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Abstract. In this paper, we investigate the possibility of elastodynamic transformation cloaking in bodies made of non-
centrosymmetric gradient solids. The goal of transformation cloaking is to hide a hole from elastic disturbances in the sense
that the mechanical response of a homogeneous and isotropic body with a hole covered by a cloak would be identical to that
of the corresponding homogeneous and isotropic body outside the cloak. It is known that in the case of centrosymmetric
gradient solids exact transformation cloaking is not possible; the balance of angular momentum is the obstruction to
transformation cloaking. We will show that this no-go theorem holds for non-centrosymmetric gradient solids as well.
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1. Introduction

The idea of transformation cloaking in electromagnetism goes back to the works of Pendry et al. [25] and
Leonhardt [18]. Many researchers have tried to use the idea of transformation cloaking in other fields. In
the case of elastodynamics, this has led to many inconsistent formulations that were critically reviewed in
[9,31]. We should emphasize that the ideas related to elastodynamic cloaking are much older and go back
to the works [10,20,26] on reinforced holes in elastic sheets, and [4,11–14] on neutral inhomogeneities.

Cloaking a hole in an elastic body can be formulated in terms of two equivalent boundary-value prob-
lems [31]. The hole is covered by a cloak whose elastic properties and mass density need to be determined.
The cloak is expected to have inhomogeneous mass density and inhomogeneous and anisotropic elastic
constants. Outside the cloak, the response of the body (the physical body B) is required to be identical to
that of a homogeneous and isotropic body with a very small hole (the virtual body B̃). The two bodies are
under the same external loads and have the same boundary conditions outside the cloak. More precisely,
the virtual body B̃ is defined such that B = B̃\H, where H is the hole(s). It is assumed that the virtual
and physical bodies have the same mass density and elastic constants outside the cloak. Outside the
cloak, the virtual body is under the same traction and displacement boundary conditions as the physical
body. The body force distributions in the two problems are assumed to be identical outside the cloak (see
Fig. 1).

In transformation cloaking, one uses a map Ξ : B → B̃ (cloaking map) that has two properties: (i)
Outside the cloak C it is the identity map, i.e., Ξ|B\C = id, and ii) while fixing the outer boundary of the
cloak it shrinks its inner boundary to a very small hole (see Fig. 1). Starting from the balance of linear
momentum in one configuration, one transforms it using the Piola transform to the other configuration.
This gives transformation relations for the mass density and the elastic constants assuming that the
displacement fields in the two configurations are equal at the corresponding points. In order to have
identical mechanical responses outside the cloak, the cloaking map needs to fix the outer boundary of
the cloak to the first order; both Ξ, and its derivative map TΞ must be identity maps on the outer
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Fig. 1. Ξ : B → B̃ is a map between two submanifolds of Rn. The virtual body B̃ is homogenous and isotropic and has a

tiny hole H̃. The physical body B has the same homogeneous and isotropic properties outside the cloak, i.e., in B\C. The
two bodies have the same Dirichlet and Neumann boundary conditions on their outer boundaries

boundary of the cloak. The last thing to check is the balance of angular momentum. In the case of
classical linear elasticity, generalized Cosserat elasticity, and centrosymmetric gradient elasticity, starting
from a homogeneous and isotropic virtual body in which the balance of angular momentum is satisfied,
it turns out that the balance of angular momentum cannot be satisfied in the physical problem unless
the cloaking map is the identity map everywhere. In other words, the balance of angular momentum
is the obstruction to exact transformation cloaking [31]. In the case of elastic plates, a set of cloaking
compatibility equations obstruct transformation cloaking [9].

There has been a misconception in the literature that an elastic cloak should be made of a Cosserat
solid (see [31] for an extensive literature review). In [31], it was shown that even in the case of generalized
Cosserat solids the balance of angular momentum is still the obstruction to transformation cloaking. No
assumption was made on the elastic constants other than objectivity, and positive-definiteness of the
elastic energy. This means that transformation cloaking is not possible in either non-centrosymmetric or
centrosymmetric generalized Cosserat solids (and consequently Cosserat solids). Yavari and Golgoon [31]
proved the impossibility of exact transformation cloaking for centrosymmetric gradient solids. In this
paper, we investigate the possibility of transformation cloaking for non-centrosymmetric gradient solids.

Non-centrosymmetric solids can be modeled in the setting of generalized continuum mechanics and
have been studied by many researchers [5,6,15–17,19,27]. Papanicolopulos [24] studied chirality in 3D
isotropic gradient elasticity under the assumption of small strains. Chirality is controlled by a single
material parameter in the fifth-order coupling elasticity tensor. Auffray et al. [1,2] studied the material
symmetries in 2D linear gradient elasticity. In dimension two, chirality is due to the lack of mirror
symmetry, and it affects both the coupling and the second-order elasticity tensors. They showed that
there are fourteen symmetry classes, eight of which have isotropic first-order elasticity tensors. In an
effort to use chirality for cloaking applications, Nassar et al. [23] considered a sheet made of a classical
linear elastic solid connected to an elastic foundation that resists rotations. They called such structures
“polar solids,” which is a misleading term; the energy functions they considered are not objective. Also,
their cloaking structure construction cannot be generalized to 3D.

This paper is structured as follows. In §2, we tersely review the governing equations of elastodynamics.
In §3 gradient elasticity, its governing equations and non-centrosymmetry are discussed. We formulate the
problem of transformation cloaking in linearized non-centrosymmetric gradient elasticity in §4. We prove
the impossibility of cloaking for arbitrary cylindrical holes and arbitrary cloaking maps. Conclusions are
given in §5.
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2. Nonlinear elasticity

2.1. Kinematics

In nonlinear elasticity, motion is a time-dependent mapping between a reference configuration (or natural
configuration) and the ambient space. We write this as ϕt : B → S, where (B,G) and (S,g) are the
material and the ambient space Riemannian manifolds, respectively [21]. Here, G is the material metric
(that allows one to measure distances in a natural stress-free configuration) and g is the background metric
of the ambient space. The Levi-Civita connections associated with the metrics G and g are denoted as
∇G and ∇g, respectively. The corresponding Christoffel symbols of ∇G and ∇g in the local coordinate
charts {XA} and {xa} are denoted by ΓA

BC and γa
bc, respectively. These can be directly expressed in

terms of the metric components as

γa
bc =

1
2
gak (gkb,c + gkc,b − gbc,k) , ΓA

BC =
1
2
GAK (GKB,C + GKC,B − GBC,K) . (2.1)

The deformation gradient F is the tangent map of ϕt, which is defined as F(X, t) = Tϕt(X) : TXB →
Tϕt(X)S. The transpose of F is denoted by FT, where

FT(X, t) : Tϕt(X)S → TXB , 〈〈W,FTw〉〉G = 〈〈FW,w〉〉g, ∀W ∈ TXB, w ∈ Tϕt(X)S . (2.2)

In components, (FT)A
a = GABF b

Bgab. The right Cauchy–Green deformation tensor is defined as C =
FTF : TXB → TXB, which in components reads CA

B = F a
LF b

BgabG
AL. Note that C� = ϕ∗

tg.
The material velocity of the motion is the mapping V : B ×R

+ → TS, where V(X, t) ∈ Tϕt(X)S, and
in components, V a(X, t) = ∂ϕa

∂t (X, t). The material acceleration is a mapping A : B × R
+ → TS defined

as A(X, t) := Dg
t V(X, t) = ∇g

V(X,t)V(X, t) ∈ Tϕt(X)S, where Dg
t denotes the covariant derivative along

the curve ϕt(X) in S. In components, Aa = ∂V a

∂t + γa
bcV

bV c.

2.2. Balance laws

The balance of linear momentum in material form reads

DivP + ρ0B = ρ0A, (2.3)

where P is the first Piola–Kirchhoff stress. ρ0, B, and A are the material mass density, material body
force, and material acceleration, respectively. DivP has the following coordinate expression:

DivP = P aA|A
∂

∂xa
=

(
∂P aA

∂XA
+ P aBΓA

AB + P cAF b
Aγa

bc

)
∂

∂xa
. (2.4)

The Jacobian of deformation J relates the deformed and undeformed Riemannian volume elements as
dv(x,g) = JdV (X,G), and is written as

J =

√
detg
detG

detF. (2.5)

Identifying a material point with its position in the material manifold X ∈ B, we have x = ϕt(X). When
the ambient space is Euclidean, one defines the material displacement field as U = ϕt(X) − X.1

1In Sect. 3.1, in linearized gradient elasticity, we will use U for the linearized displacement instead of δU.
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Balance of angular momentum in local form reads FP� = PF�, where P� and F� are duals of P and
F, respectively, and are defined as

F = F a
A

∂

∂xa
⊗ dXA, F� = F a

AdXA ⊗ ∂

∂xa
,

P = P aA ∂

∂xa
⊗ ∂

∂XA
, P� = P aA ∂

∂XA
⊗ ∂

∂xa
.

(2.6)

Note that F� : T ∗
ϕt(X)S → T ∗

XB, where T ∗
ϕt(X)S and T ∗

XB denote the cotangent spaces of Tϕt(X)S and
TXB, respectively. Balance of angular momentum in components reads F a

AP bA = F b
AP aA.

Conservation of mass implies that ρdv = ρ0dV or ρJ = ρ0, where ρo and ρ denote the material and
spatial mass densities, respectively. In terms of Lie derivatives, conservation of mass can be written as
Lvρ = 0 [21].

3. Gradient elasticity

In this section, we extend the analysis of Yavari and Golgoon [31] to non-centrosymmetric solids. We
refer the reader to [31] for the detailed derivation of the governing equations and the transformed fields.
In gradient elasticity (or strain-gradient elasticity), energy function has the following form [29]:

W = W (X,F,∇F,G,g ◦ ϕ) . (3.1)

From compatibility equations, F a
A|B = F a

B|A [30]. Material frame indifference (objectivity) implies that
W = Ŵ (X,CAB , CAB|C , GAB) [29,31]. The first Piola–Kirchhoff stress has the following representation:

P aA = gab

[
∂W

∂F b
A

−
(

∂W

∂F b
A|B

)
|B

]
. (3.2)

Hyper-stress is defined as Ha
AB = Ha

BA = ∂W
∂Fa

A|B
. Traction is written as

T a = P aANA − HaAB |BNA + HaABBAB , (3.3)

where BAB = BBA = −NA|B is the second fundamental form of the surface ∂B embedded in the
Euclidean space, and N is the unit normal vector to ∂B. Note that in a stress-free gradient solid both
the (total) first Piola–Kirchhoff stress and hyper-stress vanish.

3.1. Balance of linear and angular momenta

In terms of the first Piola–Kirchhoff stress the balance of angular momentum reads

P [aAF b]
A +

(
H [aABF b]

A

)
|B

= 0 . (3.4)

Linearizing the balance of linear momentum about a motion ϕ̊ one obtains (δP aA)|A + ρ0δB
a = ρ0Ü

a
,

where

δP aA =
∂P aA

∂F b
B

δF b
B +

∂P aA

∂F b
B|C

δF b
B|C = AaA

b
B U b|B + BaA

b
BC U b|B|C , (3.5)

δ denotes the first variation of a field, and Ua are the components of the linearized displacement field,
i.e., Ua = δϕa, and

AaA
b
B =

∂P aA

∂F b
B

, BaA
b
BC =

∂P aA

∂F b
B|C

. (3.6)
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A and B are the dynamic elastic constants [8]. Notice that BaAbBC = BaAbCB . From P aA = gam ∂W
∂Fm

A
−

HaAM |M , one writes

δP aA = gam ∂2W

∂Fm
A∂Fn

N
δFn

N + gam ∂2W

∂Fm
A∂Fn

N |M
δFn

N |M − δ(HaAM |M )

= gam ∂2W

∂Fm
A∂Fn

N
Un|N + gam ∂2W

∂Fm
A∂Fn

N |M
Un|N |M − (δHaAM )|M .

(3.7)

But

δHaAM =
∂HaAM

∂F c
C

δF c
C +

∂HaAM

∂F c
C|D

δF c
C|D

= gam ∂2W

∂F c
C∂Fm

A|M
U c|C + gam ∂2W

∂F c
C|D∂Fm

A|M
U c|C|D .

(3.8)

The static elastic constants are defined as [8]

Aa
A

b
B =

∂2W

∂F a
A∂F b

B
, Ba

A
b
BC =

∂2W

∂F a
A∂F b

B|C
, Ca

AB
b
CD =

∂2W

∂F a
A|B∂F b

C|D
. (3.9)

The static elastic constants have the following symmetries:

Aa
A

b
B = Ab

B
a

A,

Ba
A

b
BC = Ba

A
b
CB ,

Ca
AB

b
CD = Ca

BA
b
CD = Ca

BA
b
DC = Cb

DC
a

BA .

(3.10)

Thus, from (3.8) δHaAM = Bb
BaAMU b|B + Cb

BCaAMU b|B|C , and hence

(δHaAM )|M = (Bb
BaAMU b|B + Cb

BCaAMU b|B|C)|M . (3.11)

Therefore,

AaA
b
B = A

aA
b
B − Bb

BaAM |M ,

BaA
b
BC = B

aA
b
BC − Bb

BaAC − C
aAM

b
BC |M .

(3.12)

Or equivalently

AaAbB = A
aAbB − B

bBaAM |M ,

BaAbBC = B
aAbBC − B

bBaAC − C
aAMbBC |M .

(3.13)

In deriving the second relation, we ignored the term U b|B|C|M in δHaAM |M as we are assuming a second-
gradient elasticity; displacement derivatives of orders three or higher are neglected.

When linearized with respect to a stress-free initial configuration, the linearized balance of angular
momentum is written as

A
[aM

m
AF̊ b]

M = 0,

B
[aM

m
ABF̊ b]

M = 0,
(3.14)

and with an abuse of notation

A
[ab]

m
A = 0, B

[ab]
m

AB = 0. (3.15)
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3.2. The coupling elastic constants for isotropic solids

Materials with non-vanishing coupling elasticity tensors B are those that are not invariant under inver-
sions. These are called non-centrosymmetric solids. These materials can be either chiral if they are not
invariant under orientation-reversing transformations, or achiral. According to Auffray et al. [3], the sym-
metry groups for these materials are of Type I (chiral) or of Type III (neither chiral nor centrosymmetric).
A further classification can be done using the property of polarity, i.e., the property of having a single
rotational axis of symmetry. Therefore, in summary, non-centrosymmetric materials are divided into four
cases: chiral polar, achiral polar, chiral apolar, achiral apolar. Isotropic non-centrosymmetric solids are
the isotropic chiral ones.

For non-centrosymmetric solids the coupling elastic constants do not vanish. Let us consider the
corresponding fifth-order elastic constants in terms of the right Cauchy–Green strain C, namely

L
ABCDE =

∂2W

∂CAB∂CCD|E
. (3.16)

L has the minor L
ABCDE = L

BACDE = L
ABDCE , and major L

ABCDE = L
CDEAB symmetries. When

the elastic constants are defined with respect to a stress-free initial configuration, one can show that

B
aAbBC = 4F̊ a

M F̊ b
N L

AMNBC . (3.17)

For an isotropic solid, in Cartesian coordinates, one has the following representation for L [28]:

L
IJKLM = �1ε

IJKδLM + �2ε
IJLδKM + �3ε

IJMδKL + �4ε
IKLδJM + �5ε

IKMδJL

+ �6ε
ILMδJK + �7ε

JKLδIM + �8ε
JKMδIL + �9ε

JLMδIK + �10ε
KLMδIJ ,

(3.18)

where εIJK is the permutation symbol, and �i are elastic constants. From CIJ = CJI , we have the minor
symmetries L

IJKLM = L
JIKLM , and L

IJKLM = L
JILKM , which dictate �1 = �2 = �3 = �4 = �7 = �10 =

0.2 Thus,

L
IJKLM =

(
�5ε

IKMδJL + �8ε
JKMδIL

)
+

(
�6ε

ILMδJK + �9ε
JLMδIK

)
. (3.19)

Looking at the contribution of L to energy, one can see that due to the symmetry of the right Cauchy–
Green strain, only the sum of the remaining four elastic constants �5 + �8 + �6 + �9 appears in the energy
expression. This implies that there is only one elastic constant b0, and

L
IJKLM = b0

(
εIKMδJL + εJKMδIL + εILMδJK + εJLMδIK

)
. (3.20)

This is consistent with the results of Dell’Isola et al. [7], Papanicolopulos [24], and Auffray et al. [3].3 In
arbitrary curvilinear coordinates, (3.20) is written as

L
IJKLM = b0

(
εIKMgJL + εJKMgIL + εILMgJK + εJLMgIK

)
, (3.21)

where εIJK = 1√
g εIJK , and g = detg.

2 Once the balance of angular momentum is enforced, both coupling elasticity tensors B and L have 108 independent
components in the most general case. In [31], it was mentioned that B has 90 independent components, which is incorrect.
However, this inaccurate statement did not affect any of the results or conclusions of that work.

3Note that this tensor does not have any major symmetries; the symmetries claimed in Eq. (3.2)2 in [7] are incorrect.
As a matter of fact, from the representation (3.20) in the isotropic case, the coupling elasticity tensor L has the following
major antisymmetry: LIJKLM = −L

KLIJM . From (3.17), B has the same property in the isotropic case.
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Fig. 2. Ξ : B → B̃ is a map between two submanifolds of R
n. The shifter map s parallel transports W at X to sW at

X̃ = Ξ(X)

3.3. Positive-definiteness of the elastic energy

Starting from a stress-free initial configuration, the change in the elastic energy is written as

δW =
1
2

∂2W

∂F a
A∂F b

B
Ua|AU b|B +

∂2W

∂F a
A∂F b

B|C
Ua|AU b|B|C +

1
2

∂2W

∂F a
A|B∂F b

C|D
Ua|A|BU b|C|D

=
1
2
A

aAbBUa|AUb|B + B
aAbBCUa|AUb|B|C +

1
2
C

aABbCDUa|A|BUb|C|D.

(3.22)

Positive-definiteness of the elastic energy requires that δW > 0 for any pair (Ua|A, Ua|A|B) 
= (0, 0). In
particular, when Ua|A 
= 0, and Ua|A|B = 0, AaAbBUa|AUb|B > 0, which implies that A must be positive-
definite. In the case of isotropic solids, this is equivalent to μ > 0, and 3λ + 2μ > 0. Similarly, C must
be positive-definite. It turns out that −k < b0 < k, where k depends on μ and two sixth-order elastic
constants [24].

4. Transformation cloaking in linearized gradient elastodynamics

4.1. Shifters in Euclidean ambient space

It is assumed that the reference configurations of both the physical and virtual bodies are embedded
in the Euclidean space. In order to relate vector fields in the physical problem to those in the virtual
problem, one uses shifters. We assume that B ⊂ S = R

n (n = 2 or 3). The shifter map s : TS → TS is
defined as s(x,w) = (x̃,w). Its restriction to x ∈ S is denoted by sx = s(x) : TxS → Tx̃S, and parallel
transports w based at x ∈ S to w based on x̃ ∈ S (see Fig. 2). Let us choose two global colinear Cartesian
coordinates {z̃ ĩ} and {zi} for the virtual and physical deformed configurations in the ambient space. Also
consider curvilinear coordinates {x̃ã} and {xa} for the two configurations. Noting that sĩi = δĩ

i , one can
show that [21]

sãa(x) =
∂x̃ã

∂z̃ ĩ
(x̃)

∂zi

∂xa
(x)δĩ

i . (4.1)

As an example, in the cylindrical coordinates (r, θ, z) and (r̃, θ̃, z̃) at x ∈ R
3 and x̃ ∈ R

3, respectively,
one can show that the shifter map has the following matrix representation

s =

⎡
⎣ cos(θ̃ − θ) r sin(θ̃ − θ) 0

− sin(θ̃ − θ)/r̃ r cos(θ̃ − θ)/r̃ 0
0 0 1

⎤
⎦ . (4.2)
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Fig. 3. Shifters along a cylindrically/spherically-symmetric map Ξ : (R, Θ, Z) �→ (f(R), Θ, Z) or Ξ : (R, Θ, Φ) �→
(f(R), Θ, Φ). The shifter map s parallel transports W in the radial direction from R to R̃ = f(R)

Similarly, in the spherical coordinates (r, θ, φ) and (r̃, θ̃, φ̃) at x ∈ R
3 and x̃ ∈ R

3, respectively, the shifter
map has the following matrix representation:

s =

⎡
⎣ cos(φ̃ − φ) sin θ̃ sin θ + cos θ̃ cos θ r[cos(φ̃ − φ) sin θ̃ cos θ − cos θ̃ sin θ] r sin(φ̃ − φ) sin θ̃ sin θ

[cos(φ̃ − φ) cos θ̃ sin θ − sin θ̃ cos θ]/r̃ r[cos(φ̃ − φ) cos θ̃ cos θ + sin θ̃ sin θ]/r̃ r sin(φ̃ − φ) cos θ̃ sin θ/r̃

− sin(φ̃ − φ) sin θ/(r̃ sin θ̃) −r sin(φ̃ − φ) cos θ/(r̃ sin θ̃) r cos(φ̃ − φ) sin θ/(r̃ sin θ̃)

⎤
⎦ .

(4.3)

In Fig. 3 a radial map Ξ : B → B̃ is shown. The shifter parallel transports a vector W at X = (R,Θ, Z)
(or X = (R,Θ,Φ)) to (f(R),Θ, Z) (or (f(R),Θ,Φ)).

4.2. Transformation cloaking formulated as equivalent boundary-value problems

In the coordinate charts {XA} and {xa}, the divergence term in the balance of linear momentum in the
physical body δ (DivP) + ρ0δB = ρ0δA, has the following component form

δ (DivP) = Div δP = Div (A : ∇U + B : ∇∇U) =
(
AaA

b
B U b|B + BaA

b
BC U b|B|C

)
|A

∂

∂xa
. (4.4)

Under a cloaking transformation Ξ : B → B̃, it is transformed to [31]

JΞ

(
ÃãÃ

b̃
B̃ Ũ

b̃

|B̃ + B̃ãÃ
b̃
B̃C̃ Ũ

b̃

|B̃|C̃

)
|Ã

∂

∂x̃ã
, (4.5)

where

Ũ
ã

= sãaUa ,

ÃãÃ
b̃
B̃ = J−1

Ξ sãa

Ξ

F Ã
A(s−1)b

b̃

Ξ

F B̃
B AaA

b
B + J−1

Ξ sãa

Ξ

F Ã
A(s−1)b

b̃

Ξ

F B̃
B|C BaA

b
BC ,

B̃ãÃ
b̃
B̃C̃ = J−1

Ξ sãa

Ξ

F Ã
A(s−1)b

b̃

Ξ

F B̃
B

Ξ

F C̃
C BaA

b
BC .

(4.6)

Note that the material and spatial coordinate charts for the virtual body are denoted by {X̃
Ã}, and

{x̃ã}, respectively. Equivalently, (4.6) can be written as

AaA
b
B = JΞ(s−1)a

ã(
Ξ

F−1)A
Ãs

b̃
b(

Ξ

F−1)B
B̃ ÃãÃ

b̃
B̃ + JΞ(s−1)a

ã(
Ξ

F−1)A
Ãs

b̃
b(

Ξ

F−1)B
B̃|C̃ B̃ãÃ

b̃
B̃C̃ ,

BaA
b
BC = JΞ(s−1)a

ã(
Ξ

F−1)A
Ãs

b̃
b(

Ξ

F−1)B
B̃(

Ξ

F−1)C
C̃ B̃ãÃ

b̃
B̃C̃ .

(4.7)
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It is assumed that F̊ a
A = δa

A, and ˚̃F ã
Ã = δã

Ã
. This implies that F̊ a

A|B = 0, and ˚̃F ã
Ã|B̃ = 0. It is also

assumed that there is no initial stress in either configuration, i.e., P̊ a
A = 0, H̊aAB = 0, and ˚̃P ã

Ã = 0,
˚̃H ãÃB̃ = 0. From (3.14), the balance of angular momentum in the physical and virtual bodies read

A
[aM

m
AF̊ b]

M = 0, B
[aM

m
ABF̊ b]

M = 0, (4.8)

Ã
[ãM̃

m̃
Ã ˚̃F b̃]

M̃ = 0, B̃
[ãM̃

m̃
ÃB̃ ˚̃F b̃]

M̃ = 0. (4.9)

For the uniform virtual body, from (3.12), one obtains

ÃãÃ
b̃
B̃ = Ã

ãÃ
b̃
B̃ , B̃ãÃ

b̃
B̃C̃ = B̃

ãÃ
b̃
B̃C̃ − B̃b̃

B̃ãÃC̃ . (4.10)

Thus, from (4.9)1, one obtains

Ã[ãM̃
m̃

Ã ˚̃F b̃]
M̃ = 0, or Ã[ãb̃]

m̃
Ã = 0. (4.11)

As for the physical body, from (3.13)1, we have

A
aAbB = B

bBaAM |M + AaAbB . (4.12)

From the above relation and the balance of angular momentum (4.8)1, one obtains

B
bB[aA]M |M + A[aA]bB = 0 . (4.13)

Taking the antisymmetric part of the other pair of indices, i.e., A[aA][bB], and since from (4.8)2, one has
B

[bB][aA]C |C = 0, we obtain the following relations:

A[aA][bB] = 0 . (4.14)

Now, we are able to use the transformation (4.7)1. In particular, we make use of its fully contravariant
version, viz.

AaAbB = JΞ(s−1)a
ã(

Ξ

F−1)A
Ã(s−1)b

b̃

[
(

Ξ

F−1)B
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃

]
. (4.15)

Note that in order to obtain (4.15), we used the fact that gãb̃ s
b̃
b gba = (s−1)a

ã, which in turn comes from
the fact that the shifter preserves the ambient space metric. Hence, we can write (4.14) as

(s−1)[aã(
Ξ

F−1)A]
Ã(s−1)[bb̃

[
(

Ξ

F−1)B]
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B]
B̃|C̃ B̃ãÃb̃B̃C̃

]
= 0 , (4.16)

or in the expanded form[
(s−1)a

ã(
Ξ

F−1)A
Ã − (s−1)A

ã(
Ξ

F−1)a
Ã

]{
(s−1)b

b̃

[
(

Ξ

F−1)B
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃

]

− (s−1)B
b̃

[
(

Ξ

F−1)b
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)b
B̃|C̃ B̃ãÃb̃B̃C̃

] }
= 0 .

(4.17)

Note that (4.16), i.e., A[aA][bB] = 0, consists of six independent equations by virtue of the major symmetry
(3.10)1 for A. Albeit the static elastic constants AaAbB in the physical body must satisfy this property, it
does not come automatically from the transformation (4.15). This is in contrast with classical linearized
elasticity [31]. In transformation cloaking for gradient elasticity, the preservation of the balance of linear
momentum gives a transformation in terms of the dynamic elastic constants AaAbB , and hence, the major
symmetries of static elastic constants A

aAbB for the physical problem are not immediate. Therefore,
the constraints (4.16) consist of nine equations. Note that enforcing the major symmetry on A

aAbB in
the physical body separately would not provide any useful equation besides an identity involving the
derivatives of the tensor B.
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Remark 4.1. From (4.13), one has B
bB[aA]C |C = −A[aA]bB and hence from (4.15)

B
bB[aA]C |C = −JΞ(s−1)[aã(

Ξ

F−1)A]
Ã(s−1)b

b̃

[
(

Ξ

F−1)B
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃

]
. (4.18)

Moreover, taking the divergence of (3.13)2 (applied to the elastic constants in the physical body) with
respect to the index C, and antisymmetrizing with respect to the pair aA, one obtains

B
[aA]bBC |C − B

bB[aA]C |C = B[aA]bBC |C + C
[aA]MbBC |M |C . (4.19)

By virtue of the balance of angular momentum in the physical body (4.8)2, one can then write

− B
bB[aA]C |C = B[aA]bBC |C + C

[aA]MbBC |M |C , (4.20)

and from (4.13)

C
[aA]MbBC |M |C = −B[aA]bBC |C − A[aA]bB . (4.21)

Note that from (4.7)2

BaAbBC = JΞ(s−1)a
ã(

Ξ

F−1)A
Ã(s−1)b

b̃(
Ξ

F−1)B
B̃(

Ξ

F−1)C
C̃ B̃ãÃb̃B̃C̃ , (4.22)

and therefore (4.21) becomes

C
[aA]NbBM |M |N =

[
JΞ(s−1)[aã(

Ξ

F−1)A]
Ã(s−1)b

b̃(
Ξ

F−1)B
B̃(

Ξ

F−1)M
M̃ B̃ãÃb̃B̃M̃

]
|M

+ JΞ(s−1)[aã(
Ξ

F−1)A]
Ã(s−1)b

b̃

[
(

Ξ

F−1)B
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃

]
.

(4.23)

Equations (4.18) and (4.23) represent differential constraints for BaAbBC and C
aANbBM |M |N , respectively,

and are a consequence of the balance of angular momentum.

Next, we assume that the virtual body is isotropic and non-centrosymmetric. Knowing that ˚̃F ã
M̃ =

δã
M̃

, with an abuse of notation from (3.17), one can write

B̃
ãÃb̃B̃C̃ = 4L̃Ããb̃B̃C̃ = 4L̃ãÃb̃B̃C̃ . (4.24)

Therefore, for the isotropic virtual body in Cartesian coordinates

B̃
ãÃb̃B̃C̃ = 4b̃0

(
εãb̃C̃δÃB̃ + εÃb̃C̃δãB̃ + εãB̃C̃δÃb̃ + εÃB̃C̃δãb̃

)
. (4.25)

In arbitrary curvilinear coordinates, one has

B̃
ãÃb̃B̃C̃ = 4b̃0

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃ + εãB̃C̃gÃb̃ + εÃB̃C̃gãb̃

)
, (4.26)

where εãb̃c̃ = 1√
g εãb̃c̃, and g = detg. Note that the balance of angular momentum, i.e., B̃[ãÃ]b̃B̃C̃ = 0 is

satisfied. In Cartesian coordinates, since the representation (4.25) is such that B̃
ãÃb̃B̃C̃ = −B̃

b̃B̃ãÃC̃ , the
dynamic elastic constants are written as B̃ãÃb̃B̃C̃ = B̃

ãÃb̃B̃C̃ − B̃
b̃B̃ãÃC̃ = 2B̃ãÃb̃B̃C̃ and hence

B̃ãÃb̃B̃C̃ = 8b̃0

(
εãb̃C̃δÃB̃ + εÃb̃C̃δãB̃ + εãB̃C̃δÃb̃ + εÃB̃C̃δãb̃

)
. (4.27)

In curvilinear coordinates,

B̃ãÃb̃B̃C̃ = 8b̃0

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃ + εãB̃C̃gÃb̃ + εÃB̃C̃gãb̃

)
. (4.28)

From the compatibility of
Ξ

F, we know that (
Ξ

F−1)B
[B̃|C̃] = 0. Thus, in curvilinear coordinates

(
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃ = 8b̃0(

Ξ

F−1)B
B̃|C̃

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃

)
. (4.29)

Moreover, with the usual abuse of notation for the indices, in the isotropic case, one has the representation

A
ãÃb̃B̃ = λgãÃgb̃B̃ + μ

(
gãb̃gÃB̃ + gãB̃gÃb̃

)
, (4.30)
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Fig. 4. Circular cylindrical (left) and spherical (right) holes and cloaks. The cloaking maps are assumed to be radially
symmetric

so that (4.16) becomes

(s−1)[aã(
Ξ

F−1)A]
Ã(s−1)[bb̃

[
(

Ξ

F−1)B]
B̃

(
λgãb̃gb̃B̃ + μgãb̃gÃB̃ + μgãB̃gÃb̃

)

+ 8b̃0(
Ξ

F−1)B
B̃|C̃

(
εãb̃C̃gÃB̃ + εÃb̃C̃gãB̃

) ]
= 0 .

(4.31)

4.3. Circular cylindrical and spherical cloaks

We work with cylindrical (R,Θ, Z) and spherical (R,Θ,Φ) coordinates, with Θ and Φ being the az-
imuthal and polar angles, respectively. In both cases, the cloaking map is radial, and is represent-
ed by a function R̃ = f(R), so that one has

Ξ

F = diag(f ′(R), 1, 1). As for the shifters, from (4.2),
one obtains s = diag(1, R/f(R), 1) for the cylindrical case, while (4.3) gives the spherical case s =
diag(1, R/f(R), R/f(R)). With respect to cylindrical and spherical coordinates the metric tensor in the
physical body has the representations g = diag(1, R2, 1) and g = diag(1, R2, R2 sin2 Θ) in cylindrical
and spherical coordinates, respectively, while the ones in the virtual body read g̃ = diag(1, f(R)2, 1)
and g̃ = diag(1, f(R)2, f(R)2 sin2 Θ). We show that the conditions (4.17) cannot be satisfied for either a
circular cylindrical or a spherical cloak when a radial cloaking map is utilized (see Fig. 4). Let us expand
(4.31) for a = b = 1, and A = B = 3:

[
(s−1)1ã(

Ξ

F−1)3Ã − (s−1)3ã(
Ξ

F−1)1Ã

]{
(s−1)1b̃

[
(

Ξ

F−1)3B̃ Ã
ãÃb̃B̃ + (

Ξ

F−1)3B̃|C̃ B̃ãÃb̃B̃C̃
]

− (s−1)3b̃

[
(

Ξ

F−1)1B̃ Ã
ãÃb̃B̃ + (

Ξ

F−1)1B̃|C̃ B̃ãÃb̃B̃C̃
] }

= 0 .
(4.32)

Knowing that in the spherical (or cylindrical) coordinates and for a radial cloaking map s−1 and
Ξ

F−1

have diagonal representations, the above relation is simplified to read
[
(s−1)1ã(

Ξ

F−1)3Ã − (s−1)3ã(
Ξ

F−1)1Ã

]{
(s−1)11

[
(

Ξ

F−1)33 Ã
ãÃ13 + (

Ξ

F−1)33|C̃ B̃ãÃ13C̃
]

− (s−1)33

[
(

Ξ

F−1)11 Ã
ãÃ31 + (

Ξ

F−1)11|C̃ B̃ãÃ31C̃
]}

= 0 .
(4.33)
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Fig. 5. Prolate (left) and oblate (right) spheroidal holes and cloaks. The cloaking maps are assumed to be spheroidally-
symmetric. The cloaking map on the left shrinks a spheroidal hole to a needle-like hole. The one on the right shrinks the
spheroidal hole to a disk-shaped hole

Hence,

(s−1)11(
Ξ

F−1)33

{
(s−1)11

[
(

Ξ

F−1)33 Ã
1313 + (

Ξ

F−1)33|C̃ B̃1313C̃
]

− (s−1)33

[
(

Ξ

F−1)11 Ã
1331 + (

Ξ

F−1)11|C̃ B̃1331C̃
]}

−(s−1)33(
Ξ

F−1)11

{
(s−1)11

[
(

Ξ

F−1)33 Ã
3113 + (

Ξ

F−1)33|C̃ B̃3113C̃
]

− (s−1)33

[
(

Ξ

F−1)11 Ã
3131 + (

Ξ

F−1)11|C̃ B̃3131C̃
]}

= 0 .

(4.34)

Note that from (4.30), and from the expression of the metric g̃ in both cylindrical and spherical
coordinates, one has Ã

1313 = Ã
1331 = Ã

3113 = Ã
3131 = μ̃/C > 0, with C = 1 and C = f(R)2 sin2 Θ in

cylindrical and spherical cloaking, respectively. Moreover, noting that the metric tensor in both cylindrical
and spherical coordinates is diagonal, from (4.26) one can easy see that B̃1313C̃ = B̃1331C̃ = B̃3113C̃ =
B̃3131C̃ = 0. Hence4

(s−1)11(
Ξ

F−1)33

[
(s−1)11(

Ξ

F−1)33 − (s−1)33(
Ξ

F−1)11

]

−(s−1)33(
Ξ

F−1)11

[
(s−1)11(

Ξ

F−1)33 − (s−1)33(
Ξ

F−1)11

]
= 0 .

(4.35)

Therefore, (
Ξ

F−1)33(s−1)11 = (s−1)33(
Ξ

F−1)11. As
Ξ

F−1 = diag(1/f ′(R), 1, 1), and s−1 = diag (1, f(R)/R, 1)
and s−1 = diag (1, f(R)/R, f(R)/R), in the cylindrical and spherical coordinates, respectively, one must
have f(R) = R, i.e., Ξ = id. This means that cloaking is not possible.

4.4. Spheroidal cloaks

Next, we consider prolate and oblate spheroidal holes and consider cloaking maps that respect the spher-
oidal symmetry in the sense that they map a spheroid to another confocal spheroid (see Fig. 5). This will
be a generalization of the spherical cloak problem.

Proposition 4.2. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic
transformation cloaking is not possible for either prolate or oblate spheroidal holes using any spheroidally
symmetric cloaking map.

4This is identical to the corresponding relation for centrosymmetric gradient solids investigated in [31].
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Proof. Let us consider a prolate spheroidal hole with focal distance a. The natural coordinates are the
prolate spheroidal coordinates (H,Θ,Φ), 0 ≤ H < ∞, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π defined as [22]

⎧⎪⎨
⎪⎩

X = a sinh H sin Θ cos Φ,

Y = a sinh H sin Θ sin Φ,

Z = a cosh H cos Θ.

(4.36)

Note that H = const are prolate spheroids. We consider a cloaking map of the form (H̃, Θ̃, Φ̃) =
Ξ(H,Θ,Φ) = (f(H),Θ,Φ). The shifter map reads

s =

⎡
⎢⎣

2 sinh H sinh H̃ cos2 Θ+cosh H cosh H̃ sin2 Θ
cosh 2H̃−cos 2Θ

2 sin Θ cos Θ sinh(H−H̃)

cosh 2H̃−cos 2Θ
0

sin 2Θ sinh(H−H̃)

cos 2Θ−cosh 2H̃
2 sinh H sinh H̃ cos2 Θ+cosh H cosh H̃ sin2 Θ

cosh 2H̃−cos 2Θ
0

0 0 sinh H csch H̃

⎤
⎥⎦ .(4.37)

The spatial metric has the following representation:

g =

⎡
⎣a2(sinh2 H + sin2 Θ) 0 0

0 a2(sinh2 H + sin2 Θ) 0
0 0 a2 sinh2 H sin2 Θ

⎤
⎦ . (4.38)

The cloaking derivative map has the coordinate representation

Ξ

F =

⎡
⎣f ′(H) 0 0

0 1 0
0 0 1

⎤
⎦ . (4.39)

The (a,A, b,B) = (2, 3, 2, 3) component of the constraint (4.31) reads

μ [coth H − coth(f(H))]2

a4(cos 2Θ − cosh 2H) [cos 2Θ − cosh(2f(H))]
= 0 . (4.40)

Therefore, coth(f(H)) = coth H, or f(H) = H, i.e., cloaking is not possible.
In the case of an oblate spheroidal hole, one uses the oblate spheroidal coordinates (H,Θ,Φ), 0 ≤

H < ∞, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π defined as [22]
⎧⎪⎨
⎪⎩

X = a cosh H sin Θ cos Φ,

Y = a cosh H sin Θ sin Φ,

Z = a sinh H cos Θ.

(4.41)

The spatial metric has the following representation:

g =

⎡
⎣a2(cosh2 H − sin2 Θ) 0 0

0 a2(cosh2 H + sin2 Θ) 0
0 0 a2 cosh2 H sin2 Θ

⎤
⎦ . (4.42)

We again consider a cloaking map of the form (H̃, Θ̃, Φ̃) = Ξ(H,Θ,Φ) = (f(H),Θ,Φ). In this case, the
(a,A, b,B) = (2, 3, 2, 3) component of the constraint (4.31) reads

μ [tanh H − tanh(f(H))]2

a4(cos 2Θ + cosh 2H) [cos 2Θ + cosh(2f(H))]
= 0 . (4.43)

Therefore, tanh(f(H)) = tanhH, or f(H) = H, i.e., cloaking is not possible. �
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4.5. Non-symmetric cloaks

Now, one may ask whether cloaking would be possible for less symmetric holes and cloaking maps. From
(4.17), we have

[
δa
ã(

Ξ

F−1)A
Ã − δA

ã (
Ξ

F−1)a
Ã

]{
δb
b̃

[
(

Ξ

F−1)B
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃb̃B̃C̃

]

− δB
b̃

[
(

Ξ

F−1)b
B̃ Ã

ãÃb̃B̃ + (
Ξ

F−1)b
B̃|C̃ B̃ãÃb̃B̃C̃

]}
= 0 .

(4.44)

Or
[
δa
ã(

Ξ

F−1)A
Ã − δA

ã (
Ξ

F−1)a
Ã

]{ [
(

Ξ

F−1)B
B̃ Ã

ãÃbB̃ + (
Ξ

F−1)B
B̃|C̃ B̃ãÃbB̃C̃

]

−
[
(

Ξ

F−1)b
B̃ Ã

ãÃBB̃ + (
Ξ

F−1)b
B̃|C̃ B̃ãÃBB̃C̃

]}
= 0 .

(4.45)

Thus,

δaã(
Ξ
F−1)AÃ

{[
(

Ξ
F−1)BB̃ Ã

ãÃbB̃ + (
Ξ
F−1)BB̃|C̃ B̃ãÃbB̃C̃

]
−

[
(

Ξ
F−1)bB̃ Ã

ãÃBB̃ + (
Ξ
F−1)bB̃|C̃ B̃ãÃBB̃C̃

]}

− δAã (
Ξ
F−1)aÃ

{ [
(

Ξ
F−1)BB̃ Ã

ãÃbB̃ + (
Ξ
F−1)BB̃|C̃ B̃ãÃbB̃C̃

]
−

[
(

Ξ
F−1)bB̃ Ã

ãÃBB̃ + (
Ξ
F−1)bB̃|C̃ B̃ãÃBB̃C̃

] }
= 0 .

(4.46)

Hence,

(
Ξ
F−1)AÃ

{[
(

Ξ
F−1)BB̃ Ã

aÃbB̃ + (
Ξ
F−1)BB̃|C̃ B̃aÃbB̃C̃

]
−

[
(

Ξ
F−1)bB̃ Ã

aÃBB̃ + (
Ξ
F−1)bB̃|C̃ B̃aÃBB̃C̃

]}

− (
Ξ
F−1)aÃ

{ [
(

Ξ
F−1)BB̃ Ã

AÃbB̃ + (
Ξ
F−1)BB̃|C̃ B̃AÃbB̃C̃

]
−

[
(

Ξ
F−1)bB̃ Ã

AÃBB̃ + (
Ξ
F−1)bB̃|C̃ B̃AÃBB̃C̃

] }
= 0 .

(4.47)

Note that if either a = A or b = B the above relations are trivial. We assume that a 
= A, and b 
= B.
Let us consider an arbitrary cloaking transformation whose inverse derivative map

Ξ

F has the following
representation in Cartesian coordinates

Ξ

F−1 =

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ . (4.48)

The covariant derivative of
Ξ

F−1 has the following representation:

∇ Ξ

F−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣
F111 F121 F131

F211 F221 F231

F311 F321 F331

⎤
⎥⎦

⎡
⎢⎣
F112 F122 F132

F212 F222 F232

F312 F322 F332

⎤
⎥⎦

⎡
⎢⎣
F113 F123 F133

F213 F223 F233

F313 F323 F333

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.49)
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Taking into account the compatibility equations, ∇ Ξ

F−1 has the following representation:

∇ Ξ

F−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣
F111 F112 F113

F211 F212 F213

F311 F312 F313

⎤
⎥⎦

⎡
⎢⎣
F112 F122 F123

F212 F222 F223

F312 F322 F323

⎤
⎥⎦

⎡
⎢⎣
F113 F123 F133

F213 F223 F233

F313 F323 F333

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.50)

As was mentioned earlier, (4.16), or its equivalent variants (4.17), (4.31) and (4.47), provide a total of 81
equations, of which only nine are independent. When b̃0 = 0 the number of equations reduces to 6. After
plugging (4.30) and (4.28) into (4.47), one obtains the following nine independent equations:5

(3λ + 2μ)(a12 − a21)2 + μ
[
3(a11 − a22)2 + 3(a2

13 + a2
23) + 3(a12 + a21)2 + (a12 − a21)2

]
+ β[(a11 − a22)(F123 + F213) + 2(a12F223 − a21F113)

+ a23(F111 − F133 + F212) − a13(F112 + F222 − F233)] = 0,

(4.51)

(3λ + 2μ)(a23 − a32)2 + μ
[
3(a22 − a33)2 + 3(a2

21 + a2
31) + 3(a23 + a32)2 + (a23 − a32)2

]
+ β[(a22 − a33)(F213 + F312) + 2(a23F313 − a32F212)

+ a31(−F211 + F222 + F323) − a21(F223 − F311 + F333)] = 0,

(4.52)

(3λ + 2μ)(a13 − a31)2 + μ
[
3(a11 − a33)2 + 3(a2

12 + a2
32) + 3(a13 + a31)2 + (a13 − a31)2

]
+ β[(a33 − a11)(F123 + F312) + 2(a31F112 − a13F323)

+ a12(F113 − F322 + F333) − a32(F111 − F122 + F313)] = 0,

(4.53)

3μ [−a11(a23 + a32) + a12a13 + 2a21a31 + a22a32 + a23a33] + 3λ(a12 − a21)(a13 − a31)

+ β[(a11 − a22)(F111 − F122 + F313) + a13(F113 − F322 + F333)

+ 2a12(F112 + F323) + 2a21F112 + a23(F123 + F312)] = 0,

(4.54)

3μ [−a11(a23 + a32) + a12a13 + 2a21a31 + a22a32 + a23a33] + 3λ(a12 − a21)(a13 − a31)

+ β[(a33 − a11)(F111 − F133 + F212) − a12(F112 + F222 − F233)

− 2a13(F113 + F223) − 2a31F113 − a32(F123 + F213)] = 0,

(4.55)

− 3μ [a11a31 + 2a12a32 − a22(a13 + a31) + a13a33 + a21a23] + 3λ(a12 − a21)(a23 − a32)

+ β[(a11 − a22)(F211 − F222 − F323) + a23(F223 − F311 + F333)

+ 2a12F212 + a13(F213 + F312) + 2a21(F212 + F313)] = 0,

(4.56)

− 3μ [a11a31 + 2a12a32 − a22(a13 + a31) + a13a33 + a21a23] + 3λ(a12 − a21)(a23 − a32)

+ β[−a21(F111 − F133 + F212) − (a22 − a33)(F112 + F222 − F233)

− 2a23(F113 + F223) − a31(F123 + F213) − 2a32F223] = 0,

(4.57)

3μ [a11a21 − a33(a12 + a21) + a12a22 + 2a13a23 + a31a32] + 3λ(a13 − a31)(a23 − a32)

+ β[(a33 − a11)(F223 − F311 + F333) + a32(−F211 + F222 + F323)

+ a12(F213 + F312) + 2a13F313 + 2a31(F212 + F313)] = 0,

(4.58)

5Symbolic computations were done with Mathematica Version 12.0.0.0, Wolfram Research, Champaign, IL.
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Fig. 6. A body with a cylindrical hole. The cloaking map shrinks the cylindrical hole to a line

3μ [a11a21 − a33(a12 + a21) + a12a22 + 2a13a23 + a31a32] + 3λ(a13 − a31)(a23 − a32)

+ β[(a22 − a33)(F113 − F322 + F333) − a31(F111 − F122 + F313)

− a21(F123 + F312) − 2a23F323 − 2a32(F112 + F323)] = 0,

(4.59)

where β = 8b̃0. Note that b̃
2

0 is bounded by a product of μ̃ and the sixth-order elastic constants [24]. In
the above system of PDEs, one can only assume that β 
= 0 as the sixth-order elastic constants do not
appear in the constraints (4.47).

Subtracting Eq. (4.55) from Eq. (4.54), Eq. (4.57) from Eq. (4.56), and Eq. (4.59) from Eq. (4.58),
and assuming that β 
= 0 one obtains the following system of PDEs:

− a11(F223 − F311 + F333) − a22(F113 − F322 + F333) + a33(F113 + F223 − F311 − F322 + 2F333)

+ a31(F111 − F122 + 2F212 + 3F313) + a32(2F112 − F211 + F222 + 3F323)

+ a12(F213 + F312) + a21(F123 + F312) + 2(a13F313 + a23F323) = 0,

(4.60)

a11(F211 − F222 − F323) − a33(F112 + F222 − F233) + a22(F112 − F211 + 2F222 − F233 + F323)

+ a21(F111 − F133 + 3F212 + 2F313) + a23(2F113 + 3F223 − F311 + F333)

+ 2a12F212 + 2a32F223 + a13(F213 + F312) + a31(F123 + F213) = 0,

(4.61)

a22(F111 − F122 + F313) + a33(F111 − F133 + F212) + a11(−2F111 + F122 + F133 − F212 − F313)

− a12(3F112 + F222 − F233 + 2F323) − a13(3F113 + 2F223 − F322 + F333)

− 2a21F112 − 2a31F113 − a23(F123 + F312) − a32(F123 + F213).
(4.62)

The above system of nonlinear PDEs are too complicated to solve analytically. However, we can analyti-
cally study cloaking an arbitrary cylindrical hole (see Fig. 6).

Proposition 4.3. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic
transformation cloaking is not possible for any cylindrical hole (not necessarily circular).

Proof. Let us consider a cylindrical hole (not necessarily circular) that is covered by a cylindrical cloak. Let
us assume that in the Cartesian coordinates (X1,X2,X3), the X3 axis is the axis of the cylindrical hole. In
this case, the cloaking map has the form Ξ(X1,X2,X3) = (X̃

1
, X̃

2
, X̃

3
) = (Ξ1(X1,X2),Ξ2(X1,X2),X3).
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Therefore,
Ξ

F−1 and its covariant derivative have the following representations:

Ξ

F−1 =

⎡
⎣a11 a12 0
a21 a22 0
0 0 1

⎤
⎦ , ∇ Ξ

F−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣
F111 F112 0
F211 F212 0
0 0 0

⎤
⎥⎦

⎡
⎢⎣
F112 F122 0
F212 F222 0
0 0 0

⎤
⎥⎦

⎡
⎢⎣

0 0 0
0 0 0
0 0 0

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.63)

Equation (4.51) is simplified to read

(3λ + 2μ)(a12 − a21)2 + μ
[
3(a11 − a22)2 + 3(a12 + a21)2 + (a12 − a21)2

]
= 0. (4.64)

Knowing that μ > 0, and 3λ + 2μ > 0, one concludes that a12 = a21 = 0, and a11 = a22. Now, Eq. (4.52)
is simplified to read 3μ(a22 − 1)2 = 0, which implies that a22 = 1. The other constraints are trivially
satisfied. Therefore, Ξ = id, which implies that cloaking is not possible. �

We suspect that transformation cloaking in dimension three is not possible for a cavity of any shape.

Conjecture 4.4. Assuming that the virtual body is isotropic and non-centrosymmetric, elastodynamic
transformation cloaking is not possible for a hole of any shape in dimension three.

5. Conclusions

In this paper, we investigated the possibility of transformation cloaking in non-centrosymmetric gradient
solids. There have been claims in the literature that chirality can be utilized in achieving cloaking from
stress waves. We formulated the transformation cloaking problem in terms of two equivalent boundary-
value problems. We showed that transformation cloaking is not possible for any cylindrical hole (not
necessarily circular). The obstruction to transformation cloaking is the balance of angular momentum.
We were able to prove this no-go theorem for holes with the topology of the 2-sphere only for spheroidal
holes and cloaking maps that preserve the spheroidal symmetry. We conjecture that exact transformation
cloaking is not possible for a hole of any shape. Some of the existing works in the literature show
approximate cloaking for some particular examples. They are, however, misleading as they are (i) based
on fundamentally flawed formulations that do not consider all the balance laws, and (ii) one has no control
over the errors. Our conclusion is that the path forward for engineering applications of elastodynamic
cloaking is approximate cloaking formulated as an optimal design problem.
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