 72, 1) and § = diag(1, 72, 1) are, respectively, the Euclidean
metrics of the physical and virtual bodies in their current configurations. Note that
s = diag(1,r/f(r), 1) and

AdAbB _ [kgAMgBN Fu (gABgMN +§ANgBM):| ﬁé}hﬁhi/’ (4.98)

where F@ i= 84 ;- Noting that p = Jg 0, the mass density of the cloaking device
in its current configuration is given by

O
=5

p(r) r<r=<r,. (4.99)

Using (4.85), the non-zero physical components of the elasticity tensor of the cloak-
ing device in the current configuration are written as (r; <r <r,)
QT — A+2w)f() _ é,rr Qo000 _ O+ 2wrf'(r) _ 02,99

rf'(r) f@r) ’

39 Knowing that F;; = F j;, from (4.88) and (4.89), one obtains

0=F} —Fp =Fii (Fjj —Fu) - (4.95)
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/
arro0 _ g00rr _ 5 arord _ wf(r) _ rr o gbrer _ prf (r) _ k00

¢ ¢ . , _ ’
rf'(r) f@r)

69rr9 — ér99r =L, érrzz — ézzrr _ m , é@@zz _ ézzee — kf/(r) ’
g _ GO0 g

r 9

/
grare — wf (r) _ G g — wf(r)f'(r) _ R gurrn g wf )
rf'(r) ’ r ’ ro
’ ’
r r

grror _ pfrrr _ _gro Ly _gr2 , Qro00 _ a00ro _ 41 ’
groz0 _ pzore _ _érz , orafz _ pbzrz _é_ré) Ry S _Cﬁyrz 7
éé‘rzr _ 6zr6r _ _éé‘z i 699z9 _ 61999 _ _éez ’ 6ezzz _ ézzé‘z _ _égz .

(4.100)

Let us examine the possibility of designing a cylindrical cloak using pre-stress for
the special cases of in-plane and anti-plane deformations.

(i) Anti-plane deformations: In this case, the only non-zero components of the
strain tensor are €., and €g,. Therefore, from (4.100), the balance of angular
momentum, i.e., cleblrz — clabler — glabldz — ¢labld — o forg =r, b =0
implies that 672 = 6% =0.Fora=r, b =z,6"% =0, and

érrzﬂf(r)_ 1 _1:|’ Sz Mf(r)[
ro Lf(r)

flry=1]. (@101

Fora =6, b = z:

200 _ e [ —1] [&—1]. 4.102
wf'(r) 70 , wf'(r) ( )

Thus, from the two expressions for 57 it follows that r f'(r) = f(r). Knowing
that f(r,) = r,, one obtains f(r) = r, which implies that cloaking is not
possible for anti-plane deformations.

(i1) In-plane deformations: For the in-plane case, the non-zero components of the
linearized strain are €,,, €gg, and €,9. The balance of angular momentum
[ab]rr _ C[ab]@@ _ C[ab]r@ _ C[ab 10r _ 0 fora = r, b=20 glves

2ro __ 2rro_ f @) . 200 _ rf/(r)
sr=0. = -] =

- 1} . (4.103)

Fora =r, b =z,anda = 0, b = z, it gives: o’z = Uez = 0. The traction
vector in the physical and virtual bodies are given by

T — PUAN, + 5PN, , and T9 = §PIAN (4.104)
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where 8P and 8P are, respectively, the linearized first Piola-Kirchhoff stress ten-
sors for the physical and virtual bodies related by § P44 = Jz (F~1)4 i (s,
§ P44 and P is the initial first Piola-Kirchhoff stress in the physical body. On
the outer boundary of the cloak 9,C, the traction vector in the two problems
must be identical. Therefore, the initial traction in the physical body must van-
ish on the outer boundary of the cloak, viz., i:|auc = (0, n)gly,c = 0, where
n is the normal to the outer boundary of the cloak in its current conﬁguration.
Thus, 6" (ry) = 6"%(r,) = 0, which holds if f'(r,) = 1 (i.e., F|d = 1.
To ensure that the hole surface is traction-free in the physical body, tfle initial
traction needs to vanish on 9+ as well, i.e., t|aH = 0.3! Hence, it follows that
6" (r;) = 6"%(r;) = 0, amounting to f'(r;) = €/r;. Moreover, the linearized
tractions must also be 1dentlcal on the outer boundary of the cloak in the two
systems 1 e., one must have, F|a ¢ = I, but note that F= F lFF and hence,

F|30C = F|30c F|30C = I already holds. Equilibrium equations in the initial

configuration 6° b+ pb® = 0, have only one non-trivial component, which in
terms of the physical components of the Cauchy stress reads

d

L5 LG8 4 p)b =0, (4.105)

Therefore

. fr) o rfiry o fr)
b ) = <[ L] [0 0]
rf'(r) FO o1 40
[f(r)f”(r) f(r) 1}

e e

Note that the simplest polynomial that satisfies the boundary conditions f (r,) =
Fo, f(ri) =€, f'(rj) = €/ri,and f'(r,) = 1is

(ri+r0)(ri—e)r3 2(r? +riro+12) (ri — € )r

(r) =
f ri(ri_ra)3 rl(rl_r0)3 (4.107)
rz(r2+r~r +4r2)—re(4r2+r'r +r2) 212
i i ilo 0 0 i ito T 15 riry(e —rp)
3 r+ 3
ri(ri — 1) (ri —1o)-

Elastodynamic Transformation Cloaking in Solids with Microstructure

Having established that classical linear elasticity is not flexible enough to allow
transformation cloaking a possible solution would be to see if transformation

31

The inner boundary of the virtual and physical holes must be traction-free. This condition

for the virtual hole reads §t = S}S&AK’A |87:t = (0. However, note that s St d A = 5t dA = 0,

ie.,

the linearized traction in the physical body vanishes, and thus, in order for the hole to

be traction-free in the physical body, the initial traction must vanish, i.e., paAN Alan =0.
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cloaking may be achieved in solids with microstructure. In such continua the Cauchy
stress does not need to be symmetric. This is the reason that in the literature of
elastodynamic transformation cloaking it has been suggested that a cloak should be
made of a Cosserat solid. The first systematic formulation of generalized continua
goes back to the seminal work of Cosserat brothers [17], which remained unnoticed
until the interest in continua with microstructure was revived in the 1950s, 1960s,
and 1970s [27,28,74,75,112,113] and now there is a vast literature on generalized
continua.

In formulating the cloaking problem, we assume that both the virtual and phys-
ical bodies are made of solids with microstructure. We can follow two paths: i)
Assume that energy depends on VF with components F“ 43, i.e., gradient elastic-
ity. This seems to be more natural for our purposes because first there is no ambiguity
in the physical meaning of microstructure, and second there are well-established
connections between strain gradient elasticity and atomistic calculations (see [67]
and references therein); ii) In addition to the deformation mapping ¢ assume a set
of director fields that have their own independent kinematics, i.e., (generalized)
Cosserat elasticity. Energy depends on these extra fields as well. One should note
that there are many different choices for describing microstcuture. This has been
discussed in some detail in the monograph [10]; see also [124]. We discuss elasto-
dynamic transformation cloaking in both gradient and generalized Cosserat solids.
The goal of this section is to show that adding microstructure does not remedy the
obstruction to elastodynamic transformation cloaking.

5.1. Elastodynamic Transformation Cloaking in Gradient Elastic Solids

In gradient elasticity (or strain-gradient elasticity) energy function depends on
the (covariant) derivative of the deformation gradient as well, i.e., [113]

W =W(X,F,VF,G,go09). (5.1)

Note that (bulk) compatibility equations are written as F%5p = F%pja [122].
Objectivity of an energy function means invariance under (rigid-body) rotations
in the ambient space. One can think of F as a vector-valued 1-form [121]. The
1-form part would not be affected by changes of coordinates in the ambient space.
Now the question is how should W depend on F in order to be isotropic? Suppose
f = f(u), where u is a vector. We know that for f to be isotropic it should have
the form f = f (u-u), whereu - u = uub gab [109]. This new variable in the
case of deformation gradient is F¢ 4 F b A8ab = Cap. In gradient elasticity one has
an extra independent variable. Let us first consider a scalar function of two vectors
f = f(u,v).For f tobe isotropic, one must have f = f(u -u,u-v,v-v). Inthe
case of energy function these three variables are

F4F’ggap=Cag, FaAFbBlcgabZZDABC» F“A|BFbC|Dgab =: Eapcp -
(5.2)

Note the symmetries of the new measures of strain: Dapc = Dacp, Eapcp =
Ecpap = Epacp = Eappc = Epapc. The strain measure E is, however,
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functionally dependent on C” and D as noticed by Toupin [113]. More specif-
ically, given D, one can write F”B|C = g“b(F_l)AaDABC. Hence, Eaopcp =
C~MNDyrapDnep. Therefore, W = W (X, Cag, Dagc, G ap). Note that Cap|c
= FocF’pgap + FOAF’picgar = Dpac + Dapc. Thus, Dagc = %
(CA Bic +Cacip — Cac| A). Therefore, one can assume that energy density de-
pends on C’ and V6P, ie., W = W(X, Cag, Cap|c, Gag), which is exactly the
way Toupin expressed the energy density.

Balance of linear momentum. We next derive the governing equations of gradient
elasticity using Hamilton’s principle of least action. Assuming the Lagrangian den-
sity L=W —T,where T = %po (V,V)g = %,ooV“ V? g, is the classical kinetic
energy density, the action is defined as

I
S:/Z/(W—T)dth, (5.3)
11 B

where f; < fp are arbitrary time instances, and dV is the Riemannian volume
element of (53, G). Hamilton’s principle is written as

5]
55:/ /(8W—6T)dth:/ T8¢ gupdA (5.4)
n B 8;8

where T is traction, and 9,3 C 913 is part of the boundary on which tractions are
specified. The only term that is different from that of classical nonlinear elasticity
is § W, which is calculated as

. oW oW
W =ViEw = —:8F+ ——:§V’F
3¢ le=0 oF dVF
ow ow
= —38F° SF%A 1B, 5.5
aFa, f A + TR, AlE (3.5

where we used the fact that Vg = 0. Variation of the covariant derivative of the
deformation gradient is calculated as follows:

8 a 8 a
5FA|B—V()V;)& =V 5 VALZ
de oxk e=0 axB e dX e=0 (5.6)
=V_s 8F'4 =U"a8,
axB

where use was made of the fact that V is a flat connection, and hence, order of
covariant differentiation can be interchanged (see the appendix). Therefore

sW

= aFa, YAt gpa, ¢ s oD

ow _ Iw ow
Note that aF,,A&p“M = (aFaA(S(p“>|A — (W)M S¢®. Thus

ow ow ow
/aFa 8<p“|AdV=—/ (8F“ ) 5¢“dv+/ 5 Fa NadpdA, (5.8)
B A B AJ|A B A
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where N is the unit normal vector to 3, and N4 are components of the correspond-
ing 1-form NP, Similarly, for the second term one can write

oW ow
f 09 ajpdV = —/ ( - ) 3¢ jadV
B OFAB B\IFAB )

oW aW
—l—/ Npdp®jadA :/ ( ) 8¢tdV (5.9)
aB OF% 4B B\IF A8/ p1a

oW oW .
- Ng) + Na | 8p%dA.
B aFaA\B |A aFaA|B |B

In deriving the above relation we used the topological fact that boundary of a
boundary is empty, i.e., 998 = &. Therefore

= [[ 2% () ] sy
B| OF%) dF“AB/ g "
oW oW
+ f - ( ) NadgdA (5.10)
aB | 0Fa 8FaAlB |B

ow
—/ ( NB) S dA .
aB \IFA|B A

The first term in (5.10) implies that the first Piola-Kirchhoff stress in gradient
elasticity has the following representation:

ow ow
pA = gab — ) (5.11)
OFb, AF’ A8 B
Following Toupin [113] we define a hyper-stress HAB = H,BA = 3 I?‘IVZ o The
integrand of the third term in (5.10) is simplified as
(H,ABNp)a = H, B\ ANp — BapH,AP, (5.12)
where Bp = Bpa = —Nyjp is the second fundamental form of the surface

9B embedded in the Euclidean space (we assume that the undeformed body is
embedded in a Euclidean ambient space). Therefore, traction in gradient elasticity
is written as

Ta — PaANA _ HaABIBNA + HaAB%AB' (513)
Similar to classical nonlinear elasticity, the kinetic energy variation reads
d
8T = po((V, Dfdg)g = 2P0V, d¢le — Po((A, S@)g. (5.14)

Assuming that ¢ (X, 1) = d¢(X, ) = 0, one obtains

%) 4]
5/ /—Td\/dt:/ /po((A, ) gd V. (5.15)
n B 1 B
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Therefore, the balance of linear momentum (the Euler-Lagrange equations) reads
pad |4 = poA? (inclusion of body forces would be straightforward using the
Lagrange-D’ Alembert principle) and traction vector is given in (5.13).

The Cauchy stress 0% = J~! F¢, PP in gradient elasticity has the following
representation (note the typo in Toupin [113]’s Eq.(10.18)):
ow

1 be W .
ot =g lgbL I:FaAaFCA + FaA|BaFCA|B:| — hbm‘c, (5.16)

where hb¢ = J-1Fa , Fcp HPAB,

Remark 11. When a gradient elastic solid is in a stress-free state the traction vec-
tor at every point on any surface vanishes. From (5.13) this implies that P94 —
HeAB 8 =0, and H aAB — () Therefore, in a stress-free state both the (total) first
Piola-Kirchhoff stress and hyper-stress vanish.

Balance of angular momentum. In the setting of Lagrangian mechanics of continua
the balance of angular momentum is derived using Noether’s theorem. Consider a
flow 5 : S — S on the (Euclidean) ambient space. According to Noether’s theo-
rem any symmetry of the Lagrangian density corresponds to a conserved quantity.
In particular, invariance of a Lagrangian density under rotations of the ambient
space corresponds to the balance of angular momentum. For the balance of angular
momentum in a Euclidean ambient space ¥ (x) = x + s£x, where $2 is an anti-
symmetric matrix. As the kinetic energy density is invariant under rotations one
only needs to require invariance of the energy function under flows of rotations of
the ambient space, i.e.,

W(X,F,VF, G, g) = WX, YuF, ¥ VF, G, ¥4 8). (5.17)

Taking derivative with respect to s of both sides and evaluating at s = 0, one
obtains

. ow aw
gac [FbA + Fb

IFC A'BaFCAw] ap =0 -18)

As Q2pya = — 241, one concludes that [7% = [7%, or 711901 = 0, where32

ow aw
0F¢, OFC B

W (5.19)
— pac Fb HaAB Fb .
8 ASpe, Fea + AlB
In terms of the first Piola-Kirchhoff stress the balance of angular momentum reads
plaApbl, 4 (H[“ABFb]A>|B =0. (5.20)
In terms of the Cauchy stress, o'[*?1 4 mb“”|c = 0, where mbe¢ = plbale
couple-stress.

is Toupin’s

32 We use the standard notation [7[401 = % (17“” - Hh“>.
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Linearized balance of linear momentum. Linearizing the balance of linear mo-
mentum about a motion ¢ one obtains (8 P“A)| A+ podB* = poU?. Note that
8(Pa% 4) = 8P| 4, where

L N g Pt
B
anB|C

SPA — 3F0 8FbB|c = A4,B Ub\B + B4, BC Ub|B|C’ (5.21)
and

A A
aA B — ape aAbBC — ape
OFbp’ anB\C ’

(5.22)

Following DiVincenzo [21] we call A and B dynamic elastic constants. Notice that
BAPBC — BeAbCB Noting that P44 = g”m% — HM, ), one can write
2w 2w
P = Sy TN S F M S )
2w 22w (5.23)
=g T AFTy U"\n + g™ S ADF N U v — (SHM )y

However

dH M JHAM

aAM __ c
M = re T et e
|D

2 2
am W c am W
aFCc|D8FmA‘M

(5.24)

=g ———>—UCc+g USicip

OFCcOF™ sq\m
Let us define the following three static elastic constants [21]

W ABC _ ZwW
T QFa 0Fbg” ¢ T QFa 0Fl g’
A B A BIC (5.25)

2
C,AB,CD "W
a —_ .
dF% 410 F"¢cp

Therefore, the static elastic constants satisfy the following symmetries: A,4,? =
AyB,A B,A,BC = B,A4,CB and C,AB,CD = C,BA,CD =, BA,DPC — C,DC BA
(note that C has 21 and 171 independent components in 2D and 3D, respectively).
Thus, s HAM = B,BeAMyb p 4 C,BCaAM b p - and hence

(5HaAM)|M _ (BbBaAMUb‘B + (CbBCaAMUblB‘C)lM . (5.26)
Therefore
A B — paA B _ BbBaAMlM,
BeA,BC — gaA,BC _ [, BaAC _ CaAMbBClM ' (5.27)
Or, equivalently
AGAbB _ paAbB _ BbBaAM|M7
(5.28)

BaAbBC — BaAbBC _ EbBaAC _ (CaAMbBC‘M )
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In deriving the second relation we ignored the term U gic|pr in $H M ), as
we are assuming a second-gradient elasticity in which displacement derivatives of
orders three or higher are neglected. Note that in [21] homogeneous solids were
considered. Here, for cloaking purposes, one needs to consider inhomogeneous
solids and that is why derivatives of the static elastic constants appear in (5.28).
Note that (5.28), requires that B?B¢AC = BbCaAB — BbAaBC yredqycing the
number of independent components of B to 16 and 90 in 2D and 3D, respectively.
After some manipulations and using the major symmetries of C, one also finds that

BaAbBC 4 gbBaAC _ _ (CbBMaAC + CuAMbBC) W

(5.29)
__ (CaACbBM n (CbBCaAM) "

Similarly, from (5.28)1, and knowing that A has the major symmetries, one obtains

AGAbB _ pbBaA _ (BaAbBM _ BhBaAM) _ <BaBbAM _ BhBaAM) . (5.30)

|M M
Linearized balance of angular momentum. The balance of angular momentum is
equivalent to I7%? = I1%, or IT1%’! = 0. Suppose the reference motion is an
isometric embedding of an initially stress-free body into the Euclidean space, i.e.,
F4 4 = 8%, whichimplies that F“ 4 p = 0. Assuming that P24 = 0, one concludes
that

dFa,

F’IaAB

=: P, (5.31)
F=F

B =28

Therefore
anab — f)cciAUb‘A + I_OICIABUZ?IAIB + AaAmMﬁ*bAUmlM
+ BaAmMNI%bAUmlMlN
_ (AaMmAIgbA n [_"]aABlggrbn) U (5:32)
+ (BaMmAB]‘;’th n [_"IaAB(S’l;) U™ .

Knowing that § I7 lab] — 0, and that the first and the second covariant derivatives of
the displacement field are independent, one concludes that

AlaM Apbl IfI[aAB‘B(S’l:l] —0,

5.33

BlaM ABgbl | prladBghl _ (533)

" .

Note that the issue with the acceleration term that was discussed in classical

nonlinear elasticity in Section 4.1 persists even in nonlinear gradient elasticity, and

hence, we do not discuss transformation cloaking in nonlinear gradient elastody-
namics.
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Transformation cloaking in linearized gradient elastodynamics. We start from a
virtual body that is made of a homogeneous, isotropic, and centro-symmetric gra-
dient elastic solid. We then consider a cloaking transformation and try to find the
elastic constants of the physical body induced from the cloaking transformation such
that the balance of linear and angular momenta are respected in both the virtual and
physical bodies. Let us start from the balance of linear momentum in the physical
body, i.e., DivP 4+ pgB = pgA. Its linearization reads § (Div P) + ppdB = ppA,
where

8 (DivP) = DivéP = Div (A : VU + B : VVU)

9 5.34
_ (AuAbB U® 5 + B, BC Ub\B|C) (5.34)

A 9xa’

Under a cloaking transformation = : B — B and using the shifter map, Div 6P is
transformed to

Jz (AM};B 015“; n Baﬁgéé UngIC)‘,g 3;’ (5.35)
where
U =s%,U°,
A&AEB’ _ Jc:lsaa;:fEA(Sq)bE;?éB AA, B 536
i JE]S&aﬁAA(S_l)b;;lgémc Ba4, BC | '
Ba /i _BC _ JEIS&aEAA(Sil)bgf‘éBf‘éC B4, BC
or, equivalently
AAYE = J2(s7) G (F A 180 (F1)B 5 AT
n JT(S—l)a&(f—l)AAS h(F—l) é\é éa,&jé’ (5.37)

B4, 5C = Jz (™) (F 1A 80, (F )P 5 (F~1)C o B34;BC.
To see this, note that
(AaAbB Ub‘B + B, BC UbIBIC)lA

—Js [Ja:lfgﬁAAaAbB Ub\B i Jg—liwAABaAbBC Ub|3\c]

—Js [JH FA AdA BFBBUb +Uz FA B4, BCFB FC Ubgé

(5.38)
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where the following relations were used.

U B = (S l)h FB Uh|B9
Ul gic = (s7HP ; [FBB|C Ut Bt FBpFCc Ub‘m@] .

We assume that the reference motion for both the physical and virtual bodies
are isometric embeddings in the Euclidean amblent space, i.e., F9y = 8¢ and

(5.39)

}7“ i= 8“ This implies that F“A|B = 0, and F Al = = 0. It is also assumed that
there is no 1n1t1a1 stress in either configuration, i.e., Pay =0, HB = 0, and

13~ i=0, H 7aAB _ (). Therefore, from (5.33), the balance of angular momentum
in the physical and virtual bodies reads as (minor symmetries of A, B, A, and ]B)

AleM AR =0, BlM, ABED, =0, (5.40)

AV _AEDl . — o BlaM ABER . — . (5.41)
The virtual body being uniform its elastic constants are (covariantly) constant, and
hence, from (5.27) one concludes that

AdA B _ jad B iA BC _ [ad BC _f BaiC (5.42)

Therefore, from (5.41); one obtains
AlaM _Af0 _ g (5.43)

The virtual body is assumed to be isotropic and non-chiral (centro-symmetric).>3
Knowing that an odd-order tensor cannot be isotropic and centro-symmetric [3,74]
one concludes that IB“A BC _ = 0, and hence gad bBC = 0. In particular, (5.41); is
trivially satisfied. From (5.37)2 one obtains B44,8€ = 0, and hence from (5.28)»
BeA,BC _ B, BaAC _ aAM , BC

‘M?
o (5.44)

Notice that the dynamic elastic constants Anof the cloak possess the major symme-
tries i e., AaAbB AbBaA _ J (Sfl )a N (ﬁ,,] )AA~ (sfl )bg(ﬁ*l )BB AﬁAbB' ThllS,
using (5.30), one obtains BI4BYIAM, ~— 0 je.,

]EaBbAM|M — BbBaAM‘M i (545)
From (5.44); and (5.40);, one obtains
(C[aAMbBclMﬁvc]A — _BbB[aACﬁ-'C]A ) (546)

Also, from (5.29) and knowing that B vanishes identically, one obtains

<(CaACbBM i CbBCaAM) m=0. (5.47)

33 Note that only the virtual body is assumed to be centro-symmetric. There is no such
constraint on the physical body; it can be both non-centro-symmetric and anisotropic.
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Remark 12. From (5.44); and (5.40);, one can write

B[aAbBClcﬁc]A _ BbB[aAClcl%c]A — _BbB[aAclcﬁvc]A (5 48)
— C[“AMbBC|M|C1%CIA-
Therefore
BbB[aAclcﬁC]A — _(C[aAMbBclMlCF*C]A' (549)
Note that from (5.28); and (5.44); we have
— BaAbBMlM _ (CaAMbBNlMlN (550)
+ -,E (S_l)a&(ﬁ_l)AA(S_l)bg(ﬁ_l)BE, AﬁAbB'
From the above relation and (5.40) one obtains
0 :A[aAbB Ij—-c]A — _(C[aAMbBNlMlNIj—-c]A
o (5.51)

+ g8l (F YA p(sTp(F B 5 AAAPE el
Therefore
(c[aAMbBNlM‘N}%c]A — JE(S—I)[a&(ﬁ—l)AA(s—l)bg(]:“-—l)Bg A&AbBl‘jwc]A' (5.52)

Note that in classical linearized elasticity the right-hand side had to vanish, e.g.,
Eq. (4.51), which was an obstruction to transformation cloaking.

From (5.52) and (5.49), the system of first-order PDEs for B read
BbB[aAC‘CﬁC]A — _JE(S—l)[aé(I?—l)AA,(S—l)bE(i}v—l)Bé AaAbBﬁC]A . (553)

In summary, one is given the homogeneous static elastic constants of the virtual
body. Because of isotropy and centro-symmetry only A and C are nonzero. These
are both (covariantly) constant tensors. The balance of angular momentum implies
that A has the classical minor symmetries. Thus, it will have ttle same form as A
in the classical linear elasticity. There is no relation between C and C, and there
are no constraints on C other than being positive-definite. The balance of linear
momentum relates the dynamic elastic constants of the two problems. From B = 0
in the virtual body one concludes that B = 0 in the physical body. This gives a
relation between B and C in the form of a system of PDEs. The balance of angular
momentum in the physical body is written as a set of constraints in the form of a
system of second-order PDEs for C.
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The impossibility of transformation cloaking in gradient elasticity. Next we show
that transformation cloaking is not possible in gradient elasticity. We first show this
for cylindrical and spherical cloaks. From (5.40), and knowing that Jad M= 8P Mo
with an abuse of notation, one writes

BabmAB — BhamAB , (554)

i.e., B must be symmetric with respect to the first two indices. This symmetry and
(5.53), imply that the right-hand side of (5.53) is symmetric with respect to indices
b and B as well. Thus

(S_l)[a[l(F_I)AA'(S_l)bE(F_I)BE AaAbBﬁvc]A

- - 5.55
_ je—Wla_p—1NA _a—1\B_ —1 b~AEzAI;~ o] ( )
=(s )% WF )A(S )b(F )B Foy.
This is simplified and rearranged to read (V b, B, c,a € {1, 2, 3})
(S_l)bg(;'_l)Bé I:(S—I)C&(I:;—I)QA _ (S—l)a&(ﬁ—l)cg] AﬁAEé
(5.56)

In particular, it is straightforward to verify that this condition cannot be satisfied
for either a cylindrical or a spherical cloak. To see this, let us expand (5.56) for
b=1,B=3,a=1,andc = 3:

(s HF 5 [ a(F 5 — 67D a(F 1) 5] AP 5,
_ (371)35(15:71)11§ [(371)35(;:71)11& _ (871)1‘3(571)34 LaAbB '

Knowing that in the spherical (or cylindrical) coordinates and for a radial cloak

s~ ! and F~! have diagonal representations, this is further simplified and reads

(8—1)11(5—1)33 [(3_1)33(5_1)111&3“3 _ (3—1)11(;:—1)33&1313]
- = ~ = - (5.58)
— (371)33(1‘?71)]1 [(371)33(1;71)111%3131 _ (371)11(F71)33A1331] )

Note, however that A (the elastic constants of the virtual body) possesses both the
minor and major symmetries. Moreover, A3 — u > 0. Hence, one obtains

NS [ = ™ ETY]

- - - (5.59)
=" )HF D [T FD = e ET]
Therefore, (F~1)33(s™)!; = (s71)33(F~1)!}. Recalling that F = diag(f’(R),
1,1), and s = diag(l, R/f(R),1) and s = diag (1, R/f(R), R/f(R)), in the
cylindrical and spherical coordinates, respectively, one must have f(R) = R, i.e.,
E = id, which is not acceptable for a cloaking map.
One may now ask whether choosing a less symmetric cloaking map may make
transformation cloaking possible. We next show that this is not the case.
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Proposition 5. Assuming that the virtual body is isotropic and centro-symmetric,
elastodynamic transformation cloaking is not possible for gradient elastic solids
in either 2D or 3D for a hole (cavity) of any shape.

Proof. Without loss of generality, one may write (5.56) in Cartesian coordinates
for which the shifter has a trivial representation, i.e., 8%, = 6. In 2D, one has
(Vb,B,c,a €{1,2})

(E—I)Bé [(E_l)aAALAbB _ (E—l)bg&d.&bé]
= = o = T (5.60)
_ (F—l)bé I:(F—l)aAAcABB _ (F—l)cAAaABB] .

Let us consider an arbitrary cloaking transformation with the following compo-

nents:
Fiu F
-1 _ 11 F12
F _[Fm Fzz] (5.61)

Equation (5.60) is expanded to read
Ao —Fa)? + 1 [(Fn —Fpn)*+2 (F%Z + F%l)] =0. (5.62)

We know that © > 0, and 2u 4+ 31 > O for the energy function to be positive-
definite.* Thus, multiplying the above identity by 3, one obtains 34 (F12 — F21)?+
3ul(Fii — Fa)? + 2(F%, + F3))1 = 0, which can be rewritten as

(3% +2w) (Fi2 — Fan)? 4+ 3u (Fiy — F)?

(5.63)
+u [3 (Fia +Fa1)? + (Fi2 — le)z] =0.

Note that the coefficient of each term is positive. Therefore, F1, = Fo; = 0, and

Fi1 =Fa,ie., F= oI, where I is the identity matrix and & > 0 is a scalar.
In 3D, the balance of angular momentum in the physical body reads

(Fav—l)Bé [(ﬁv—l)al&Ac‘A’bé _ (If—v—l)CAAaAbé] (5 64)
= (F7 5 [(F1y AeABB — (FYye 3 20488) b, B c,a e (1,2,3).

34 Note that
1 ow a b ow
=77bU Al |B+7b
20F%40F"g dFA0F g
1 oW
TS ra, g Fb

28F“A‘38F C|D

W Ua‘AUb|B‘C

b
UA18U% cip

1 1
= EAaAbBUa\AUb\B +BAPECU, Uy i + ECQABbCDUa|A|BUb|C\D-

Positive-definiteness of energy requires that W > 0 for any pair (Uy 4, Ug a1) # (0, 0).

In particular, when Uy 4 # 0, and Ugjaig = 0, AdAbB Uq aAUp g > 0, which implies that
A must be positive-definite. In the case of isotropic solids this is equivalent to . > 0, and
30 +2u > 0.
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This relation for {b # B} and {c # a} is nontrivial and gives six linearly indepen-
dent algebraic equations. Let us consider an arbitrary cloaking transformation with
the following components:

- Fii Fi2 Fi3
F_l = |Fy Fyn Fo3 |. (5.65)
F31 F32 F33

Equation (5.64) is expanded fori # j # k € {1, 2, 3} and reads
L _E.)? 2 2 2 2 L _E.N =

(Fiy —Fji) + 1 [2 (F,.j n Fﬂ) +F2 4 P+ (Fi —F))) ] =0, (5.66)

A (Fij —Fji) (Fix — Fri)

(5.67)
+ 1 [F,’jFik +FjjFij + FreFje +2F;iFr — Fi; (ij + ij)] =0.
After some algebraic manipulations (5.66) is rewritten as
(G +2u) (Fij = Fji)* + 1 [3(Fiy + Fii) + (Fiy = F)’
(5.68)

+3u [F?k + P+ (Fii - Fjj)z] =0

Note that the coefficient of each term is positive. Thus, F;; = 0 for i # j, and

F11 = Foo = F33. These trivially satisfy (5.67). One concludes that F = oI, where I
is the identity matrix and @ > 0is a scalar. Knowing that the cloaking map restricted
to the outer boundary of the cloak is the identity map, one concludes that ¢ = 1,
and hence, & = id, which is clearly not an acceptable cloaking transformation. O

5.2. Elastodynamic Transformation Cloaking in Generalized Cosserat Solids

We assume that the microstructure in the deformed configuration is described by
three (or two in 2D) linearly independent vectors {g(x, t), a=1,2, 3}, which are
called director fields or directors [27]. The directors in the reference configuration
are denoted by {IuD(X ), a=1,2, 3}. These are not material vectors in the sense
that g(x, 1) # (¢« P) (x, t). The kinematics of an oriented body is described by the
pair ((p(X, 1), cuI(X, t)), where cuI(X, t) is short for g((p(X, 1), IuD(X)) [111,113]. An
oriented body with (deformable) directors is called a generalized Cosserat solid. If
the directors are rigid, i.e.,

d(X, 1) gb(X, D8ab(9(X. 1)) = 9(X), (5.69)

for some symmetric, positive-definite, and time-independent matrix g, the oriented
ab

body is referred to as a Cosserat solid. The reciprocal of 9 is denoted by O such
a b a
that IGDA@ B = 82 and IGDA@ A= 83. Similarly, the reciprocal of g is denoted by #

a b
such that d*¥, = §; and d"9, = 8%. The referential directors vary from point to
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point and E)AlB = Wacp |u3c, where W4 ¢p is called the wryness of the director
field and is defined as

WApe = DA1cOp = ~DAOpc. (5.70)

The director gradient F = VGg with components F*4 = d?|, is related to the
relative wryness as

Fia=wad’, (5.71)
where
wipa = A4y . (5.72)

One can define the following director metrics: Qg = DA IbDB Gap,andg =d? gb 8ab-
a a ab a

a ab a a
Using these metrics, @4 = & G 43D, and ¥, = gbgabgb.
The kinetic energy density of a Cosserat solid is written as [113]

1
T=-pViVPeu +

lap - -
5 SV 470" g, (5.73)

where ¥ = ' is the micro-mass moment of inertia, and g;I(X L) = %g(X , 1) is the

director velocity. The energy density is written as W = W (X, F, |a=, G, g).35

Balance of linear momentum. We next derive the governing equations of general-
ized Cosserat elasticity using Hamilton’s principle of least action. The variation of
the kinetic energy is written as

8T = po((V, DfSp)g +V (d. Dfsd),

d a ] a ..
= E (pO«V, (S(p»g + 15) «g, 89»g> —_ ;OO«A, (Sw»g _ Ub «g’ (Sg»g’

whereg = D,gél isthe director acceleration. Assuming that ¢ (X, t1) = dp(X, 1) =
0, and SQ(X, H) = Sg(X, t7) = 0 one obtains

15 15
5/2/ —Tdth:/Z/ (po((A, Sohg +V (d, 8d))g)dth. (5.75)
1 B 1 B ¢ b

The variation of the energy density is calculated as

aw ow ow aw
=—:6F+ —:6F= SF* e
e=0 OF * oF ¢ 9F9, At aF4

SW=V5w

de

5F4. (5.76)

35 Note that the energy function can have an explicit dependence on the director field, i.e.,
W =W(X,F, g f G, g). The partial derivative %—‘g is a micro body force that we do not
a

consider in this paper.
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Note that § F“ 4 = U%4 and §F“4 = 59“‘A.Thus
ow ow
/5WdV=f 5(pa|A+ Sda\A dv
B B\IFa aFa, ¢
oW aw
:_/ 89 + sde |dv  (5.77)
B OF“ |A 3L:aA 1A ¢

oW ow
Nadp® Nasd® | dA.
+/33(3F“A A<P+8L:aA Aa)

Therefore, the balance of linear momentum and the balance of micro linear mo-
mentum read

b

P = poA?, RO =V (5.78)
where

ow a aw
PaA — ab , HC{A — ab_ . 579
Sy g = (5.79)

a

H44 is called the hyperstress tensor. The traction and micro-traction are defined as
a a

T% = P“4N4 and T¢ = H*4 N, respectively.

Balance of angular momentum. In order to derive the balance of angular momen-
tum in a Euclidean ambient space consider the flow 5 (x) = x 4 s82x, where £2
is an anti-symmetric matrix. As the kinetic energy density (5.73) is invariant under
rotations one only needs to require invariance of the energy function under flows
of rotations of the ambient space, i.e.,

W(X1 F, Ia:v Gv g) = W(Xv WS*F» ws*lu:v Gv wY*g) (580)

Note that under a rotation R“j; of the Euclidean ambient space the directors are
transformed as g/ 4= R4 ;,gb. Taking derivative with respect to s of both sides of
(5.80) and evaluating at s = 0, one obtains

aw aw
g [F”A T Fo 4 aFvA] Qap=0. (5.81)

As 2p, = —2,4p, one concludes that [7%? = 7%, or [119%) = 0, where

aw ow
— P —
aFcA a aEcA

e = g |:FbA } — FPAP™ L FP AR . (5.82)

Thus, the balance of angular momentum reads

plaApbl, o ﬁ[aAEb]A =0. (5.83)
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Linearized balance of linear momentum. Linearizing the balance of linear momen-
tum and the balance of micro linear momentum about a pair (¢, Cal), one obtains

@GP ya = poll?,  (BH™) 4 = F i, (5.84)
where 41 = 4d is the director displacement field. Note that

a a b (5.85)
SHHA — BaAbB UblB + CaAbB %LblB ,
where
A B 3w a4 g PW w g 3w
Aa b = T Ak a b P —— a b = = ach
OFa,0Fbp 8F“A3|;_b3 BE“Aalb:bB
(5.86)
The elastic constants satisfy the following symmetries: A%4?B = APBaA 3pq

CabB _ ($bBaa

Linearized balance of angular momentum. Suppose the reference motion is an
isometric embedding of an initially stress-free body into the Euclidean space, i.e.,
a

I?““A = &9, paA — 0, and HeA = 0. We will linearize the balance of angular
momentum about this motion and about a director field é“ = Sf\ IaDA. Thus, Ea A=

5% E)B A = zi)“mA(;im = 8¢ WE ra E)M. Linearization of 7% in (5.82) one obtains

ST — (AaACBI%bA +I§3aACB|:T—bA) U
baA B b | ThaA BEb (587)
+(Ba o F A+(Ca c EA)%[C\B-

Knowing that 8779”1 = 0 and that the displacement and director displacement
fields are independent, one obtains

AlaA BEDL, I%[aACBl‘::h]A -0,
; bl S pe (5.88)
BlaA B f:bl, | ClaA BEPI, _ (.

Or equivalently

AlaAbB fel | pladbBEel

. . b ‘ (5.89)

B[aAhB FC]A + (c[aAhB l:c]A =0.
b

Itis seen that the wryness of the reference configuration enters the linearized balance
of angular momentum. In other words, in addition to the elastic constants, one
needs some information on the non-uniformity of the director field in the stress-
free reference configuration.
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Transformation cloaking in generalized Cosserat elastodynamics. It is straight-
forward to show that the issue with the acceleration term observed in classical
nonlinear elasticity persists even in nonlinear Cosserat elasticity, and hence, we do
not discuss transformation cloaking in nonlinear Cosserat elastodynamics. We start
from a virtual body that is made of a homogeneous, isotropic Cosserat elastic solid.
We consider a cloaking transformation and try to calculate the elastic constants of
the physical body induced from the cloaking transformation such that the balance
of linear and angular momenta are respected in both the virtual and physical bodies.

The divergence term (8 P“4) |4 in the balance of linear momentum in the phys-
ical body is written as

0
1A 9xa’

(AuAbB UblB +I§aAbB %[bIB) (590)

Under a cloaking transformation & : B — B and using the shifter map this is
transformed to

PP [P 9
b A
(A’A B b ;4 B l,;) (591)

where

0% =570, 9% =s", 4,
AM};E _ JEIS&algAA(S_l)b,;If:éB A4, B (5.92)
BIA By, A, sy B p oA, B

Or, equivalently

A4, B :J’_(S—l)a&(iﬂ—l)Agsﬁ (If:—l)B~ Aa&é’
(5.93)
]BaA B J (S l)a (F I)A ~g b(F I)B BLJA B

a
The divergence term (§ H“A)| A in the balance of micro linear momentum in the
physical body is written as

d
A 0x9

a ab
(BaAhB Ub‘B +(CaAbB ih'lb|3) (594)

Under the cloaking transformation and using the shifter map this is transformed to
read

5~A B~
Js (IBB“ Rigr (5.95)

@
+
(@IS

Qe
>
Nl
=1
ﬂg:l
@
=
~—
B
[oh)

where

ab_ o
(CaAEB :J,—, FA (S 1)h FB (CaA B (596)
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and the other transformed quantities are given in (5.98). Equivalently

(CLZA B J (S_l)aa(F I)AAS b(F I)B C(JA~ (597)

ab
. . .. ~ —]ab . . .
The micro-mass moment of inertia is transformed as v = J 199 Similar to classical

linear elasticity the mass density is transformed as pg = JaZl,oo. In summary, the
linearized balance of linear momentum and micro linear momentum are form-
invariant under the following cloaking transformations:

X=E8(X), U=sopUo&™ ! Sl=sopUod™! po=J5'ppoE7",
(5.98)

g ab 2
C=(z's'opFsop CFHos!

Note that under a cloaking transformation, the stress and hyperstress tensors are
transformed as

PAA — J217, FA, peA HIA — j21s7, FA, Fpe (5.99)

We assume that in the stress-free reference configuration of the virtual body the

director field is uniform, i.e., I;D“i 5= 0, and hence, I;:a i= 0. In other words, in the
virtual body the wryness vanishes. Therefore, the balance of angular momentum
(5.89) in the virtual body reads

AlaAbB Fc] =0, B[aAbB Fc] —0. (5.100)

Assuming that in the virtual body the balance of angular momentum (5.100) is
satisfied, the balance of angular momentum in the physical body (5.89) requires
that

(s Hla.(s1)? (F 1A A(F n él”‘]AAE‘MéJrI%C]A]E“EB}:O,
(5.101)

g L NI e

(s™Ha(s™ ) (F YA 4(F )B{ﬁclABaAhBJrfﬂAcaAhB}:o,

where E:CA = SEWCMAE)M. Note that (f;')AA“g = (i)AB|A.

Remark 13. Note that E” AlB = (;EI“\ A|B. Knowing that the reference configuration
of the physical body is flat, covariant derivatives commute. Therefore, a necessary
condition for a field IH:” A to be the director gradient of a director field is

Fai8 = FBa. (5.102)

When designing a cloak the field IZ:“ 4 is not known a priori. It must satisfy both
(5.101) and the compatibility equations (5.102).
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Remark 14. In the literature it has been assumed that the virtual body is made
of a classical linear elastic solid while the cloak is suggested to be made of a
Cosserat elastic solid (without any discussion on how to calculate the Cosserat
elastic constants). Note, however, that the virtual body cannot be made of a classical

a ab
solid. If one assumes that the virtual body is classical, i.e., Band C vanish, (5.101)
reduces to the classical balance of angular momentum for the physical body (4.51),
which is an obstruction to transformation cloaking. In other words, both the virtual
body and the physical body (even outside the cloak) must be made of Cosserat
linear elastic solids in order to achieve elastodynamic transformation cloaking.

Elastic constants of the virtual body. We assume that the virtual body is made of an
elastic, homogeneous, and isotropic generalized Cosserat solid. The most general
form of a fourth-order isotropic tensor is given by a16;;0x + a208ix8;1 + a3di1d jk
for some scalars ay, az, and a3. Therefore, the elastic constants of the virtual body
are written as

i_AB ~MAANB g ot

Aa b =1G G FmMFnNgEzﬁlg[;;l (5 103)

+ M(GMNGABI%% fi a8 + GMBENA FYhMﬁﬁﬁgamg,;ﬁ) >

This is a consequence of the minor symmetries. Also

@&ABB _ blGMAGNBI;mMI;ﬁNgMgI;ﬁ
+ gszNGAB ﬁ'ﬁ,ql%ﬁﬁga,aggﬁ (5.104)
+ hyGMBGNA ﬁ'ﬁgﬁﬁﬁg&nﬁglgﬁ ’

but note that B has the minor symmetries from (5.100),, and hence, ll;g = lc)l3.
Similarly

+%‘E32GMNGAB}?‘ Mﬁﬁl\?gé,ﬁg5~ (5105)
F

where & = %, i = 1,2, 3, because C4AbB — ChBaA Knowing that F9, = 54,
one can identify the spatial and material manifolds with the same metric, and thus,
with a slight abuse of notation, the elastic constants are simplified to read

AGAbB _ ) GaAGhB M(G&'I;GAB’ + Gaéém)

(CaAbB GHAG}?B Ga};GAE +%% G&B G};A~

Therefore, one has 15 and 26 independent elastic constants in dimensions two and
three, respectively.
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Positive-definiteness of the energy density. Knowing thatin the initial configuration
o a
P94 — 0 and H%4 = 0, one can write

1 a4

SW = EWUH\AUb\B + EW;L%U%A%}%B + ;mﬂ:‘i{%%ﬂA%ﬂB
— %AaAbBU“mUbug +I§3aAbBUu|Aia/[b\B + %&gaAbBic}”mihlbw (5.107)
= %A"AbB Ua)aUp + @“AhBUam%}mB + %?éaAbB%lalA%blB'
Let us introduce the new indices y = {aA}, I’ = {aaA}, and define the new

variables X, = Uyja and Y = 5&1[” 4.3¢ Thus, the energy density is rewritten as

1 1
SW = EAVAX),X,\ +BYTX, Yr + E(CFAYFY/L (5.108)

Next let us define a new variable Z = {X

Y } It is straightforward to show that

5 BT C (5.109)

SW=-7T.DZ, D= [A B]
Note that A¥* = AY and CT'4 = CAT put BY * B, in general. Note that D
is symmetric, and hence, §W > 0, VZ # 0 if and only if all the eigenvalues of D
are positive (D is a square matrix of size 12 and 36 in dimensions two and three,
respectively). For the energy density to be positive-definite it is necessary that A
and C be positive-definite because X and Y are independent. A is positive-definite
if and only if # > 0 and 31 + 2 > 0. Note that %l a = 1, 2, 3 are independent,
and hence, as a consequence of positive-definiteness of C, 3¢+ 6+ > 0,
&+ 63 > 0,and ¢, — ¢3 > 0, (no summation on a). In particular, & > 0. A and
C are positive-definite, and hence, invertible. From Schur’s complement condition
[20], positive-definiteness of D is now equivalent to positive-definiteness of either
C-B'A 'BorA —BC 'BT.

Suppose W > 0 for any (U4, Y% 1a) # (0, 0). In the virtual body

Using (5.98), the relations 05“@ =P, (F~1B U 5, ;}5”} = P, (F )B4,

and the relation sﬁasbbgﬂ; = gab, One can easily show that SW = JEI(SW > 0.
Therefore, the elastic constants of the physical body are positive-definite if and
only if those of the virtual body are positive-definite. In other words, the cloaking
transformations (5.98) preserve the positive-definiteness of the elastic constants.

36 More  specifically, {11,12,---,1n,21,22,--- ,nn} —  {1,2,---,n%} and
(111,112, -+, 1nn, 211, -+ ,nnn} — {1,2, -+, n3}.
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Boundary conditions in the physical and virtual problems. Let 0B = H U 0,5,
where H is the boundary of the hole and 9,5 is the outer boundary of 3. Suppose
0,8 = 9,8, U 9,84 such that the Neumann and Dirichlet boundary conditions are
written as

on 9,5;,

PN = (X, 1)
HN = m(X, 1)

(5.111)

{w&n=¢a¢> -

d(X. 1) =d(X. 1)

where N is the unit normal vector on 9,83 and t, m, ¢, and C_I are given. Under the
mapping = : B - B, 806 = 5(0,B) = £(0,B;) U u(a()Bd) Suppose on d'H,
t=PN =t, and HN m Note that

StdA = stdA = tdA, stdA = smdA = mdA . (5.112)

Therefore, on 9,5, t = PN = (dA/d A)t, and m = HN = (dA/d A)m. We know
that ]VAdA =Jz (Ii"_l)AANAdA. Therefore (note that N is a G-unit one-form)

GABN NzdA? = dA? = J2 [(f—l)AA(f—l)BgéABNANB]dA2. (5.113)
Thus

dA _ 1] E-1\AB -
r =z [(c ) NANB] , (5.114)

Bl —

where Cap = FAAFBRG 5 and (C-1)AB = (F~1)A ((F~1)B GAB. There-
fore, the traction boundary condition on both 9H and 803, reads

1

=75 (€ DNaNg] st

l\)

) 1 (5.115)
m=Jg' [(CD"I)ABNANB]_Q sim.
Knowing that in B\ C, & = id, we have
f=st, m=sm on 3,5. (5.116)
The hole in the physical body is assumed to be traction free, i.e.,
PN=t=0, HN=1h=0, on 9. (5.117)

Using (5.115) in the virtual body one has

PN=i=0 HN=m=0 on 0H. (5.118)
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In other words, the traction-free boundary condition on the surface of the hole H
implies that the surface of the transformed (infinitesimal) hole H in the virtual body
is traction-free as well.

On Bolg’d = E(0,B,4), one assumes that the virtual and physical problems have
the same Dirichlet boundary condition, i.e.,

¢X,0)=¢o 21X, 1), g()?, n=doZ '(X,1) on 3,B4. (5.119)

Moreover, we note that 3(B\ C) = 9,8Ud,C, and similarly, 8([3’ \ (f) = 9,BU3,C,
where 9,C is the outer boundary of the cloak. As Z' is defined to be the identity
map in B\ C, from (5.119), 9,84 anq 0,84 have the same displacement boundary
conditions. Notice that T E'|; 5, = F|303t = id, and hence Jzl5, 5, = 1, which
implies that the traction boundary conditions on 9,3, and 80[3, are identical. Thus,

3,88 and 9, B have the same traction and displacement boundary conditions. Note
that 0C = d’'H U 9,C, where d7H is the boundary of the hole. On 9,C one can write

- _1
t=Jzo! [(C‘_I)ABNANB] ? st. (5.120)
Let us assume that in addition to &[5 ¢ = id, the tangent map is the identity map
as well, ie., TZ|y,c = Fly,c = id.>7 For such maps Jz|y,c = 1, and hence

1

i— [82}8§(~3ABNANB]_§st on 9,C. (5.121)

Note that G and G are induced Euclidean metrics and because & and T Z are both
identity on 9,C, 8383GABNANB = GABN,Np = 1, and hence

t=st on 3,C. (5.122)
Similarly
m=smh on 3,C, (5.123)

that is, d,C and 806’ have identical traction boundary conditions. Outside the cloak
the elastic constants of the two problems are obviously identical from (5.98). One
needs to assume that outside the cloak the two bodies have identical mechanical
properties. In particular, outside the cloak f = 0, i.e., the director field in the

physical body outside the cloak is uniform. This means thaton B\ C, D = I;D This

holds on the outer boundary of the cloak as well, i.e., l:f = 0, and I? = I? on 9,C.
Therefore, B \ C and B \ C are made of the same generalized Cosserat solid (have
identical elastic constants and have the same director fields in their undeformed
configurations), and are subject to the same body forces and boundary conditions.

37 This condition has been ignored in the existing works on elastodynamic transformation
cloaking. In particular, borrowing the cloaking transformation of PENDRY et al. [89] from
electromagnetism is not acceptable as it does not satisfy this condition.
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It then immediately follows that ¢(X,t) = (ﬁ(f(, t) and g(X, 1) = él(f(, t) on
B\ C, and hence, the current configurations of the two bodies are identical outside
the cloak. This, in turn, renders cloaking possible as the virtual body is isotropic
and homogeneous, and contains an infinitesimal hole, which has a low scattering
effect on the incident waves.

The following summarizes the construction of an elastic cloak in a linear elastic
generalized Cosserat solid. Consider a diffeomorphism & : B — BB that shrinks a
hole in the physical body B to an infinitesimal hole in the virtual body B. The hole
is surrounded by a cloak C in the physical body B. Assume that 5 |g\¢ = id and
that on the outer boundary of the cloak 7= = id. Assume that the displacement
vectors in the physical and virtual bodies, mass densities, body forces, and the
elastic constants are related as given in (5.98). Outside the cloak the physical body
is homogeneous and isotropic and has a constitutive equation identical to that of the
virtual body. One assumes that the two problems have identical boundary conditions
on the outer boundaries of /3 and B, and the physical hole and the virtual hole are
both traction free. Under the above assumptions the two boundary-value problems
are equivalent. In other words, the governing equations of the physical problem are
satisfied if and only if those of the virtual problem are satisfied. In addition, the two
bodies have identical current configurations outside the cloak C.

The impossibility of transformation cloaking in generalized Cosserat elasticity.
Next we prove that in dimension two transformation cloaking is not possible in
linear generalized Cosserat elasticity. A corollary of this resultis that transformation
cloaking cannot be possible in any subclass of generalized Cosserat solids, and in
particular, transformation cloaking is not possible in Cosserat elasticity. We start
our discussion by first looking at the example of a cylindrical hole covered by a
cylindrical cloak. It has been claimed in the literature that a cylindrical cloak would
have to be made of a Cosserat solid. We show that this is not possible. In other words,
(generalized) Cosserat elasticity allowing for a non-symmetric Cauchy stress does
not imply that transformation cloaking can be achieved in (generalized) Cosserat
elasticity.

Example (A generalized Cosserat cylindrical cloak). Consider an infinitely-long
hollow solid cylinder that in its stress-free reference configuration has inner and
outer radii R; and R,, respectively (see Fig. 7). Let us transform the reference
configuration to the reference configuration of another body (virtual body) that is a
hollow cylinder with inner and outer radii € and R,,, respectively, using a cloaking
map E(R, ®, Z) = (f(R), ®, Z) such that f(R,) = R,. For such a map we have

o /
F = [f (()R) ﬂ . (5.124)
Note that the shifter map is given as
1 0
S=1l5_r |- (5.125)
F(R)

Following our discussion in Section 5.2, we note that & must satisfy 7 =[5 ¢ =

ﬁ|a(,c =id,ie., f'(R,) = 1. Therefore, the simplest form of f(R) is a quadratic
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Replace with
a cloaking device

-------- “ab

Hs /\7/)0»(:7]3

~_ 7

(a) (B,G) b)(B,G) = (©) (B,G)

________ ’n;b

9P07C»]E

My A

Fig.7. Cloaking an object inside a hole H from elastic waves generated by a source S located

at a distance R from the center of the hole. The system a is an isotropic, homogeneous,
a ab b

generalized Cosserat medium with elastic properties i, A, pg, B, C, and U containing a finite

hole H. The system ¢ is an isotropic and homogeneous generalized Cosserat solid with the

same elastic properties as the medium in the system a. The cloak C in b has the elastic

b
properties A, ]ﬁ &3 and¥’. The confi guration b is mapped to the new reference configuration
¢ such that the hole H is mapped to an infinitesimal hole. The cloaking transformation is the
identity mapping in B\ C

polynomial given by

_RyRi—e) R2 + R? —2R,e¢ _ Ri—e
(Ro - Ri)2 (Ro - Ri)2 (Ro - Ri)2

f(R) = R?>. (5.126)

ab
Note that p = Jg p o & and P = Jg Vo E,a,b = 1,2, and therefore, the
mass density and the micro-mass moment of inertia in B \ C are homogeneous

ab
and are equal to pg and v, respectively. The mass density in the cloaking device is
inhomogeneous and is given by

pc(R) = Wpo, Ri<R<R,. (5.127)

Hence, (5.127) implies that for R; < R < R,,

[(R2+ R? —2R,€)R — (R2 + R*)(R; — ¢)]

pc(R) = > — po. (5.128)
[RZ 4+ R? —2R,e —2R(R; — )] R(R, — R)*
Similarly, for R; < R < R, (a,b € {1, 2}),
R2 + R? —2R,€)R — (R2 + R*>)(R; — ab
Vo(R) = [(R; + ; R — (R, YRi — )] b. (5.129)

[R2+ R? —2R,e —2R(R; — )] ' R(R, — Ri)*
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From (5.93), we find the Cosserat elastic constants of the cloak as follows (a, b €
{1,2):*

20 F(R) 0 LRIR)
Rf7(R) F(R)
R I P

, (5.130)
0 nu A 0
WR) g 0 GH20RF R
RF7(R) F(R)
hi+2b) fR) 0 brf®
RFR) D TT®
B = [Jﬁaﬂ“B} - 0 bl 12 0 . (5.131)
0 b by 0
ba f(R) 0 0 (b1+2b)Rf'(R)
RF7(R) (R
E+E+ R 0 CRI®
N LTI L TT®
C= [@‘”"’B} - 0 “ a0 . (5.132)

0 & il 0
ab b ab ab ,
o f(R) I+ )R(R)
® 0 0

Rf S (R)

Note that the first two indices specify the submatrix and the last two identify the
components of that submatrix. We next consider a cylindrical cloak and find the
distribution of those (initial) director gradient fields that are compatible with the
balance of angular momentum. (5.101); gives the following equations for IZ:” A=

Fea(R. ©):

RF(R) [y +2b)f" p + (b1 +262)F & | = [b1F7 0 + 516 | £/ (R) =0,

(5.133)
RFR) [b1E7 & + BiE7 & | = [+ 252F 0 + (b1 + 20076 | £/ (R) =0,
(5.134)
Rf'(R) [5270 + 2876 | = £(R) [b2F & + B2 | = ulf (R) = RF(R)].
(5.135)

(5.101), gives the following equations

REGR) [ +& + 8 p + (G + &+ E)F ] = [ 0 +6F 0| £/(R) =0,

(5.136)
RER) @ +& + &) r + G+ & + B ] = [6F 0 + 60 | £/(R) =0,
(5.137)

38 Note that the physical components of the elasticity tensor A9AbB gre related to the com-

ponents of the elasticity tensor as AGALB — 1o JG a2 G A B (no summa-
tion).
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RER) [ + 68 k| = /(R [ + &+ ) 0 + @ + & +E)F 0| =0,

(5.138)
Rf(R) [Lcﬁ Fr+é E:QR} — (R [(lci +E+EF o+ @ +E+ é%)l::’@] =0,
(5.139)
RI'(R) [0 + &80 | = (R [SF 5 +EF | = bal £ (R) = RF (R,
(5.140)
RI'R) [0 + EF 6 | = f(R) [ 5+ &F | = balr () = RY (R,
(5.141)
Rf'(R) [870 + EF0 | = F(R) [GF & + & k] = balf (R) = RF(ROI,
(5.142)
Rf'(R) [6870 + B0 | = FR)[GF & +EF 1] = balf (R) = RF(R)I.
(5.143)

Note that the algebraic equations governing the diagonal and off-diagonal direc-
tor gradients are uncoupled. We have six equations (5.133)—(5.134), and (5.136)-
(5.139) for the four off-diagonal terms and five equations (5.135), and (5.140)-
(5.143) for the diagonal terms. We first show that the determinant of the coefficient
matrix of the linear system (5.136)—(5.139) is non-zero, and hence, Ilo:’@ = I::’@ =

0, and [’:0 R= |::9 r = 0. Note that the determinant of the coefficient matrix reads

2 12 12 11 11 22 22
REPAR) PR [~ + ) + @ + )@ +8)
(5.144)
XP@a+a+aﬂ+@a+a+amﬁ+a+%ﬂ.

It turns out that this determinant cannot vanish. This is a consequence of the positive-
definiteness of C. To see this let us assume that U¢|4 = 0, and 5311 = ia12|1 = 0. For
this class of deformations §W > 0 implies positive-definiteness of the following
matrix:

C1 46 + ¢ ¢ G+ 6 + & ¢
11 11 11 11 12 12 12 12
C1 Cl+c2+c3 C1 cl+ctc3
12 12 12 12 22 22 22 22 (5.145)
c1tc2+c3 1 clt+e+a 1
12 12 12 12 22 22 22 22
C1 cl+c2+c3 Cl cgt+c+a
In particular, its determinant must be positive, i.e.,
12 12 .2 11 11 22 22
[—(Cz +¢63)" + (2 +¢e3)(2 + 63)]
(5.146)

x [-Q8 + 8+ )7+ Q8 + B +B)E + B +E)] > 0.
Therefore

Fo=Fo=0, Fr=Fr=0. (5.147)
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Note that (5.133) and (5.134) are now trivially satisfied.
The determinant of the coefficient matrix of the linear system (5.140)—(5.143)
reads

— RAPAR) SRR (6 = ) = (& — ) (& - &)
(5.148)
< [@+E? - G tin@+i)] .

Positive-definiteness of energy requires that this determinant be non-vanishing. To
see this let us assume that U% 4 = 0, and 5311“ = iulz\z = 0. For this class of
deformations §W > 0 implies positive-definiteness of the following matrix.

11 11 12 12
€2 C3 C2 C3
lcl Jbl Jbl Jé.l
NSRRI I (5.149)
¢y C3 C2 C3
12 12 22 22

€3 €203 C2

In particular, its determinant must be positive, and hence

(@87 - @ -HE -] [G+8)? - G+EE+E)] > 05.150)

Therefore
. [B@rE —h@E B ] () - RE®)
FrR = - 12 12 11 11 . 22 22 ’ (5151)
' F(R)[(€2 +¢3)% — (€2 +¢3)(¢2 + ¢3)]
[RGB —hGE+B)| (fR - RFR)
FQ@ - 12 12 11 11 22 22 (5152)
' Rf'(R) [(€2 4 €3)% — (¢2 + ¢3)(€2 + ¢3)
|62E2 +85) = b2 + ) | (F(R) = RF(R))
FrR = 12 12 11 11 22 22 (5]53)
: F(R) [(©2+63)2 = (2 + &3) (2 + 63)]
L [B@ ) bS] (RIR) - f(B)
Flo= T (5.154)
: Rf'(R) [(€2 +¢3)? — (€2 4+ 63)((2 4+ 63)
Note that
- Rf'(R) ey - Rf'(R) ey
Fr=————Fg, Fr=—"" "Fg. 5.155
F'r F® Lo TR FR) - © ( )

From (5.147), it is immediate to see that (5.133) and (5.134) are automatically
satisfied, while (5.135) imposes the following constraint on the elastic constants of
the virtual body:

12 12 .2 11 11 22 22 (5156)
+u [(02 +c3)" — (2 + )+ C3)] =0.
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Let us assume that U% 4 = §9§7, and 5311 = ialzp = 0. For this class of deforma-
tions §W > 0 implies positive-definiteness of the following matrix.
1 1 2 2
1 by by by by
L o311 11 12 12
by ¢y ¢3¢ ¢3
bty &6 | - (5.157)
2 12 12 22 22
by ¢3 ¢3 ¢3 ¢3

Z 12 12 22

by & ¢ 63 &
Therefore, its determinant must be positive, and hence
(@ -8 — @ -@E -] n[@+E? - Gra@+é)]
—2P@&@H$9—@g%a+éo—@g%a+%ﬂ]>0.(5w&
In particular
n|@G+E - @G +EGE+ )
L. N ) (5.159)
—2[2baba (s + ) — (02) (& + &) — (h2) (& + )] £0.
Therefore, (5.156) violates positive-definiteness of the energy, and hence cloaking
is not possible.

Remark 15. Even if one accepts a positive-semidefinite energy, the director gradi-
ent field given by (5.151) - (5.154) is not compatible. In other words, the director
gradient given by (5.151) - (5.154) does not correspond to a single-valued director
field in the physical body, in general. Necessary compatibility equations for the
director gradients are written as

For=Fro=0 For=Freo=0,
Lo A : ¢ %' (5.160)
For=Fro=0 For=Frgre=0
Note that EaAlB = 3|::aA/8XB — FCABEGC + y“bclg}’BIZ:CA. Thus
o o o 1.
F'rio =Fro —R L:QR - EE’@ , (5.161)
o o 1.
For=Feor—2Fe. (5.162)
o o 1. 1. o
For=For+—-Fo——Fo=Fonr, (5.163)
a a RC( Ru a
o o 1 ro o
EGR\@) = EGR,@ + 2 [ErR - Ee@] . (5.164)
Hence, Erm@ = Er@\R, and ':::9(9|R = ':(:QR|@ imply that
F'ro—For=RF%,
(5.165)

a

o o | o
0 o _ ro_ g0
L:@,R_FR,@—EI:ER f@]
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Now using (5.147), one obtains

o

F're=0,
(REQQ),R _ !::rR- (5.166)

Note that in this example (5.160); is trivially satisfied. From (5.155) and (5.166)>
one obtains

o C
Flo=—"7-, (5.167)
¢ Rf(R)
for constants Cy. If Cy # 0, (5.167) gives the following ODEs for f(R):
Rf(R)f'(R) +kaf'(R) — f*(R) =0, (5.168)

where k, are constant. Knowing that f(R,) = R,, and f'(R,) = 1, one concludes
that k, = 0, and thus, f(R) = R.If Cq = 0, then either f(R) = R, or

by(Bs +) — b +75) =0, by +65) — ba(h +83) = 0. (5.169)

Knowing that ¢; + ¢3 > 0, and ¢> + ¢3 > 0, the above relations are written as

L 12 +ll 2 N 12 +lZ N
by =22 hy, by = 2, (5.170)
)+ c3 2 +c3
Thus
LG+ EE+E) - G +E)?
11 1.(1C2:_ C3)zgcz + ff) 12 \9 (5171)
3 (2 +¢3)(C2+¢3) = (C2+¢3)° 0

G+ B+ )

From (5.146), one concludes that 132 = 1;2 = (. Substituting this into (5.135), one
concludes that f(R) = R. Therefore, transformation cloaking is not possible in
this example for any linear generalized Cosserat solid.

We next prove that the impossibility of transformation cloaking in dimension
two for linear generalized Cosserat elasticity is independent of the shape of the
hole (cavity). We write (5.101) in Cartesian coordinates for which the shifter is
written as 8%, = 89,. Knowing that FCy = 8, (5.101) is simplified to read
Vb, B,c,a e{l,2,3}

(f-—l)[cA(ﬁv—l)BéAa]Ahé + (I?—I)AA(}‘?—-—I)BBE[CA Ba]flhé =0,
o) = [ E = oy Do o (5.172)
(F_l)[CAN(F_l)BB]Ba]AbB + (F_l)AAN(F_l)BBL:[CA(Ca]AbB — O

First let us consider an arbitrary cloaking map and director gradient with the fol-
lowing components in 2D:

- F11 Fi2 o Fll F12
Sl BBl em

=t
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Note thatli“_l iscompatible, and hence, F11 2 = Fi2,1,and F22 | = F»; 2. Similarly,
the compatibility equations for the director gradient are Iu:l Ly = Iu:u, 1, and |a:22,1 =
L:Z] 2. Expanding (5.172)y, fori # j € {1, 2} one obtains

—Fiu Fy 1 + ba) + 91 [ FiFjiby +262) + FyFjjha | = Fi FyF by + bo)
+F/ [FiiFji(bl +2b2) + Fiijij] — FY(FiiFjjb1 + FijFjiby)

T s , y , , (5.174)
I [ FRB1 +2b2) + Flba | — FY (FigFjjby + Fy Fiiby)
+EI [ F2(b1 +2b2) + Fba| = Fu(Fyj — Fjooh = (Fy Fyj = Fi By + 2Fi Fne

—F(FiiFjjb + FyFjiby) + F/ [ F by + 2b2) + F3 b
—F"(Fii Fjjby + Fij Fjiby)
+F/ [sz,'(él +2b) + Ff]l;z] - FjiFjjlljj(él +by)

. L , (5.175)

+FJ! [FiiFji(bl +2by) + Fiijij]

—Fji B by + b) + B0 [ Fi Fji (b + 2b2) + Fy Fijbo

= Fji(Fij — Fji)A — (2F_,-2,» + F,z, —FiFjju.
On the other hand, expanding (5.172), one obtains

—F11F12|1:“(1011 +¢3) + |1:22 [Fi1F21¢s + FiaFné | — F11F12|2:“(l621 +03)
+F2 [F11Fy €3 + FiaFPnts| — FR(Fi1 Faody + FioFacs) + F [F121 ¢y + Flzzlclz]
— F'2(F\1 Pt + FiaFy 63) + F* [Flzl ¢y + Flzzlczz]
= Fi1(F1y — Fa)by + (F11 Fia — 2Fy Fay — FiaF)bs | (5.176)
—F! [Ffl &+ Flzzlclx] + F2(Fyy Fts + FiaFarcy) — F!! [F1211012 + Flzzlcz):]
+ ED(Fanleg + FioF2€¢1) — lflz[Fan]lclz + FioFoés]+ F11F12|le(1611 +03)
— F2[F11 Fo &y + FiaFnlsl+ Fii FiF* (61 + 63)
= Fia(Fio = Fa)by + (F}y + 2F} — FiuFa)by , (5.177)
— FU[F11 Pts + FiaFarci] + F2 [Fzzllclz + Fleclz] — FU[F\ Fals + Fia Fai61]
+E% (Fzzllcli + Fzzzlclz) — P FF' () +65) + FY [Fi1 Fai U5 + FiaFyth]
— Py FF'2 (€1 + &) + F'[F11 FaiCx + FiaFxt))

= Fo1(Fia = Fa)bi + (FiiFo = 2F3) — F)ba, (5.178)
—FUF11 P&y + FlaFa €s] 4 Fo FF? (€1 + &) — FU[F1 1 Fa 6 + FiaFals)

+ F2 F22|l:22(1011 +65) — |1:12 (Fzzllclz + F2221612> + |1:21(F11F2216l1 + F12F2163)

- '2:12 (F2211C22 + F3 ICZE) + Ezl(FanfCZl + F12F2163)
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= Fy(Fio — F21)by + (F11 Fa1 — F21 Foo + 2F12F) by (5.179)

where acbz = acbl +&+ %by,. Another independent set of four equations are generated
1 2

from (5.176)—(5.179) using the transformation {¢ — ¢, ¢ — ¢, b — b}. The

determinant of the coefficient matrix reads

12 12 11 11 22 22 2
(FiaFa1 — Fi1 F)® [(02 +63) = (G + )G+ 03)]
x [ =67 = @ =@ - )| [+ - @+ @ + 7).
(5.180)

Note that from the positive-definiteness of energy, this determinant is non-zero, and
hence the system (5.176)—(5.179) (along with four more equations) has a unique
solution, which reads

Fy(Fii — F)ts — FluFarhh + FA4

Fll —
* Fi1Fy — Fiobay
F22 _ Fi1(Fx — FiDt — FiuFarh + Fht
* Fi1Fn — Fiol) '
Fl2 _ FioFpotys — Fiifoiti + FiriFioly
* Fi1Fy — Fio by '
F2l _ 1 Fiits — Fio Pty + Fo1 oty
Fi1Fx» - Fi2 k2 ) ) (5.181)
Fll _ F(Fii — F)ts — FioForh + Fi
: Fi1Fn — Fiol '
F22 _ Fii(Fxn — FiDt — FuForh + Fhty
: Fi1Fyn — Fio b '
Fl2 _ Fia Pty — FiiForty + FiiFioty
: Fi1F — Fiof '
F21 _ o1 Futs — FioFot + Fo1 Fooly
: Fi1Fy — Fiobay '
where "Ei, i=1,---,4,a=1,2 are constants given as
b b)@ 4 E) — b+ b+ Er) b+ E) — b+ )
(€1 +¢x)? — (¢ + )€ +€x) G+ — G+ G+
(5.182)
i _ b b)) — b+ b+ Er) b+ E) by 1Y)
(€1 +¢x)2 = (¢ +Cx)(E +€x) G+ —(EH+GB)E+G)

(5.183)
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o D (€1 +¢x) — by (¢1 +Cx)
(€1 +¢x)? — (€1 +¢2) (¢ +Ex)
: ExCi )+ ) — (s + BTG+ B) —Erl 4+ 81+ 8
_2b2 12 12 2 11 11 22 22 12 12 2 11 11 22 22
[(€24+63)2 — (&2 +3) (@ + )] [(€1 + €)= (1 + Ex) (€ +¢x)]

oh EEs B EnIE )+ En

(@57 — @+ 5@ 1+ B [@ 67— G+ e )]

(5.184)

i = bi (¢ 4 €5) — b1 (¢ + ¢x)
(€1 +¢x)? = (1 + ¢x) (@ +¢x)
Rty — Fph +En)IE +) + B+ 2
[(© +63)2 = (2 + 3) (@ + )] [(€1 +¢5)? = (¢1 +¢x) (@ +C5)]
 Cx(C1 + Cx) (6 4 63) — (1€ + C1Cx) (2 + ¢3) — Cx(Ch 4 63) (2 + €3)
_2b2 12 12 2 11 11 22 22 12 12 2 11 11 22 22
[(@ +63)2 = (&2 +E3)( + )] [ (€1 +€x)? — (€1 +¢5)(E +¢5)]
(5.185)

+2l;2

Lo pGAE b o bt — b+
B GG S G- G+ E)
(€1 +€x)? — (€1 + ¢x)(¢1 +€x) (€1 +¢x)? — (¢1 +€x) (¢ +Cx)

(5.187)

, (5.186)

Substituting this solution into (5.174) and (5.175) one obtains the following two
conditions to be satisfied by the elastic constants

12 12 2 11 11 22 22 (5'188)
(c2+¢63)" — (2 +3)(2 +¢3)
oo | 200+ )by + o)+ Ex) — (b + b2)? @ + ) = (B + 52 (@ +Cx)
(€1 +¢x)* = (€1 +€x)(€ +Cx)

" [M@ e B G R R G a)}

o (52)? (& + 05) + (b2)? (B + E3) — 2baby (65 + 63)
(€2 +63)2 — (G + )+ )
(5.189)

Note that (5.188) is identical to what we obtained for the cylindrical cloak example
in (5.156), i.e., (5.188) violates positive-definiteness of the energy, and hence,
cloaking is not possible.

The following proposition summarizes the discussions and calculations of this
section:

Proposition 6. Elastodynamic transformation cloaking is not possible for linear
generalized Cosserat elastic solids in dimension two.

Corollary 7. Elastodynamic transformation cloaking is not possible for linear
Cosserat elastic solids in dimension two.



304 ARASH YAVARI & ASHKAN GOLGOON

Example (A generalized Cosserat spherical cloak). Let us next consider a finite
spherical cavity H with radius R; embedded in an infinite isotropic homogeneous
generalized Cosserat elastic medium with the elastic properties givenin (5.106). Let
(R, ®, @) be the spherical coordinates, for which R > 0 with R = 0 corresponding
to the center of the cavity, 0 < ® < 7, and 0 < @ < 2m. Suppose that there is a
wave source located at (R, ®,, ®,). The cloak C is a spherical shell with inner
radius R; and outer radius R, surrounding the hole such that the source is located
outside the cloaking region, i.e., R, < R),. Similar to the cylindrical cloak example,
the reference configuration of the body B is mapped to that of B (the virtual body)
using a mapping & : B — B. Note that = is the identity outside the cloak,
ie, R > R, and is defined as (R, ®, ®) = E(R, O, ®) = (f(R), ©, &) for
R; < R < R, such that f(R;) = ¢, f(R,) = Ry, and f'(R,) = 1.

The reference configurations of B and B are endowed with the induced met-
rics from R3, i.e., G = diag(1, R2, R?sin? ©), and G = diag(1, R%, R%sin® ),
respectlvely In the coordinates (r, 6, ¢), the ambient space metric reads g =
diag(1, r2, r*sin” ). We assume that the virtual body B is isotropic and has the
same elastlc properties as the primary medium in the region B\ C. For the cloaking

map F= diag(f’(R),1,1)in R; < R < R,. Note also that

= O

S = ®
0

0
0 (5.190)
R

[

S(R)

Noting that p = Jgp o & = Jg po, the mass density of the cloak is obtained as

pc(R) = W po. R <R<R,. (5.191)
Also
2 p/ a
Yor) = LRSS g <R, (5.192)

R2

Using (5.93) and (5.97), the elastic constants of the cloak are calculated and read
(a,b€{1,2,3}

[ [emamt o o 0 uf'ROT[ 0 0uf(R)
0 M'[(?R) 0 # 0 0 0 0 O
0 0 M® 0 0 of[“Po o
. 0 HERoTrMm o [0 o o
A= L= 0 0 0 G +2wf' (R 0 0 0 wuf'®||,
0 0 0 0 0 AR ] LOnf(R) O
0 0BT 0 0 B g 0
0 0 0 0 0 puf'(R) 0 Af'(R) 0
L #5500 0 uf'(R) 0 0 0 O+2wf (R ] |

(5.193)
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}‘;f(R)z a ar g
REZf’(R) . 0 0 R 0 bf'(R)O 0 0byf'(R)
0 BB o o], 0 00
o o buw|L 0 0 of[=RBo o
]ﬁ_ 0 hi® _hl_z;z(k) 0 o o o 0 -
=B o 0| 0 berw o [[0 0 B
sz (R) a b /
"0 0 o)L o o bpwllobr® o
0 Obzf;;R) 0o o ) 0 b 0 o |
L0 00 o 0 Bf® T 0 bRy 0
Lo o | Lobr@ o 0 0 berw]]
_ , .
e 0 Hrwo][ o 0&r®
0 i“}f;R) 0 @ o of|,2 00
0 0 “cﬁf;‘R) 0 0 oJ[=F%0 o
ab [0 B ] M@ 0 o |[o o 0
C— c(RY2 R R b &f
=g oo 0 fR 0 0,9 «af®
2 77
R2F(R) ab Oacb f’(R) 0
i 0 0 0_ 0 0 le(R)_ 3
0 O“Lgf]'?(R) 0 o0 0 J’,f# 0 0
0 0 0 0 0 Hrm® 0 Hr® 0
, o
o o |LoBrw o 00 Erm

where €y = & + & + %, and by = by + 2by.
Similar to the cylindrical cloak example, the balance of angular momentum
(5.101) for the diagonal and off-diagonal components of the director gradients are
uncoupled. We consider the equations for the diagonal components of the director
gradientsin (5.101); and show that they force the cloaking map to be the identity. For
the choice (a, ¢) = (2, 3), (5.101), is expanded and gives the following equations
for the (circumferential and azimuthal) diagonal director gradient components:

305

13 13
F% + 6F + Czlf% —63F 9 —63F%g — Cslfe@ =0,

13 13
EFo + GF%0 + 3F%9 —F0 —6F0 —2F’e =0,

23 23
Ao +GF%0 + F?e —6F 0 —F0 —3F0 =0,

12 22 23 12 —0 22 —f 23 —0
AF%e + 3F% +C3E¢q> —aFo —aF e —aF e =0,

13 23 33 13 g 23 g 33 g
aF?e + 6 +62|3:¢q> —aFe—aFe —aFleo=0,

13 23 33 13 —g 23 =0 33 =0
3F?0 + aF%0 + F0 —aFo —aFe —F’e = 0.

(5.194)

" (5.195)

(5.196)
(5.197)
(5.198)
(5.199)
(5.200)
(5.201)

Choosing a class of deformations for which U% 4 = 0, and 5311 = 1012|2 = %13|3 =
0, the positive-definiteness of the energy function implies the positive definiteness
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of the following matrix:

Mii 11 12 12 13 13 7
€203C2C3C2C3
11 11 12 12 13 13
€3 €263 C2C3C
1Cz Jéz zCz zcz ZCS ZCS
2 €3 €2C€3C2C3
12 12 22 22 23 23 . (5202)
C3 Cp C3Cy C3C
13 13 23 23 33 33
€2 €3 62630203
13 13 23 23 33 33
€3 €2 €3 €2 C3 C2 |

In particular, the determinant of (5.202) is non-vanishing, and thus, so is the
determinant of the coefficient matrix of the system (5.196)—(5.201). Therefore,
Flo =F’0 =F%p = 0,and F’o = F9 = F’ = 0. Using this, (5.101), for
choices (a, ¢) = (1, 2), and (a, ¢) = (1, 3) gives the following equations for Il:’ R»
If’ R, and |5:’ R:

FR) (GF g + GF R+C3F by Rf'(R) — f(R)

by (Rf'(R) — f(R)

( ), (5.203)
( )
by (Rf'(R) — f(R)) , (5.205)
( )
( )

(
FR) (BF & +EF p+ OF - L (5204
(

2

SR (GF 7+ EF g+ OBF k) = ba (RF'(R) = f(R) . (5.206)
fR (¢ b (Rf'(R) = f(R)

FR) (F 5 +EF k +&F k) = b2 (RF(R) = f(R) . (5.208)

The coefficient matrix of the system of homogeneous algebraic equations that is
obtained from (5.203)—(5.204), (5.205)—(5.206), and (5.207)—(5.208) reads

C3FrR —I—C3F R +C3F R

k)=
)
FR) (GF g +6F g +C3F )
)
) (5.207)

12 13 13

C3—6‘2 3 — 02 C3 —Cr

23 23
GB—G3—t—0 | - (5.209)

13 13 23 23 33 33

€3 —C2 03 —C2C3—C2
It is straightforward to see that the determinant of (5.202) being non-zero implies
that the determinant of (5.209) is non-zero as well. Thus, F"g = F'g = F’ r =0,
and from (5.203)—(5.208), one concludes that f(R) = R Wthh in turn means
that cloaking is not possible. Therefore, we have proved the following result:

Proposition 8. Elastodynamic transformation cloaking is not possible for a spher-
ical cavity using a spherical cloak in linear generalized Cosserat elastic solids.

Corollary 9. Elastodynamic transformation cloaking is not possible for a spherical
cavity using a spherical cloak in linear Cosserat elastic solids.

We suspect that transformation cloaking in dimension three is not possible for
a cavity of any shape. The idea of proof is similar to that of 2D. However, in this
case there are 108 equations for 27 unknown director gradients F 4. We have not
been able to solve this large system of equations but expect that they would violate
positive-definiteness of the energy and also force the cloaking map to be the identity.
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Conjecture 1. Elastodynamic transformation cloaking is not possible for linear
generalized Cosserat elastic solids in dimension three.
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Appendix A Riemannian Geometry

To make the paper self-contained, in this appendix some basic concepts of
Riemannian geometry are tersely reviewed. It should be emphasized that only those
geometric concepts that have been used in the paper are discussed here.

For a smooth n-dimensional manifold B, the tangent space of B at a point
X € B is denoted by TxB. Assume that S is another n-dimensional manifold
and ¢ : B — S is a diffeomorphism (smooth and invertible map with a smooth
inverse) between the two manifolds. A smooth vector field W on B assigns a vector
Wx € TxB for every X € B such that the mapping X — Wy is smooth. If W
is a vector field on B, then the push-forward of W by ¢ is a vector field on ¢ (5)
defined as ¢, W = T¢ - Wo ¢~ !. Similarly, if w is a vector field on ¢(B) C S, the
pull-back of w by ¢ is a vector field on B defined as ¢*w = T(¢~!) - w o ¢. Let
us denote the tangent map of ¢ by F,i.e., F = T¢. Let {X“} and {x“} be the local
charts for B and S, respectively. More specifically, a local chart for B at X € Bis a
homeomorphism from an open subset i/ C B (X € U) to an open subset VV C R”.
{X4} are components of this map. The derivative map F is a two-point tensor with
the following representation in the local charts: F = F¢ 4 a% Rdx, Fly = ;’%,
where {%} and {dx“} are bases for Tx 53 and T;( X)fp(B), respectively. Recall that
T;( X)go(B) denotes the cotangent space (or the dual space) of T, (x)@(53). The push-
forward and pull-back of vectors have the following coordinate representations:
(W) = FOaW4, and (9*w)* = (F~H4,w".

A type ((2))—tensor at X € Bisabilinearmap T : TxB x TxB — R, where
in a local coordinate chart {X4} for B it reads T(U, V) = T4gUAVE, VU,V €
TxB. A Riemannian manifold (B, G) is a smooth manifold B endowed with an
inner product Gy (a symmetric (g)—tensor field) on the tangent space Tx 13 that
smoothly varies in the sense that if U and V are smooth vector fields on B, then
X — Gx(Uyx, Vx) =: (Ux, Vx) Gy is a smooth function. Let (B3, G) and (S, g)
be Riemannian manifolds and let ¢ : B — S be a diffeomorphism (smooth map
with smooth inverse). The push-forward of the metric G is a metric on ¢(B) C S,
which is denoted by ¢,G defined as

(0:G)px) (U(x): Vo)) = Gx ((¢*wx, (9*V)x). (A.1)

In components, (¢.G)p = (F~H4,(FHB,G 4p. Similarly, the pull-back of the
metric g is a metric in 3, which is denoted by ¢*g defined as

(@*2)x (Ux, Vx) := 8,00 (0 U)g(x), (0xV)g(x))- (A2)
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In components, (¢*g)ap = F“AFngab. The diffeomorphism ¢ is an isometry
between two Riemannian manifolds (B, G) and (S, g) if g = ¢.G, or equivalently,
G = ¢*g. An isometry, by definition, preserves distances.

Affine connections, and their torsion and curvature tensors. A linear (affine) con-
nection on a manifold B is an operation V : X (B) x X (B) — X (B), where X' (B) is
the set of vector fields on B, such thatVX, Y, X, X5, Y, Y2 € X(B),V f, f1, f2 €
C®(B),Yar,ar € Rii) Vx4 px.Y = fiVx, Y + 2Vx, Y, ii) Vx(a1Yy +
a2Y2) = a;Vx(Y1) + a2Vx(Y2), and iii) Vx(fY) = fVxY + (Xf)Y. VxY
is called the covariant derivative of Y along X. In a local coordinate chart {X4},
Vs, 08 = I'C 45dc, where I'C 4 are Christoffel symbols of the connection, and
04 = ﬁ are the natural bases for the tangent space corresponding to a coordinate
chart {x4}. A linear connection is said to be compatible with a metric G on the
manifold if

Vx(Y.Z)6 = (VxY.Z)c + (Y. VxZ)g. (A3)

where (., .))g is the inner product induced by the metric G. It can be shown that V
is compatible with G if and only if VG = 0, or in components

0G 4B

5%xC I¥caGsp —I'ScpGas =0. (A4)

Gapic =

Suppose V, W € X (B) are vector fields and & : I — B is a smooth curve.
The restriction of the vector fields to «, i.e., V o « and W o « are called vector
fields along the curve «. The set of all vector fields along « is denoted by X' ().
Covariant derivative along the curve « is a map D; : X(a) — X (o) with the
following properties: D;(V+W) = D;V+ D;W,and D;(fW) = %W—l—fD,W.
If W € X(a) is the restriction of W € X(B) to , then, D;W = V() W. If the
connection V is G-compatible, then

S D)6 = (DX Ve + (X, DY )o. (*5)

The covariant derivative of a two-point tensor T is given by

AB---F ab--- _ 0 AB--F ab--
r G0 ggik = 55T G-0"" 7 gq

+TRB"'Fc;...Q“b"'fg...qFARK + (all upper referential indices)

—TABF g 0% 4. T RGk — (all lower referential indices)

—i—TRB“'FG‘..le"'ng.qy“[,F’K + (all upper spatial indices)
—TABF G 0% 1. qv e F" k — (all lower spatial indices). (A.6)

The torsion of a connection is defined as T(X,Y) = VxY — VyX — [X, Y],
where [X, Y](F) = X(Y(F)) — YXX(F)), YV F € C®(S), is the commutator
of X and Y: In components, in a local chart {XA}, TABC = FABC — FACB, and
[X,Y]4 = 3;/,, xb— % Yb. Vis symmetric if it is torsion-free, i.e., Vx Y — VyX =
[X, Y]. On any Riemannian manifold (B, G) there is a unique linear connection VG
that is compatible with G and is torsion-free. This is the Levi-Civita connection. If
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the Levi-Civita connection V€ is used, the covariant time derivative is denoted by
DtG . In a manifold with a connection the curvature is a map R : X' (B) x X (B) x
X(B) — X(B) defined by R(X,Y,Z) = VxVyZ — VyVxZ — V|x y|Z, or in

components R4 pcp = 3{;;%” - 31;;2” + Tyl ep — Moy pp. The
Riemannian curvature is the curvature tensor of the Levi-Civita connection V€
and is denoted by R¢. The Ricci identity for a vector field U with components
W4 reads UA|BC — UA|CB = RAgcpUP. Ricci identity for a 1-form « with
components a4 reads &4|pc — QA|CB = RP gcaap. The Ricci curvature Ric is
defined as Riccp = R4 4cp, and is a symmetric tensor. The Ricci curvature of the

Levi-Civita connection V€ is denoted by Ricg.

Vector bundles. Suppose £ and B are sets and consider a map & : £ — B. The
fiber over X € Bis the set £y := 7~ (X) C &. For an onto map 7 fibers are non-
empty and £ = UxgEx, where LI denoted disjoint union of sets. Now suppose £
and B are manifolds and assume that for any X € B, there exists a neighborhood
U C Bof X, amanifold F, and a diffeomorphism v : 7~ Y U) — U x F such that
7 = pry oy, where pry : U x F — U is projection onto the first factor. (£, w, B) is
called a fiber bundle and &, 7, and B are called the total space, the projection, and
the base space, respectively. If for any X € B, 7~ 1(X) is a vector space, (£, w, B)
is called a vector bundle. The set of sections of this bundle I"(£) is the set of all
smooth maps o : B — &£ such that 0(X) € £x, Y X € B. An important example
of a vector bundle is the tangent bundle of a manifold for which &€ = T'B.

Induced bundle and connection. Consider a map between Riemannian manifolds
¢ : B — S. The tangent bundles of B and S are denoted by TB = UxgTx 5 and
TS = UyesTiS, respectively. We define an induced vector bundle ¢~ ! T'S, which
is a vector bundle over B whose fiber over X € B is Ty,(x)S [76]. The connection
V# induces a unique connection V¥ on ¢! T'S defined as

VyWoop =VEuw, WeTxB, we l(TS). (A.7)

V¥ is called the induced connection. It can be shown that its connection coeffi-
cients with respect to the coordinate charts {X“} and {x%} of B and S, respec-

b
tively, are %y“ pe- In particular, the variation field §¢ defined in §3 is a section

of I'(p~'TS8), i.e., 8¢ defines a vector field in S along the map ¢. For a two-
point tensor, e.g., deformation gradient, covariant derivative involves both V& and
VO Fiyp = S + (FPpy o) Foa — TCapFic = 8 4y FPpFea —
I'C o F% . We denote the covariant derivative of the deformation gradient by
VF = F"A|BdXB RdXA ® L. Itis straightforward to show that [76]

axa

VYFX,Y) = V{o.Y — 0. VY, V50.Y — Vip.X = 0.[X, Y. (A8)

The metrics G and g induce an inner product (, ) x in Ty(x)S ® Ty B. This is defined
first for the basis { \ RdXA, 1<a<n, 1 <A <n} as 9 ®dXA,$®

dx@ Jxa
dXB)x = g, GAE, and then one extends it linearly to arbitrary elements in

Tox)S ® TiB. ¢7'TS ® T*B is the vector bundle whose fiber at X € B is
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Tyx)S ® T¢B. The two-point tensor F = T¢ : B — ¢ TS ® T*B, is a sec-
tion of this bundle, i.e., F € F((p_lTS ® T*B). One can define a fiber metric
(, ) on ¢™'TS ® T*B using the inner product (, ) x in Ty(x)S ® T35 as follows:
for 0,7 € I'(p~!TS ® T*B), define (o, T)(X) = (0(X),t(X))x, X € B.
One can define a connection V in ¢~ !TS ® T*B using the Levi-Civita con-
nections V& and V&: consider a section W @ @ € I'(¢~'TS ® T*B) and let
VIW®a) = VW ® a + W ® VSa«. This connection is compatible with the fiber
metric (, ) in o' TS ® T*B.

The Piola transform. The Piola transform of a vector w € T,x)S is a vector
W e TxB given by W = Jo*w = JF~'w. In coordinates, WA = J(F~ )4, w?,

where J = g:tt & detF is the Jacobian of ¢ with G and g the Riemannian metrics

of Band S, respectively. It can be shown that Div W = J (div w) og. In coordinates,
wA |4 = Jw?4; thisis also known as the Piola identity. Another way of writing the
Piola identity is in terms of the unit normal vectors of a surface in B and its corre-
sponding surface in S and the area elements. It is written as nda = J F*NdA,orin
components, nyda = J(F ’I)Aa NadA. In the literature of continuum mechanics,
this is called Nanson’s formula.

Lie derivative. Let w : U — TS be a vector field, where f C S is open. A
curve « : I — S, where [ is an open interval, is an integral curve of w if d“—y) =
w(a(t)), YVt € I. For a time-dependent vector field w : S x I — TS, where [ is
some open interval, the collection of maps v ; is the flow of w if for each ¢ and
X, T = V¥ (x) is an integral curve of wy, i.e., %me(x) = w(Y¢(x), 7), and
Y1 (x) = x. Let t be a time-dependent tensor field on S, i.e., t; (x) = t(x t)isa
tensor. The Lie derivative of t with respect to w is defined as Lyt = d - t, |T: .
Note that v, ; maps t; to t;. Hence, to calculate the Lie derivative one drags t
along the flow of w from 7 to ¢t and then differentiates the Lie dragged tensor
with respect to 7: The autonomous Lie derivative of t with respect to w is defined
as Lyt = dr t,| . Thus, Lyt = dt/dt 4+ L£yt. For a scalar f Lyf =
af/ot + w[f]. In a coordinate chart {x?} this reads, Ly f = 4 M, w?. For a

- r
vector u, one can show that Lyu = 8“’ [w u]. If V is a torsion-free connection,

then [w, u] = Vyu — Vyw. Thus, qu = at Y+ Vgl — Vgw.

When linearizing nonlinear elasticity one starts with a one-parameter family of
motions ¢; ¢ : B — &. By definition of the variation field U, = §¢;, ¢; ¢ is the
flow of the variation field. Given a tensor field t in S, T, = <p;’j <t o ¢ is a vector
field on B. Its linearization is defined as

d ¢ ‘
= —_— [e]
e=0 dE (pt,f ¢)ty€ e=0 (A.9)

= (¢ Ly, .to¢.c) = ¢ (Lytod).

Thus, 8t = Ly,t, where u; = U; o ¢,
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