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Abstract
In this paper, we formulate the problem of elastodynamic transformation cloaking for
Kirchoff–Love plates and elastic plates with both in-plane and out-of-plane displace-
ments. A cloaking transformation maps the boundary-value problem of an isotropic
and homogeneous elastic plate (virtual problem) to that of an anisotropic and inhomo-
geneous elastic plate with a hole surrounded by a cloak that is to be designed (physical
problem). For Kirchoff–Love plates, the governing equation of the virtual plate is
transformed to that of the physical plate up to an unknown scalar field. In doing so,
one finds the initial stress and the initial tangential body force for the physical plate,
along with a set of constraints that we call the cloaking compatibility equations. It
is noted that the cloaking map needs to satisfy certain boundary and continuity con-
ditions on the outer boundary of the cloak and the surface of the hole. In particular,
the cloaking map needs to fix the outer boundary of the cloak up to the third order.
Assuming a generic radial cloaking map, we show that cloaking a circular hole in
Kirchoff–Love plates is not possible; the cloaking compatibility equations and the
boundary conditions are the obstruction to cloaking. Next, relaxing the pure bending
assumption, the transformation cloaking problem of an elastic plate in the presence of
in-plane and out-of-plane displacements is formulated. In this case, there are two sets
of governing equations that need to be simultaneously transformed under a cloaking
map.We show that cloaking a circular hole is not possible for a general radial cloaking
map; similar to Kirchoff–Love plates, the cloaking compatibility equations and the
boundary conditions obstruct transformation cloaking. Our analysis suggests that the
path forward for cloaking flexural waves in plates is approximate cloaking formulated
as an optimal design problem.
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1 Introduction

A short history of transformation cloaking in elasticity and other fields. Hiding
objects from electromagnetic waves has been a subject of intense interest in recent
years. Pendry et al. (2006) and Leonhardt (2006) studied the possibility of electromag-
netic transformation cloaking, which was later experimentally verified for microwave
frequencies by Schurig et al. (2006) and for optical wavelengths (1.4 − 2.7μm) by
Ergin et al. (2010). The first ideas pertaining to cloaking in elasticity can be found in
the works of Gurney (1938) and Reissner and Morduchow (1949) on reinforced holes
in linear elastic sheets.Mansfield (1953) systematically studied cloaking in the context
of linear elasticity by introducing the concept of neutral holes. He considered a hole(s)
in a sheet under a given far-field in-plane loading and showed that the hole(s) can be
reinforced such that the stress field outside the hole(s) is identical to that of an uncut
sheet under the same (far-field) loading. The shape of the boundary of the (neutral) hole
and the characteristics of the reinforcement are determined based on the stress field of
the uncut sheet, and thus, they explicitly depend on the applied far-field loading. The
main difference between electromagnetic and elastodynamic transformation cloak-
ing is that unlike Maxwell’s equations (with only one configuration, i.e., the ambient
space), the governing equations of elasticity are written with respect to two inherently
different configurations (frames): a reference and a current configuration. This, in turn,
leads to two-point tensors in the governing equations. Marsden and Hughes (1983),
Steigmann (2007), and Yavari and Ozakin (2008) showed that if formulated properly,
the governing equations of nonlinear and linearized elasticity are covariant (invari-
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ant) under arbitrary time-dependent changes in the current configuration (frame). The
governing equations of elasticity are invariant under any time-independent changes in
the reference configuration (or referential coordinate transformations) as well (Maz-
zucato and Rachele 2006; Yavari et al. 2006). Nevertheless, as was shown in Yavari
and Golgoon (2019), referential or spatial covariance of the governing equations is not
the direct underlying principle of transformation cloaking; a cloaking map is neither a
referential nor a spatial change of coordinates. Rather, a cloaking transformation maps
the boundary-value problem of an isotropic and homogeneous elastic body containing
an infinitesimal hole (virtual problem) to that of a generally anisotropic and inhomo-
geneous elastic body with a finite hole surrounded by a cloak (physical problem). The
cloak should be designed such that the physical and virtual problems have identical
solutions (elastic measurements in the case of elastodynamics) outside the cloak.

The idea of cloaking has been thoroughly studied and is well understood in the con-
text of conductivity (Greenleaf et al. 2003a, b), electrical impedance tomography and
electromagnetism (Bryan and Leise 2010; Greenleaf et al. 2007, 2009a, b). The possi-
bility of cloaking has been examined in many other fields of science and engineering,
e.g., acoustics (Chen and Chan 2007; Farhat et al. 2008; Norris 2008; Cummer et al.
2008a, b; Zhou et al. 2008), optics (Leonhardt andPhilbin 2012), thermodynamics (i.e.,
design of thermal cloaks) (Guenneau et al. 2012; Han et al. 2014), diffusion (Guenneau
and Puvirajesinghe 2013), quantum mechanics (Zhang et al. 2008; Valagiannopoulos
et al. 2015; Valagiannopoulos 2020), thermoelasticity (Syvret and Al-Attar 2019;
Hostos et al. 2019), seismology (Al-Attar and Crawford 2016; Sklan et al. 2018), and
elastodynamics (Milton et al. 2006; Parnell 2012) (see the recent reviews (Kadic et al.
2013, 2015; Koschny et al. 2017) for a discussion of these applications in some detail).
Recently, we formulated both the nonlinear and linearized elastodynamic transforma-
tion cloaking problems (in 3D) in a mathematically precise form (Yavari and Golgoon
2019). In this paper, we provide a geometric formulation of transformation cloaking in
elastic plates starting from nonlinear shell theory. In our opinion, none of the existing
works in the literature has properly formulated the transformation cloaking problem in
elastic plates. In particular, the boundary and continuity conditions on the hole surface
and the outer boundary of the cloak, and the restrictions they impose on cloaking trans-
formations have not been discussed. In the case of plates it turns out that a cloaking
map must satisfy certain constraints that we call the cloaking compatibility equations.

Many solid mechanics workers traditionally have used the classical formulation
of linear elasticity. This is appropriate for many practical engineering applications.
In the case of elastodynamic transformation cloaking, however, as was observed by
Yavari and Golgoon (2019), starting from linear elasticity is not appropriate. This
is because linear elasticity does not distinguish between the reference and the cur-
rent configurations and the corresponding changes of coordinates defined in these
inherently different configurations. This has been a source of confusion in the recent
literature of transformation cloaking in elastodynamics (and also elastic plates). Coor-
dinate transformations in the reference and current configurations are physically very
different: Local referential changes of frame are related to the local material symmetry
group, whereas the global coordinate transformations in the ambient space are related
to objectivity (or material frame indifference). This, in turn, implies that even in the
case of small strains, any elastodynamic transformation cloaking study needs to be
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formulated in the nonlinear framework. This is why in this paper we start from the
governing equations of nonlinear shells.

Motivation, objectives, and some remarks on transformation cloaking in elastic
plates. The objective of this paper is to formulate transformation cloaking for elas-
tic plates. More specifically, given a homogeneous and isotropic plate with a hole our
objective is to design a cloak, which is an annular-shaped plate with inhomogeneous
mass density and inhomogeneous and anisotropic elastic constants. The cloak needs to
be designed such that the elastic response of the plate with the cloaked hole (physical
plate) outside the cloak is identical to that of the corresponding homogeneous plate
with an infinitesimal hole (virtual plate). The following comments are in order:

• We define a cloaking transformation as a bijective mapping between the boundary-
value problems of the physical and virtual plates. One should note that a bijective
map between the governing PDEs of the virtual and physical plates is not suffi-
cient; boundary conditions need to be transformed as well. Also, there are certain
compatibility and continuity conditions that any cloakingmapmust satisfy. All the
existing formulations of transformation cloaking for plates in the literature only
discuss transformation of the governing PDEs.

• From past experience with 3D elasticity, we know that when transforming the
governing equations of an elastic system one must distinguish between referential
and spatial transformations (changes of coordinates). Also, linearization must be
done such that the referential and spatial transformations can be distinguished by
the linearized governing equations. This is the motivation/rationale behind starting
from the governing equations of nonlinear shells and then linearizing them with
respect to a reference configuration that can be stressed, in general.

• We will investigate the possibility of designing an exact cloak in a plate with a
hole such that the mechanical response of the physical plate is identical to that of
the virtual plate outside the cloak. By “cloaking” in this paper, we mean exact (or
perfect) cloaking. In engineering applications an approximate cloak may be all
one needs. Our analysis will show that exact cloaking is not possible and a robust
approximate cloak should be designed by solving an optimal design problem.

• We should emphasize that transformation cloaking is a transformation between
two boundary-value problems, and not just the governing PDEs. In other words,
boundary and continuity conditions cannot be ignored. All the existing studies in
the literature ignore boundary and continuity conditions. As we will show in this
paper, perfect cloaking is not possible. This means that all the existing proposed
cloaks in the literature are approximate cloaks only for the very special systems and
loading andmaterial parameters that were considered in their numerical examples.
These approximate cloaks are not robust; any change in the parameters of the
system may significantly deteriorate the quality of the cloak.

• All the numerical examples that have been presented in the literature of trans-
formation cloaking for flexural waves are misleading. These numerical examples
reveal approximate cloaking for given examples, and for specific loadings and
elastic constants. They neither prove that exact cloaking is possible (we prove in
this paper that exact cloaking of flexural waves is indeed not possible) nor they
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prove that changing loading and material parameters their designed cloaks still
offer approximate cloaking. More specifically, the numerical results in the liter-
ature are misleading in the sense that even a slight perturbation of the loading
frequency, amplitude, and direction, constitutive parameters, and/or the geometry
of the problem, e.g., sizes of the cloak and the hole may result in significant wave
disturbances outside the cloak.

A critical review of the literature of transformation cloaking in elastic plates. The
first theoretical study of cloaking flexural waves is due to Farhat et al. (2009a, b).
Based on these works, Stenger et al. (2012) designed a flexural waves cloak. However,
Climente et al. (2016) were unable to reproduce their results: “Our approach was
unable to reproduce the predicted behavior of the theoretically proposed cloak.” It
should also be noted that cloaking offered by Stenger et al. (2012)’s design is modest
and is far from being a perfect cloak.

Colquitt et al. (2014) studied transformation cloaking in Kirchoff–Love plates sub-
jected to time-harmonic out-of-plane displacements in the setting of linear elasticity
and started from a governing equation simplified for the case of an isotropic and homo-
geneous (Kirchoff–Love) plate. In Sect. 4.1, we show in detail that their transformation
cloaking formulation is, unfortunately, incorrect. In particular, their transformed rigid-
ity tensor is incorrect and does not agree with that of an isotropic and homogeneous
elastic plate when the cloaking map is the identity, and is not positive definite. Colquitt
et al. (2014) and many other researchers, e.g., Brun et al. (2014), Jones et al. (2015),
Misseroni et al. (2016), Zareei and Alam (2017), Darabi et al. (2018), Liu and Zhu
(2019) start from the following equation

D(0)∇4
XW (X) − Phω2W (X) = 0,

or

(
∇4
X − Ph

D(0)
ω2
)
W (X) = 0, X ∈ χ ⊆ R

2, (1.1)

where h is the plate thickness, P is the mass density, W (X) is the amplitude and ω

is the frequency of time-harmonic transverse waves, and D(0) = Eh3/12(1 − ν2) is
the bending rigidity. They next transform the governing equation under an invertible
transformationF : χ → �, where x = F(X), F = ∇Xx, and J = det F, using (Norris
2008, Lemma 2.1) twice and obtain

(
∇ · J−1FFT∇ J∇ · J−1FFT∇ − Ph

J D(0)
ω2
)
W (x) = 0, x ∈ �. (1.2)

We will show that applying (Norris 2008, Lemma 2.1) twice, one assumes that the
gradients of (out-of-plane) displacements and the gradients of the Laplacian of dis-
placements in the physical and virtual plates are related by the Piola transformation.
Surprisingly, in none of the works that use this lemma to transform the biharmonic
equation (1.1) is there any discussion of these strong assumptions and whether they
are compatible with the fact that displacements in the physical and virtual plates are
required to be equal. In particular, we show in Sect. 4.1 that taking these assumptions
into account, the cloakingmap is forced to isometrically transform the governing equa-
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tions of the virtual plate to those of the physical plate. In other words, the physical plate
is forced to be identical to the virtual plate. Therefore, this formulation does not lead
to cloaking; the physical and virtual plates are essentially the same elastic plate. Fur-
thermore, we will explain that ignoring these assumptions and what constraints they
impose on the cloaking map has resulted in obtaining incorrect transformed fields for
the physical plate.

More recently, Pomot et al. (2019) pointed out some shortcomings of Colquitt et al.
(2014)’s work1 and attempted to formulate the flexural cloaking problem. They start
from the classical biharmonic governing equation for isotropic Kirchoff–Love plates.
They point out that Farhat et al. (2009a)’s approach does not take into account the full
complexity of flexural waves in anisotropic media. They correctly observe that setting
the transformation in Colquitt et al. (2014) equal to the identity, one does not recover
the expected rigidity of the homogeneous isotropic plate, and the flexural rigidity is
not positive definite. They state that “It seems to us that there are several solutions
to the equation (Di jklw,kl),i j = D0�(�w) for Di jkl and that applying twice the
Lemma 2.1. proposed by Norris in [11] breaks the initial structure of the equation,
leading to the solution proposed in [4].” This statement is incorrect. We will show in
detail in Sect. 4.1.2 that applying Norris’s lemma twice does not break the structure
of the equation. Rather, one recovers the same underlying PDE if the restrictions
imposed on the cloaking map are taken into account properly. They mention that they
use a backward transformation � in the sense that their transformation goes from the
transformed space (virtual plate) to the original space (physical plate). However, it is
not clearwhat type of coordinate transformation is being used as they do not distinguish
between spatial and referential coordinate transformations. Their statements before
their Eq. (6) (“We believe that to capture the full complexity of flexural waves the
most complex equation of motion between the two spaces should be considered. By
doing this we ensure the reciprocity of the transformation.”) are a bit misleading. By
the first statement theymean considering themost general anisotropic plates. However,
this is not necessary if one works with the tensorial form of the elastic constants of
an isotropic plate (see (4.16)). For cloaking problems one must consider bijective
mappings, and all the cloaking transformations are by construction “reciprocal.”

Pomot et al. (2019) consider two spaces E and e related by the mapping � (which
they call the geometrical transformation) such that F = ∇x X , denotes the Jacobian

of �, J = det�, and �I i j = ∂2XI
∂xi ∂x j

, which they call the Hessian matrix. The flexu-
ral rigidities, mass densities, and infinitesimal displacements in E and e are denoted
by (DI JK L , P,U ) and (Di jkl , ρ, u), respectively. They write the total energy den-
sity in the transformed space as E = W + T, where W = ∫

e
1
2u,i j Di jkl(x)u,kldv,

and T = ∫
e
1
2ρ(x)hu̇2dv, with h being the plate thickness.2 In the initial space,

they write the Hamiltonian as E0 = W0 + T0. They determine DI JK L , NI J , and

1 They, however, do not provide a clearmathematical reasoning as towhyColquitt et al. (2014)’s formulation
is incorrect.
2 One should note that in formulating a cloaking problem one can either transform the action and then use
Hamilton’s principle for the transformed action or simply transform the Euler–Lagrange equations if they
are derived covariantly, i.e., the tensorial form of all quantities are retained and there is a clear distinction
between the referential and spatial coordinates.
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SI (their Eq. (14)).3 They correctly observe that under a (cloaking) transformation the
minor and major symmetries of the elastic constants are preserved. Their next state-
ment “the transformed equation does not verify in general the equilibrium equation
NI J ,J + SI = 0.” is incorrect. We show in Sects. 4.1 and 4.2 that the equilibrium
equations for a finitely deformed plate for a generic radial cloaking transformation
do not put any extra constraints on the cloaking map as long as the cloaking map
satisfies the cloaking compatibility equations (4.22). Furthermore, their formulation
is missing the important constraint Di jkl FI i FJ j�Kkl = Di jkl FKk FIl�J i j (the cloak-
ing compatibility equation) that puts severe restrictions on the cloaking map. This
constraint is a consequence of the fact that the coefficient of the third derivative of U
must be identical in the governing equations of the two plates. This has been ignored
in their work. We derive and discuss the constraints of this type in their general form
for Kirchoff–Love plates (see Eq. (4.22)) and for plates with both the in-plane and
out-of-plane displacements (see Remark 4.9).

Pomot et al. (2019) suggest linear (cloaking) transformations (i.e., a cloaking map
with a constant derivative map). These maps satisfy the cloaking compatibility equa-
tions, but are inadmissible because they do not satisfy the continuity equations on
the outer boundary of the cloak (see Remark 4.4). In particular, we illustrate that the
cloaking map needs to fix the outer boundary of the cloak up to the third order. There-
fore, a cloak cannot be constructed using the piecewise linear mapping suggested
by Pomot et al. (2019). This is the main reason that their numerical results do not
illustrate reasonable cloaking in the sense that the wave pattern outside their cloak
deviates significantly from what one expects when there is a tiny hole in the plate
(i.e., the wave pattern outside a tiny hole which is expected to be uniform). It should
be emphasized that in transformation cloaking, one seeks to design a cloak such that
the solution of the boundary-value problem of a tiny hole in a uniform and isotropic
plate under the same load is attained outside the cloak in the physical problem. To
achieve this, it is necessary that outside the cloak the boundary-value problems of a
finite hole surrounded with the cloak and that of the tiny hole be subjected to the same
boundary conditions. This, in turn, implies that the two boundary-value problemsmust
have the same traction boundary conditions on the outer boundary of the cloak. It is
straightforward to verify that linear mappings do not satisfy this condition.

Pomot et al. (2019)’s numerical results in their Fig. 4 do not really show cloaking.
These plots (similar to all the other similar results in the literature) are misleading.
These numerical results do not even prove approximate cloaking. This is actually
acknowledged by the authors: “However, it is also noticeable that a visible amount of
the energy is scattered backwards.” One should note that a cloaking transformation is a
map between two boundary-value problems and not just two PDEs. Pomot et al. (2019)
similar to all the other existing works in the literature completely ignore boundary and
continuity equations. They make a big deal of their “backward” transformation. A
cloaking map is a bijection. One can either transform the governing equations of the
virtual plate and find those of the physical plate or start from the governing equations
of the physical plate and derive those of the virtual plate. No direction should be

3 Note the typo in the expression for SI in their Eq. (14).
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preferable. However, it is important to use the tensorial form of the isotropic elastic
constants when one starts from the virtual plate.

The approach of this paper for formulating transformation cloaking in elastic plates.
In this paper, in order to obtain the governing equations of an elastic plate, we first
obtain those of a nonlinear elastic shell. This is crucial in order to properly account for
the variations of the referential and spatial geometric objects of a surface. An elastic
shell ismodeledbyanorientable two-dimensionalRiemannian submanifold embedded
in the Euclidean space. The geometry of the shell is, thus, characterized by its first
and second fundamental forms that, respectively, represent the intrinsic (in-plane)
and extrinsic (out-of-plane) geometries of the surface. Utilizing a Lagrangian field
theory, we derive the governing equations of motion. To account for the contribution
of body forces and bodymoments associated with the variations of the position and the
orientation (i.e., the normal vector) of the surface, we use the Lagrange–d’Alembert
principle. The linearized governing equations for initially stress-free shells and also
for elastic shells with non-vanishing initial stress, couple-stress, and initial body forces
and moments are also derived.

Next, the transformation cloaking problem for Kirchoff–Love plates is formulated.
We start with the balance of linear momentum for the virtual plate with uniform elastic
properties in the absence of initial stress (and couple-stress) and initial body forces
(and moments). The governing equation of the virtual plate is then transformed to
that of the physical plate up to an unknown scalar field in order to provide an extra
degree of freedom, which adds more flexibility in the formulation. The physical plate
is subjected to initial stress and tangential body forces that are determined using the
elastic constants of the virtual plate and the cloaking map. The transformed couple-
stress is then determined. It is seen that the cloaking map needs to satisfy certain
conditions on the boundaries of the cloak and the hole. In particular, we show that the
cloaking transformation needs to fix the outer boundary of the cloak up to the third
order.

The pure bending assumption is then relaxed and the transformation cloaking prob-
lem of an elastic plate, for which both the in-plane and the out-of-plane displacements
are allowed, is formulated. To our best knowledge, this has not been discussed in the
literature. For such plates, in addition to the flexural rigidity, one needs to consider the
in-plane rigidity (stiffness), along with the tensor of elastic constants corresponding
to the coupling between the in-plane and the out-of-plane deformations. The physi-
cal plate is subjected to initial stress, initial body forces (normal and tangential) and
moments. Also, we allow the physical plate to undergo finite in-plane deformations
while remaining flat. The virtual plate is assumed to have uniform elastic parameters
with vanishing pre-stress and body forces (and moments). The governing equations of
the virtual plate are then mapped to those of the physical plate. There are two sets of
governing equations (i.e., in-plane and out-of-plane) that need to be simultaneously
transformed under a cloaking map. The pre-stress, initial body forces, and moments,
along with the elastic parameters of the physical plate, are then determined, and the
symmetries of the elastic constants in the physical problem are discussed.
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Summary of the transformation cloaking formulation in elastic plates and the main
results.

• We start by deriving the governing equations of nonlinear shells using a variational
approach. We clearly distinguish between referential and spatial coordinates and
linearize the shell governing equations with respect to an initially flat configura-
tion that can, in general, be stressed. The resulting linearized governing equations
can distinguish between referential and spatial transformations (changes of coor-
dinates).

• We formulate the problem of elastodynamic transformation cloaking for elastic
plates in a general setting, where we allow finite initial stress, couple-stress, body
forces, and body moments. We discuss boundary and continuity conditions on the
surface of the hole and the boundary of the cloak and the restrictions they impose
on the cloaking map.

• We formulate the transformation cloaking problem for Kirchoff–Love plates. The
goal is to transform the boundary-value problem of an isotropic and homogeneous
elastic plate with a tiny hole to that of a generally anisotropic and inhomogeneous
pre-stressed plate with body forces. In doing so, we consider the equilibrium
equations of the physical and virtual plates,where the referential and spatial indices
are clearly distinguished. We show that transforming the classical biharmonic
equation, in which the referential and spatial indices are not distinguished, under a
cloaking map does not lead to a unique elasticity tensor for the cloak; instead one
should start from the tensorial form of the governing equation (4.14). Assuming
a generic radial cloaking map, we show that cloaking a circular hole in Kirchoff–
Love plates is not possible (Proposition 4.5).

• We discuss the possibility of transformation cloaking for elastic plates with both
in-plane and out-of-plane displacements. This problem involves transforming
the in-plane and out-of-plane governing equations simultaneously. We show that
cloaking a circular hole in a plate with both in-plane and out-of-plane displace-
ments using a general radial cloaking map is not possible (Proposition 4.15).
Finally, we prove that if in the virtual plate the tensor of elastic constants corre-
sponding to the coupling between the in-plane and the out-of-plane deformations
is positive definite, then cloaking is not possible for any hole covered by a cloak
with an arbitrary shape.

• Our analysis suggests that exact cloaking of flexural waves is not possible. The
path forward is to formulate approximate cloaking as an optimal design problem.

This paper is structured as follows: In Sect. 2, we tersely review some elements of
the differential geometry and the kinematics of embedded hypersurfaces in three-
dimensional Riemannian manifolds. The governing equations of nonlinear elastic
shells are derived in Sect. 3. We then obtain the equations of motion of linear ini-
tially stress-free and pre-stressed elastic shells (and thus, plates) by linearizing the
nonlinear shell equations.4 In Sect. 4, the problem of transformation cloaking in elas-
tic plates is formulated. We discuss how the geometry of the physical and virtual
shells as well as the boundary conditions in the physical and virtual problems are

4 On a first reading, the reader can skip Sects. 2 and 3 and go directly to Sect. 4.
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related under a cloaking transformation. In Sect. 4.1, we formulate the transformation
cloaking problem for Kirchoff–Love plates and study the example of a circular cloak
assuming a generic radial cloaking map. Next, we relax the pure bending assumption
and formulate the transformation cloaking problem for an elastic plate in the presence
of both in-plane and out-of-plane displacements in Sect. 4.2. We solve the example
of a circular cloak using a radial cloaking map. Finally, we discuss the obstruction to
transformation cloaking for a hole of arbitrary shape. Conclusions are given in Sect. 5.

2 Differential Geometry of Surfaces

In this section, we briefly review some concepts of the geometry of two-dimensional
embedded surfaces in three-manifolds and the kinematics of elastic shells (see Hicks
1965; do Carmo 1992; Sadik et al. 2016 for more detailed discussions).

2.1 Geometry of an Embedded Surface

Consider an orientable Riemannian manifold (B, Ḡ), and let (H,G) be an orientable
two-dimensional Riemannian submanifold of (B, Ḡ) such thatG is the induced metric
on H, i.e., G = Ḡ|H. Let us denote the space of smooth vector fields on H and B by
X(H) and X(B), respectively. First, we note that for any X ∈ B,

TXB = TXH ⊗ (TXH)⊥, (2.1)

that is any vector field W ∈ TXB may be uniquely written as sum of a vector W� ∈
TXH (which is tangent toH) and a vectorW⊥ := W−W� (which is normal toH, i.e.,
W⊥ ∈ (TXH)⊥). Given the Levi–Civita connection ∇̄ of the Riemannian manifold
(B, Ḡ), the induced Levi–Civita connection on (H,G) is denoted by ∇ and is given
by

∇XY = ∇̄X̄Ȳ − Ḡ(∇̄X̄Ȳ, N̄)N, ∀ X,Y ∈ X(H), (2.2)

where X̄, Ȳ ∈ X(B) are arbitrary local extensions of X and Y (i.e., X̄(X) =
X(X), Ȳ(X) = Y(X),∀X ∈ H), and N ∈ X(H)⊥ is the smooth unit normal vec-
tor field to H with N̄ being its local extension. The second fundamental form of the
hypersurface H is a bilinear and symmetric mapping B : X(H) × X(H) → X(H)⊥
given by

B(X,Y) = ∇̄X̄Ȳ − ∇XY, ∀ X,Y ∈ X(H). (2.3)

The set of symmetric
(0
2

)
-tensors onH is indicated by �(S2T ∗H). The second funda-

mental form can be considered as the symmetric tensor B ∈ �(S2T ∗H) defined with
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a slight abuse of notation as5

B(X,Y) = Ḡ(∇̄X̄Ȳ, N̄) = −Ḡ(∇̄X̄N̄, Ȳ), ∀X,Y ∈ X(H), (2.5)

which is known as theWeingarten formula. The covariant derivative extends to tensors
in S2T ∗H in a natural way (X,Y,Z ∈ X(H)):

(∇XA)(Y,Z) = X(A(Y,Z)) − A(∇XY,Z) − A(Y, ∇XZ), ∀A ∈ �(S2T ∗H). (2.6)

The curvature tensor R̄ associated with the Riemannian manifold (B, Ḡ) is defined
as

R̄(X,Y,Z,T) = Ḡ(R̄(X,Y)Z,T), ∀ X,Y,Z,T ∈ X(B), (2.7)

where R̄(X,Y) : X(B) → X(B), the Riemann curvature tensor, is given by

R̄(X,Y)Z = ∇̄Y∇̄XZ − ∇̄X∇̄YZ + ∇̄[X,Y]Z, Z ∈ X(B), (2.8)

with [X,Y] indicating the Lie brackets of X and Y, i.e., in components, [X,Y]a =
∂Ya

∂xb
Xb − ∂Xa

∂xb
Y b. The Riemann curvature tensor has the following components

R̄ABCD =
(
�̄
K
AC,B − �̄

K
BC,A + �̄

L
AC �̄

K
BL − �̄

L
BC �̄

K
AL

)
ḠK D . (2.9)

Note that the components of the Christoffel symbols of the connection ∇̄ read

�̄
A
BC = 1

2
Ḡ

AK
(ḠK B,C + ḠKC,B − ḠBC,K ), (2.10)

where a comma preceding a subscript denotes partial differentiation with respect to
that subscript. The curvature tensor R for the hyperplane is similarly defined by the
induced metric G and connection ∇ on H. The Gauss equation reads

R̄(X̄, Ȳ, Z̄, T̄) = R(X,Y,Z,T) − B(X,Z)B(Y,T) + B(X,T)B(Y,Z). (2.11)

5 A linear connection is said to be compatible with a metric Ḡ on the manifold provided that

∇̄X̄〈〈Ȳ, Z̄〉〉Ḡ = 〈〈∇̄X̄Ȳ, Z̄〉〉Ḡ + 〈〈Ȳ, ∇̄X̄Z̄〉〉Ḡ, (2.4)

where 〈〈., .〉〉Ḡ is the inner product induced by themetric Ḡ. It is straightforward to show that ∇̄ is compatible
with Ḡ if and only if ∇̄Ḡ = 0, or, in components

Ḡ AB|C = ∂Ḡ AB

∂XC
− �̄

S
C AḠSB − �̄

S
CB Ḡ AS = 0.

On any Riemannian manifold (B, Ḡ) the Levi–Civita connection is the unique linear connection ∇̄Ḡ that
is compatible with Ḡ and is symmetric (torsion-free). Note that the metric compatibility of ∇̄ (see (2.4))
and the fact that Ḡ(N̄, Ȳ) = 0 are used in deriving the second equality in (2.5).
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The Codazzi–Mainardi equation is written as

R̄(X̄, Ȳ, Z̄,N) = (∇YB)(X,Z) − (∇XB)(Y,Z). (2.12)

Consider a local coordinate chart {X1, X2, X3} for (B, Ḡ) such that {X1, X2} is a local
chart for (H,G) and N, the unit normal vector to H, is in the direction ∂/∂X3 at any
point of the hypersurface. The metric of B in this coordinate chart has the following
representation

Ḡ(X) =
⎡
⎣Ḡ11(X) Ḡ12(X) Ḡ13(X)

Ḡ12(X) Ḡ22(X) Ḡ23(X)

Ḡ13(X) Ḡ23(X) Ḡ33(X)

⎤
⎦ . (2.13)

The first fundamental form of the hypersurface is given by

G(X) = Ḡ(X)|H =
[
Ḡ11(X) Ḡ12(X)

Ḡ12(X) Ḡ22(X)

]
, ∀ X ∈ H. (2.14)

Therefore, the Christoffel symbols associated with the induced connection ∇ read

�A
BC = 1

2
GAK (GKB,C + GKC,B − GBC,K

)
, A, B,C, K = 1, 2. (2.15)

The second fundamental form of the hypersurface is obtained as

BAB(X) = �̄
3
AB(X), A, B = 1, 2, ∀ X ∈ H, (2.16)

where �̄
A
BC are the Christoffel symbols of the Levi–Civita connection ∇̄. Thus,6

BAB(X) = −1

2

∂Ḡ AB

∂X3

∣∣∣∣
H

(X), A, B = 1, 2, ∀X ∈ H. (2.17)

The fundamental theorem of surface theory implies that the geometry of the hyper-
surface H is fully determined by its first and second fundamental forms G and B,
respectively.7 The Gauss and Codazzi–Mainardi equations given in (2.11) and (2.12)

6 Note that for X ∈ H, the metric (2.13) has the following representation

Ḡ(X) =
⎡
⎣Ḡ11(X) Ḡ12(X) 0
Ḡ12(X) Ḡ22(X) 0

0 0 1

⎤
⎦ ,

which using (2.10) and (2.16), implies (2.17).
7 Note that the first and the second fundamental forms ofH can be expressed in terms of the metric of the

embedding space B given by

[
Ḡ11 Ḡ12
Ḡ12 Ḡ22

]
(X), X ∈ B, which in turn, fully characterizes the geometry of

H.
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in the local coordinate chart {X1, X2, X3} reduce in components to

R̄1212 − R1212 = B12B12 − B11B22,

R̄1213 = B11|2 − B12|1, (2.18)

R̄2123 = B22|1 − B12|2,

where the covariant derivatives correspond to the Levi–Civita connection∇ of (H,G)

with Christoffel symbols �C
AB . Note that in components: BAB|C = BAB,C −

�K
AC BK B − �K

BC BAK .

2.2 Kinematics of Shells

A shell is a 3D body whose thickness compared to its other dimensions is very small.
Thus, it can be idealized as a two-dimensional Riemannian submanifold (H,G,B) of
the Riemannian manifold (B, Ḡ).8 Let us denote the ambient space by the Riemannian
manifold (S, ḡ), where ḡ is the standard Euclidean metric. The shell is specified by
(H,G,B) and (ϕt (H), g, θ) in the reference and the current configurations, respec-
tively, where ϕt : H → S is a motion (or a deformation) ofH in S, and the first and the
second fundamental forms of the deformed shell ϕt (H) are denoted by g = ḡ|ϕt (H) and
θ ∈ �(S2T ∗ϕ(H)), respectively.9 Let us denote the Levi–Civita connections of g and
ḡ by ∇g and ∇̄ ḡ

, respectively. The smooth unit normal vector field of ϕ(H) is denoted
by n ∈ X(ϕ(H))⊥. As the ambient space S is flat, the Gauss and Codazzi–Mainradi
equations for the Riemannian hypersuface in its current configuration (ϕ(H), g) are
written as

R(x, y, z,w) = θ(x, z)θ( y,w) − θ(x,w)θ( y, z),

(∇g
xθ)( y, z) = (∇g

yθ)(x, z),
(2.19)

for any smooth vector fields x, y, z,w ∈ X(ϕ(H)), and R is the Riemannian curvature
of the deformed surface ϕ(H).

The deformation gradient is defined as the tangent map of ϕt : H → ϕt (H),
i.e., F(X) = Tϕt (X) : TXH → Tϕt (X)ϕt (H). The right Cauchy–Green deformation
tensor is defined as the pull-back of the induced metric on the deformed hypersurface
ϕt (H) by ϕt , i.e., C� = ϕ∗

t g (in components, CAB = Fa
AFb

Bgab, A, B = 1, 2).
The Jacobian of the deformation J relates the deformed and undeformed Riemannian

8 See (Simo et al. 1988) for another equivalent way of characterizing the configuration space of a plate.
9 Note that in coordinates (x1, x2, x3), for which x3 is the outward normal direction, the second funda-
mental form of the deformed shell is expressed as

θab = − 1

2

∂ ḡab
∂x3

∣∣∣
ϕ(H)

(x), a, b = 1, 2, ∀x ∈ ϕ(H).
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surface elements as ds(ϕt (X), g) = JdS(X ,G), where

J =
√

det g
detG

det F. (2.20)

Thematerial (or Lagrangian) strain tensorE ∈ �(S2T ∗H) is defined asE = 1
2 (C−G).

Alternatively, one can define the spatial strain tensor as e = 1
2 (g−c), where c = ϕt∗G.

Note that the material and spatial strain measures are intrinsic in the sense that they
only capture changes in the first fundamental form of the surface. Therefore, one needs
to define the extrinsic strain measures in order to take into account variations in the
second fundamental form of the surface as well. The extrinsic material strain tensor
is given by

H = 1

2
(� − B) , (2.21)

where � = ϕ∗
t θ . Similarly, the spatial extrinsic strain tensor can be defined as h =

1
2 (θ − β), where β = ϕt∗B. It is straightforward to see that h = ϕt∗H.

One can pull back the spatial Gauss and Codazzi–Mainradi equations (2.19) by
ϕ and obtain the following shell compatibility equations (see Angoshtari and Yavari
2015; Sadik et al. 2016)

RC(X,Y,Z,W) = �(X,Z)�(Y,W) − �(X,W)�(Y,Z),

(∇C
X�)(Y,Z) = (∇C

Y�)(X,Z),
(2.22)

where ∇C and RC are the Levi–Civita connection and the Riemannian curvature of
the Riemannian (convected) manifold (H,C). Note that (2.22) gives the necessary
and locally sufficient conditions for the existence (and uniqueness up to isometries of
S = R

3 whenH is simply connected) of a deformation mapping (configuration) ofH
with given deformation tensorsC and �. In the coordinate chart {X1, X2, X3}, (2.22)
is written as

RC1212 = �11�22 − �12�12,

�11||2 = �12||1,
�22||1 = �12||2,

(2.23)

where || denotes the covariant derivative with respect to the Levi–Civita connection
∇C.10 Recall that one may write the components of C� and �� in terms of the defor-
mation mapping ϕ : H → R

3 in a local chart {X ,Y } on H as follows

CAB = ϕ,A · ϕ,B, �AB = ϕ,AB · ϕ,X × ϕ,Y

‖ϕ,X × ϕ,Y ‖ , (2.24)

10 See (Ericksen and Truesdell 1957, P.313) for a discussion on the compatibility equations of a Cosserat
shell with deformable directors.
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where the dot product, the cross product, and the standard norm in R
3 are denoted

by “·,” “×,” and “‖ · ‖,” respectively. Note that expressing the first and the second
fundamental forms in terms of the motion ϕ, the shell compatibility equations (2.22)
are trivially satisfied.

2.3 Velocity and AccelerationVector Fields

Thematerial velocity is defined as the mappingV : H×R → TS such thatV(X , t) =
∂ϕX (t)

∂t ∈ TϕX (t)S, ∀X ∈ H. The material velocity can be decomposed at any point
X ∈ H as VX (t) = V�

X (t) + V⊥
X (t), where V�

X (t) ∈ Tϕt (X)ϕt (H) is parallel and

V⊥
X (t) ∈ (Tϕt (X)ϕt (H)

)⊥ is normal to the shell in its current configuration. The spatial
velocity is defined as v(x, t) = V(ϕ−1

t (x), t), which is a vector field on ϕt (H) at a
fixed time t . Note that at any time t the deformation mapping ϕt : H → S is a smooth
embedding of the shell into the ambient space. The mapping ϕ : H × R → S, on the
other hand, is not, in general, injective (see Sadik et al. 2016 for a detailed discussion).
The tangent of ϕ is written as

T(X ,t)ϕ =

⎡
⎢⎢⎣

∂ϕ1

∂X1
∂ϕ1

∂X2
∂ϕ1

∂t
∂ϕ2

∂X1
∂ϕ2

∂X2
∂ϕ2

∂t
∂ϕ3

∂X1
∂ϕ3

∂X2
∂ϕ3

∂t

⎤
⎥⎥⎦ . (2.25)

Notice that the first two columns in (2.25) represent the tangent map of the smooth
embedding ϕt , and thus, the tangent map TXϕt : TXH → Tϕt (X)S is injective. This,
in turn, implies that the first two columns are linearly independent. Also, note that the
third column represents thematerial velocity, i.e.,V(X , t) = ∂ϕX (t)

∂t . Therefore,T(X ,t)ϕ

is full rank if and only if V(X , t) is not purely tangential. The material acceleration is
defined as

A(X , t) = Dḡ
ϕt
V(X , t) = ∇̄ ḡ

VV, (2.26)

where Dḡ
ϕt denotes the covariant time derivative along the curve ϕX (t). Note that

the material velocity is only defined on the surface ϕt (H), but one needs to compute
the covariant derivative of the velocity along the motion in the ambient space to
find the normal and tangential components of the acceleration. Thus, one cannot, in

general, compute ∇̄ ḡ
VV to find the acceleration components unless it is possible to

define a local extension of V to an open neighborhood on S (see Yavari et al. 2016
for a detailed discussion). Provided that ϕ has a nonsingular tangent T(X ,t)ϕ at some
(Xo, to) ∈ H × R, then by the inverse function theorem ϕ is a local diffeomorphism
at (Xo, to). Therefore, one may construct a local extension vector field V on S such
thatV(ϕ(X , t)) = V(X , t) = v(ϕ(X , t), t) in some open neighborhood of (Xo, to).11

11 Note that T(X ,t)ϕ (cf. (2.25)) is injective, and hence, the local extension vector field always exists, unless

V is purely tangential, i.e., V⊥ = 0. In this case, however, one does not need a local extension to compute

the acceleration unambiguously as V = V�, and hence, A(X , t) = ∇̄ ḡ
VV = ∇̄ ḡ

V�V�.
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Thus, we may proceed with computing the acceleration as follows

A(X , t) = Dḡ
ϕt
V(X , t) := ∇̄ ḡ

VV(ϕ(X , t)). (2.27)

Decomposing the velocity into the normal and parallel components, one obtains

A(X , t) = ∇̄ ḡ
VV� + ∇̄ ḡ

VV⊥. (2.28)

Note that

[
V,V�] = ∇̄ ḡ

VV� − ∇̄ ḡ
V�V. (2.29)

Thus,

∇̄ ḡ
VV� =

[
V,V�]+ ∇̄ ḡ

V�V⊥ + ∇̄ ḡ
V�V�. (2.30)

Using the relation (2.3) in the ambient space, one has

∇̄ ḡ
V�V� = ∇g

V�V� + θ(V�,V�)n. (2.31)

Also, letting V⊥ = V⊥n, one may write

∇̄ ḡ
V�V⊥ =

(
V� [V⊥]) n + V⊥∇̄ ḡ

V�n =
(
dV⊥ · V�)n − V⊥g� · θ · V�, (2.32)

where use was made of the relation (2.5) in the ambient space. Note that

∇̄ ḡ
VV⊥ = ∇̄ ḡ

V(V⊥n) = dV⊥

dt
n + V⊥∇̄ ḡ

V n. (2.33)

Using the metric compatibility of ḡ and (2.5), one can show that12

V⊥∇̄ ḡ
V n = −V⊥g� · θ · V� − V⊥(dV⊥)�. (2.34)

12 Let W ∈ X(ϕt (H)) be an arbitrary vector field defined in a neighborhood containing (Xo, to). Thus,

ḡ(V⊥,W) = 0, and from (2.4), ḡ(∇̄ ḡ
VV⊥,W) = −ḡ(V⊥, ∇̄ ḡ

VW). Note that

∇̄ ḡ
VW = [V,W] + ∇̄ ḡ

WV = [V,W] + ∇̄ ḡ
WV� + ∇̄ ḡ

WV⊥

= [V,W] + ∇g
WV� + θ(V�,W)n + (dV⊥ · W)n + V⊥∇̄ ḡ

Wn.

Thus, noting that [V,W], ∇g
WV�, V⊥∇̄ ḡ

Wn ∈ X(ϕt (H)) one concludes that ḡ(V⊥, ∇̄ ḡ
VW) =

V⊥θ(V�,W)+V⊥(dV⊥·W), which by arbitrariness ofW together with ḡ(∇̄ ḡ
VV⊥,W) = −ḡ(V⊥, ∇̄ ḡ

VW)

implies (2.34).
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Hence, replacing V by V(X , t) = V(ϕ(X , t)) the parallel and normal components of
the material acceleration are written as

A� = ∇g
V�V

� +
[
V,V�]− 2V⊥g� · θ · V� − V⊥(dV⊥)�,

A⊥ =
(
dV⊥

dt
+ θ(V�,V�) + dV⊥ · V�

)
n.

(2.35)

3 The Governing Equations of Motion of Shells

In this section we use Hamilton’s principle of least action to derive the governing
equations of a nonlinear elastic shell. We then linearize the governing equations and
obtain the equations of motion of a linear elastic shell.

The kinetic energy density per unit surface area is written as

T = 1

2
ρ ḡ(ϕ̇, ϕ̇), (3.1)

where ρ is the material surface mass density. The elastic energy density (per unit
surface area) of the shell is written as13

W = W (X ,C,�,G,B) . (3.2)

Let {x1, x2, x3} be a local coordinate chart for the ambient space such that at any point
of the deformed hypersurface, {x1, x2} is a local chart for (ϕ(H), g), and the vector
field n normal to ϕ(H) is tangent to the coordinate curve x3. Thus, the Lagrangian
density (per unit surface area) is defined in this coordinate chart as

L(X , ϕ̇,C,�,G,B) = 1

2
ρ gab(ϕ̇

�)a(ϕ̇�)b

+1

2
ρ(ϕ̇⊥)2 − W (X ,C,�,G,B) . (3.3)

The action functional is defined as

S(ϕ) =
∫ t1

t0

∫
H
L
(
X , ϕ̇(X , t),C(X , t),�(X , t),G(X),B(X)

)
d A(X)dt, (3.4)

where d A(X) = √
detG(X) dX1 ∧ dX2 is the Riemannian area element. We use

the Lagrange–d’Alembert principle to take into account the contribution of non-
conservative body forces and body moments associated with the variations of the

13 Consider a surface embedded in the ambient space such that the embedding is given asϕ : H → S, where
for the sake of simplicity one can assume that S = R

3. The fundamental theorem of surface theory proved
by Bonnet (1867) implies that the surface geometry (up to rigid body motions) is completely characterized
by the induced first and second fundamental forms C and �. Therefore, the surface energy density must
depend on C and �.
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position δϕ, and orientation δN (where N = n ◦ ϕ is the normal vector field charac-
terizing the orientation of the deformed surface element). The Lagrange-d’Alembert
principle (Marsden and Ratiu 2013) states that the physical motion ϕ of H satisfies

δS(ϕ) +
∫ t1

t0

∫
H

(
B · δϕ + L · δN

)
ρ d Adt = 0, (3.5)

where B and L, respectively, denote the external body forces and body moments.
Note that

δS(ϕ) =
∫ t1

t0

∫
H

(
∂L
∂ϕ̇

· δϕ̇ + ∂L
∂C

: δC + ∂L
∂�

: δ�

)
d Adt . (3.6)

Let ϕε be a one-parameter family of motions such that ϕ0,t = ϕt , where, for fixed X
and t , we denote ϕε,t (X) := ϕε(X , t). The variation of motion is defined as

δϕ(X , t) = d

dε

∣∣∣
ε=0

ϕε,t (X) ∈ Tϕt (X)S. (3.7)

The material velocity is given by ϕ̇ε = ∂ϕε,t (X)

∂t . Note that ϕ̇ε ∈ Tϕε,t (X)S, i.e., for
fixed time t and X ∈ H, if ε varies, the velocity lies in different tangent spaces, and
thus, a covariant derivative along the curve ε → ϕε,t (X) should be used to find the
variation of the material velocity. Thus,

δϕ̇ = ∇̄ ḡ
∂
∂ε

∂ϕε,t (X)

∂t

∣∣∣
ε=0

= ∇̄ ḡ
∂
∂t

∂ϕε,t (X)

∂ε

∣∣∣
ε=0

= ∇̄ ḡ
t δϕt (X) = DϕX (t)δϕ, (3.8)

where the symmetry lemma of Riemannian geometry was used to obtain the second
equality (see Lee 1997; Nishikawa 2002). The variation of the right Cauchy–Green
deformation tensor C�

ε = ϕ∗
ε,tgε ◦ ϕε,t , where C

�
ε ∈ �(S2T ∗H), is obtained as

δC� = d

dε
C�

ε

∣∣∣
ε=0

= d

dε
(ϕ∗

ε,tgε)

∣∣∣
ε=0

= ϕ∗
t (Lδϕg). (3.9)

Hence, knowing that (see, e.g., Verpoort 2008; Kadianakis and Travlopanos 2013)

Lδϕg = Lδϕ�g − 2 δϕ⊥ θ , (3.10)

one obtains (see Appendix A for the details of this derivation)

δC� = ϕ∗
t Lδϕ�g − 2 δϕ⊥ �. (3.11)

In components

δCAB = Fa
A δϕ�

a|B + Fb
B δϕ�

b|A − 2 δϕ⊥ �AB . (3.12)
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Noting that ��
ε ∈ �(S2T ∗H), the variation of �

�
ε = ϕ∗

ε,tθ ε ◦ ϕε,t is calculated as

δ�� = d

dε
��

ε

∣∣∣
ε=0

= d

dε
(ϕ∗

ε,tθ ε)

∣∣∣
ε=0

= ϕ∗
t (Lδϕθ). (3.13)

For a flat ambient space, the Lie derivative of the second fundamental form is expressed
as (see Kadianakis and Travlopanos 2013)

Lδϕθ = Lδϕ�θ − δϕ⊥III + Hessδϕ⊥ , (3.14)

where III is the third fundamental form of the deformed hyepersurface, and Hessδϕ⊥
denotes the Hessian of δϕ⊥ (when viewed as a scalar-valued function on ϕt (H)). The
third fundamental form and Hessδϕ⊥ are defined as

III(x, y) = g
(
∇̄ ḡ

x n, ∇̄ ḡ
y n
)

, (3.15)

Hessδϕ⊥(x, y) = g
(
∇̄ ḡ

x (d δϕ⊥)�, y
)

, (3.16)

for x, y ∈ X(ϕ(H)), where d and �, respectively, denote the exterior derivative and
the sharp operator for raising indices. Thus, from (3.13) and (3.14), one obtains

δ�� = ϕ∗
t Lδϕ�θ − δϕ⊥ ϕ∗

t III + ϕ∗
t Hessδϕ⊥ , (3.17)

and in components

δ�AB = Fa
AF

b
B θab|c (δϕ�)c + Fa

Aθac(δϕ
�)c |B + Fb

Bθbc(δϕ
�)c |A

− δϕ⊥Fa
AF

b
Bθacθbd g

cd + Fb
A

(
∂ δϕ⊥

∂ xb

)
|B

.
(3.18)

The unit normal vector field, Nε = nε ◦ ϕε,t , nε ∈ X(ϕε,t (H))⊥, lies in Tϕε,t (X)S,
for fixed time t and X ∈ H, and thus, its variation is given by its covariant derivative
along the curve ϕε(X , t) evaluated at ε = 0, and therefore (see Appendix A)14

δN = d

dε
Nε

∣∣∣
ε=0

= ∇̄ ḡ
∂
∂ε

Nε

∣∣∣
ε=0

= Dϕε(X ,t)Nε

∣∣∣
ε=0

= ∇̄ ḡ
δϕN

= ∇̄ ḡ
δϕ�N − (d δϕ⊥)�. (3.19)

Using (2.5), in components one has

δNa = −(δϕ�)c θac −
(

∂ δϕ⊥

∂ xb

)
gab. (3.20)

14 Dϕε(X ,t) denotes the covariant derivative along the curve ϕε(X , t).
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It is straightforward to see that the variation of the ambient space metric vanishes as

ḡ is compatible with the connection, i.e., δḡ ◦ ϕ = DϕX (t)ḡ ◦ ϕ = ∇̄ ḡ
δϕ ḡ = 0, where

ϕX (t) = ϕ(X , t) for fix X .
Using Hamilton’s principle (cf. (3.5)), one obtains the following Euler–Lagrange

equations (see Appendix B for the details of the derivation)

ρ(B�)a − d

dt

(
∂L

∂(ϕ̇�)a

)
− ρLbθ

b
a − 2

(
∂L

∂CAB
Fb

Bgab

)
|A

−
(

∂L
∂�AB

Fb
A

)
|B

θba −
(

∂L
∂�AB

Fb
Aθba

)
|B

= 0, (3.21a)

ρB⊥ − d

dt

(
∂L
∂ϕ̇⊥

)
+
[
ρLbg

ab(F−1)Aa

]
|A − 2

∂L
∂CAB

Fa
AF

b
Bθab

− ∂L
∂�AB

Fa
AF

b
Bθacθbd g

cd +
[(

∂L
∂�AB

Fb
A

)
|B

(F−1)Db

]
|D

= 0, (3.21b)

where B� and B⊥ are the tangential and normal external body forces, respectively,
and L is the external body moment. Note that (2.19)2 was used in deriving (3.21a).
The boundary conditions read

[
2Fa

B

(
∂L

∂CAB
gac + ∂L

∂�AB
θac

)]
TA = 0, (3.22)

(F−1)Aa

[
ρLbg

ab +
(

∂L
∂�CB

Fa
C

)
|B

]
TA = 0, (3.23)

∂L
∂�AB

Fa
BTA = 0, (3.24)

where T is the outward vector field normal to ∂H. Note that

d

dt

∂L
∂(ϕ̇�)a

= d

dt

∂T

∂(ϕ̇�)a
= ρ gac(A

�)c,
d

dt

∂L
∂ϕ̇⊥ = d

dt

∂T

∂ϕ̇⊥ = ρA⊥. (3.25)

Remark 3.1 In order to prescribe non-vanishing boundary conditions on ∂H, the
Lagrange–d’Alembert principle should be modified. Let ϒ, Q, andMMM be the bound-
ary surface traction, boundary shear force, and boundary moment, respectively. The
Lagrange–d’Alembert’s principle is modified to read

δS(ϕ) +
∫ t1

t0

∫
H

(
B · δϕ + L · δN

)
ρ d Adt

+
∫ t1

t0

∫
∂H

J

(
ϒagab(δϕ

�)b + Qδϕ⊥ + M aδϕ⊥
,A(F−1)Aa

)
dLdt = 0.

(3.26)
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Therefore, in this case the boundary conditions are obtained as

[
2Fa

B

(
∂L

∂CAB
gac + ∂L

∂�AB
θac

)]
TA = Jgbcϒ

b, (3.27)

(F−1)Aa

[
ρLbg

ab +
(

∂L
∂�CB

Fa
C

)
|B

]
TA = J Q, (3.28)

∂L
∂�AB

Fa
BTA = JM a . (3.29)

Let us introduce the following tensors

P = 2F
∂W

∂C
, M = F

∂W

∂�
, (3.30)

where P is the first Piola–Kirchhoff stress tensor, and M is the couple-stress tensor.
Therefore, based on the symmetries of the independent objective measures of strain,
i.e., the right Cauchy–Green tensor and the extrinsic deformation tensor (or, equiva-
lently, the symmetries of the first and the second fundamental forms of the deformed
shell, i.e., g and θ ), one has the following symmetries

P [aAFb]
A = 0, M[aAFb]

A = 0. (3.31)

Remark 3.2 We can regardC as a function of F and the spatial metric g, and similarly,
� can be regarded as a function of F and θ . Therefore, we set

Ŵ (X ,F, g, θ ,G,B) = W (X ,C,�,G,B) . (3.32)

Note that

∂Ŵ

∂gab
= ∂W

∂CAB

∂CAB

∂gab
= ∂W

∂CAB
Fa

AF
b
B,

∂Ŵ

∂θab
= ∂W

∂�AB

∂�AB

∂θab
= ∂W

∂�AB
Fa

AF
b
B .

(3.33)

The Cauchy stress tensor and the spatial couple-stress tensor are accordingly defined
as15

σ ab = 2

J

∂W

∂CAB
Fa

AF
b
B = 2

J

∂Ŵ

∂gab
.

Mab = 1

J

∂W

∂�AB
Fa

AF
b
B = 1

J

∂Ŵ

∂θab
.

(3.34)

15 Note that (3.31) is equivalent to σ ab andMab being symmetric.
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Note that PaA = J (F−1)Abσ
ab and MaA = J (F−1)AbMab. Note that from (3.32)

∂Ŵ

∂Fa
C

= ∂W

∂CAB

∂CAB

∂Fa
C

+ ∂W

∂�AB

∂�AB

∂Fa
C

. (3.35)

It is straightforward to show that

∂CAB

∂Fa
C

= gabδ
C
AF

b
B + gacF

c
AδC B,

∂�AB

∂Fa
C

= θabδ
C
AF

b
B + θacF

c
AδC B .

(3.36)

Thus,

∂Ŵ

∂Fc
A

= PaAgac + 2MaAθac. (3.37)

Note also that

Fc
A

∂Ŵ

∂Fa
A

= 2
∂Ŵ

∂gbc
gab + 2

∂Ŵ

∂θbc
θab. (3.38)

In terms of these tensors, the Euler–Lagrange equations (3.21) are rewritten as

(
PaA + θabMbA

)
|A + MbA|Aθab + ρ(B�)a − ρ θabL

b = ρ(A�)a, (3.39)
(
PaA + θabMbA

)
Fc

Aθac −
[
MaA|A(F−1)Ba

]
|B

+ ρB⊥ +
[
ρLa(F−1)Aa

]
|A = ρA⊥, (3.40)

and the boundary conditions (3.22) are expressed as

[
gabP

aA + 2θabMaA
]
TA = 0, (3.41)

(F−1)Aa

[
ρLa − MaB |B

]
TA = 0, (3.42)

MaATA = 0. (3.43)

The tangential and normal (shear) tractions are given by

(T�)a =
[
PaA + 2θbcMbAgac

]
TA, (3.44)

T⊥ = −(F−1)Aa

[
ρLa − MaB |B

]
TA. (3.45)
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Remark 3.3 (Spatial covariance of the energy density and Noether’s theorem) Let us
define the following surface Lagrangian density

L = L̂ (X , ϕ, ϕ̇,F, g, θ ,G,B) . (3.46)

Let us consider a flow ψs generated by a vector field w, i.e.,

d

ds

∣∣∣∣
s=0

ψs ◦ ϕ = w ◦ ϕ. (3.47)

Note that ψs is a local diffeomorphism. We assume that w is tangential, i.e., w ∈
Tϕ(X)ϕ(H). Let us assume that L is tangentially covariant, i.e., it is invariant for local
diffeomorphisms ψs generated by arbitrary w ∈ Tϕ(X)ϕ(H). Thus,

L̂ (X , ψs ◦ ϕ, ψs∗ϕ̇, ψs∗F, ψs∗g, ψs∗θ ,G,B) = L̂ (X , ϕ, ϕ̇,F, g, θ ,G,B). (3.48)

Taking derivative with respect of s from both sides and evaluating at s = 0 one
obtains16

∂L̂
∂ϕa

wa + ∂L̂
∂ϕ̇a wa |bϕ̇b + Fb

A
∂L̂

∂Fa
A
wa |b − 2

∂L̂
∂gcb

gcaw
a |b

−2
∂L̂
∂θcb

θcaw
a |b = 0. (3.49)

Note that

∂L̂
∂ϕ̇a ϕ̇b − 2

∂L̂
∂gcb

gca = 2
∂Ŵ

∂gcb
gca . (3.50)

Therefore,

∂L̂
∂ϕa

wa +
[
−Fb

A
∂Ŵ

∂Fa
A

+ 2
∂Ŵ

∂gcb
gca + 2

∂Ŵ

∂θcb
θca

]
wa |b = 0. (3.51)

16 Note that in the local coordinate chart {x1, x2, x3}, for which x3 is the outward normal direction

θab = − 1

2

∂ ḡab
∂x3

∣∣∣
ϕ(H)

, a, b = 1, 2.

Thus,

(ψs∗θ)a′b′ = − 1

2

∂
(
(Tψ−1

s )aa′ (Tψ−1
s )bb′ ḡab

)
∂x3

= (Tψ−1
s )aa′ (Tψ−1

s )bb′
(

− 1

2

∂ ḡab
∂x3

)

= (Tψ−1
s )aa′ (Tψ−1

s )bb′θab, a′, b′ = 1, 2.

Note also that (Tψ−1
s )aa′ = −δba′δab′ (Tψs )

b′
b .
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Knowing that w is arbitrary, one concludes that

∂L̂
∂ϕa

= 0, Fb
A

∂Ŵ

∂Fa
A

= 2
∂Ŵ

∂gbc
gac + 2

∂Ŵ

∂θbc
θac. (3.52)

Note that (3.52)2 is identical to (3.38), which can be written as

Fb
A

∂Ŵ

∂Fa
A

= Jσ bcgac + 2JMbcθac. (3.53)

Noting that ρ = J�, where � is the spatial mass density, conservation of mass for
shells is given by

�̇ + �
J̇

J
= 0. (3.54)

Using the identity d
dt [detK(t)] = detK(t)tr

[
K−1(t) d

dtK(t)
]
, one has

J̇

J
= 1

2
trC�

(
d

dt
ϕ∗g

)
, (3.55)

where the trace is calculated using the metric C�. From (3.11), one obtains

ϕ∗
dϕ∗g
dt

= Lv�g − 2v⊥θ , (3.56)

and thus,

trC�

(
d

dt
ϕ∗g

)
= 2 div v� − 2v⊥trθ . (3.57)

Therefore, using (3.54), (3.55), and (3.57), one finds the spatial local form of the
conservation of mass as17

�̇ + � div v� − �v⊥trθ = 0. (3.58)

3.1 The Linearized Governing Equations

Next, we linearize the balance of linear momentum and the symmetries (3.31) about
a motion ϕ̊. We assume that the reference motion is an isometric embedding of an
initially stress-free body into the Euclidean space, and thus, F̊a

A = δaA, P̊
aA = 0,

and M̊aA = 0. The tangential and normal displacement fields are defined in terms of
the variation of the deformation map as

U�(X , t) = δϕ�
t , U⊥(X , t) = δϕ⊥

t . (3.59)

17 Note that �̇ = ∂�
∂t + ∇� · v.
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Note that the deformation gradient is linearized as

δFa
A = (δϕ�)a |A − θ̊ab F̊

b
Aδϕ⊥ = (U�)a |A − θ̊ab F̊

b
AU

⊥

= F̊b
A(U�)a |b − θ̊ab F̊

b
AU

⊥. (3.60)

Using (3.12), we have

δCAB = F̊a
A U

�
a|B + F̊b

B U
�
b|A − 2U⊥ �̊AB, (3.61)

where �̊AB = F̊a
A F̊b

B θ̊ab = BAB . From (3.18), one writes

δ�AB = F̊a
A F̊

b
B θ̊ab|c (U�)c + F̊a

Aθ̊ac(U
�)c |B + F̊b

B θ̊bc(U
�)c |A

−U⊥ F̊a
A F̊

b
B θ̊acθ̊bd g

cd + F̊b
A

(
∂ U⊥

∂ xb

)
|B

.
(3.62)

Using (3.30), one obtains

δPaA = 2F̊a
B

[
∂2W

∂CAB∂CCD
δCCD + ∂2W

∂CAB∂�CD
δ�CD

]
, (3.63)

δMaA = F̊a
B

[
∂2W

∂�AB∂�CD
δ�CD + ∂2W

∂�AB∂CCD
δCCD

]
. (3.64)

Substituting (3.61) and (3.62) into (3.63) and (3.64), one obtains

δPaA = A
aAbB

(
U�
b|B −U⊥ γ̊bB

)
(3.65)

+ B
aAbB

[
θ̊bc(U

�)c |B + 1

2
(U⊥

,b)|B − 1

2
U⊥θ̊bcγ̊dBg

cd + 1

2
F̊d

B θ̊bd|c(U�)c
]
,

δMaA = C
aAbB

[
θ̊bc(U

�)c |B + 1

2
(U⊥

,b)|B − 1

2
U⊥θ̊bcγ̊dBg

cd + 1

2
F̊d

B θ̊bd|c(U�)c
]

+ 1

2
B
bBaA

(
U�
b|B −U⊥ γ̊bB

)
, (3.66)

where γ is a two-point tensor that in components is defined as γaB = Fb
Bθab, and

the shell elastic constants are defined as

A
aAbB = 4F̊a

M F̊b
N

∂2W

∂CAM∂CBN
, B

aAbB = 4F̊a
M F̊b

N
∂2W

∂CAM∂�BN
,

C
aAbB = 2F̊a

M F̊b
N

∂2W

∂�AM∂�BN
.

(3.67)

Therefore, the linearized governing equations of the shell are expressed in terms of
three elasticity tensors. Note that the elastic constants satisfy the following symme-
tries: A

aAbB = A
bBaA and C

aAbB = C
bBaA. The linearized normal and parallel
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components of the material acceleration are obtained using (2.35) as δA� = Ü�, and
δA⊥ = Ü⊥. Ignoring the body forces and body moments, from (3.39) the linearized
balance of linear momentum is given by

(
δPaA + θ̊ab δMbA

)
|A + δMbA|Aθ̊ab = ρ(δA�)a, (3.68a)

(
δPaA + θ̊ab δMbA

)
γ̊aA −

(
δMaA|A(F̊−1)Ba

)
|B = ρ δA⊥. (3.68b)

Similarly, the symmetries (3.31) are linearized to read

δP [aA F̊b]
A = 0, δM[aA F̊b]

A = 0. (3.69)

Note that from (3.65) and (3.69)1, and recalling that the normal and parallel compo-
nents of the displacement field and their gradients are independent, one concludes
that B

[aAbB F̊e]
A(U⊥

,b)|B = 0, and thus, B
[aAbB F̊e]

A = 0. Again using (3.65)
and (3.69)1, and looking at the terms with U�

b|B , one obtains A
[aAbB F̊e]

AU�
b|B +

B
[aAcB F̊e]

Aθ̊bc(U�)b|B = 0. Recalling that B
[aAbB F̊e]

A = 0, one concludes that
A

[aAbB F̊e]
A = 0. Following the same procedure starting from (3.66) and (3.69)2, one

obtains B
cB[aA F̊e]

A = 0, and C
[aAcB F̊e]

A = 0. Therefore, the elastic constants have
the following symmetries

A
[aAcB F̊b]

A = 0, B
cB[aA F̊b]

A = 0, (3.70a)

B
[aAcB F̊b]

A = 0, C
[aAcB F̊b]

A = 0. (3.70b)

3.2 The Linearized Governing Equations of Pre-stressed Shells

In this section, we derive the linearized governing equations of a pre-stressed elastic
shell. Assume that the shell is initially stressed18 such that the initial stress and couple-
stress are, respectively, given by P̊ and M̊. Let the initial (normal and parallel) body
forces and body moments be given by B̊�, B̊⊥, and L̊, respectively. The shell must
be in equilibrium in its initial configuration, i.e., the balance of linear and angular
momenta must be satisfied, which read

(
P̊aA + θ̊abM̊bA

)
|A + M̊bA|Aθ̊ab + ρ(B̊�)a − ρ θ̊abL̊

b = 0, (3.71a)
(
P̊aA + θ̊abM̊bA

)
F̊c

Aθ̊ac −
(
M̊aA|A(F̊−1)Ba

)
|B

18 Note that we do not explicitly specify the source of the initial stress or couple-stress. If the initial stress
and couple-stress are due to elastic deformations, and the body has an energy function W with respect to
its stress-free configuration, then one may express P̊ and M̊ as

P̊ = 2F̊
∂W

∂C

∣∣∣
F̊
, M̊ = F̊

∂W

∂�

∣∣∣
F̊
.
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+ ρB̊⊥ +
(
ρL̊a(F̊−1)Aa

)
|A = 0, (3.71b)

and

P̊ [aA F̊b]
A = 0, M̊[aA F̊b]

A = 0. (3.72)

We next linearize the governing equations about the motion ϕ̊. The linearized balance
of linear momentum reads (cf. (3.39) and (3.40))

(
δPaA + δθabM̊bA + θ̊abδMbA

)
|A + δMbA |A θ̊ab + M̊bA |Aδθab

+ ρ(δB�)a − ρ δθabL̊
b − ρ θ̊abδL

b = ρ(Ü
�
)a, (3.73a)(

P̊aA + θ̊abM̊bA
) (

δFc
A θ̊ac + F̊c

Aδθac

)
+
(
δPaA + δθabM̊bA + θ̊abδMbA

)
F̊c

A θ̊ac

−
(
δMaA |A(F̊−1)Ba

)
|B −

(
M̊aA |A(δF−1)Ba

)
|B + ρ δB⊥ +

(
ρ δLa(F̊−1)Aa

)
|A

+
(
ρ L̊a(δF−1)Aa

)
|A = ρ Ü

⊥
. (3.73b)

The symmetries (3.31) are linearized to read

δP [aA F̊b]
A + P̊ [aAδFb]

A = 0, δM[aA F̊b]
A + M̊[aAδFb]

A = 0. (3.74)

Note that (δF−1)Aa = −(F̊−1)Ba(F̊−1)Ab δFb
B = −(F̊−1)Ba(F̊−1)Ab

[
(U�)b|B−

θ̊bc F̊c
BU⊥

]
, and using the relation �AB = Fa

AFb
Bθab, along with (3.62), one

obtains

δθab = θ̊ab|c (U�)c +U⊥θ̊acθ̊bd g
cd + (F̊−1)Bb

(
∂ U⊥

∂ xa

)
|B

. (3.75)

Knowing that B⊥ = ḡ(B,N)N, the normal component of the body force is lin-
earized as (see also Yavari and Ozakin 2008)

δB⊥ = ḡ(δB,N)N + ḡ(B̊, δN)N + ḡ(B̊,N)δN. (3.76)

Assuming that the body force vector B is fixed (dead load), i.e., δB = 0, we use
(A.22) to obtain19

δB⊥ = ḡ(B̊, δN)N = −g · B̊� · θ̊ · U� − dU⊥ · B̊�. (3.77)

In components

δB⊥ = −gab(B̊
�)b(U�)c θ̊ac − (B̊�)b

∂ U⊥

∂ xb
. (3.78)

19 Note that the variation of the normal vector δN is purely tangential, and hence, so is the term ḡ(B̊,N)δN
in (3.76). In (3.77), with an abuse of notation we only consider the term in the normal direction.
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One obtains the linearized tangent component of the body force as (see also Naghdi
1973, P.457)

δB� = −ḡ(B̊,N)δN + B̊� ·
(
∇gU� −U⊥θ̊

)
· g, (3.79)

which in components reads

(δB�)a = B̊⊥
[
(U�)c θ̊ac + ∂ U⊥

∂ xb
gab
]

+ (B̊�)c
[
(U�)c|b − θ̊cbU

⊥] gab. (3.80)

As L̊ is purely tangential, i.e., L̊⊥ = 0, the variation of the body moment is given in
components by

δLa = L̊c
[
(U�)c|b − θ̊cbU

⊥] gab. (3.81)

The governing equations for pre-stressed plates. Let us reduce the governing equa-
tions of a pre-stressed shell to that of a pre-stressed plate by setting θ̊ab = 0. Thus,
using (3.75), (3.78), (3.80), and (3.81), Eqs. (3.73) and (3.74) are simplified to read

[
δPaA + gac(F̊−1)Bb

(
∂ U⊥

∂ xc

)
|B

M̊bA

]
|A

+ gacM̊bA|A(F̊−1)Bb

(
∂ U⊥

∂ xc

)
|B

+ ρB̊⊥gab ∂ U⊥

∂ xb
+ ρgab(B̊�)c(U�)c|b − ρ gac(F̊−1)Bb

(
∂ U⊥

∂ xc

)
|B

L̊b

= ρ(Ü
�
)a, (3.82a)

P̊aA
(

∂ U⊥

∂ xa

)
|A

−
[
(F̊−1)BaδMaA|A

]
|B +

[
M̊aA|A (F̊−1)Ca(F̊

−1)Bb(U
�)b|C

]
|B

− ρ(B̊�)b
∂ U⊥

∂ xb
+
(
ρ L̊c(U�)c|bgab(F̊−1)Aa

)
|A

−
[
ρ L̊a (F̊−1)Ba(F̊

−1)Ab(U
�)b|B

]
|A = ρ Ü

⊥
, (3.82b)

and

δP [aA F̊b]
A + P̊ [aA(U�)b]|A = 0, δM[aA F̊b]

A + M̊[aA(U�)b]|A = 0. (3.83)

From (3.30), (3.65), and (3.66), one has

δPaA =
[
A
aAbB + P̊cA(F̊−1)Bcg

ab
]
U�
b|B + 1

2
B
aAbB(U⊥

,b)|B, (3.84a)

2 δMaA = C
aAbB(U⊥

,b)|B +
[
B
bBaA + 2M̊cA(F̊−1)Bcg

ab
]
U�
b|B . (3.84b)
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Recalling that the normal and parallel displacement gradients are independent, from
(3.83), one obtains

(
A

[aAcB + P̊d A(F̊−1)Bdg
[ac) F̊b]

A + P̊ [aBgcb] = 0,

1

2

(
B
cB[aA + 2M̊d A(F̊−1)Bdg

[ac) F̊b]
A + M̊[aBgcb] = 0,

B
[aAcB F̊b]

A = 0, C
[aAcB F̊b]

A = 0.

(3.85)

Note that if one uses the stress and couple-stress symmetries for the finitely deformed
shell (3.72), (3.85) will be simplified to (3.70).

Remark 3.4 Note that when U� = 0, and in the absence of initial body moments
(L̊ = 0), normal body forces (B̊⊥ = 0), and initial couple-stress (M̊ = 0), we
recover the governing equations of a classical plate discussed in Timoshenko and
Woinowsky-Krieger (1959, p. 379), Lekhnitskii (1968, p. 289), and Colquitt et al.
(2014). To see this, from (3.71) and (3.72), the nontrivial equilibrium equations for a
classical plate in its initial configuration read

P̊aA |A + ρ(B̊�)a = 0, and P̊ [aAδb]A = 0. (3.86)

Also, the linearized governing equations (3.82) for a classical plate read

δPaA |A = 0,

and P̊aA
(

∂ U⊥

∂ xa

)
|A

− (F̊−1)BaδMaA |A|B − ρ(B̊�)b
∂ U⊥

∂ xb
= ρ Ü

⊥
, (3.87)

where from (3.84), δPaA = 1
2B

aAbB(U⊥
,b)|B , and δMaA = 1

2C
aAbB(U⊥

,b)|B . There-
fore, one obtains

− 1

2
(F̊−1)Ba

[
C
aAbC |A|B(U⊥

,b)|C + C
aAbC |A(U⊥

,b)|C|B + C
aAbC |B(U⊥

,b)|C|A

+ C
aAbC (U⊥

,b)|C|A|B
]

+ P̊aA
(

∂ U⊥

∂ xa

)
|A

− ρ(B̊�)b
∂ U⊥

∂ xb
= ρ Ü

⊥
,

(3.88)

and

B
aAbB |A(U⊥

,b)|B + B
aAbB(U⊥

,b)|B|A = 0. (3.89)

Similarly, after some simplifications (3.83) implies that

B
[aAcB F̊b]

A = 0, C
[aAcB F̊b]

A = 0. (3.90)

Note that in the case of pure bending deformations considered in the above-mentioned
references, no dependence of the strain energy function on the Cauchy–Green defor-
mation tensor is assumed, and thus,BBB vanishes. Therefore, (3.89) is trivially satisfied
and (3.90) gives C

[aAcB F̊b]
A = 0, i.e., CCC must possess the minor symmetries.
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4 Transformation Cloaking in Elastic Plates

Let us consider an elastic plateHwith a finite holeE (Fig.1). In transformation cloaking
one surrounds the hole with a cloaking device C, which is an annular elastic plate such
that the finite hole has negligible disturbance effects on the incident waves, i.e., as if
the hole does not exist. The mass density and the elastic properties of the cloak are
inhomogeneous and anisotropic, in general. Without loss of generality, we assume
that in H \ C the plate is homogeneous and isotropic. Motion of H is represented
by a smooth map ϕt : H → S. The cloaking transformation is a time-independent
map ξ : ϕ̊(H) → ˚̃ϕ(H̃), which transforms the pre-stressed plate H (physical plate)
with the initial stress P̊ and the initial couple-stress M̊ in its current configuration to
a corresponding homogeneous and isotropic stress-free plate H̃ (virtual plate) in its
current configuration (see also Yavari and Golgoon 2019).

The physical and virtual plates are endowedwith their respective induced Euclidean
metrics G and G̃. The mapping ξ transforms the finite hole E to a very small hole Ẽ
of radius ε and is assumed to be the identity in H \ C. The corresponding cloaking
transformation in the reference configuration is denoted by �. We also assume that
the virtual plate has the same uniform and isotropic elastic properties as those of the
physical plate outside the cloak (H \ C). Motion of the virtual plate is denoted by
ϕ̃t : H̃ → S̃. The initial boundary-value problems corresponding to the motions ϕt :
H → S and ϕ̃t : H̃ → S̃ are called the physical and virtual problems, respectively.20

The deformation gradients corresponding to the physical and virtual problems are,
respectively, denoted byF = Tϕt and F̃ = T ϕ̃t . The tangentmap of the referential and

spatial cloaking transformations are, respectively, denoted by T� = �

F and T ξ = ξ

F.
The current configurations of the physical and virtual problems are required to be
identical outside the cloaking region, i.e., inH\C. This implies, in particular, that any
elasticmeasurements performed in the spatial configurations of the virtual and physical
plates are identical, and thus, they are indistinguishable by an observer positioned
anywhere in H \ C.

Note that due to the structure of the governing equations of an elastic plate (3.39)
and (3.40), under a cloaking transformation, the (two-point) stress and couple-stress
are not necessarily transformed using a Piola transformation21 (unlike transformation
cloaking in 3D elasticity (Yavari and Golgoon 2019)). This is something that we
carefully discuss in Sects. 4.1 and 4.2 for Kirchoff–Love plates and for elastic plates

20 Note that for cloaking applications considered in this paper ϕ̃t = id, i.e., the identity map, and ϕt
is time-independent but is not necessarily the identity map as we assume a time-independent pre-stress
distribution for the cloak.
21 The Piola transformation of a vector (field) w ∈ Tϕ(X)S is a vector W ∈ TXB given by W = Jϕ∗w =
JF−1w. In coordinates, one has W A = J (F−1)Abw

b , where J =
√

det g
detG det F is the Jacobian of ϕ with

G and g the Riemannian metrics ofB and S, respectively. Note that a Piola transformation can be performed
on any index of a given tensor. One can show that DivW = J (divw) ◦ ϕ, which in coordinates is written
as W A |A = Jwa |a . This is also known as the Piola identity. Another way of writing the Piola identity is
Footnote 21 continued
in terms of the unit normal vectors of a surface in B and its corresponding surface in S, along with the area
elements. It is written as n̂da = JF−�N̂d A, or in components, one writes nada = J (F−1)AaNAd A. In
the literature of continuum mechanics, this is known as Nanson’s formula.
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Fig. 1 A cloaking transformation � (or ξ when the physical plate is pre-stressed) transforms a plate with a
finite hole E to another plate with an infinitesimal hole (Ẽ) that is homogeneous and isotropic. The cloaking
transformation is defined to be the identity map outside the cloak C. Note that � is not a referential change
of coordinates and ξt is not a spatial change of coordinates

with both the in-plane and out-of-plane deformations. The Jacobian of the referential
and spatial cloaking transformations, � and ξ , are given by

J� =
√
det G̃ ◦ �

detG
det

�

F, Jξ =
√
det g̃ ◦ ξ

det g
det

ξ

F. (4.1)

Shifters in Euclidean ambient space. We assume that the reference configurations
of both the physical and virtual plates are embedded in the Euclidean space. To relate
vector fields in the physical problem to those in the virtual problem properly one
would need to use shifters. The mapping s : TS → T S̃ defined as s(x,w) = (x̃,w)

is called the shifter map. The restriction of s to x ∈ S is denoted by sx = s(x) :
TxS → Tx̃ S̃, and shifts w based at x ∈ S to w based at x̃ ∈ S̃. Notice that s simply
parallel transports vectors emanating from x to those emanating from x̃ utilizing the
linear structure of the Euclidean ambient space. For S and S̃ we choose two global

collinear Cartesian coordinates {z̃ĩ } and {zi } for the virtual and physical deformed
configurations, respectively. Let us also use curvilinear coordinates {x̃ ã} and {xa} for
these configurations. Note that sĩ i = δ ĩi . One can show that (Marsden and Hughes
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1983)

sãa(x) = ∂ x̃ ã

∂ z̃ĩ
(x̃)

∂zi

∂xa
(x)δ ĩi , a, ã = 1, 2, 3. (4.2)

Note that s preserves inner products, and thus, sT = s−1, where in components,
(sT)aã = gabsb̃b g̃ãb̃. Note also that

sãa|b̃ = ∂sãa

∂ x̃ b̃
+ γ̃ ã

b̃c̃s
c̃
a − ∂xb

∂ x̃ b̃
γ c

absã c, (4.3)

where

γ a
bc = ∂xa

∂zk
∂2zk

∂xb∂xc
, and γ̃ ã

b̃c̃ = ∂ x̃ ã

∂ z̃k̃
∂2 z̃k̃

∂ x̃ b̃∂ x̃ c̃
, (4.4)

are the Christoffel symbols associated with S and S̃ (with their induced Euclidean
metrics), respectively. It is straightforward to verify that sãa|b̃ = 0, i.e., the shifter is
covariantly constant. As the reference configurations of both the physical and virtual
plates are embedded in the Euclidean space, referential shifters may also be defined
similarly. As an example consider polar coordinates (r , θ) and (r̃ , θ̃ ) at x ∈ R

2 and
x̃ ∈ R

2, respectively. The shifter map has the following matrix representation with
respect to these coordinates

s =
[

cos(θ̃ − θ) r sin(θ̃ − θ)

− sin(θ̃ − θ)/r̃ r cos(θ̃ − θ)/r̃

]
. (4.5)

In order to ensure that the (tangential and normal) components of the acceleration
term remain form invariant under a cloaking map, the tangential and normal compo-
nents of the displacement field in the physical and virtual plates are related as

(Ũ
�
)ã = sãa(U�)a, Ũ

⊥ = U⊥, a, ã = 1, 2, (4.6)

where s is the shifter in the local tangent plane to plates inR
2.22 Let {X1, X2, X3} and

{X̃1
, X̃

2
, X̃

3} be local coordinate charts for B and B̃ such that {X1, X2} and {X̃1
, X̃

2}
22 Note that for both plates we may use two global collinear Cartesian coordinates {z1, z2, z3} and
{z̃1, z̃2, z̃3} such that z3 and z̃3 are the outward normal directions to the physical and virtual plates, respec-
tively. Therefore, {z1, z2} and {z̃1, z̃2} are two global collinear Cartesian coordinates for ϕ(H) and ϕ̃(H̃),
respectively, where � : H → H̃, ϕ : H → ϕ(H), ϕ̃ : H̃ → ϕ̃(H̃), and ξ : ϕ(H) → ϕ̃(H̃), and s is defined
as

sã a(x) = ∂ x̃ ã

∂ z̃ĩ
(x̃)

∂zi

∂xa
(x)δĩi , a, ã, i, ĩ = 1, 2,

where {xa} and {x̃ ã} are local coordinate charts for ϕ(H) and ϕ̃(H̃), respectively.
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are local charts forH and H̃, respectively (with ∂/∂X3 and ∂/∂ X̃
3
being, respectively,

normal to H and H̃). We assume that B and B̃ are both embedded in the Euclidean

space using two global collinear Cartesian coordinates {Z̃ Ĩ } and {Z I }, respectively.
The referential shifter is similarly defined as

S Ã A(X) = ∂ X̃
Ã

∂ Z̃
Ĩ
(X̃)

∂Z I

∂X A
(X) δ Ĩ I , A, Ã, I , Ĩ = 1, 2, 3. (4.7)

Thus, one obtains Ḡ AB = S Ã ASB̃ B
¯̃GÃB̃ , where A, B, Ã, B̃ = 1, 2, 3.

Boundary conditions in the physical and virtual problems. Let ∂H = ∂E ∪ ∂oH,
where ∂E is the boundary of the physical hole and ∂oH is the outer boundary ofH. Let
us assume that ∂oH is the disjoint union of ∂oHd and ∂oHt , i.e., ∂oH = ∂oHt ∪ ∂oHd ,
such that the Neumann and Dirichlet boundary conditions read23

⎧⎪⎨
⎪⎩

[
PaA + 2θbcMbAgac

]
TA = (T̄

�
)a,

−(F−1)Aa
[
ρLa − MaB |B

]
TA = T̄

⊥
,

MaATA = m̄a,

on ∂oHt

⎧⎪⎨
⎪⎩

ϕ�(X , t) = ϕ̄�(X , t),

ϕ⊥(X , t) = ϕ̄⊥(X , t),
∂ϕ⊥(X ,t)

∂X A = ∂ϕ̄⊥(X ,t)
∂X A ,

on ∂oHd

(4.8)

where T is the unit normal one-form on ∂oH. Similarly, for the virtual problem, one
has

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
P̃
ã Ã + 2θ̃ b̃c̃M̃

b̃ Ã g̃ãc̃
]
T̃ Ã = (

¯̃T�)ã,

− (F̃
−1

) Ãã

[
ρ̃L̃ã − M̃ã B̃

|B̃
]
T̃ Ã = ¯̃T⊥,

M̃ã ÃT̃ Ã = ¯̃mã,

on ∂oH̃t

⎧⎪⎪⎨
⎪⎪⎩

ϕ̃�(X̃ , t) = ¯̃ϕ�(X̃ , t),

ϕ̃⊥(X̃ , t) = ¯̃ϕ⊥(X̃ , t),
∂ϕ̃⊥(X̃ ,t)

∂ X̃
Ã

= ∂ ¯̃ϕ⊥(X̃ ,t)

∂ X̃
Ã

.

on ∂oH̃d

(4.9)

Note that the cloaking map � : H → H̃ is set to be the identity outside the cloak,
i.e., inH \ C (or H̃ \ C̃), and thus, one is able to impose identical boundary conditions
on the outer boundaries ∂oH, and ∂oH̃. Thus, noting that ∂(H \ C) = ∂oH ∪ ∂oC
and ∂(H̃ \ C̃) = ∂oH̃ ∪ ∂oC̃, in order for the two problems to have identical current

23 See Remark. 3.1 for a discussion on how the boundary surface traction, boundary shear force, and
boundary moment as well as their corresponding Dirichlet boundary conditions are prescribed in the
boundary-value problem.
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configurations (and thus, elastic measurements) outside the cloak, it remains to make
sure that the boundary data of ∂oC and ∂oC̃ are identical, i.e., for X ∈ ∂oC and X̃ ∈ ∂oC̃
(note that �|∂oC = id), one needs to have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(T̃
�
)ã =

[
P̃
ã Ã + 2θ̃ b̃c̃M̃

b̃ Ã g̃ãc̃
]
T̃ Ã = sã a

[
PaA + 2θbcMbAgac

]
TA = sã a(T�)a,

T̃
⊥ = −(F̃

−1
) Ã ã

[
ρ̃L̃ã − M̃ã B̃

|B̃
]
T̃ Ã = −(F−1)Aa

[
ρLa − MaB |B

]
TA = T⊥,

m̃ã = M̃ã Ã T̃ Ã = sã aMaATA = sã ama,

on ∂oC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̃� ◦ �(X , t) = ϕ�(X , t),
ϕ̃⊥ ◦ �(X , t) = ϕ⊥(X , t),
∂ϕ̃⊥

∂ X̃
Ã

◦ �(X , t) = (S−1)A Ã
∂ϕ⊥

∂X A
(X , t).

on ∂oC

(4.10)

Moreover, the hole in the virtual shell is assumed to be traction-free, i.e.,

[
P̃
ã Ã + 2θ̃ b̃c̃M̃

b̃ Ã g̃ãc̃
]
T̃ Ã = 0, (F̃

−1
) Ãã

[
ρ̃L̃ã − M̃ã B̃

|B̃
]
T̃ Ã = 0,

M̃ã ÃT̃ Ã = 0.

on ∂ Ẽ

(4.11)

The surface of the hole in the physical shell must be traction-free as well, and hence,

[
PaA + 2θbcMbAgac

]
TA = 0, (F−1)Aa

[
ρLa − MaB |B

]
TA = 0,

MaATA = 0.
on ∂E

(4.12)

Remark 4.1 In the linearized setting, the condition (4.10) is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δT̃
�
)ã =

[
δ P̃

ã Ã + 2δθ̃ b̃c̃
˚̃Mb̃ Ã g̃ãc̃ + 2 ˚̃θb̃c̃δM̃

b̃ Ã g̃ãc̃
]
T̃ Ã

= sã a
[
δPaA + 2δθbcM̊bAgac + 2θ̊bcδMbAgac

]
TA = sã a(δT�)a,

δT̃
⊥ = −(

˚̃F−1) Ã ã

[
ρ̃δL̃

ã − δM̃ã B̃
|B̃
]
T̃ Ã − (δ F̃

−1
) Ã ã

[
ρ̃
˚̃
Lã − ˚̃Mã B̃

|B̃
]
T̃ Ã

= −(F̊−1)Aa

[
ρδLa − δMaB |B

]
TA − (δF−1)Aa

[
ρL̊a − M̊aB |B

]
TA = δT⊥,

δm̃ã = δM̃ã Ã T̃ Ã = sã aδMaATA = sã aδma,

on ∂oC

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ũ� ◦ �(X , t) = sU�(X , t),
Ũ⊥ ◦ �(X , t) = U⊥(X , t),

∂Ũ
⊥

∂ X̃
Ã

◦ �(X , t) = (S−1)A Ã
∂U⊥

∂X A
(X , t).

on ∂oC

(4.13)

Next, we discuss transformation cloaking in Kirchoff–Love plates, for which only
the out-of-plane displacement is allowed. We also examine the possibility of transfor-
mation cloaking when the pure bending assumption is relaxed and the plate is allowed
to have both in-plane and out-of-plane displacements.
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4.1 Elastodynamic Transformation Cloaking in Kirchoff–Love Plates

In this section, we discuss transformation cloaking in classical elastic plates in the
absence of in-plane deformations (pure bending). For the sake of brevity, let us denote
the normal displacement of the physical plateU⊥ and the normal displacement of the

virtual plate Ũ
⊥
by W and W̃, respectively. For the virtual plate with uniform elastic

properties and vanishing pre-stress and initial body forces, (3.88) is simplified to read

− 1

2
(
˚̃F−1)B̃ ãC̃

ã Ãb̃C̃ (W̃
,b̃)|C̃| Ã|B̃ = ρ̃ ¨̃W. (4.14)

Note that in the absence of in-plane deformations (U� = 0) and in the case of thin

plate bending (BBB = 0), δPaA = δ P̃
ã Ã = 0, and (4.14) is the only non-trivial lin-

earized balance of linear momentum equation. We assume a Saint Venant–Kirchhoff
constitutive model24 for the virtual plate, for which the energy density is given by

W̃ = Eh

8(1 + ν)

{
tr

[(
C̃ − G̃

)2]+ ν

1 − ν

[
tr
(
C̃ − G̃

)]2}

+ Eh3

24(1 + ν)

{
tr

[(
�̃ − B̃

)2]+ ν

1 − ν

[
tr
(
�̃ − B̃

)]2}
,

(4.15)

where E is Young’s modulus and ν is Poisson’s ratio. Therefore, in the case of pure
bending deformations, the flexural rigidity tensor for the virtual plate is written with
a slight abuse of notation as

C̃
ã Ãb̃C̃ = Eh3

12(1 + ν)

˚̃Fã
M̃

˚̃Fb̃
Ñ

[
G̃

ÃÑ
G̃

C̃ M̃ + G̃
ÃC̃

G̃
M̃ Ñ + 2ν

1 − ν
G̃

ÃM̃
G̃

C̃ Ñ
]

. (4.16)

Note that (4.16) is themost general isotropic constitutive equation for a Kirchoff–Love
plate. Assuming thatW = W̃ ◦ �, the derivatives of the normal displacement field are
transformed as

W̃
,b̃ = (

�

F−1)bb̃ W,b,

(W̃
,b̃)|C̃ = (

�

F−1)bb̃|C̃ W,b + (
�

F−1)bb̃(
�

F−1)C C̃ (W,b)|C ,

(W̃
,b̃)|C̃ | Ã = (

�

F−1)bb̃|C̃ | Ã W,b +
[
(

�

F−1)bb̃| Ã(
�

F−1)C C̃ + (
�

F−1)C C̃ | Ã(
�

F−1)bb̃

+(
�

F−1)bb̃|C̃ (
�

F−1)C Ã

]
(W,b)|C + (

�

F−1)bb̃(
�

F−1)C C̃ (
�

F−1)A Ã (W,b)|C |A,

(W̃
,b̃)|C̃ | Ã|B̃ = (

�

F−1)bb̃|C̃ | Ã|B̃ W,b +
[
(

�

F−1)bb̃| Ã(
�

F−1)AC̃ |B̃ + (
�

F−1)bb̃|C̃ (
�

F−1)A Ã|B̃

+(
�

F−1)bb̃|B̃(
�

F−1)AC̃ | Ã + (
�

F−1)bb̃|C̃ |B̃(
�

F−1)A Ã + (
�

F−1)bb̃| Ã|B̃(
�

F−1)AC̃

+(
�

F−1)bb̃|C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)AC̃ | Ã|B̃(
�

F−1)bb̃

]
(W,b)|A

24 See (Fox et al. 1993; Le Dret and Raoult 1993; Lods and Miara 1998; Friesecke et al. 2002) for details
on the derivation of the Saint Venant–Kirchhoff shell constitutive model.
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+
[
(

�

F−1)bb̃|B̃(
�

F−1)C C̃ (
�

F−1)A Ã + (
�

F−1)C C̃ |B̃(
�

F−1)bb̃(
�

F−1)A Ã

+(
�

F−1)A Ã|B̃(
�

F−1)bb̃(
�

F−1)C C̃ + (
�

F−1)bb̃|C̃ (
�

F−1)C Ã(
�

F−1)A B̃

+(
�

F−1)bb̃| Ã(
�

F−1)A B̃(
�

F−1)C C̃ + (
�

F−1)C C̃ | Ã(
�

F−1)A B̃(
�

F−1)bb̃

]
(W,b)|C |A

+(
�

F−1)bb̃(
�

F−1)C C̃ (
�

F−1)A Ã(
�

F−1)B B̃ (W,b)|C |A|B , (4.17)

Upon replacing U⊥ with W, the equilibrium equation for the physical plate is given
by (cf. (3.88))

− 1

2
(F̊−1)Ba

[
C
aAbC |A|B(W,b)|C + C

aAbC |A(W,b)|C|B + C
aAbC |B(W,b)|C|A

+ C
aAbC (W,b)|C|A|B

]
+ P̊aA

(
∂ W
∂ xa

)
|A

− ρ(B̊�)b
∂ W
∂ xb

= ρ Ẅ.

(4.18)

We next multiply both sides of (4.14) by some positive function k = k(X) to be deter-
mined,25 and substitute for derivatives from (4.17). Then, compare the coefficients of
different derivatives with those in (4.18). Comparing the coefficients of the fourth-
order derivatives gives us the elastic constants of the physical plate, comparing the
first-order derivatives gives the tangential body force in the finitely deformed phys-
ical plate, and comparing the second-order derivatives will give the pre-stress in the
physical plate. Finally, comparing the coefficients of the third-order derivatives will
result in a set of constraints on the cloaking map that we call cloaking compatibility
equations. The flexural rigidity tensor of the physical plate is obtained as

C
aAbC = k(

�

F−1)aã(
�

F−1)A Ã(
�

F−1)bb̃(
�

F−1)CC̃ C̃
ã Ãb̃C̃ . (4.19)

Notice that CCC has both the minor and major symmetries. The mass density of the
physical plate is given by ρ = kρ̃ ◦ �. The tangential body force and the pre-stress in
the physical plate are obtained as

ρ(B̊�)b = 1

2
k( ˚̃F−1)B̃ ãC̃

ã Ãb̃C̃ (
�

F−1)bb̃|C̃ | Ã|B̃ , (4.20)

P̊bA = 1

2
(F̊−1)BaC

aCbA |C |B − 1

2
k( ˚̃F−1)B̃ ãC̃

ã Ãb̃C̃
[
(

�

F−1)bb̃| Ã(
�

F−1)AC̃ |B̃

+ (
�

F−1)bb̃|C̃ (
�

F−1)A Ã|B̃ + (
�

F−1)bb̃|B̃(
�

F−1)AC̃ | Ã + (
�

F−1)bb̃|C̃ |B̃(
�

F−1)A Ã

+ (
�

F−1)bb̃| Ã|B̃(
�

F−1)AC̃ + (
�

F−1)bb̃|C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)AC̃ | Ã|B̃(
�

F−1)bb̃

]
,

(4.21)

25 Note that introducing the scalar field k = k(X) provides an extra degree of freedom in the cloaking
problem. It has to be positive because ρ = kρ̃ ◦ �.

123



Journal of Nonlinear Science            (2021) 31:17 Page 37 of 76    17 

The cloaking compatibility equations read

(F̊−1)BaC
aAbC |B + (F̊−1)AaC

aBbC |B

= k( ˚̃F−1)B̃ ãC̃
ã Ãb̃C̃

[
(

�

F−1)bb̃|B̃(
�

F−1)CC̃ (
�

F−1)A Ã

+ (
�

F−1)CC̃ |B̃(
�

F−1)bb̃(
�

F−1)A Ã + (
�

F−1)A Ã|B̃(
�

F−1)bb̃(
�

F−1)CC̃

+ (
�

F−1)bb̃|C̃ (
�

F−1)C Ã(
�

F−1)A B̃ + (
�

F−1)bb̃| Ã(
�

F−1)A B̃(
�

F−1)CC̃

+ (
�

F−1)CC̃ | Ã(
�

F−1)A B̃(
�

F−1)bb̃

]
.

(4.22)

The initial body force and the pre-stress need to satisfy the equilibrium equations
(3.86), i.e., the balance of linear and angular momenta in the physical plate in its
finitely deformed configuration. Therefore,

k( ˚̃F−1)B̃ ãC̃
ã Ãb̃C̃ (

�

F−1)bb̃|C̃ | Ã|B̃

+
{
(F̊−1)BaC

aCbA |C |B − k( ˚̃F−1)B̃ ãC̃
ã Ãb̃C̃

[
(

�

F−1)bb̃| Ã(
�

F−1)AC̃ |B̃

+ (
�

F−1)bb̃|C̃ (
�

F−1)A Ã|B̃ + (
�

F−1)bb̃|B̃(
�

F−1)AC̃ | Ã + (
�

F−1)bb̃|C̃ |B̃(
�

F−1)A Ã

+ (
�

F−1)bb̃| Ã|B̃(
�

F−1)AC̃ + (
�

F−1)bb̃|C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)AC̃ | Ã|B̃(
�

F−1)bb̃

]}
|A

= 0,

(4.23)

and, with an abuse of notation

(F̊−1)BaC
aC[bA]|C |B − k( ˚̃F−1)B̃ ãC̃

ã Ãb̃C̃
[
(

�

F−1)[bb̃| Ã(
�

F−1)A]
C̃ |B̃

+ (
�

F−1)[bb̃|C̃ (
�

F−1)A]
Ã|B̃ + (

�

F−1)[bb̃|B̃(
�

F−1)A]
C̃ | Ã + (

�

F−1)[bb̃|C̃ |B̃(
�

F−1)A]
Ã

+ (
�

F−1)[bb̃| Ã|B̃(
�

F−1)A]
C̃ + (

�

F−1)[bb̃|C̃ | Ã(
�

F−1)A]
B̃ + (

�

F−1)[bb̃(
�

F−1)A]
C̃ | Ã|B̃

]
= 0.

(4.24)

Note that

(
�

F−1)A Ã|B̃ = ∂

∂ X̃
B̃

[
(

�

F−1)A Ã

]
+ �A

CB(
�

F−1)B B̃(
�

F−1)C Ã − �̃
C̃
Ã B̃(

�

F−1)AC̃ ,

(
�

F−1)A Ã|B̃|C̃ = ∂

∂ X̃
C̃

[
(

�

F−1)A Ã|B̃
]

+ �A
CB(

�

F−1)BC̃ (
�

F−1)C Ã|B̃

− �̃
D̃
ÃC̃ (

�

F−1)A D̃|B̃ − �̃
D̃
B̃C̃ (

�

F−1)A Ã|D̃,

(
�

F−1)A Ã|B̃|C̃ |D̃ = ∂

∂ X̃
D̃

[
(

�

F−1)A Ã|B̃|C̃
]

+ �A
EB(

�

F−1)B D̃(
�

F−1)E Ã|B̃|C̃

− �̃
Ẽ
ÃD̃(

�

F−1)A Ẽ |B̃|C̃ − �̃
Ẽ
B̃ D̃(

�

F−1)A Ã|Ẽ |C̃ − �̃
Ẽ
C̃ D̃(

�

F−1)A Ã|B̃|Ẽ ,

(4.25)
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where �A
BC and �̃

Ã
B̃C̃ are, respectively, the Christoffel symbols associated with the

induced connections on the physical and virtual plates. Also26

C
aAbB |C = ∂

∂XC

[
C
aAbB

]
+ C

k AbBγ a
kl F̊

l
C + C

aAkBγ b
kl F̊

l
C

+ C
aKbB�A

KC + C
aAbK�B

KC ,

C
aAbB |C|D = ∂

∂XD

[
C
aAbB |C

]
+ C

k AbB |Cγ a
kl F̊

l
D + C

aAkB |Cγ b
kl F̊

l
D

+ C
aKbB |C�A

K D + C
aAbK |C�B

K D − C
aAbB |K�K

CD .

(4.26)

Using (4.19) and (4.17), the couple-stress is transformed as

δMaA = 1

2
C
aAbB(W,b)|B

= 1

2
kC̃

ã Ãb̃ B̃(
�

F−1)bb̃(
�

F−1)B B̃(
�

F−1)A Ã(
�

F−1)aã[
�

Fc̃
b|B W̃,c̃ + �

Fc̃
b

�

FC̃
B (W̃,c̃)|C̃

]

= 1

2
kC̃

ã Ãb̃ B̃(
�

F−1)bb̃(
�

F−1)B B̃(
�

F−1)A Ã(
�

F−1)aã
�

Fc̃
b|B W̃,c̃

+ k(
�

F−1)A Ã(
�

F−1)aãδM̃
ã Ã.

(4.27)

From (4.13), W̃
, Ã = W,A(S−1)A Ã, on ∂oC, whence, together with (4.17), it follows

that T�|∂oC = �

F|∂oC = id. Moreover, (4.13) also requires that ( ˚̃F−1) ÃãδM̃ã B̃
|B̃ T̃ Ã =

(F̊−1)AaδMaB |BTA, and δM̃ã ÃT̃ Ã = sãaδMaATA, on ∂oC, which imply that
�

F Ã
A|B
∣∣∣
∂oC

= 0,
�

F Ã
A|B|C

∣∣∣
∂oC

= 0, k|∂oC = 1, and k,A|∂oC = 0. Similarly, given

that the virtual plate is not pre-stressed ( ˚̃P = 0), (4.10) implies that the initial traction
must vanish on the outer boundary of the cloak, i.e., (T̊�)a |∂oC = P̊aATA

∣∣
∂oC = 0.

Therefore, the cloaking transformation needs to fix the outer boundary of the cloak
up to order three. This is important because in transformation cloaking one tries to
mimic the desirable response (solution) of the boundary-value problem of the incident
waves on a tiny hole outside the cloaking region. Enforcing this condition, outside

26 The covariant derivative of a two-point tensor T is given by

T AB···F
G···Qab··· f

g···q|K = ∂

∂XK
T AB···F

G···Qab··· f
g···q

+ T RB···F
G···Qab··· f

g···q�A
RK + (all upper referential indices)

− T AB···F
R···Qab··· f

g···q�R
GK − (all lower referential indices)

+ T AB···F
G···Qlb··· f

g···qγ a
lr F

r
K + (all upper spatial indices)

− T AB···F
G···Qab··· f

l···qγ l
gr F

r
K − (all lower spatial indices).
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the cloaking region the boundary-value problems of a finite hole reinforced with the
cloak and that of a tiny hole are essentially identical since they are subject to the same
governing equation, constitutive law, and boundary conditions.

Knowing that the hole surface in the virtual plate is traction-free (cf. (4.11)), i.e.,

(
˚̃F−1) ÃãδM̃ã B̃

|B̃ T̃ Ã = 0, and δM̃ã ÃT̃ Ã = 0, on ∂ Ẽ, if k,A|∂E = 0,
�

F Ã
A|B
∣∣∣
∂E

= 0, and
�

F Ã
A|B|C

∣∣∣
∂E

= 0, then the hole inner surface ∂E will be traction-free in the physical

plate as well. Note that (4.12) requires that the initial traction vanish on the boundary
of the physical hole, viz. (T̊�)a |∂E = P̊aATA

∣∣
∂E = 0.

Remark 4.2 It is important to note that contrary to transformation cloaking in 3D elas-
ticity, where stress and couple-stress are transformed using the Piola transformation
under a cloaking map, for Kirchoff–Love plates, the couple-stress is not transformed
via the Piola transformation. This should not be surprising, as in 3D elasticity, diver-
gence of stress (and couple-stress) appears in the balance of linear momentum, and
one uses the Piola transformation in order to preserve the divergence terms (and thus,
the governing equations) up to the Jacobian of the cloaking map.

Remark 4.3 The mass form is not necessarily preserved under the cloaking transfor-
mation � in Kirchoff–Love plates (unlike transformation cloaking in 3D elasticity,
where the mass form is preserved under �, see (Yavari and Golgoon 2019, Remark
6)). To see this let us denote the virtual and physical mass forms by m̃ = ρ̃d ÃG̃, and
m = ρd AG, respectively. Therefore, one obtains

�∗m̃ = �∗(ρ̃d ÃG̃) = (ρ̃ ◦ �)�∗d ÃG̃ = (ρ̃ ◦ �)J�d AG = J�
k

ρd AG

= J�
k
m. (4.28)

Remark 4.4 It is straightforward to see that when (
�

F−1)A Ã|B̃ = 0 (i.e., when
�

F−1 is

covariantly constant) and k,A = 0, one has P̊ = 0 and B̊� = 0, and thus, the cloak-
ing compatibility equations (4.22) and the balance equations in the finitely deformed
configuration (4.23) and (4.24) are trivially satisfied. However, if one uses Cartesian

coordinates {Z I } and {Z̃ Ĩ } forH and H̃, respectively,
�

F would have constant compo-
nents if it is covariantly constant. Knowing that on the outer boundary of the cloak,

one needs to have T�|∂oC = �

F|∂oC = id, it follows that
�

F is the identity everywhere
(so is the cloaking map �), and thus, cloaking is not possible if one assumes that the
tangent map of the cloaking transformation is covariantly constant.27

27 Pomot et al. (2019) used a linear cloaking transformation, which has a covarianlty constant tangent
map. However, a linear cloaking map does not satisfy the required traction boundary condition on ∂oC, i.e.,
T�|∂oC = �

F|∂oC = id, and therefore, using a linear cloaking map is not acceptable (see Brun et al. 2009
for another improper use of this type of mapping, which does not fix the outer boundary of the cloak to the
first order as is required in elastodynamic cloaking.).
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4.1.1 A Circular Cloak in a Kirchoff–Love Plate

Consider a circular hole E in the physical plate in its reference configuration with
radius Ri that needs to be cloaked from the out-of-plane excitations using an annular
cloak having inner and outer radii Ri and Ro, respectively. Let us map the reference
configuration to the reference configuration of the virtual plate via a cloaking map,� :
H → H̃, where for Ri ≤ R ≤ Ro, it is defined as, (R̃, �̃) = �(R,�) = ( f (R),�)

such that f (Ro) = Ro and f (Ri ) = ε, and for R ≥ Ro is the identity map. The
physical and virtual plates are endowed with the Euclidean metrics G = diag(1, R2),

and G̃ = diag(1, R̃
2
) in the polar coordinates, respectively. Thus,

�

F =
[
f ′(R) 0
0 1

]
. (4.29)

From (4.16), the flexural rigidity of the virtual plate is given by28

ˆ̃
CCC =

[ ˆ̃
C
ã Ãb̃ B̃

]
= Eh3

12(1 + ν)

⎡
⎢⎢⎢⎣

[ 2
1−ν

0
0 2ν

1−ν

] [
0 1
1 0

]
[
0 1
1 0

] [ 2ν
1−ν

0
0 2

1−ν

]
⎤
⎥⎥⎥⎦ , (4.30)

where the first two indices identify the submatrix and the last two specify the com-
ponents of that submatrix. The (surface) mass density of the physical plate is given
by ρ = k(R)ρ̃. Using (4.19), the flexural rigidity of the cloak is determined up to the
scalar k(R) as follows

ĈCC =
[
Ĉ
aAbB

]
= Eh3k(R)

12(1 + ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎣

2
1−ν

1
f ′4(R)

0

0 2ν
1−ν

R2

f 2(R) f ′2(R)

⎤
⎦

⎡
⎣ 0 R2

f 2(R) f ′2(R)
R2

f 2(R) f ′2(R)
0

⎤
⎦

⎡
⎣ 0 R2

f 2(R) f ′2(R)
R2

f 2(R) f ′2(R)
0

⎤
⎦

⎡
⎣ 2ν

1−ν
R2

f 2(R) f ′2(R)
0

0 2
1−ν

R4

f 4(R)

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(4.31)

From (4.20), the circumferential component of the tangential body force vanishes, i.e.,
(B̊�)θ = 0, and its radial component reads

(B̊�)r = Eh3

12ρ̃
(
ν2 − 1

)
f 4(R) f ′7(R)[

3R f ′7(R) − 3 f (R) f ′6(R) − 3 f 2(R) f ′4(R) f ′′(R)

28 Note that the physical components of the flexural rigidity tensor are given by ˆ̃
C
ã Ãb̃ B̃ =√

g̃ãã

√
G̃ Ã Ã

√
g̃b̃b̃

√
G̃ B̃ B̃ C̃

ã Ãb̃ B̃ (no summation).
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+2 f 3(R) f ′2(R)
(
f (3)(R) f ′(R) − 3 f ′′2(R)

)

+ f 4(R)
(
15 f ′′3(R) + f (4)(R) f ′2(R) − 10 f (3)(R) f ′(R) f ′′(R)

) ]
.

(4.32)

The initial stress is given by (cf. (4.21))

ˆ̊Pr� = ˆ̊PθR = 0,

ˆ̊Pr R = Eh3

12
(
ν2 − 1

)
R f 4(R) f ′6(R)[

R3k(R) f ′6(R) + 2(ν − 1)R2 f (R)k(R) f ′5(R)

+ R f 2(R) f ′3(R)
[
2(ν − 1)Rk(R) f ′′(R)

+ f ′(R)
{
(1 − 2ν)k(R) − (ν − 2)Rk′(R)

}]
− f 4(R)

[
5Rk(R) f ′′2(R) + f ′2(R)

(
Rk′′(R) + 2k′(R)

)
−8 f ′(R) f ′′(R)

(
Rk′(R) + k(R)

)]

− 6R f 3(R)k(R) f ′2(R) f ′′(R)

]
,

ˆ̊Pθ� = Eh3

12
(
1 − ν2

)
f 5(R) f ′4(R)[

− R2 f (R) f ′4(R)
(
Rk′(R) − 6(ν − 1)k(R)

)+ 4R3k(R) f ′5(R)

− 2νR f 2(R) f ′2(R)
[
2 f ′(R)

(
Rk′(R) + 2k(R)

)− 3Rk(R) f ′′(R)
]

+ f 3(R)
(
R f ′(R)

[
f ′(R)

(
νRk′′(R) + (4ν + 2)k′(R)

)− 4νR f ′′(R)k′(R)
]

+ 2k(R)
[
3νR2 f ′′2(R) + (ν + 1) f ′2(R) − νR f ′(R)

{
R f (3)(R) + 4 f ′′(R)

}] )]
.

(4.33)

Note that P̊ is diagonal, and thus, (4.24) is already satisfied. The cloaking compatibility
equations (4.22) give the following two ODEs:

f ′′(R) = f ′(R)

[
1

R
− f ′(R)

f (R)
+ k′(R)

k(R)

]
, (4.34a)

(1 − 2ν)R f 2(R)k(R) f ′′(R)

+ f ′(R)
[
k(R)

(
f (R) − R f ′(R)

) (
R f ′(R) + 2(ν − 1) f (R)

)
+(ν − 1)R f 2(R)k′(R)

]
= 0. (4.34b)

Using (4.34a) and (4.34b), one obtains the following second-order nonlinear ODE for
f (R):

f ′(R)
[
f (R) − R f ′(R)

] [
R f ′(R) + (ν − 1) f (R)

]− νR f 2(R) f ′′(R) = 0. (4.35)
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It is interesting to observe that the differential equation governing the gradient of the
cloaking map involves Poisson’s ratio of the virtual plate. Note that for ν = 0, from
(4.35), the cloaking map is forced to be the identity. If ν �= 0, then (4.34a) and (4.34b)
imply that

k′(R)

k(R)
= −

(
f (R) − R f ′(R)

)2
νR f 2(R)

, (4.36)

and (4.35) can be rewritten as

f ′′(R) = f ′(R)

νR f 2(R)

[
f (R) − R f ′(R)

] [
R f ′(R) + (ν − 1) f (R)

]
. (4.37)

Note, however, that (4.35) is a second-order ODE, and hence, one cannot enforce
the required boundary conditions f (Ro) = Ro, f (Ri ) = ε, and f ′(Ro) = 1 (i.e.,
�

F|∂oC = id) simultaneously. Therefore, cloaking is not possible. The finite (in-plane)
balance of linear momentum (4.23), i.e., P̊aA |A + ρ(B̊�)a = 0, is simplified to read

6R2k(R) f ′(R)7 − 3R f (R) f ′(R)5
[
f ′(R)

(
2Rk′(R) + 3k(R)

)− 2Rk(R) f ′′(R)
]

− 2 f (R)3 f ′(R)2
[
2R f (3)(R)k(R) f ′(R) + 3 f ′′(R)

(
f ′(R)

(
Rk′(R) + k(R)

)
−3Rk(R) f ′′(R)

)]
+ f (R)2 f ′(R)3

{
R f ′(R)

[
f ′(R)

(
2Rk′′(R) + 7k′(R)

)− 6R f ′′(R)k′(R)
]

+ k(R)
[
6R2 f ′′(R)2 + 3 f ′(R)2 − R f ′(R)

(
2R f (3)(R) + 3 f ′′(R)

)] }

+ f (R)4
{
45Rk(R) f ′′(R)3 + f ′(R)3

[
−
(
Rk(3)(R) + 3k′′(R)

)]

− 5 f ′(R) f ′′(R)
[
4R f (3)(R)k(R) + 9 f ′′(R)

(
Rk′(R) + k(R)

)]

+ f ′(R)2
[
R f (4)(R)k(R) + 8 f (3)(R)k(R) + 12R f ′′(R)k′′(R)

+ 8
(
R f (3)(R) + 3 f ′′(R)

)
k′(R)

]}
= 0.

(4.38)

One can recursively use (4.36) and (4.37) to express k′′(R), k(3)(R), f (3)(R), and
f (4)(R) in terms of f ′(R), f (R), k′(R), and k(R). Plugging these expressions into
(4.38), one can verify that (4.38) holds. Therefore, the satisfaction of the balance of
linear and angular momenta in the physical plate in its finitely deformed configuration
(i.e., (4.23) and (4.24)) does not impose any additional restriction on the cloakingmap;
the cloaking compatibility equations (4.22) is the only constraint on �. In summary,
the ODE (4.37) and its initial and boundary conditions are the obstruction to exact
cloaking. Note that f (R) = R is a solution of (4.37). We have numerically solved
(4.37) for different values of ν and did not find any other solution. This result is
summarized in the following proposition.
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Proposition 4.5 Cloaking a circular hole in Kirchoff–Love plates is not possible for
any radial cloaking map. The cloaking compatibility equations and the boundary and
continuity conditions obstruct cloaking.

Remark 4.6 We should emphasize that the classical biharmonic equation should not
be used in a cloaking formulation; instead, (4.14) should be used. For a homogeneous
and isotropic plate in a flat ambient space, substituting the isotropic elasticity tensor
(4.16) into the governing equation of the virtual plate (4.14) one obtains the following
classical biharmonic equation

− D(0)∇̃4W̃ = ρ̃ ¨̃W. (4.39)

Note that in this form of the governing equation the referential and spatial indices
cannot be distinguished.Wefirst show that the classical biharmonic governing equation
(4.39) does not correspond to a unique flexural rigidity tensor for an isotropic and
homogeneous plate. Without loss of generality, we use Cartesian coordinates, for
which (4.14) is expanded to read29

− 1

2

[
C̃

X̃ X̃ X̃ X̃W̃X̃ X̃ X̃ X̃ + C̃
Ỹ Ỹ Ỹ Ỹ W̃Ỹ Ỹ Ỹ Ỹ + 4C̃

X̃ X̃ X̃ Ỹ W̃X̃ X̃ X̃ Ỹ

+ 4C̃
X̃ Ỹ X̃ Ỹ W̃X̃ X̃ Ỹ Ỹ + 4C̃

X̃ Ỹ Ỹ Ỹ W̃X̃ Ỹ Ỹ Ỹ + 2C̃
X̃ X̃ Ỹ Ỹ W̃X̃ X̃ Ỹ Ỹ

]
= ρ̃ ¨̃W,

(4.40)

where the minor and major symmetries of the flexural rigidity tensor were used. From
(4.39) we have

− D(0)
[
W̃X̃ X̃ X̃ X̃ + W̃Ỹ Ỹ Ỹ Ỹ + 2W̃X̃ X̃ Ỹ Ỹ

]
= ρ̃ ¨̃W. (4.41)

Comparing the coefficients of the different derivatives in (4.40) and (4.41), one obtains

C̃
X̃ X̃ X̃ X̃ = 2D(0), C̃

Ỹ Ỹ Ỹ Ỹ = 2D(0),

C̃
X̃ X̃ X̃ Ỹ = 0, C̃

X̃ Ỹ Ỹ Ỹ = 0, 2C̃
X̃ Ỹ X̃ Ỹ + C̃

X̃ X̃ Ỹ Ỹ = 2D(0).
(4.42)

Therefore, there are infinitely many choices for C̃CC; one cannot uniquely determine
the flexural rigidity tensor starting from the classical biharmonic governing equation
(4.39) and comparing it with the initial governing equation in the tensorial form given
in (4.14).

29 Note that

W̃ Ã B̃C̃ D̃ = ∂4W̃

∂ X̃
Ã
∂ X̃

B̃
∂ X̃

C̃
∂ X̃

D̃
.
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We next transform the classical biharmonic equation (4.39) under a cloaking map.
In Cartesian coordinates

�

F−1(X ,Y ) =
[
FX X̃ FX Ỹ
FY X̃ FY Ỹ

]
. (4.43)

Knowing that W = W̃ ◦ �−1, using the chain rule, one finds

∂W̃

∂ X̃
= ∂W

∂X
FX X̃ + ∂W

∂Y
FY X̃ ,

∂W̃

∂Ỹ
= ∂W

∂X
FX Ỹ + ∂W

∂Y
FY Ỹ .

(4.44)

One may recursively use (4.44) to find the transformed higher-order derivatives of W̃,
and eventually, obtain the transformation of the biharmonic term30

∇̃4W̃ = ∂4W̃

∂ X̃
4 + ∂4W̃

∂Ỹ
4 + 2

∂4W̃

∂ X̃
2
∂Ỹ

2 . (4.45)

Comparing the coefficients of the different derivatives in the transformed biharmonic
equation with those in the governing equation of the physical plate (4.18), one deter-
mines the unknown fields. Comparing the fourth-order derivatives, one finds

C
XXXX = 2D(0)

[(
FX X̃

)2 +
(
FX Ỹ

)2]2
,

C
YYYY = 2D(0)

[(
FY X̃

)2 +
(
FY Ỹ

)2]2
,

C
XYYY = 2D(0)

[
FX X̃F

Y
X̃ + FX Ỹ F

Y
Ỹ

] [(
FY X̃

)2 +
(
FY Ỹ

)2]
,

C
Y X XX = 2D(0)

[
FX X̃F

Y
X̃ + FX Ỹ F

Y
Ỹ

] [(
FX X̃

)2 +
(
FX Ỹ

)2]
,

2C
XY XY + C

XXYY = 2D(0)
{
4FX X̃F

X
Ỹ F

Y
X̃F

Y
Ỹ +

(
FX X̃

)2 [
3
(
FY X̃

)2 +
(
FY Ỹ

)2]

+
(
FX Ỹ

)2 [
3
(
FY Ỹ

)2 +
(
FY X̃

)2]}
.

(4.46)

In particular, we note that transforming the biharmonic equation under a cloaking map
does not fully determine the flexural rigidity tensor of the cloak. This should not be
surprising as the biharmonic equation (4.39) does not correspond to a unique flexural

30 In a general curvilinear coordinate system, the biharmonic term is given by

∇̃4W̃ = 1√
det G̃

∂

∂ X̃
Ã

[√
det G̃

∂

∂ X̃
B̃

(
1√
det G̃

∂

∂ X̃
C̃

[√
det G̃

∂W̃

∂ X̃
D̃
G̃
C̃ D̃
])

G̃
ÃB̃
]

.
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rigidity tensor for the virtual plate (cf. (4.42)). Also, note that (4.46) is consistent with
(4.19) in the sense that, if one only knows the flexural rigidity of the virtual plate C̃CC

up to (4.42), then (4.19) gives us (4.46). In summary, if one starts from the classical
biharmonic equation, in which the tensorial character of the elastic constants is lost,
one would not be able to recover the full elastic constants. One needs the full elastic
constants to construct the cloak.

4.1.2 A Critical Review of the Work of Colquitt et al. (2014) on Flexural Cloaking

Next we show that the transformation cloaking formulation of Kirchoff–Love plates
given in Colquitt et al. (2014) is, unfortunately, incorrect. They start from the classical
biharmonic governing equation of an isotropic and homogeneous elastic plate and
apply (Norris 2008, Lemma 2.1) twice to transform the governing equation under the
cloaking map. Using this lemma, one imposes certain constraints on the gradients of
the displacements and the gradients of the Laplacian of the displacements in the virtual
and physical plates. These constraints are incompatible with the way the displacement
field is transformed under a cloakingmap. In particular, these constraints will force the
cloaking transformation to isometrically map the governing equations of the virtual
plate to those of the physical plate. Therefore, the virtual and physical plates are
essentially the same elastic plate and this formulation of transformation cloaking does
not result in any new information. Ignoring these constraints and what restrictions they
impose on the cloaking map have resulted in deriving incorrect transformed fields for
the physical plate, and in particular, we show that Colquitt et al. (2014)’s transformed
flexural rigidity is incorrect. The governing equation of flexural waves in an isotropic
and homogeneous thin plate with the flexural rigidity D(0) = Eh3/12(1 − ν2), mass
density P , thickness h, and in the presence of time-harmonic anti-plane excitations
with frequency ω reads

D(0)∇4
XW (X) − Phω2W (X) = 0, X ∈ χ ⊆ R

2. (4.47)

Colquitt et al. (2014) rewrite the governing equation as

(
∇4
X − Ph

D(0)
ω2
)
W (X) = 0, X ∈ χ ⊆ R

2. (4.48)

They transform (4.48) by applying (Norris 2008, Lemma 2.1) twice via an invertible
map F : χ → �, where x = F(X), F = ∇Xx, and J = det F, and obtain

(
∇ · J−1FFT∇ J∇ · J−1FFT∇ − Ph

J D(0)
ω2
)
W (x) = 0, x ∈ �. (4.49)

In particular, their transformed rigidity tensor is given by

Di jkl = D(0) JGi jGkl , (4.50)

where Gi j = J−1FipFjp.
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Let us discuss the implication of applying (Norris 2008, Lemma 2.1) to the out-of-
plane displacement field. In particular, we show that the way the fields are transformed
in this lemma is incompatible with the underlying assumption of the transformation
of the displacement fields under a cloaking map, i.e., W̃ ◦� = W. We work in general
curvilinear coordinates and distinguish between the out-of-plane displacement fields
in the virtual and physical plates, i.e., W̃ andW. The gradients of W̃ andW are written
in components as

(∇̃W̃) Ã = G̃
ÃB̃ ∂W̃

∂ X̃
B̃

, (∇W)A = GAB ∂W
∂XB

. (4.51)

Note that

∇̃2W̃ = D̃IV(∇̃W̃) = (∇̃W̃) Ã| Ã = 1√
det G̃

∂

∂ X̃
Ã

[√
det G̃

∂W̃

∂ X̃
B̃
G̃

ÃB̃

]
,

∇2W = DIV(∇W) = (∇W)A|A = 1√
detG

∂

∂X A

[√
detG

∂W
∂XB

GAB
]

,

(4.52)

where ∇2 is known as the Laplace–Beltrami operator. Applying (Norris 2008,
Lemma 2.1) to the gradient of the displacement field, one assumes that (∇W)A =
J�(

�

F−1)A Ã(∇̃W̃) Ã, or in components

∂W
∂XB

GAB = J�(
�

F−1)A Ã
∂W̃

∂ X̃
B̃
G̃

ÃB̃
, (4.53)

i.e., the gradients of the out-of-plane displacements in the virtual and physical plates
are related by the Piola transformation. Then, under this assumption, one obtains

[
∂W
∂XB

GAB
]

|A
=
[
J�(

�

F−1)A Ã
∂W̃

∂ X̃
B̃
G̃

ÃB̃

]

|A
= J�

[
∂W̃

∂ X̃
B̃
G̃

ÃB̃

]

| Ã
, (4.54)

or, equivalently, ∇2W = DIV(∇W) = J�D̃IV(∇̃W̃) = J�∇̃2W̃. Applying the lemma
to the Laplacian ∇2W, one finds

∇4W =
[

∂

∂XB

([
∂W
∂XD

GCD
]

|C

)
GAB

]
|A

=
⎡
⎣J�(

�

F−1)A Ã
∂

∂ X̃
B̃

⎛
⎝
[

∂W̃

∂ X̃
D̃
G̃

C̃ D̃

]

|C̃

⎞
⎠ G̃

ÃB̃

⎤
⎦

|A

= J�

⎡
⎣ ∂

∂ X̃
B̃

⎛
⎝
[

∂W̃

∂ X̃
D̃
G̃

C̃ D̃

]

|C̃

⎞
⎠ G̃

ÃB̃

⎤
⎦

| Ã
= J�∇̃4W̃. (4.55)
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Using (4.54), one rewrites (4.55) as

∇4W =
⎡
⎣J�(

�

F−1)A Ã
∂

∂ X̃
B̃

⎡
⎣J−1

�

(
J�(

�

F−1)CC̃
∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C

⎤
⎦ G̃

ÃB̃

⎤
⎦

|A
= J�∇̃4W̃.

(4.56)

Colquitt et al. (2014) andmany other researchers start from the biharmonic equation
for the virtual plate, i.e., D(0)∇̃4W̃ − Phω2W̃ = 0. Then, they use (4.56) and rewrite
the biharmonic equation as

⎡
⎣J�(

�

F−1)A Ã
∂

∂ X̃
B̃

⎡
⎣J−1

�

(
J�(

�

F−1)CC̃
∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C

⎤
⎦ G̃

ÃB̃

⎤
⎦

|A

−J�
Ph

D(0)
ω2W̃ = 0. (4.57)

They implicitly assume that the virtual and physical plates have the same displacement
fields, i.e.,W = W̃ ◦ �,31 or,W = W̃ ◦F−1 (cf. (4.49)), and write (4.57) as (note that
their mapping F corresponds to �−1)

[
J�(

�

F−1)A Ã(
�

F−1)B B̃
∂

∂XB

[
J−1
�

(
J�(

�

F−1)C C̃ (
�

F−1)D D̃
∂W
∂XD

G̃
C̃ D̃
)

|C

]
G̃

ÃB̃

]
|A

− J�
Ph

D(0)
ω2W = 0.

(4.58)

However, this formulation of the transformation cloaking problem is flawed for a
number of reasons:

(i) Once one assumes that W = W̃ ◦ �, the gradients of displacements are related

by the chain rule as ∂W̃

∂ X̃
D̃

= (
�

F−1)D D̃
∂W

∂XD , and not by the Piola transformation (4.53),

which is the underlying assumption of (Norris 2008, Lemma 2.1). In other words, one
cannot assume that W = W̃ ◦ �, and at the same time use the Piola transform, which
is what Colquitt et al. (2014) did; in order to derive (4.58) from (4.57) they used the

chain rule to relate the gradients of displacements as ∂W̃

∂ X̃
D̃

= (
�

F−1)D D̃
∂W

∂XD .

(ii)Applying (Norris 2008,Lemma2.1) twice requires the following extra constraint
on the gradients of the Laplacian terms (this is similar to (4.53)):

∂

∂XB

[(
∂W
∂XD

GCD
)

|C

]
GAB

= J�(
�

F−1)A Ã
∂

∂ X̃
B̃

⎡
⎣
(

∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C̃

⎤
⎦ G̃

ÃB̃
, (4.59)

31 This assumption ensures that the second term in (4.47) remains form invariant under the cloaking map.
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where using (4.53), it is simplified to read

�

F Ẽ
B

∂

∂ X̃
Ẽ

⎡
⎣J�

(
∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C̃

⎤
⎦GAB

= J�(
�

F−1)A ÃG̃
ÃB̃ ∂

∂ X̃
B̃

⎡
⎣
(

∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C̃

⎤
⎦ . (4.60)

Colquitt et al. (2014) use the lemma twice and write their Eq. (2) without mentioning
the constraint (4.60) or (4.53) and even checking if these constraints are compatible
with the underlying assumption that W = W̃ ◦ �. Let us see what restrictions these
constraints impose on the cloaking map. From (4.53) and the chain rule ∂W̃

∂ X̃
D̃

=
(

�

F−1)D D̃
∂W

∂XD , one obtains

GAB = J�(
�

F−1)A Ã(
�

F−1)B B̃ G̃
ÃB̃

. (4.61)

Substituting (4.61) into (4.60), one finds

∂

∂ X̃
B̃

⎡
⎣(J� − 1)

(
∂W̃

∂ X̃
D̃
G̃

C̃ D̃

)

|C̃

⎤
⎦ = ∂

∂ X̃
B̃

[
(J� − 1) ∇̃2W̃

]
= 0. (4.62)

Knowing that (4.62) must hold for an arbitrary displacement field W̃, one concludes
that J� = 1,32 and thus, G = �∗G̃, meaning that the physical and virtual plates are
isometric and are essentially the same elastic plate with the samemechanical response.
To see this more clearly, using the fact that J� = 1, andG = �∗G̃, or in components,

GAB = (
�

F−1)A Ã(
�

F−1)B B̃ G̃
ÃB̃

and the metric compatibility of G, i.e., GAB|C = 0,
(4.58) is simplified to read

D(0)GABGCD
(

∂W
∂XD

)
|C|B|A

− Phω2W = 0, (4.63)

i.e., D(0)∇4W − Phω2W = 0, which is identical to the biharmonic equation for the
virtual plate D(0)∇̃4W̃ − Phω2W̃ = 0. Therefore, the physical and the virtual plates
are the same elastic plate and the application of (Norris 2008, Lemma 2.1) maps the
biharmonic equation to itself; it does not result in any new information.

(iii) Colquitt et al. (2014) express (4.58) in Cartesian coordinates and looking at

the fourth-order derivatives of the displacement, i.e., J�(
�

F−1)A Ã(
�

F−1)B Ã(
�

F−1)CC̃

32 Note that (4.62) implies that (J� − 1) ∇̃2W̃ = C , where C is a constant. Recalling that on the outer

boundary of the cloak
�
F|∂oC = id, and thus, J�|∂oC = 1, and given that W̃ is smooth, one concludes that

C = 0. Therefore, J� = 1.
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(
�

F−1)DC̃
∂4W

∂XD∂XC∂XB∂X A (summations on Ã and C̃), incorrectly conclude that the

flexural rigidity of the cloak is given by (4.50), or in our notation, DABCD =
D(0) J�(

�

F−1)A Ã(
�

F−1)B Ã(
�

F−1)CC̃ (
�

F−1)DC̃ . The reason for this mistake is that
(4.58) has some hidden strong assumptions. Incorporating these assumptions one
arrives at (4.63). In other words, one needs to look at (4.63) in order to calculate the
transformed elastic constants, and not (4.58). Looking at the term in (4.63)with fourth-
order derivatives, the transformed elasticity tensor is given by D(0) ∂4W

∂XC∂XC∂X A∂X A in
Cartesian coordinates. However, (4.63) is nothing but the governing equation of the
virtual plate, i.e., the virtual and physical plates are identical.

Note that when the cloaking transformation is the identity, i.e., when F = id,
Colquitt et al. (2014)’s transformed rigidity tensor (4.50) is not reduced to that of
the homogeneous and isotropic plate (4.30) and is not even positive definite (see
also Pomot et al. 2019). To see this note that for the identity cloaking map (4.50) is
simplified to read

D =
[
Di jkl

]
= Eh3

12(1 + ν)

⎡
⎢⎢⎢⎢⎣

[
1 0
0 1

] [
0 0
0 0

]

[
0 0
0 0

] [
1 0
0 1

]

⎤
⎥⎥⎥⎥⎦ , (4.64)

which clearly does not agreewith theflexural rigidity of the isotropic andhomogeneous
elastic plate (4.30). It is also immediate to see that (4.64) has zero eigenvalues, and
thus, is not positive definite.

(iv) The traction due to the so-called membrane forces obtained in Colquitt et al.
(2014) does not vanish on the boundary of the hole, i.e., the hole surface is not traction-
free. This means that in the numerical simulations presented in Colquitt et al. (2014),
one needs to apply some forces on the boundary of the hole even if the transformation
cloaking problem had been properly formulated. Furthermore, the finite traction due
to the membrane forces does not vanish on the boundary of the cloak either, and their
cloaking transformation does not have the identity tangent map on the outer boundary

of the cloak ∂oC, i.e., TF|∂oC = F
F|∂oC �= id. Therefore, the physical and virtual plates

cannot have identical current configurations outside the cloaking region.

Remark 4.7 In this remark we show that the work of Colquitt et al. (2013) on cloaking
of the out-of-plane shear waves for the Helmholtz equation is also incorrect because
similar to their flexural cloaking formulation (Colquitt et al. 2014) their use of the
Piola transformation is inconsistent with their displacement transformation. Colquitt
et al. (2013) start from the Helmholtz equation for an isotropic and homogeneous
medium

μ∇X · (∇X )u(X) + � ω2u(X) = 0, X ∈ χ ⊂ R
2, (4.65)

whereμ and� are, respectively, the shearmodulus and themass density of the isotropic
and homogeneous medium, and u is the out-of-plane displacement. Applying (Norris
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2008, Lemma 2.1) using an invertible mapF : χ → � such that x = F(X), F = ∇Xx,
and J = det F, they transform (4.65) as

[
∇ · (C(x)∇) + ρ(x)ω2

]
u(x) = 0, x ∈ � ⊂ R

2, (4.66)

where C(x) = μ/J (x)F(x)FT(x) is the transformed stiffness matrix and the trans-
formed mass density is given by ρ(x) = �/J (x). To write this in our notation, one
starts with the Helmholtz equation for the virtual medium μ̃ ∇̃2W̃ + ρ̃ ω2W̃ = 0,
where μ̃, ρ̃, and W̃ are, respectively, the shear modulus, the mass density, and the
displacement in the virtual medium. Then, provided that (4.53) holds, one may use
(Norris 2008, Lemma 2.1) (see (4.54)), to obtain the transformed equation as

μ̃

[
J�(

�

F−1)A Ã
∂W̃

∂ X̃
B̃
G̃

ÃB̃

]

|A
+ ρ̃ J�ω2W̃ = 0. (4.67)

Next, assuming that the virtual and the physical media have identical displacements,
i.e., W = W̃ ◦ � (which is what Colquitt et al. (2013) implicitly assume) and using
the chain rule, one finds

[
μ̃J�(

�

F−1)A Ã(
�

F−1)B B̃
∂W
∂XB

G̃
ÃB̃
]

|A
+ ρ̃ J�ω2W = 0. (4.68)

This is identical to what they have in (4.66), recalling that F corresponds to �−1.
As we discussed in the case of flexural transformation cloaking, (4.53) imposes a
strong constraint on the cloaking map, which is given by (4.61). In fact, in Cartesian

coordinates, (4.61) is simplified to read J�(
�

F−1)A Ã(
�

F−1)B Ã = δAB (summation on
Ã). Using this relation, one obtains the tangent of the (inverse) cloaking map as33

�

F−1(X̃ , Ỹ ) =
[

α(X̃ , Ỹ ) β(X̃ , Ỹ )

−β(X̃ , Ỹ ) α(X̃ , Ỹ )

]
, (4.69)

where α2 + β2 > 0. Note that the (bulk) compatibility equations for
�

F−1 are written

as (
�

F−1)A Ã|B̃ = (
�

F−1)A B̃| Ã, and thus, one has34

∂α

∂ X̃
= − ∂β

∂Ỹ
, and

∂α

∂Ỹ
= ∂β

∂ X̃
. (4.70)

Hence, one concludes that α and β are harmonic, i.e.,

∂2α

∂ X̃
2 + ∂2α

∂Ỹ
2 = 0, and

∂2β

∂ X̃
2 + ∂2β

∂Ỹ
2 = 0. (4.71)

33 Notice that (4.69) can be represented as a rotation matrix multiplied by the scalar (α2 + β2).
34 Note that if one defines the complex function f (X̃ + i Ỹ ) = β(X̃ , Ỹ ) + iα(X̃ , Ỹ ), then (4.70) are the
Cauchy-Riemann equations, and hence, the complex function f is holomorphic.
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The mapping F that Colquitt et al. (2013) used to design a square-shaped cloak by
shrinking a finite rectangular cavity to a small one is not of the form (4.69).

4.2 Elastodynamic Transformation Cloaking in Plates with Both In-plane and
Out-of-plane Displacements

In this section, we relax the pure bending assumption and formulate the transformation
cloaking problem of a classical elastic plate in the presence of both in-plane and out-
of-plane displacements. In doing so, we let the physical plate undergo finite in-plane
deformations while staying flat, i.e., (ϕ̊⊥ = id and θ̊ = 0), whereas the virtual plate
remains undeformed ( ˚̃ϕ = id). For simplicity of notation, let us drop the superscripts
and denote the normal and tangential displacement fields of the physical (virtual) plate
U⊥ and U� (Ũ⊥ and Ũ�) by W and U (W̃ and Ũ), respectively. The tangential and
normal displacement fields are transformed as

Ũã = sãa ◦ ϕ̊ Ua ◦ �, and W̃ = W ◦ �−1. (4.72)

The linearized balance of linear momentum for the virtual plate, which has uniform
elastic properties, reads

δ P̃
ã Ã

| Ã = ρ̃0
¨̃Uã, and − (

˚̃F−1)B̃ ãδM̃
ã Ã

| Ã|B̃ = ρ̃0
¨̃W, (4.73)

where

δ P̃
ã Ã = Ã

ã Ãb̃ B̃ Ũb̃|B̃ + 1

2
B̃
ã Ãb̃ B̃(W̃

,b̃)|B̃,

and δM̃ã Ã = 1

2
C̃
ã Ãb̃ B̃(W̃

,b̃)|B̃ + 1

2
B̃
b̃ B̃ã ÃŨb̃|B̃ . (4.74)

The symmetries of the elastic constants (3.70) for the virtual plate imply that

Ã
[ã Ãc̃ B̃ ˚̃Fb̃]

Ã = 0 , B̃
c̃ B̃[ã Ã ˚̃Fb̃]

Ã = 0, (4.75a)

B̃
[ã Ãc̃ B̃ ˚̃Fb̃]

Ã = 0, C̃
[ã Ãc̃ B̃ ˚̃Fb̃]

Ã = 0. (4.75b)

Knowing that the virtual plate is uniform, its elastic properties (constants) are (covari-
antly) constant. Thus, (4.73) is simplified to read

Ã
ã Ãb̃ B̃ Ũb̃|B̃| Ã + 1

2
B̃
ã Ãb̃ B̃(W̃

,b̃)|B̃| Ã = ρ̃0
¨̃Uã,

−1

2
(
˚̃F−1)B̃ ã

(
C̃
ã Ãb̃C̃ (W̃

,b̃)|C̃| Ã|B̃ + B̃
b̃C̃ ã ÃŨb̃|C̃ | Ã|B̃

)
= ρ̃0

¨̃W.

(4.76)

The balance of linear momentum for the physical plate in the absence of initial couple-
stress (M̊ = 0) reads (cf. (3.82))

δPaA |A + ρ0B̊
⊥gabW,b + ρ0g

ab(B̊�)cUc|b − ρ0 g
ac(F̊−1)Bb

(
W,c

)
|B L̊b = ρ0Üa, (4.77a)
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P̊aA (W,a
)
|A −

[
(F̊−1)BaδMaA |A

]
|B − ρ0(B̊

�)bW,b +
(
ρ0 L̊

cUc|bgab(F̊−1)Aa

)
|A

−
[
ρ0 L̊

a (F̊−1)Ba(F̊
−1)AbUb |B

]
|A = ρ0Ẅ, (4.77b)

where using (3.84)

δPaA =
[
A
aAbB + P̊cA(F̊−1)Bcg

ab
]
Ub|B + 1

2
B
aAbB(W,b)|B,

δMaA = 1

2
C
aAbB(W,b)|B + 1

2
B
bBaAUb|B .

(4.78)

Note that

Ũb̃|C̃ = (s−1)bb̃(
�

F−1)C C̃Ub|C ,

Ũb̃|C̃ | Ã = (s−1)bb̃

[
(

�

F−1)C C̃ | ÃUb|C + (
�

F−1)C C̃ (
�

F−1)A ÃUb|C |A
]
,

Ũb̃|C̃ | Ã|B̃ = (s−1)bb̃

[
(

�

F−1)C C̃ | Ã|B̃Ub|C +
(
(

�

F−1)C C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)C C̃ |B̃(
�

F−1)A Ã

+ (
�

F−1)C C̃ (
�

F−1)A Ã|B̃
)
Ub|C |A + (

�

F−1)C C̃ (
�

F−1)A Ã(
�

F−1)B B̃Ub|C |A|B
]
,

(4.79)

W̃
,b̃ = (

ξ

F−1)bb̃ W,b,

(W̃
,b̃)|C̃ = (

ξ

F−1)bb̃|C̃ W,b + (
ξ

F−1)bb̃(
�

F−1)C C̃ (W,b)|C ,

(W̃
,b̃)|C̃ | Ã = (

ξ

F−1)bb̃|C̃ | Ã W,b +
[
(

ξ

F−1)bb̃| Ã(
�

F−1)C C̃ + (
�

F−1)C C̃ | Ã(
ξ

F−1)bb̃

+ (
ξ

F−1)bb̃|C̃ (
�

F−1)C Ã

]
(W,b)|C + (

ξ

F−1)bb̃(
�

F−1)C C̃ (
�

F−1)A Ã (W,b)|C |A,

(W̃
,b̃)|C̃ | Ã|B̃ = (

ξ

F−1)bb̃|C̃ | Ã|B̃ W,b +
[
(

ξ

F−1)bb̃| Ã(
�

F−1)AC̃ |B̃ + (
ξ

F−1)bb̃|C̃ (
�

F−1)A Ã|B̃

+ (
ξ

F−1)bb̃|B̃(
�

F−1)AC̃ | Ã + (
ξ

F−1)bb̃|C̃ |B̃(
�

F−1)A Ã + (
ξ

F−1)bb̃| Ã|B̃(
�

F−1)AC̃

+ (
ξ

F−1)bb̃|C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)AC̃ | Ã|B̃(
ξ

F−1)bb̃

]
(W,b)|A

+
[
(

ξ

F−1)bb̃|B̃(
�

F−1)C C̃ (
�

F−1)A Ã + (
�

F−1)C C̃ |B̃(
ξ

F−1)bb̃(
�

F−1)A Ã

+ (
�

F−1)A Ã|B̃(
ξ

F−1)bb̃(
�

F−1)C C̃ + (
ξ

F−1)bb̃|C̃ (
�

F−1)C Ã(
�

F−1)A B̃

+ (
ξ

F−1)bb̃| Ã(
�

F−1)A B̃(
�

F−1)C C̃ + (
�

F−1)C C̃ | Ã(
�

F−1)A B̃(
ξ

F−1)bb̃

]
(W,b)|C |A

+ (
ξ

F−1)bb̃(
�

F−1)C C̃ (
�

F−1)A Ã(
�

F−1)B B̃ (W,b)|C |A|B , (4.80)

where
ξ

F = ˚̃F
�

FF̊−1.35 Under the cloaking transformation� : H → H̃ and using (4.79)
and (4.80), the divergence term in (4.73)1 is transformed via the Piola transformation
as

35 Note that ˚̃F = id, while F̊ is not the identity, in general. However, for thin plates (due to the inextensibility
constraint) F̊ = id, and thus, the mappings ξ and � are identical, whence (4.80) reduces to (4.17) with a
slight abuse of notation.
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[
Ã
ã Ãb̃ B̃ Ũb̃|B̃ + 1

2
B̃
ã Ãb̃ B̃(W̃

,b̃)|B̃
]

| Ã

= J−1
�

[
J�(

�

F−1)A ÃÃ
ã Ãb̃ B̃ Ũb̃|B̃ + 1

2
J�(

�

F−1)A ÃB̃
ã Ãb̃ B̃(W̃

,b̃)|B̃
]

|A

= J−1
�

[
J�(

�

F−1)A Ã(
�

F−1)B B̃(s−1)bb̃Ã
ã Ãb̃ B̃Ub|B

+ 1

2
J�(

�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃B̃
ã Ãb̃ B̃ (W,b)|B

+ 1

2
J�(

�

F−1)A Ã(
ξ

F−1)bb̃|B̃B̃
ã Ãb̃ B̃ W,b

]
|A

.

(4.81)

Using the shifter map, we write (4.81) as the in-plane governing equation of the
physical plate (4.77a). Therefore, the referential mass density of the physical plate is
given by ρ0 = J�ρ̃0,

36 and recalling that the shifter map is covariantly constant, one
obtains

A
aAbB = J�(s−1)aã(

�

F−1)A Ã(s−1)bb̃(
�

F−1)B B̃Ã
ã Ãb̃ B̃ − P̊cA(F̊−1)Bcg

ab, (4.82a)

B
aAbB = J�(s−1)aã(

�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃B̃
ã Ãb̃ B̃, (4.82b)

ρ0B̊
⊥ = 1

2
J�(s−1)aã(

ξ

F−1)bb̃|B̃| ÃB̃
ã Ãb̃ B̃ gab, (4.82c)

ρ0L̊
b = −1

2
J�(s−1)aã(

ξ

F−1)bc̃
˚̃Fc̃

Ã(
ξ

F−1)cb̃|B̃B̃
ã Ãb̃ B̃ gac, (4.82d)

(B̊�)b = 0, (4.82e)

where in deriving (4.82c), the Piola identity
[
J�(

�

F−1)A Ã

]
|A = 0, and the fact that

the virtual plate has uniform elastic parameters were used.

Remark 4.8 Note that in this case we have two sets of governing equations that need to
be simultaneously transformed under a cloakingmap: the in-plane and the out-of-plane
governing equations (unlike the previous case where the out-of-plane equilibrium
equation was the only non-trivial governing equation). Note also that similar to 3D
elasticity, the in-plane governing equations are transformed using a Piola transfor-
mation. This, in turn, implies that mass density is transformed as ρ0 = J�ρ̃0. Now
because mass density must be transformed the same way for the in-plane and the out-
of-plane governing equations, the scalar field k introduced in Sect. 4.1 is equal to the
Jacobian of the cloaking map J�, i.e., k(X) = J�(X).

Similarly, we write (4.76)2 as the out-of-plane governing equation of the physical
plate (4.77b) up to the Jacobian of the (referential) cloaking map J�. Hence, one finds

36 Conservation of mass for the physical and virtual plates implies that ρ0 = � J̊ and ρ̃0 = �̃
˚̃J . Noting

that ˚̃ϕ = id, and Jξ = ˚̃J J� J̊−1, the spatial mass density of the cloak is given by � = Jξ ρ̃0.
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the initial pre-stress, the tangential body force, and the flexural rigidity of the physical
plate as37

C
aAbB = J�(

ξ

F−1)a ã(
�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃C̃
ã Ãb̃ B̃ , (4.83a)

ρ0(B̊
�)b = 1

2
J�(

˚̃F−1)B̃ ã(
ξ

F−1)bb̃|C̃ | Ã|B̃C̃
ã Ãb̃C̃ , (4.83b)

P̊bA = 1

2

[
(F̊−1)Ba|BC

aCbA |C + (F̊−1)BaC
aCbA |C |B

]

− 1

2
J�(

˚̃F−1)B̃ ãC̃
ã Ãb̃C̃

[
(

ξ

F−1)bb̃| Ã(
�

F−1)AC̃ |B̃ + (
ξ

F−1)bb̃|C̃ (
�

F−1)A Ã|B̃

+ (
ξ

F−1)bb̃|B̃(
�

F−1)AC̃ | Ã + (
ξ

F−1)bb̃|C̃ |B̃(
�

F−1)A Ã + (
ξ

F−1)bb̃| Ã|B̃(
�

F−1)AC̃

+ (
ξ

F−1)bb̃|C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)AC̃ | Ã|B̃(
ξ

F−1)bb̃

]
, (4.83c)

along with the following cloaking compatibility equations38

(F̊−1)Ba|BC
aAbC + (F̊−1)BaC

aAbC |B + (F̊−1)AaC
aBbC |B

= J�(
˚̃F−1)B̃ ãC̃

ã Ãb̃C̃
[
(

ξ

F−1)bb̃|B̃(
�

F−1)C C̃ (
�

F−1)A Ã + (
�

F−1)C C̃ |B̃(
ξ

F−1)bb̃(
�

F−1)A Ã

+ (
�

F−1)A Ã|B̃(
ξ

F−1)bb̃(
�

F−1)C C̃ + (
ξ

F−1)bb̃|C̃ (
�

F−1)C Ã(
�

F−1)A B̃

+ (
ξ

F−1)bb̃| Ã(
�

F−1)A B̃(
�

F−1)C C̃ + (
�

F−1)C C̃ | Ã(
�

F−1)A B̃(
ξ

F−1)bb̃

]
, (4.84a)

(F̊−1)Ba|BB
bCaA |A + (F̊−1)BaB

bCaA |A|B + 2
[
ρ0

(
L̊agbc − L̊bgac

)
(F̊−1)Ca(F̊

−1)Ac

]
|A

= J�(
˚̃F−1)B̃ ã(s

−1)bb̃B̃
b̃C̃ ã Ã(

�

F−1)C C̃ | Ã|B̃ , (4.84b)

(F̊−1)Ba|BB
bCaA + (F̊−1)AaB

bCaB |B + (F̊−1)BaB
bCaA |B

+ 2ρ0
(
L̊agbc − L̊bgac

)
(F̊−1)Ca(F̊

−1)Ac

= J�(
˚̃F−1)B̃ ã(s

−1)bb̃B̃
b̃C̃ ã Ã

[
(

�

F−1)C C̃ | Ã(
�

F−1)A B̃ + (
�

F−1)C C̃ |B̃(
�

F−1)A Ã

+ (
�

F−1)C C̃ (
�

F−1)A Ã|B̃
]
, (4.84c)

37 Note that

(F̊−1)Aa|B = ∂

∂XB

[
(F̊−1)Aa

]
+ �A

CB (F̊−1)Ca − γ b
ac(F̊

−1)Ab F̊
c
B .

(
ξ

F−1)a ã|B̃ = (
ξ

F−1)a ã|b̃
˚̃Fb̃

B̃ = ˚̃Fb̃
B̃

(
∂

∂ x̃ b̃

[
(

ξ

F−1)a ã

]
+ γ a

cb(
ξ

F−1)bb̃(
ξ

F−1)cã − γ̃ c̃
ãb̃(

ξ

F−1)a c̃

)
,

where γ̃ c̃
ãb̃ are the (induced) Christoffel symbols corresponding to the virtual plate in its current configu-

ration.
38 One starts from the governing equations of the virtual plate and substitutes the derivatives with their
corresponding transformed derivatives and compares the coefficients of the different derivatives in the
transformed governing equations with those in the physical plate. This overdetermined system of equations
gives all the transformed fields, and a set of cloaking compatibility equations.
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and the ones given by (4.82e) and (4.83b). Notice that CCC already possesses the major
symmetries. Recalling that the elastic parameters of the virtual plate satisfy (4.75), the
relations C

[aAcB F̊b]
A = 0, and B

cB[aA F̊b]
A = 0, already hold, i.e.,

B
cB[aA F̊b]

A = J�(s−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[aã(
�

F−1)A Ã F̊
b]

AB̃
c̃ B̃ã Ã

= J�(s−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[aã(
ξ

F−1)b]b̃
˚̃Fb̃

ÃB̃
c̃ B̃ã Ã

= J�(s−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[bã(
ξ

F−1)a]
b̃
˚̃Fb̃

ÃB̃
c̃ B̃ã Ã = 0, (4.85a)

C
[aAcB F̊b]

A = J�(
ξ

F−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[aã(
�

F−1)A Ã F̊
b]

AC̃
ã Ãc̃ B̃

= J�(
ξ

F−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[aã(
ξ

F−1)b]b̃
˚̃Fb̃

ÃC̃
ã Ãc̃ B̃

= J�(
ξ

F−1)cc̃(
�

F−1)B B̃(
ξ

F−1)[bã(
ξ

F−1)a]
b̃
˚̃Fb̃

ÃC̃
ã Ãc̃ B̃ = 0. (4.85b)

On the other hand, A
[aAcB F̊b]

A = 0, and B
[aAcB F̊b]

A = 0, respectively, imply that

A
[aAcB F̊b]

A = J�(s−1)cc̃(
�

F−1)B B̃(s−1)[aã(
�

F−1)A Ã F̊
b]

AÃ
ã Ãc̃ B̃

− P̊d A(F̊−1)Bdg
[ac F̊b]

A

= J�(s−1)cc̃(
�

F−1)B B̃(s−1)[aã(
ξ

F−1)b]b̃
˚̃Fb̃

ÃÃ
ã Ãc̃ B̃

− P̊d A(F̊−1)Bdg
[ac F̊b]

A = 0, (4.86a)

B
[aAcB F̊b]

A = J�(
ξ

F−1)cc̃(
�

F−1)B B̃(s−1)[aã(
�

F−1)A Ã F̊
b]

AB̃
ã Ãc̃ B̃

= J�(
ξ

F−1)cc̃(
�

F−1)B B̃(s−1)[aã(
ξ

F−1)b]b̃
˚̃Fb̃

ÃB̃
ã Ãc̃ B̃ = 0. (4.86b)

Pushing forward theses expressions to the current configuration, one obtains

c[ab]cd = 1

J̊
A

[aAcB F̊b]
A F̊

d
B

= J�

J̊
(s−1)cc̃(

�

F−1)B B̃ F̊
d
B(s−1)[aã(

ξ

F−1)b]b̃
˚̃Fb̃

ÃÃ
ã Ãc̃ B̃

− 1

J̊
P̊eA(F̊−1)Be F̊

d
Bg

[ac F̊b]
A

= Jξ (s−1)cc̃(
ξ

F−1)d d̃(s
−1)[aã(

ξ

F−1)b]b̃
1
˚̃J

˚̃Fb̃
Ã
˚̃Fd̃

B̃Ã
ã Ãc̃ B̃

− 1

J̊
P̊eA(F̊−1)Be F̊

d
Bg

[ac F̊b]
A

= Jξ (s−1)cc̃(
ξ

F−1)d d̃(s
−1)[aã(

ξ

F−1)b]b̃c̃
ãb̃c̃d̃ − σ̊ [bdgca] = 0, (4.87a)

b[ab]cd = 1

J̊
B

[aAcB F̊b]
A F̊

d
B

= J�

J̊
(

ξ

F−1)cc̃(
�

F−1)B B̃ F̊
d
B(s−1)[aã(

ξ

F−1)b]b̃
˚̃Fb̃

ÃB̃
ã Ãc̃ B̃
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= Jξ (
ξ

F−1)cc̃(
ξ

F−1)d d̃(s
−1)[aã(

ξ

F−1)b]b̃
1
˚̃J

˚̃Fb̃
Ã
˚̃Fd̃

B̃B̃
ã Ãc̃ B̃

= Jξ (
ξ

F−1)cc̃(
ξ

F−1)d d̃(s
−1)[aã(

ξ

F−1)b]b̃b̃
ãb̃c̃d̃ = 0. (4.87b)

Additionally, the initial body forces and the pre-stress need to satisfy the following
balance of linear and angular momenta in the finitely deformed configuration

P̊aA|A + ρ0(B̊
�)a = 0, (4.88a)

ρ0B̊
⊥ +

[
ρ0L̊

a(F̊−1)Aa

]
|A = 0, (4.88b)

P̊ [aA F̊b]
A = 0. (4.88c)

Notice that if (4.88c) holds (or, equivalently, σ̊ is symmetric), then AAA possesses the
major symmetries (cf. (4.82a)). The stress and couple-stress are transformed as

δPaA = J�(s−1)aã(
�

F−1)A Ãδ P̃
ã Ã

+ 1

2
J�(s−1)aã(

�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃

ξ

Fc̃
b|BB̃

ã Ãb̃ B̃W̃,c̃,

δMaA = J�(
ξ

F−1)aã(
�

F−1)A ÃδM̃ã Ã

+ 1

2
J�(

ξ

F−1)aã(
�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃

ξ

Fc̃
b|BC̃

ã Ãb̃ B̃W̃,c̃.

(4.89)

Using (4.13), one needs to have W̃,ã = W,a(s−1)aã on the boundary of the cloak ∂oC,
which implies that T ξ |∂oC = ξ

F|∂oC = id. Additionally, the boundary surface traction
and moment in the physical and virtual plates need to be identical on the boundary

of the cloak, i.e., (δT̃
�
)ã = sãa(δT�)a , δT̃

⊥ = δT⊥, and δm̃ã = sãaδma , on ∂oC
(see (4.13)). Therefore, one needs to impose the following constraints on the outer

boundary of the cloak:
ξ

Fã
a|A
∣∣∣
∂oC

= 0,
ξ

Fã
a|A|B

∣∣∣
∂oC

= 0, T�|∂oC = �

F|∂oC = id (and

thus, F̊|∂oC = id, given that
ξ

F|∂oC = id and
ξ

F = ˚̃F
�

FF̊−1). Similarly, knowing that
the hole surface ∂ Ẽ in the virtual plate is traction-free, the hole inner surface in the

physical plate ∂E will be traction-free as well if one requires that
ξ

Fã
a|A
∣∣∣
∂E

= 0, and
ξ

Fã
a|A|B

∣∣∣
∂E

= 0.39 Furthermore, the hole must be traction-free in the physical plate in

39 Note that
ξ

Fã
a|A
∣∣∣
∂oC

= 0, implies that L̊|∂oC = 0, and δL|∂oC = 0, (see (4.13) and (4.82d)), and thus,

δT⊥ = −(F̊−1)AaδMaB |BTA = −
[
J�(

�
F−1)B B̃ (

ξ

F−1)a ãδM̃ã B̃
]
|B

(F̊−1)AaTA

= −J�(
�
F−1)B B̃ (

ξ

F−1)a ãδM̃ã B̃ |B (F̊−1)AaTA = −(
˚̃F−1) Ã ãδMã B̃

|B̃ T̃ Ã = δT̃
⊥

,

on ∂oC,
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its finitely deformed configuration, i.e., from (4.12), one needs to have (T̊�)a |∂E =(
P̊aATA

) ∣∣∣
∂E

= 0, and T̊⊥|∂E = −
[
(F̊−1)AaρL̊

aTA
] ∣∣∣

∂E
= 0.

Remark 4.9 Uponusing (4.83a) and the Piola identity, the cloaking compatibility equa-
tions (4.84a) are simplified to read

C̃
ã Ãb̃C̃ (

ξ

F−1)bb̃(
�

F−1)CC̃ (F̊−1)Aa(
ξ

F−1)aã| Ã

= C̃
ã Ãb̃C̃ (

ξ

F−1)cã(
�

F−1)C Ã(F̊−1)Ac(
ξ

F−1)bb̃|C̃ . (4.90)

Remark 4.10 Note that for an isotropic (virtual) plate, the elastic constant B̃BB is given
(with a slight abuse of notation) by

B̃
ã Ãb̃ B̃ = b̃1G̃

ã Ã
G̃

b̃ B̃ + b̃2(G̃
ãb̃
G̃

ÃB̃ + G̃
ã B̃

G̃
b̃ Ã

), (4.91)

for some scalars b̃1 and b̃2. This is a consequence of the fact that the most general form
of a fourth-order isotropic tensor is a1δi jδkl + a2δikδ jl + a3δilδ jk (for some scalars
ai , i = 1, 2, 3) and the minor symmetries of B̃BB dictated by (4.75).

Remark 4.11 When restricting to the in-plane deformations, we recover our result
(Yavari and Golgoon 2019, §4.4) for the elastodynamic cloaking of a cylindrical hole
in the context of the small-on-large theory of (classical) elasticity in 3D. For in-plane
deformations,W = 0, and for a classical solidBBB (andCCC) vanishes. Therefore, the out-
of-plane equilibriumequation (4.77b) is trivially satisfied, and the in-plane equilibrium
equation (4.77a) is the only non-trivial governing equation. Note that in this case, the
pre-stress is determined such that the (only non-trivial) balance of angular momen-
tum (4.87a) is satisfied. We should emphasize that in (Yavari and Golgoon 2019),
the variation of the body force is assumed to be independent of that of the motion.
Therefore, the linearized equations involve the load increment δB independently of
the infinitesimal deformation δϕ (see Marsden and Hughes 1983, p. 237).

Remark 4.12 Note that (4.88b) is trivially satisfied. To see this, using (4.82c) and
(4.82d), the expression in (4.88b) is simplified to read

1

2
J�(s−1)aã(

ξ

F−1)bb̃|B̃| ÃB̃
ã Ãb̃ B̃ gab

− 1

2
B̃
ã Ãb̃ B̃ gac(s−1)aã

˚̃Fc̃
Ã

[
J�(

ξ

F−1)bc̃(
ξ

F−1)cb̃|B̃(F̊−1)Ab

]
|A

= −1

2
B̃
ã Ãb̃ B̃ gac(s−1)aã

˚̃Fc̃
Ã(

ξ

F−1)cb̃|B̃
[
J�(

ξ

F−1)bc̃(F̊
−1)Ab

]
|A

= −1

2
B̃
ã Ãb̃ B̃ gac(s−1)aã(

ξ

F−1)cb̃|B̃
[
J�(

�

F−1)A Ã

]
|A = 0,

(4.92)

Footnote 39 continued

where

[
J�(

�
F−1)B B̃

]
|B

= 0, and the fact that � (and ξ ) fixes the boundary of the cloak ∂oC to the third

order were used.
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where the relation
ξ

F = ˚̃F
�

FF̊−1, and the Piola identity were used.

Remark 4.13 If B̃BB vanishes for the virtual plate, which is the case if one assumes the
Saint Venant–Kirchhoff energy function (cf. (4.15)), then so does the tensorBBB for the
physical plate, i.e.,BBB = 0. Moreover, if B̃BB = 0, then B̊⊥ = 0, L̊ = 0, and the cloaking
compatibility equations (4.84b) and (4.84c) are trivially satisfied.

Remark 4.14 The second-order change (variation) in the energy (density) of the phys-
ical plate is given by

δ2W = 1

2

∂2W

∂CAB∂CCD
δCABδCCD + ∂2W

∂CAB∂�CD
δCABδ�CD

+1

2

∂2W

∂�AB∂�CD
δ�ABδ�CD . (4.93)

Therefore, one obtains

δ2W = 1

2
A
aAbBUa|AUb|B + 1

2
B
aAbBUa|A(W,b)|B + 1

4
C
aAbB(W,a)|A(W,b)|B .

(4.94)

Similarly, we note that for the virtual plate

δ2W̃ = 1

2
Ã
ã Ãb̃ B̃ Ũã| ÃŨb̃|B̃ + 1

2
B̃
ã Ãb̃ B̃ Ũã| Ã(W̃

,b̃)|B̃ + 1

4
C̃
ã Ãb̃ B̃(W̃,ã)| Ã(W̃

,b̃)|B̃ .

(4.95)

Using (4.79), (4.80), (4.82a), (4.82b), (4.83a), and (4.95), one rewrites (4.94) as

δ2W = J�δ2W̃ − 1

2
P̊cA(F̊−1)Bcg

absãasb̃b
�

F Ã
A

�

F B̃
B Ũã| ÃŨb̃|B̃

+ 1

2
J�(

ξ

F−1)bb̃(
�

F−1)B B̃

ξ

Fc̃
b|BB̃

ã Ãb̃ B̃ Ũã| ÃW̃,c̃

+ 1

2
J�(

ξ

F−1)aã(
�

F−1)A Ã

ξ

Fc̃
a|AC̃

ã Ãb̃ B̃W̃,c̃(W̃,b̃)|B̃

+ 1

4
J�(

ξ

F−1)aã(
�

F−1)A Ã(
ξ

F−1)bb̃(
�

F−1)B B̃

ξ

Fc̃
a|A

ξ

Fd̃
b|BC̃

ã Ãb̃ B̃W̃,c̃W̃,d̃ .

(4.96)

Hence, the positive-definiteness of the second-order variation of the energy of the
physical plate involves that of the virtual plate (i.e., δ2W̃ ), along with the elastic
parameters and (in-plane and out-of-plane) displacements of the virtual plate, the first
and the second derivatives of the cloaking map, and the pre-stress. This is in contrast
to transformation cloaking in classical (and generalized Cosserat) 3D elasticity, where
δ2W = J�δ2W̃ (seeYavari andGolgoon 2019). Thus, one cannot simply conclude that
(the second-order variation of) the energy density is positive-definite in the physical
problem if and only if it is positive-definite in the virtual problem.
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4.2.1 A Circular Cloak in the Presence of In-plane and Out-of-plane Displacements

Let us consider the cylindrical cloak example in the presence of the initial stress P̊, the
initial body force B̊, and the initial body moment L̊. The cloaking transformation ξ

maps a pre-stressed cylindrical annulus (in the physical plate)with inner and outer radii
ri and ro, respectively, to a cylindrical annulus (in the virtual plate) with inner and outer
radii ε and ro, respectively. Let, in polar coordinates, (r̃ , θ̃ ) = ξ(r , θ) = ( f (r), θ).
Therefore,

ξ

F =
[
f ′(r) 0
0 1

]
, (4.97)

where f (ro) = ro and f (ri ) = ε. Let (R̃, �̃) = �(R,�), (r , θ) = ϕ(R,�), and

(r̃ , θ̃ ) = ϕ̃(R̃, �̃) such that ˚̃ϕ = id (and thus, ˚̃F = id). We assume that the physical
plate is finitely deformed such that (r , θ) = ϕ(R,�) = (ψ(R),�). Therefore,

F̊ =
[
ψ ′(R) 0

0 1

]
. (4.98)

Using
ξ

F = ˚̃F
�

FF̊−1, one has

�

F =
[
ψ ′(R) f ′(ψ(R)) 0

0 1

]
, (4.99)

and thus, J� = ψ ′(R) f (ψ(R)) f ′(ψ(R))/R. The referential mass density of the cloak
is given by

ρ0(R) = ψ ′(R) f ′(ψ(R))
f (ψ(R))

R
ρ̃0, Ri ≤ R ≤ Ro. (4.100)

Note that s = diag (1, r/ f (r)). Assuming the Saint Venant–Kirchhoff constitutive
equation (4.15) for the virtual plate, C̃CC is given by (4.30), B̃BB = 0 (and thus,BBB = 0, see
(4.82b), which using (4.82c) and (4.82d) implies that B̊⊥ = 0, and L̊ = 0), and ÃAA is
obtained as40

Ã
ã Ãb̃C̃ = Eh

2(1 + ν)

˚̃Fã
M̃

˚̃Fb̃
Ñ

(
G̃

ÃÑ
G̃

C̃ M̃ + G̃
ÃC̃

G̃
M̃ Ñ + 2ν

1 − ν
G̃

ÃM̃
G̃

C̃ Ñ
)

.

(4.101)

40 Note that in the case of a general isotropic energy function for the virtual plate BBB, L̊, and B̊⊥ do not
vanish and their expressions are given in Remark. 4.16.
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Thus,

ˆ̃
AAA =

[ ˆ̃
A
ã Ãb̃ B̃

]
= Eh

2(1 + ν)

⎡
⎢⎢⎢⎣

[ 2
1−ν

0
0 2ν

1−ν

] [
0 1
1 0

]
[
0 1
1 0

] [ 2ν
1−ν

0
0 2

1−ν

]
⎤
⎥⎥⎥⎦ . (4.102)

Using (4.83a), the flexural rigidity tensor of the physical plate is given by

ĈCC =
[
Ĉ
aAbB

]

= Eh3

12(1 + ν)

⎡
⎢⎢⎢⎢⎣

[
2

1−ν
f (ψ(R))

Rψ ′(R) f ′3(ψ(R))
0

0 2ν
1−ν

ψ(R)
f (ψ(R)) f ′(ψ(R))

] [
0 Rψ ′(R)

f (ψ(R)) f ′(ψ(R))
ψ(R)

f (ψ(R)) f ′(ψ(R))
0

]

[
0 ψ(R)

f (ψ(R)) f ′(ψ(R))
ψ2(R)

R f (ψ(R)) f ′(ψ(R))ψ ′(R)
0

] [ 2ν
1−ν

ψ(R)
f (ψ(R)) f ′(ψ(R))

0

0 2
1−ν

R f ′(ψ(R))ψ ′(R)ψ2(R)

f 3(ψ(R))

]

⎤
⎥⎥⎥⎥⎦ .

(4.103)

From (4.82a), the first elasticity tensor of the physical plate is obtained as

ÂAA =
[
Â
aAbB

]
= Eh

2(1 + ν)

⎡
⎢⎢⎢⎢⎣

[
2

1−ν
f (ψ(R))

R f ′(ψ(R))ψ ′(R)
0

0 2ν
1−ν

] [
0 R f ′(ψ(R))ψ ′(R)

f (ψ(R))

1 0

]

[
0 1

f (ψ(R))
R f ′(ψ(R))ψ ′(R)

0

] [
2ν
1−ν

0

0 2
1−ν

R f ′(ψ(R))ψ ′(R)
f (ψ(R))

]

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

[
1

ψ ′(R)

ˆ̊Pr R R
ψ(R)

ˆ̊PθR

0 0

] [
1

ψ ′(R)

ˆ̊Pr� R
ψ(R)

ˆ̊Pθ�

0 0

]

[
0 0

1
ψ ′(R)

ˆ̊Pr R R
ψ(R)

ˆ̊PθR

] [
0 0

1
ψ ′(R)

ˆ̊Pr� R
ψ(R)

ˆ̊Pθ�

]

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(4.104)

where utilizing (4.83c), the pre-stress is calculated as

ˆ̊Pr� = ˆ̊PθR = 0,

ˆ̊Pr R = Eh3

12
(
ν2 − 1

)
Rψ(R) f 3(ψ(R)) f ′5(ψ(R)){

ψ(R) f (ψ(R)) f ′5(ψ(R))
[
(ν − 2)Rψ ′(R) + 2ψ(R)

]

+Rψ2(R)ψ ′(R) f ′6(ψ(R)) + f 2(ψ(R)) f ′3(ψ(R))
[
νRψ(R)ψ ′(R) f ′′(ψ(R))

+ f ′(ψ(R))
{−(ν − 1)Rψ ′(R) − 2ψ(R)

} ]

−ψ(R) f 3(ψ(R)) f ′2(ψ(R)) f ′′(ψ(R))

+ψ(R) f 4(ψ(R))
[
3 f ′′2(ψ(R)) − f (3)(ψ(R)) f ′(ψ(R))

] }
, (4.105)
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ˆ̊Pθ� = Eh3

12
(
ν2 − 1

)
Rψ(R) f 4(ψ(R)) f ′3(ψ(R))

{
− 3Rψ3(R)ψ ′(R) f ′5(ψ(R))

+ψ2(R) f (ψ(R)) f ′3(ψ(R))
[
Rψ(R)ψ ′(R) f ′′(ψ(R))

+ f ′(ψ(R))
{
ψ(R) − 2(ν − 2)Rψ ′(R)

}]
+ψ(R) f 2(ψ(R)) f ′2(ψ(R))

[
f ′(ψ(R))

{
νRψ ′(R) + (ν − 2)ψ(R)

}
−νRψ(R)ψ ′(R) f ′′(ψ(R))

]
+ f 3(ψ(R))

[
νRψ2(R) f (3)(ψ(R))ψ ′(R) f ′(ψ(R))

+
( (

ψ(R) − Rψ ′(R)
)
f ′(ψ(R))

−2Rψ(R)ψ ′(R) f ′′(ψ(R))
) {

νψ(R) f ′′(ψ(R)) + (1 − ν) f ′(ψ(R))
} ]}

.

Using (4.83b), one finds the components of the tangential body force as (B̊�)θ = 0,
and

(B̊�)r = Eh3

12ρ̃0
(
ν2 − 1

)
f 4(ψ(R)) f ′7(ψ(R)){

3ψ(R) f ′7(ψ(R)) − 3 f (ψ(R)) f ′6(ψ(R))

− 3 f 2(ψ(R)) f ′4(ψ(R)) f ′′(ψ(R))

+ 2 f 3(ψ(R)) f ′2(ψ(R))
[
f (3)(ψ(R)) f ′(ψ(R)) − 3 f ′′2(ψ(R))

]

+ f 4(ψ(R))
[
15 f ′′3(ψ(R)) + f (4)(ψ(R)) f ′2(ψ(R))

−10 f (3)(ψ(R)) f ′(ψ(R)) f ′′(ψ(R))
] }

.

(4.106)

However, note that (4.82e) implies that (B̊�)r = 0, and thus, (4.106) can be viewed
as a constraint. Notice that (4.88c) is trivially satisfied. The cloaking compatibility
equations (4.84a) give the following ODE

f ′(ψ(R))
[
f (ψ(R)) − ψ(R) f ′(ψ(R))

] [
ψ(R) f ′(ψ(R)) + (ν − 1) f (ψ(R))

]
− νψ(R) f 2(ψ(R)) f ′′(ψ(R)) = 0.

(4.107)

Recalling that r = ψ(R), we may rewrite (4.107) as41

f ′(r)
[
f (r) − r f ′(r)

] [
r f ′(r) + (ν − 1) f (r)

]− νr f 2(r) f ′′(r) = 0. (4.108)

Noting that (4.108) is a second-order ODE and the cloaking transformation ξ needs
to satisfy f (ro) = ro, f (ri ) = ε, and f ′(ro) = 1, one concludes that cloaking is

41 Note that (4.108) is identical to (4.37).
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not possible. The balance of linear momentum in the finitely deformed configuration
(4.88a) is simplified to read

3Rψ(R)3ψ ′(R)
(
ψ(R) − Rψ ′(R)

)
f ′(ψ(R))5

+ ψ(R)2 f (ψ(R)) f ′(ψ(R))3
[
R2ψ(R)ψ ′′(R) f ′(ψ(R))

+ (Rψ ′(R) − ψ(R)
) {

Rψ(R)ψ ′(R) f ′′(ψ(R))

+ f ′(ψ(R))
[
(5 − 2ν)Rψ ′(R) + ψ(R)

]} ]

+ ψ(R) f (ψ(R))2 f ′(ψ(R))2
[
(ν − 2)R2ψ(R)ψ ′′(R) f ′(ψ(R))

+ (ψ(R) − Rψ ′(R)
) {

νRψ(R)ψ ′(R) f ′′(ψ(R))

+ f ′(ψ(R))
[
(2 − ν)ψ(R) − (ν − 1)Rψ ′(R)

]} ]

+ f (ψ(R))3
(

(ν − 1)R2ψ ′(R)2 f ′(ψ(R))2

− (ν − 1)Rψ(R) f ′(ψ(R))
[
f ′(ψ(R))

(
Rψ ′′(R) + 2ψ ′(R)

)

− Rψ ′(R)2 f ′′(ψ(R))
]

+ ψ(R)2
[

− 2νR2ψ ′(R)2 f ′′(ψ(R))2 + (ν − 1) f ′(ψ(R))2

+ R f ′(ψ(R))
(
νR f (3)(ψ(R))ψ ′(R)2 + f ′′(ψ(R))

[
νRψ ′′(R) + ψ ′(R)

]) ]

− νψ(R)3
(
f ′(ψ(R))

(
R f (3)(ψ(R))ψ ′(R) + f ′′(ψ(R))

)

−2Rψ ′(R) f ′′(ψ(R))2
) ) = 0.

(4.109)

Provided that ν �= 0, one may use (4.108) to obtain expressions for f ′′(ψ(R)) and
f (3)(ψ(R)) in terms ofψ(R),ψ ′(R), f (ψ(R)), and f ′(ψ(R)). Plugging these expres-
sions into (4.109), it is straightforward to verify that (4.109) is trivially satisfied.
Therefore, the balance of linear and angular momenta (cf. (4.88)) for the physical
plate in its finitely deformed configuration is satisfied as long as the cloaking map
satisfies the constraint (4.108). In summary, similar to the Kirchoff–Love plate the
ODE (4.108) and its initial and boundary conditions are the obstruction to cloaking.
This result is summarized in the following proposition.

Proposition 4.15 Cloaking a circular hole in elastic plates with both in-plane and
out-of-plane deformations is not possible for any radial cloaking transformation. The
cloaking compatibility equations and the boundary and continuity conditions obstruct
cloaking.

Remark 4.16 Assuming that B̃BB is given by (4.91), one obtains BBB, the initial normal
body force B̊⊥, and the initial body moment L̊ of the physical plate using (4.82b),
(4.82c), and (4.82d), respectively, as
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B̂BB =
[
B̂
aAbB

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎣
(
b̃1+2b̃2

)
f (ψ(R))

R f ′2(ψ(R))ψ ′(R)
0

0 b̃1ψ(R)
f (ψ(R))

⎤
⎦

⎡
⎣ 0 b̃2Rψ ′(R)

f (ψ(R))

b̃2ψ(R)
f (ψ(R))

0

⎤
⎦

⎡
⎣ 0 b̃2

f ′(ψ(R))

b̃2ψ(R)
R f ′(ψ(R))ψ ′(R)

0

⎤
⎦
⎡
⎣

b̃1
f ′(ψ(R))

0

0

(
b̃1+2b̃2

)
Rψ(R) f ′(ψ(R))ψ ′(R)

f 2(ψ(R))

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.110)

B̊⊥ = − (b̃1 + 2b̃2)

2ρ̃0 f 3(ψ(R)) f ′5(ψ(R))

[
− ψ(R) f ′5(ψ(R)) + f (ψ(R)) f ′4(ψ(R))

+2 f 2(ψ(R)) f ′2(ψ(R)) f ′′(ψ(R))

+ f 3(ψ(R))
(
f (3)(ψ(R)) f ′(ψ(R)) − 3 f ′′2(ψ(R))

) ]
, (4.111)

L̊r = (b̃1 + 2b̃2)

2ρ̃0 f 2(ψ(R)) f ′4(ψ(R))

[
f 2(ψ(R)) f ′′(ψ(R)) + ψ(R) f ′3(ψ(R))

− f (ψ(R)) f ′2(ψ(R))
]
, (4.112)

and the circumferential component of the body moment vanishes, i.e., L̊θ = 0.

Remark 4.17 (General cloaking transformations) Next we show that if b̃2 > 0 and
b̃1 + b̃2 > 0, i.e., if the tensor B̃BB for the virtual plate is positive definite, then trans-
formation cloaking would not be possible even if one uses a general cloaking map
ξ for an arbitrary hole surrounded by a cloak (with an arbitrary shape). Without loss
of generality, we use Cartesian coordinates, where the shifters and the metrics have
trivial representations. Let us consider an arbitrary cloaking map ξ such that

ξ

F−1 =
[
F11(x, y) F12(x, y)
F21(x, y) F22(x, y)

]
. (4.113)

Therefore, Jξ = [F11F22 − F12F21]−1, and (4.87b) is simplified to read

b̃1F21
(
F211 + F212

)
+ 2b̃2F11 (F11F21 + F12F22) − F12

(
b̃1 + 2b̃2

) (
F211 + F212

)
= 0,

(4.114a)

F21
(
F221 + F222

) (
b̃1 + 2b̃2

)
− 2F22b̃2 (F11F21 + F12F22) − F12b̃1

(
F221 + F222

)
= 0,

(4.114b)

F11
(
F222b̃2 − F12F21(b̃1 + b̃2) + F221(b̃1 + 2b̃2)

)

+ F12F22
(
F21(b̃1 + b̃2) − F12(b̃1 + 2b̃2)

)
− F211F22b̃2 = 0. (4.114c)
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Provided that F212b̃1 + F211(b̃1 + 2b̃2) �= 0, from (4.114a) one obtains

F21 = F12
(F211 + F212)(b̃1 + 2b̃2) − 2F11F22b̃2

F212b̃1 + F211(b̃1 + 2b̃2)
. (4.115)

Substituting for F21 into (4.114c), one has

(F211 + F212)(F
2
12 − F11F22)b̃2(b̃1 + 2b̃2)[

F212b̃1 + F211(b̃1 + 2b̃2)
]2

[
F212F22b̃1 + F211(F11 − F22)(b̃1 + 2b̃2) + F11F212(3b̃1 + 4b̃2)

]
= 0. (4.116)

Using (4.115), the Jacobian of the cloaking map is simplified to read

Jξ = F212b̃1 + F211(b̃1 + 2b̃2)

(F211 + F212)(F11F22 − F212)(b̃1 + 2b̃2)
. (4.117)

Knowing that b̃2 > 0, and the Jacobian of the cloakingmap cannot be singular, (4.116)
implies that

F212F22b̃1 + F211(F11 − F22)(b̃1 + 2b̃2) + F11F212(3b̃1 + 4b̃2) = 0, (4.118)

where as long as F212b̃1 − F211(b̃1 + 2b̃2) �= 0, gives

F22 = F11
F211(b̃1 + 2b̃2) + F212(3b̃1 + 4b̃2)

F211(b̃1 + 2b̃2) − F212b̃1
. (4.119)

Plugging (4.115) and (4.119) into (4.114b), one obtains

F12(F211 + F212)
4b̃2(b̃1 + b̃2)(b̃1 + 2b̃2)2[

F211(b̃1 + 2b̃2) − F212b̃1
]3 = 0, (4.120)

where recalling that b̃1+ b̃2 > 0, implies that F12 = 0, and thus, F21 = 0 (cf. (4.115)),

and from (4.119), F11 = F22. Given that
ξ

F|∂oC = id, one concludes that ξ must be the
identity, i.e., cloaking is not possible.

Let us consider the case where F212b̃1 + F211(b̃1 + 2b̃2) = 0, and thus,

b̃1 = − 2F211
F211 + F212

b̃2. (4.121)
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Therefore, (4.114a) is simplified to read 2b̃2F12(F212 − F11F22) = 0, implying that
F212 = F11F22 (or F22 = F212/F11).

42 Substituting for b̃1 and F22 into (4.114b) and
(4.114c), one obtains

2b̃2
F12(F12 − F21)

F211(F
2
11 + F212)

[
F512 + F211F21(F

2
11 + F212) + F211F

2
21F12

]
= 0, (4.122a)

b̃2
F12(F21 − F12)

F11(F211 + F212)

[
F411 + F412 + 2F211F12F21

]
= 0. (4.122b)

Note that Jξ = [F11F22 − F12F21]−1 = [F12(F12 − F21)]−1, and thus, (4.122) implies
that

F512 + F211F21(F
2
11 + F212) + F211F

2
21F12 = 0, (4.123a)

F411 + F412 + 2F211F12F21 = 0, (4.123b)

from which, one obtains F12 = −F21, and F211 = −F12F21. Thus, F211 = F212, and using
(4.121), one concludes that b̃1 + b̃2 = 0, i.e., B̃BB is not positive definite, which is a
contradiction. Similarly, it is straightforward to show that assuming F212b̃1 − F211(b̃1 +
2b̃2) = 0, the Jacobian of the cloaking map is forced to be singular.

5 Concluding Remarks

In this paper, we formulated the problem of elastodynamic transformation cloaking in
plates. In particular, we considered transformation cloaking in Kirchoff–Love plates
as well as elastic plates with both in-plane and out-of-plane displacements. Using a
Lagrangian field theory, the governing equations of nonlinear (and linearized) elas-
tic shells (and plates) were derived by characterizing the geometry of a shell as an
embedded hypersuface in the Euclidean space using the first and the second funda-
mental forms. The body forces and body moments were taken into account in the
boundary-value problem of an elastic plate using the Lagrange–d’Alembert principle.
A cloaking map transforms the boundary-value problem of an isotropic and homoge-
neous elastic plate with an infinitesimal hole (virtual problem) to that of an anisotropic
and inhomogeneous elastic plate with a finite hole covered by a cloak (physical prob-
lem) that is designed such that the response of the virtual plate is mimicked outside
the cloak.

Cloaking in Kirchoff–Love plates involves transforming the governing equation of
the virtual plate to that of the physical plate up to an unknown scalar field via a cloaking
map. In doing so, one obtains a set of constraints (cloaking compatibility equations)
involving the cloaking transformation, the scalar field, and the elastic parameters of
the virtual plate. In addition, on the boundary of the cloak and the hole there are some
boundary and continuity conditions that the cloaking transformation and the scalar field

42 Note that F12 �= 0, because otherwise, b̃1 = −2b̃2 (from (4.121)), contradicting the positive definiteness
of B̃BB.
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need to satisfy. In particular, the cloaking map needs to fix the outer boundary of the
cloak up to the third order. In the example of a circular hole, we showed that cloaking a
circular hole in Kirchoff–Love plates is not possible for a generic radial cloaking map;
the obstructions to transformation cloaking are the cloaking compatibility equations
and the boundary and continuity conditions.

In the case of a hole with an arbitrary shape, the cloaking compatibility equations
are a system of second-order nonlinear PDEs, and the balance of linear and angular
momenta for the (physical) plate in its finitely deformed configuration leads to fourth-
order and third-order nonlinearPDEs.The complexity of this systemofnonlinearPDEs
makes studying the obstruction to cloaking for an arbitrary cloakingmap very difficult.
This is in contrast to 3D elastodynamics and elastic plates with both the in-plane and
the out-of-plane deformations, where the linearized balance of angular momentum is
the obstruction to cloaking. The form of the linearized balance of angular momentum
usually allows one to analyze these equations for an arbitrary cloaking map. Note
that Kirchoff–Love plates can only have bending deformations, and in this case, the
linearized balance of angular momentum only implies that the flexural rigidity tensor
must have theminor symmetries.As the flexural rigidity tensor preserves itsminor (and
major) symmetries under a cloakingmap, the linearized balance of angularmomentum
is trivially satisfied. Therefore, one only needs to analyze the cloaking compatibility
equations and the balance of linear and angular momenta in the finitely deformed
configuration (of the physical plate) to study obstruction to transformation cloaking.

Next, we relaxed the pure bending assumption and formulated the transformation
cloaking problem for an elastic plate in the presence of in-plane and out-of-plane
displacements. The physical plate is initially stressed and is subjected to (in-plane
and out-of-plane) body forces and moments in its finitely deformed configuration.
This problem involves transforming the in-plane governing equations using the Piola
transformation given by the cloaking map as well as transforming the out-of-plane
governing equation up to the Jacobian of the cloaking map. Assuming a general radial
cloaking map, we showed that, similar to Kirchoff–Love plates, cloaking is not pos-
sible for a circular hole; the cloaking compatibility equations and the boundary and
continuity conditions obstruct transformation cloaking. We also showed that if for the
virtual plate the elasticity tensor pertaining to the coupling between the in-plane and
the out-of-plane displacements is positive-definite, then cloaking is not possible even
if one uses a general cloaking map for a hole and a cloak with arbitrary shapes; the
balance of angular momentum is the obstruction to cloaking.

Our analysis suggests that the path forward for engineering applications of flexural
wave cloaking is approximate cloaking. Approximate cloaking should be formulated
as an optimal design problem. Recently, Fachinotti et al. (2018) formulated cloaking
an inclusion in 2D linear elasticity as an optimization problem. For a given load, they
minimized an objective function that quantifies the difference between the cloaked
system and the corresponding homogeneous body without the inclusion. They also
extended their method to the case of multiple loads. In the case of a Kirchoff–Love
plate with a hole of radius Ri , the optimization parameters are the outer radius of the
cloak Ro and its elastic constants. If Ro is too large the cloak would not be practical,
and if Ro is too close to Ri the elastic properties of the cloak will be too complicated
to be feasible. Instead of optimizing over all possible anisotropic and inhomogeneous
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elastic constants inside the cloak, one idea would be to assume that the cloak is made
of N isotropic and homogeneous rings. The optimization problem is then reduced to
finding the isotropic elastic constants and mass density of each ring. Of course, the
continuity equations at the boundaries between rings much be carefully enforced. One
would identify M loadings of interest and optimize the cloak for the set of combined
loadings. For a given loading, the objective function can be chosen to be the L2-norm
of the difference between the displacement field of the cloaked plate and that of the
corresponding homogeneous plate without a hole. The elastic constants and mass
density derived from transforming the governing PDE of the virtual plate can be used
as an initial guess for the optimal design problem. This will be the subject of a future
communication.

An extension of the present formulation will be to assign a set of deformable
directors at each point of an elastic shell in its reference and current configurations.
This will lead to a (normal and tangential) hyperstress in addition to the stress and the
couple-stress of the present theory. One should note that the balance of linear (and
angular) momentum and microlinear (and angular) momentum in this case is coupled
in a way that makes transformation cloaking highly non-trivial. Moreover, one needs
to derive a set of compatibility conditions for the normal and tangential components
of the director gradient. This will be the subject of a future communication.
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David Stepp). A.G. benefited from discussions with Fabio Sozio, ArzhangAngoshtari, Amirhossein Tajdini,
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Appendix A: Variations of the Right Cauchy–Green Deformation Ten-
sor, the Unit Normal Vector Field, and the Second Fundamental Form

In this appendix, we discuss the derivation of the variations of the right Cauchy–Green
deformation tensor C, the unit normal vector field (of the deformed shell) N, and �

used in obtaining the Euler–Lagrange equations in Sect. 3 (see also Capovilla and
Guven 2002; Kadianakis and Travlopanos 2013, 2018).

Lie derivative. Let w : U → TS be a C1 vector field, where U ⊂ S is an open
neighborhood. A curve α : I → S, where I is an open interval, is an integral curve
of w provided that dα(t)

dt = w(α(t)), ∀ t ∈ I . Consider a time-dependent vector
field w : S × I → TS, where I is some open interval. The collection of maps ψτ,t

is the flow of w if for each t and x , τ �→ ψτ,t (x) is an integral curve of wt , i.e.,
d
dτ

ψτ,t (x) = w(ψτ,t (x), τ ), and ψt,t (x) = x . Assume that t is a time-dependent
tensor field on S, i.e., tt (x) = t(x, t) is a tensor. The Lie derivative of t with respect
to w is defined as

Lwt = d

dτ
ψ∗

τ,t tτ
∣∣∣
τ=t

. (A.1)

Note thatψτ,t maps tt to tτ . Therefore, to calculate the Lie derivative one drags t along
the flow of w from τ to t and then differentiates the Lie dragged tensor with respect
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to τ . The autonomous Lie derivative of t with respect to w is defined as

Lwt = d

dτ
ψ∗

τ,t tt
∣∣∣
τ=t

. (A.2)

Hence, Lwt = ∂t/∂t + Lwt. The Lie derivative for a scalar f is given by Lw f =
∂ f /∂t +w[ f ]. In a coordinate chart {xa}, this is written as, Lw f = ∂ f

∂t + ∂ f
∂xa wa . For

a vector u, it can be shown that Lwu = ∂w
∂t +[w,u]. If ∇ is a torsion-free connection,

then [w,u] = ∇wu − ∇uw, and thus, Lwu = ∂w
∂t + ∇wu − ∇uw.

The rate of deformation tensor for shells is defined as (Marsden and Hughes 1983)

2D� = ϕ∗
t

[
(∇gv�)� + [(∇gv�)�]T − 2v⊥θ

]
, (A.3)

where the spatial velocity is decomposed into the normal and tangential components
as v = v� + v⊥n. In components

2DAB = (v�
a|b + v�

b|a)Fa
AF

b
B − 2v⊥�AB . (A.4)

Note that

Lv�g = (∇gv�)� + [(∇gv�)�]T. (A.5)

Therefore,

2D� = ϕ∗
t (Lv�g) − 2v⊥�. (A.6)

Knowing that ϕ∗
t (Lvg) = 2D� (see, e.g., Marsden and Hughes 1983; Simo and Mars-

den 1984), one obtains

ϕ∗
t (Lvg) = ϕ∗

t (Lv�g) − 2v⊥�. (A.7)

Thus,Lδϕg = Lδϕ�g−2 δϕ⊥ θ , and hence, δC� = ϕ∗
t (Lδϕg) = ϕ∗

t Lδϕ�g−2 δϕ⊥ �.
Also note that

Lδϕ�g =
[
gcb(δϕ

�)c |a + gac(δϕ
�)c |b

]
dxa ⊗ dxb. (A.8)

Hence, in components, one obtains

δCAB = Fa
A δϕ�

a|B + Fb
B δϕ�

b|A − 2 δϕ⊥ �AB . (A.9)

Or

δCAB = Fa
A gac(δϕ

�)c|B + Fb
B gbc(δϕ

�)c|A − 2 δϕ⊥ Fa
AF

b
Bθab. (A.10)

Therefore, (3.11) is implied.
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The covariant derivative of v is computed as

∇̄ ḡ
v = ∇̄ ḡ

(v� + v⊥n) = ∇̄ ḡ
v� + v⊥∇̄ ḡ

n + dv⊥ ⊗ n. (A.11)

Using the relations (2.3) and (2.5) in the ambient space, one obtains

∇̄ ḡ
v = (∇gv� − v⊥θ) + (dv⊥ + θ · v�) ⊗ n. (A.12)

In components

∇̄ ḡ
v =

[
(v�)a |b − v⊥θab

]
∂a ⊗ dxb +

[
v⊥

,b + θbc(v
�)c
]
n ⊗ dxb. (A.13)

Similarly, one can write

∇̄ ḡ
δϕ =

[
(δϕ�)a |b − δϕ⊥θab

]
∂a ⊗ dxb +

[
δϕ⊥

,b + θbc(δϕ
�)c
]
n ⊗ dxb. (A.14)

Note that for an arbitrary vector field W = W� + W⊥N defined on a surface
embedded in R

3, the tangential and normal components of the covariant derivative
with respect to the surface coordinates are similarly given by

(∇̄ ḡ
W)� = ∇gW� − W⊥θ , (∇̄ ḡ

W)⊥ = dW⊥ + θ · W�. (A.15)

Therefore, ∇̄ ḡ
W = (∇̄ ḡ

W)� + (∇̄ ḡ
W)⊥, in components reads

(∇̄ ḡ
W)� =

[
(W�)a |b − W⊥θab

]
∂a ⊗ dxb,

(∇̄ ḡ
W)⊥ =

[
W⊥

,b + θbc(W
�)c
]
N ⊗ dxb. (A.16)

Thus, one can use (A.16)1 to write the variation of the deformation gradient in com-
ponents as

δFa
A = (δϕ�)a |A − θabF

b
Aδϕ⊥. (A.17)

Therefore, (3.60) follows. At any time t , the deformation map ϕt : H → S is a smooth
embedding of the (undeformed) shell into the ambient space. For each X ∈ H, let
Tϕt (X) : TXH → Tϕt (X)S be the tangent of ϕt at X . The variation of the unit normal
vector Nε = nε ◦ ϕε,t is defined as

δN = d

dε
Nε

∣∣∣
ε=0

= ∇̄ ḡ
∂
∂ε

Nε

∣∣∣
ε=0

= Dϕε(X ,t)Nε

∣∣∣
ε=0

= ∇̄ ḡ
δϕN. (A.18)

In order to compute the variation, let W be a vector field in S tangent to ϕt (H) and
note that

∇̄ ḡ
δϕW = [δϕ,W] + ∇̄ ḡ

Wδϕ. (A.19)
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From (A.12), one obtains

∇̄ ḡ
Wδϕ =

(
∇g
Wδϕ� − δϕ⊥θ · W

)
+
(
(d δϕ⊥) · W + θ · δϕ� · W

)
n. (A.20)

Therefore,

ḡ
(
N, ∇̄ ḡ

Wδϕ
)

= (d δϕ⊥) · W + θ · δϕ� · W = −ḡ
(
∇̄ ḡ

δϕN,W
)

, (A.21)

where the second equality is a consequence of the metric compatibility of ∇̄ ḡ
(2.4).

By arbitrariness of W, we have

δN = ∇̄ ḡ
δϕN = −θ · δϕ� − d δϕ⊥. (A.22)

In components

δN = −
[
(δϕ�)bθab + δϕ⊥

,bg
ab
]
∂a . (A.23)

Hence, (3.19) and (3.20) are followed. Note that δ�� = ϕ∗
t (Lδϕθ), where Lδϕθ =

Lδϕ�θ − δϕ⊥III + Hessδϕ⊥ , i.e.,

δ�� = ϕ∗
t Lδϕ�θ − δϕ⊥ ϕ∗

t III + ϕ∗
t Hessδϕ⊥ , (A.24)

where for x, y ∈ X(ϕ(H)), the third fundamental form of the deformed hypersurface
III and the Hessian of δϕ⊥, i.e., Hessδϕ⊥ are given by (3.15) and (3.16). The Lie
derivative with respect to the tangential component of the variation field is given in
components by (see, e.g., Marsden and Hughes 1983, p.97)

Lδϕ�θ � =
[
θab|c (δϕ�)c + θac(δϕ

�)c|b + θcb(δϕ
�)c|a

]
dxa ⊗ dxb. (A.25)

Therefore, in components, one can write the variation of �� as

δ�AB = Fa
AF

b
B θab|c (δϕ�)c + Fa

Aθac(δϕ
�)c |B + Fb

Bθbc(δϕ
�)c |A

− δϕ⊥Fa
AF

b
Bθacθbd g

cd + Fb
A

(
∂ δϕ⊥

∂ xb

)
|B

.
(A.26)

Using (A.17) and the fact that �AB = Fa
AFb

Bθab, one obtains the variation of θ � as

δθab = θab|c(δϕ�)c + δϕ⊥θacθbdg
cd + (δϕ⊥

,a)|b. (A.27)

Hence, (3.17) and (3.75) are obtained.
Proof of the relation (A.24). Here, we give a proof of the relation (A.24), see also
(Capovilla and Guven 2002; Lenz and Lipowsky 2000; Deserno 2004). For the sake
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of simplicity, we assume that the surface is embedded in three-dimensional Euclidean
space. For this proof, we adopt a notation different from the rest of the paper. Let us
consider an embedded surface denoted by � in R

3. The surface geometry is locally
described by three functions x(x1, x2, x3) = X(να) in the Cartesian coordinates
{x1, x2, x3} such that {να}, α = 1, 2, is a local coordinate chart on the surface. Let
us define two tangent vectors eα = ∂X/∂να on the surface. We note that the surface
geometry is completely described by its induced metric ηαβ and its induced second
fundamental form �αβ .43 Note that ηαβ = eα · eβ , where “·” denotes the dot product
in R

3. Let us denote the surface covariant derivative with ∇α . Then, one can write the
Gauss–Weingarten equations as ∇αeβ = �αβn, and ∇αn = −�αβeβ , where n is the
unit normal vector to the surface. Let us consider the deformation of the embedding
functions of the surface X(ν) → X(ν) + δX(ν) such that the variation field δX is
decomposed into the tangential and normal components as δX = (ψ�)αeα + ψ⊥n.
Using the relation �αβ = n · ∇αeβ , one may write

δ�αβ = δn · ∇α∇βX + n · ∇α∇βδX. (A.28)

Knowing that the variation of the unit normal vector is purely tangential, the first term
vanishes, i.e., δn ·∇α∇βX = δn ·∇αeβ = �αβ(δn) ·n = 0. After some simplification
and using the Codazzi–Mainardi equation ∇α�βγ = ∇β�αγ , one obtains

δ�αβ = �βγ ∇α(ψ�)γ + �αγ ∇β(ψ�)γ + (ψ�)γ ∇γ �αβ

−�αγ �γ
βψ⊥ + ∇α∇βψ⊥. (A.29)

Notice that the first three terms correspond to the Lie derivative of the induced second
fundamental form with respect to the tangential component of the variation field, and
thus, (A.29) can be rewritten as

�αβ = (Lψ��)αβ − �αγ �γ
βψ⊥ + ∇α∇βψ⊥. (A.30)

Therefore, (A.24) follows.

Appendix B: The Euler–Lagrange Equations of Elastic Shells

In this appendix, we discuss the derivation of the Euler–Lagrange equations. Substi-
tuting (3.8), (3.12), (3.18), and (3.20) into (3.6), one obtains

∫ t1

t0

∫
H

{
ρ(B�)a(δϕ

�)a + ρB⊥ · δϕ⊥

+∂L
∂ϕ̇

· D δϕ

dt
− ρLb

(
(δϕ�)aθba + ∂ δϕ⊥

∂xa
gab
)

+ ∂L
∂CAB

(
Fa

Aδϕ�
a|B + Fb

Bδϕ�
b|A − 2δϕ⊥Fa

AF
b
Bθab

)

43 Note that η and 	, respectively, correspond to C and � defined previously.
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+ ∂L
∂�AB

[
Fa

AF
b
B θab|c (δϕ�)c + Fa

Aθac(δϕ
�)c|B + Fb

Bθbc(δϕ
�)c |A

−δϕ⊥Fa
AF

b
Bθacθbd g

cd + Fb
A

(
∂ δϕ⊥

∂ xb

)
|B

]}
d Adt = 0. (B.1)

After some simplification, we have

∫ t1

t0

∫
H

{
ρ(B�)a(δϕ

�)a + ρB⊥ · δϕ⊥ + d

dt

(
∂L
∂ϕ̇

· δϕ

)

− d

dt

(
∂L
∂ϕ̇

)
· δϕ − ρLb(δϕ

�)aθba

−
(
ρLbδϕ

⊥ gab(F−1)Aa

)
|A +

(
ρLbg

ab(F−1)Aa

)
|A δϕ⊥

− 2
∂L

∂CAB
Fa

AF
b
Bθabδϕ

⊥ + 2

(
∂L

∂CAB
Fb

Bgcb(δϕ
�)c
)

|A

− 2

(
∂L

∂CAB
Fb

Bgcb

)
|A

(δϕ�)c

+ ∂L
∂�AB

Fa
AF

b
B θab|c (δϕ�)c + 2

(
∂L

∂�AB
Fa

Aθac(δϕ
�)c
)

|B

− 2

(
∂L

∂�AB
Fa

Aθac

)
|B

(δϕ�)c − ∂L
∂�AB

Fa
AF

b
Bθacθbd g

cdδϕ⊥

+
(

∂L
∂�AB

Fb
A
∂ δϕ⊥

∂ xb

)
|B

−
[(

∂L
∂�AB

Fb
A

)
|B

δϕ⊥(F−1)Db

]
|D

+
[(

∂L
∂�AB

Fb
A

)
|B

(F−1)Db

]
|D

δϕ⊥
}
d Adt = 0.

(B.2)

This can further be simplified to read

∫ t1

t0

∫
H

{[
ρ(B�)a − d

dt

(
∂L

∂(ϕ̇�)a

)
− ρLbθ

b
a

−2

(
∂L

∂CAB
Fb

Bgab

)
|A

+ ∂L
∂�AB

Fc
AF

b
B θcb|a

−2

(
∂L

∂�AB
Fb

Aθba

)
|B

]
(δϕ�)a +

[
ρB⊥ − d

dt

(
∂L
∂ϕ̇⊥

)
+
(
ρLbg

ab(F−1)Aa

)
|A

−2
∂L

∂CAB
Fa

AF
b
Bθab − ∂L

∂�AB
Fa

AF
b
Bθacθbd g

cd

+
((

∂L
∂�AB

Fb
A

)
|B

(F−1)Db

)
|D

]
δϕ⊥

+ d

dt

(
∂L
∂ϕ̇

· δϕ

)
−
(
ρLbδϕ

⊥ gab(F−1)Aa

)
|A + 2

(
∂L

∂CAB
Fb

Bgcb(δϕ
�)c
)

|A
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+2

(
∂L

∂�AB
Fa

Aθac(δϕ
�)c
)

|B
+
(

∂L
∂�AB

∂ δϕ⊥

∂X A

)
|B

−
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∂L
∂�AB

Fb
A

)
|B

δϕ⊥(F−1)Db

]
|D

}
d Adt = 0. (B.3)

We assume that δϕ(X , t0) = δϕ(X , t1) = 0. Using Stokes’ theorem, we have

∫ t1

t0

∫
H

{[
ρ(B�)a − d

dt

(
∂L

∂(ϕ̇�)a

)
− ρLbθ

b
a

− 2

(
∂L

∂CAB
Fb

Bgab

)
|A

+ ∂L
∂�AB

Fc
AF

b
B θcb|a

− 2

(
∂L

∂�AB
Fb

Aθba

)
|B

]
(δϕ�)a +

[
ρB⊥ − d

dt

(
∂L
∂ϕ̇⊥

)
+
(
ρLbg

ab(F−1)Aa

)
|A

− 2
∂L

∂CAB
Fa

AF
b
Bθab − ∂L

∂�AB
Fa

AF
b
Bθacθbd g

cd

+
((

∂L
∂�AB

Fb
A

)
|B

(F−1)Db

)
|D

]
δϕ⊥

}
d Adt +

∫ t1

t0

∫
∂H

{
∂L

∂�AB

∂ δϕ⊥

∂X A
TB

−
[
ρLbg

ab(F−1)Aa +
(

∂L
∂�CB

Fa
C

)
|B

(F−1)Aa

]
TAδϕ⊥

+ 2

[
∂L

∂CAB
Fa

Bgac + ∂L
∂�AB

Fa
Bθac

]
TA(δϕ�)c

}
dL dt = 0,

(B.4)

where T is the outward vector field normal to the boundary curve ∂H. Knowing that
δϕ�, δϕ⊥, and d(δϕ⊥) are arbitrary, from (B.4) the Euler–Lagrange equations (3.21)
along with the boundary conditions (3.22) are obtained.
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