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tion of screw dislocations in infinite orthotropic and monoclinic media, (ii) a cylindrically symmetric distribution of parallel
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1. Introduction

In anelasticity, any measure of strain has both an elastic and a non-elastic part. Given a pair of thermo-
dynamically conjugate stress and strain, locally a nonvanishing strain does not necessarily correspond to
a nonvanishing stress. Elastic strain refers to the part of strain that is locally related to the corresponding
stress. The remaining part is referred to as eigenstrain, a term that was first used by Mura [42].1 Defects
are one source of anelasticity. Vito Volterra, in his seminal work [62], pioneered the mathematical study
of defects many years before the first experimental observations of defects in solids. He classified line
defects into six types, three of which are now called dislocations or translational defects, and the other
three are called disclinations or rotational defects. Kondo [30,31] and Bilby et al. [3] independently ex-
plored the profound connections between the mechanics of defects and non-Riemannian geometries in the
1950s. Kondo [30,31] discovered that the reference configuration of a solid is not necessarily Euclidean
in the presence of defects. He realized that the curvature and the torsion of the reference manifold are
measures of incompatibility and the density of dislocations, respectively. Defects due to plastic deforma-
tions naturally occur in most of the known problems in mechanics and tribology, e.g., contact mechanics
[4,5,25,26], mechanical impact [16], and dislocation-boundary interactions [23,64]. Other examples of
anelastic sources include swelling and cavitation [21,41,47], bulk and surface growth [2,53,70], thermal
strains [45,51,56], and the presence of inclusions and inhomogeneities [18–20,74]. There have been some
theoretical investigations on the effects of eigenstrains in linear anisotropic media, e.g., [17,28,32,66], and
references therein.

Very little is known about the effects of material anisotropies on the stress field and energetics of defects
in solids. Eshelby [13] investigated infinitely long straight edge dislocations in linear anisotropic solids. He
extended Nabarro’s calculation of the width of a dislocation to the anisotropic case. His results are limited

1 One should, however, note that this term had been used by German researchers in its original German version
Eigenspannungen long before Mura’s work. Apparently, Mura decided not to translate Eigen; he only translated Spannung =
Strain. We are grateful to an anonymous reviewer who pointed this out to us.
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to edge dislocations with an axis that is an infinite straight line, but there is no restriction on the type of
anisotropy of the medium. Eshelby et al. [14] developed the general solution for the induced displacement
fields of dislocations in homogeneous linear anisotropic solids for the special case of the elastic state being
independent of one of the three Cartesian coordinates. The dynamical response of uniformly moving
dislocations in linear anisotropic media was studied by Teutonico [58]. It was observed that both edge and
screw dislocations are prone to exhibiting anomalous dynamical behavior such that the interaction force
between two parallel dislocations (on the same slip plane) changes sign when dislocation velocity increases.
Head [22] predicted instabilities of dislocations in some anisotropic metallic crystals. It was found that
a straight dislocation may decrease its energy if it changes to a zig-zag shape, i.e., a straight dislocation
may be unstable. In the setting of the linear theory of elasticity, Willis [67] analyzed dislocations in
anisotropic media (see also [68]). Particularly, the displacement fields of infinite straight dislocations
and plane curvilinear dislocation loops were obtained. Schaefer and Kronmüller [52] investigated the
elastic interaction of point defects in linear isotropic and anisotropic cubic media using Green’s function
approach. They specifically discussed the differences between the interactions in isotropic and anisotropic
materials and the effects of anisotropy on the interaction potential. Some basic developments in the
linear theory of dislocations in anisotropic media were presented in [24,34]. Methods for obtaining the
induced linear elastic fields of defects in transversely isotropic bimaterials and orthotropic bicrystals (in
2D) were proposed in [78,79], respectively. In particular, some closed-form solutions for the elastic fields
of inclusions and dislocations were presented.

A successive approximation method was proposed in [57] to study the nonlinear screw dislocation
problem using the linear elasticity solution. Nonetheless, the method fails to find the correct solution
near the dislocation axis. Only a handful of exact solutions for defects in nonlinear elastic solids exist in
the literature, and they are all restricted to isotropic materials. We should mention [1,15,49,65,72,81]
for dislocations, [8,75,81] for disclinations, and [6,73,76] for point defects and discombinations.

To the best of our knowledge, despite the known importance of the anisotropic behavior of solids,
especially at finite strains, the study of defects in the setting of nonlinear elasticity has been limited to
isotropic solids. In this paper, we study several examples of line and point defects in nonlinear anisotropic
solids and present some analytical solutions for their stress fields. We consider an arbitrary cylindrically
symmetric distribution of parallel screw dislocations in orthotropic and monoclinic media, along with
a parallel cylindrically symmetric distribution of wedge disclinations in an infinite orthotropic medium.
As the geometry of the material manifold explicitly depends on the distribution of defects, the material
preferred directions (that identify the type of anisotropy) in the reference configuration explicitly depend
on the defect distribution as well, and, in general, are different from those of the material in its cur-
rent configuration. For instance, for the distributed screw dislocations that we consider, the assumption
that the dislocated body is orthotropic in the reference (current) configuration implies that the body is
monoclinic in the current (reference) configuration.

In this paper, the boundedness of the stress on the dislocation and disclination axes will be discussed.
In particular, for an arbitrary cylindrically symmetric distribution of parallel screw dislocations the stress
exhibits a logarithmic singularity on the dislocation axis unless the axial deformation is suppressed. Note
that these singularities arise due to the presence of anisotropy, e.g., radial fiber reinforcement, and in
particular, they do not occur when the material is isotropic. Exploiting the so-called standard reinforcing
model (see, e.g., [38]), we obtain conditions under which the energy per unit length and the resultant
longitudinal force of a single screw dislocation for a fiber-reinforced material are finite provided that the
isotropic base material has a finite axial force and a finite energy per unit length. Employing Cartan’s
moving frames approach, for a given distribution of edge dislocations we will construct the material
manifold and obtain explicit solutions for the stress field when the medium is orthotropic. We will also
consider a spherically symmetric distribution of point defects in a finite transversely isotropic spherical
ball. We will show that for an arbitrary incompressible transversely isotropic material with the radial
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material preferred direction a uniform point defect distribution induces a uniform hydrostatic stress inside
the region the distribution is supported.

The rest of the paper is structured as follows. In Sect. 2, we tersely review some fundamentals of geo-
metric nonlinear anisotropic elasticity and some related topics on nonlinear defect mechanics. We consider
a cylindrically symmetric distribution of parallel screw dislocations in orthotropic and monoclinic media
in Sects. 3.1 and 3.2, respectively. A cylindrically symmetric distribution of parallel wedge disclinations
in an orthotropic medium is studied in Sect. 3.3. In Sect. 3.4, edge dislocations in an orthotropic medium
are considered. In Sect. 3.5, we calculate the residual stresses due to a spherically symmetric distribution
of point defects in a transversely isotropic ball. We end the paper with some remarks in Sect. 4.

2. Geometric anelasticity for anisotropic solids

In this section, we briefly review some fundamental elements of the geometric theory of nonlinear elasticity
for anisotropic solids. For more detailed discussions, see [36,77].

2.1. Kinematics

A body B is identified with a Riemannian manifold (B,G), and a configuration of B is a smooth embedding
ϕ : B → S, where (S,g) is a Riemannian manifold—the ambient space. An affine connection ∇ on a
smooth manifold B is a linear mapping ∇ : X (B) × X (B) → X (B), where X (B) represents the set of
all smooth vector fields on B, such that the following properties are satisfied ∀ X,Y,X1,X2,Y1,Y2 ∈
X (B),∀ f, f1, f2 ∈ C∞(B),∀ a1, a2 ∈ R (see [9,48] for more details): (a) ∇f1X1+f2X2Y = f1∇X1Y +
f2∇X2Y, (b) ∇X(a1Y1 + a2Y2) = a1∇X(Y1) + a2∇X(Y2), (c) ∇X(fY) = f∇XY + (Xf)Y. It can be
shown that there is a unique torsion-free and compatible affine connection associated with any Riemannian
manifold that is called the Levi-Civita connection. Let us denote the Levi-Civita connection associated
with the Riemannian manifolds (B,G) and (S,g) by ∇G and ∇g, respectively. We denote the set of all
configurations of B by C. A motion is a curve c : R

+ → ϕt ∈ C such that ϕt assigns a spatial point
x = ϕt(X) = ϕ (X, t) ∈ S to every material point X ∈ B at any time t. The body is assumed to be stress-
free in its reference configuration, which may have a nontrivial geometry, in general, e.g., in the presence of
eigenstrains. The deformation gradient F is the tangent map of ϕ defined as F(X, t) = dϕt(X) : TXB →
Tϕt(X)S. The adjoint of F is defined as FT(X, t) : Tϕt(X)S → TXB, g (FV,v) = G

(
V,FTv

)
, ∀V ∈

TXB, v ∈ Tϕt(X)S. The right Cauchy–Green deformation tensor is defined as C(X, t) = FT(X, t)F(X, t) :
TXB → TXB . The Finger deformation tensor is defined as b(x, t) = F(X, t)FT(X, t) : Txϕ (B) → Txϕ (B),
and in components, bab = F a

AF b
BGAB . Another measure of strain is the Lagrangian strain tensor E =

1
2 (ϕ∗

t g − G), where ϕ∗
t g is the pull-back of the spatial metric (in components (ϕ∗

t g)AB = F a
AF b

Bgab).
The Jacobian of deformation J relates the Riemannian volume element of the material manifold dV (X,G)
to that of the spatial manifold dv(ϕt(X),g), written as

J =

√
detg
detG

detF , dv(x,g) = J dV (X,G). (2.1)

2.2. Equilibrium equations

The localized balance of linear momentum in spatial and material forms is written as

div σ + ρb = ρa, Div P + ρ0B = ρ0A, (2.2)

where σ is the Cauchy stress and P is the first Piola–Kirchhoff stress, and ρ0, A, and B are the material
mass density, material acceleration, and material body force, respectively, and ρ, a, and b are their
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corresponding spatial counterparts. Note that the material and spatial divergence operators in components
are given as

(divσ)a = σab|b =
∂σab

∂xb
+ σacγb

cb + σcbγa
cb,

(DivP)a = P aA|A =
∂P aA

∂XA
+ P aBΓA

AB + P cAF b
Aγa

bc, (2.3)

where γa
bc and ΓA

BC denote the Christoffel symbols of the connections ∇g and ∇G, respectively. Note
that in the local coordinate charts {xa} and {XA}, one has ∇g

∂b
∂c = γa

bc∂a and ∇G
∂B

∂C = ΓA
BC∂A.

2.3. Material symmetry group

In the case of a simple material, the response function at any material point depends only on the first
deformation gradient (and its evolution) at that point [43]. Consider an elastic body made of a simple
material with the response function W at a material point X. We assume that the response function is
the energy function. A response function may be any measure of stress as well. The material symmetry
group GX associated with the body at the point X with respect to the reference configuration (B,G) is
defined as

W (X,FK,G,g) = W (F,G,g), ∀ K ∈ GX , (2.4)
for all deformation gradients F, where K : TXB → TXB is an invertible linear transformation. For
hyperelastic solids, objectivity implies that the energy function depends on the deformation at a referential
point X through the right Cauchy–Green deformation tensor C�, i.e., W = W (X,C�,G). Thus, the
material symmetry group GX for a hyperelastic solid is defined to be the subgroup of G-orthogonal
transformations Orth(G) such that [11]

W (X,Q−�C�Q−1,G) = W (X,C�,G), ∀ Q ∈ GX � Orth (G) , (2.5)

where Orth(G) =
{
Q : TXB → TXB | Q� = Q−1

}
, and we use the notation G � H when G is a

subgroup of H . Note that the set of orthogonal transformations is explicitly metric dependent. In other
words, if the material metric G changes, Orth(G), and hence, GX changes as well. The symmetry group
can be equivalently characterized using a finite collection of structural tensors ζi of order μi, i = 1, . . . , n,
forming a basis for the space of tensors that are invariant under the action of G as follows (also, see
[33,37,54])

Q ∈ G � Orth (G) ⇐⇒ 〈Q〉μ1
ζ1 = ζ1, . . . , 〈Q〉μn

ζn = ζn, (2.6)
where 〈Q〉μ is the μ-th power Kronecker product of a G-orthogonal transformation Q defined for any μ-th
order tensor ζ as (〈Q〉μ ζ)Ā1...Āμ = QĀ1

A1 . . . QĀμ
Aμ

ζA1...Aμ . Note that (2.6) suggests that the material
symmetry group G is the invariance group of the set of the structural tensors ζi, i = 1, . . . , n.

Remark 2.1. We define the material symmetry group at a material point in its natural (stress-free) state.
This has the following physical interpretation. One is given a body with a distribution of defects that
is residually stressed in its current configuration. Now imagine that the body is partitioned into a large
number of small elements and each is allowed to relax. The symmetry group of a material point in this
locally relaxed configuration is the same as its symmetry group in the Riemannian material manifold
(B,G).

Remark 2.2. In the so-called theory of “material uniformity” of Noll [44] and Wang [63], one characterizes
uniformity of the mechanical response of a body that may be residually stressed, although Noll and Wang
did not explicitly mention residual stresses (see also [12]). Their developments are essentially based on

the multiplicative decomposition of the deformation gradient into elastic and plastic parts: F =
e

F
p

F.

They call
p

F and
e

F a “local configuration,” and a “local deformation,” respectively. A body is “materially
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uniform” if its energy function (or any response function) depends only on
e

F and not on the material
point X. In our formulation of anelasticity, the deformation gradient is purely elastic; the plastic (defect)
part is buried into the material metric. Therefore, our symmetry group GX is what Noll and Wang call

the “isotropy group relative” to
p

F. Their “isotropy group relative” to
p

F explicitly depends on
p

F, while
our material symmetry group explicitly depends on the material metric G. What Wang [63] calls an

“intrinsic” Riemannian metric is our material metric G =
p

F T
p

F. However, Noll and Wang did not use
the concept of natural distances and a stress-free reference configuration; their main interest was the
material symmetry group. In particular, for isotropic solids the symmetry group is preserved under a
uniform scaling of the “intrinsic” Riemannian metric, i.e., this metric is unique for isotropic solids up to a
constant factor [63]. However, note that a scaling of G changes the natural distances. In other words, two
material metrics related by a uniform scaling are not equivalent in our geometric theory of anelasticity
as they do not correspond to equivalent reference configurations. More specifically, if the body is stress-
free in (B,G), in general, it is not stress-free in (B, α2G), if for example, the boundary has prescribed
displacements.

2.4. Constitutive equations

In this paper, our calculations are restricted to incompressible transversely isotropic, orthotropic, and
monoclinic solids. To establish a materially covariant strain energy density function, structural tensors
corresponding to the symmetry group of the material are used. For detailed discussions on structural
tensors and the determination of the integrity basis and the corresponding invariants of a set of tensors,
see [33,35,54,55,80].

2.5. Transverse isotropy

Let us assume a compressible transversely isotropic material such that the unit vector N(X) identifies
the material preferred direction at a point X in the reference configuration. The strain energy density per
unit volume of the reference configuration is given as (see, e.g., [10,35,55]) W = W (X,G,C�,A), where
A = N ⊗ N is a structural tensor representing the transverse isotropy of the material symmetry group,
and (.)� denotes the flat operator for lowering tensor indices. The second Piola–Kirchhoff stress tensor is
given by

S = 2
∂W

∂C�
. (2.7)

The energy function W depends on the following five independent invariants defined as

I1 = trC, I2 = detC tr C−1, I3 = detC, I4 = N · C · N, I5 = N · C2 · N. (2.8)

In components they read

I1 = CA
A, I2 = det(CA

B)(C−1)D
D, I3 = det(CA

B), I4 = NANBCAB , I5 = NANBCBQCQ
A. (2.9)

Using (2.7), one obtains2

S =
5∑

n=1

2WIn

∂In

∂C�
, WIn

:=
∂W

∂In
, n = 1, . . . , 5. (2.10)

2 For the sake of brevity, we do not assume an explicit dependence of W on X, which in the case of inhomogeneous
bodies is needed. We suppose instead that the material is piece-wise homogeneous and model an inhomogeneity using
different energy functions in different regions of the body.
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Note that

∂I1

∂C�
= G� ,

∂I2

∂C�
= I2C−1 − I3C−2 ,

∂I3

∂C�
= I3C−1 ,

∂I4

∂C�
= N ⊗ N ,

∂I5

∂C�
= N ⊗ C · N + N · C ⊗ N,

(2.11)

where (.)� is the sharp operator for raising tensor indices. Thus, from (2.10) and (2.11), one obtains the
following representation for the second Piola–Kirchhoff stress tensor

S = 2
{
WI1G

� + WI2

(
I2C−1 − I3C−2

)
+ WI3I3C−1 + WI4 (N ⊗ N) + WI5 (N ⊗ C · N + N · C ⊗ N)

}
.

(2.12)

If the material is incompressible, then I3 = 1, and thus, W = W (X, I1, I2, I4, I5). Therefore, from (2.12),
S is expressed as

S = 2
{
WI1G

� + WI2

(
I2C−1 − C−2

)
+ WI4 (N ⊗ N) + WI5 (N ⊗ C · N + N · C ⊗ N)

}
− pC−1,

(2.13)

in which p is the Lagrange multiplier associated with the incompressibility condition J = 1. The Cauchy
stress tensor σab = 1

J F a
AF b

BSAB is represented in component form as3

σab = 2F a
AF b

B

[
(WI1 +I1WI2)G

AB−WI2C
AB+WI4N

ANB+WI5

(
NQNACB

Q+NP NBCP
A
)]

−pgab.

(2.14)

2.6. Orthotropy

Next, we consider a compressible orthotropic material with three G-orthonormal vectors N1(X), N2(X),
and N3(X) specifying the orthotropic axes in the reference configuration at a point X. A choice of
structural tensors is given by A1 = N1 ⊗ N1, A2 = N2 ⊗ N2, and A3 = N3 ⊗ N3, where only two of
which are independent as A1 + A2 + A3 = I. Hence, the energy function is given as [10,35,55]

W = W (X,G,C�,A1,A2). (2.15)

The energy function W is represented in terms of the following seven independent invariants

I1 = trC , I2 = detC tr C−1 , I3 = detC , I4 = N1 · C · N1 ,

I5 = N1 · C2 · N1 , I6 = N2 · C · N2 , I7 = N2 · C2 · N2. (2.16)

Using (2.7), one writes

S =
7∑

n=1

2WIn

∂In

∂C�
, WIn

:=
∂W

∂In
, n = 1, . . . , 7. (2.17)

Substituting (2.11) into (2.17), the second Piola–Kirchhoff stress tensor is given by

S = 2
{

WI1G
� + WI2

(
I2C−1 − I3C−2

)

+WI3I3C−1 + WI4 (N1 ⊗ N1) + WI5 (N1 ⊗ C · N1 + N1 · C ⊗ N1)

+WI6 (N2 ⊗ N2) + WI7 (N2 ⊗ C · N2 + N2 · C ⊗ N2)
}

. (2.18)

3 Note that one can use the Cayley–Hamilton theorem to obtain ∂I2
∂C� = I2(C−1)� − I3(C−2)� = I1G� − C�.
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In the case of incompressible solids I3 = 1 and W = W (X, I1, I2, I4, I5, I6, I7). Therefore, using (2.18),
one obtains the following representation for the second Piola–Kirchhoff stress tensor

S = 2
{

WI1G
� + WI2

(
I2C−1 − C−2

)
+ WI4 (N1 ⊗ N1) + WI5 (N1 ⊗ C · N1 + N1 · C ⊗ N1)

+WI6 (N2 ⊗ N2) + WI7 (N2 ⊗ C · N2 + N2 · C ⊗ N2)
}

− pC−1. (2.19)

In components, the Cauchy stress tensor is given as

σab = 2F a
AF b

B

[
(WI1 + I1WI2)G

AB − WI2C
AB + WI4N1

AN1
B + WI5

(
N1

QN1
ACB

Q + N1
P N1

BCP
A
)

+WI6N2
AN2

B + WI7

(
N2

SN2
ACB

S + N2
KN2

BCK
A
) ]

− pgab. (2.20)

2.7. Monoclinic symmetry

One of the preferred directions of a material with a monoclinic symmetry (say N3(X)) is perpendicular
to the plane of the other two (denoted by N1(X) and N2(X)), which are not orthogonal. As an example
one can consider an isotropic base material reinforced with two families of fibers such that the fibers are
not at right angles, nor are they mechanically equivalent. In this case, the energy function is similar to
that of orthotropic materials given by (2.15), where A1 = N1 ⊗ N1 and A2 = N2 ⊗ N2. Nonetheless,
an extra invariant I8 = (N1 · N2)N1 · C · N2 that models the coupling between the fibers (in N1 and
N2 directions) is needed to express the energy function for monoclinic materials as N1 and N2 are not
perpendicular (see [7,40,61]). Therefore,

S =
8∑

n=1

2WIn

∂In

∂C�
, WIn

:=
∂W

∂In
, n = 1, . . . , 8. (2.21)

Hence4

S = 2
{

WI1G
�+WI2

(
I2C−1 − I3C−2

)
+WI3I3C−1+WI4 (N1 ⊗ N1)+WI5 (N1 ⊗ C · N1+N1 · C ⊗ N1)

+WI6 (N2 ⊗ N2) + WI7 (N2 ⊗ C · N2 + N2 · C ⊗ N2) +
WI8

2
(N1 ⊗ N2 + N2 ⊗ N1)

}
, (2.22)

and for incompressible solids

S = 2
{

WI1G
� + WI2

(
I2C−1 − C−2

)
+ WI4 (N1 ⊗ N1) + WI5 (N1 ⊗ C · N1 + N1 · C ⊗ N1)

+WI6 (N2 ⊗ N2) + WI7 (N2 ⊗ C · N2 + N2 · C ⊗ N2) +
WI8

2
(N1 ⊗ N2 + N2 ⊗ N1)

}
− pC−1.

(2.23)

The Cauchy stress is given in components as

σab = 2F a
AF b

B

[
(WI1 + I1WI2)G

AB − WI2C
AB + WI4N1

AN1
B

+WI5

(
N1

QN1
ACB

Q + N1
P N1

BCP
A
)

+WI6N2
AN2

B + WI7

(
N2

SN2
ACB

S + N2
KN2

BCK
A
)

+
WI8

2
(
N1

AN2
B + N2

AN1
B
) ]

− pgab. (2.24)

4 Note that ∂I8
∂C� = N1 ⊗ N2 + N2 ⊗ N1.
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2.8. Cartan’s moving frame

At a point X of a manifold B consider an orthonormal frame field {eα}N
α=1 forming a basis for TXB.

This frame field is not necessarily a coordinate basis for the tangent space. However, given a coordinate
basis { ∂

∂XA }, one can obtain an arbitrary frame field {eα} using an SO(N,R)-rotation of the coordinate
basis such that eα = FA

α
∂

∂XA . For a coordinate frame
[

∂
∂XA , ∂

∂XB

]
= 0,5 whereas for the non-coordinate

frame, [eα, eβ ] = −cγ
αβeγ , where cγ

αβ are the components of the object of anholonomy. One can show
that cγ

αβ = FA
αF

B
β (∂AF

γ
B − ∂BFγ

A), where Fγ
A is the inverse of FA

γ . Connection 1-forms are defined
by ∇eα = eγ ⊗ ωγ

α, and in components, ∇eβ
eα = 〈ωγ

α, eβ〉 eγ = ωγ
βαeγ . In terms of the co-frame field

{ϑα}N
α=1 corresponding to {eα}, one has ωγ

α = ωγ
βαϑβ . Similarly, one obtains ∇ϑα = −ωα

γϑγ and
∇eβ

ϑα = −ωα
βγϑγ . The metric tensor is represented as G = δαβϑα ⊗ϑβ . Metric compatibility of ∇ gives

the following constraints on the connection 1-forms: δαγωγ
β + δβγωγ

α = 0. In a non-coordinate basis,
the torsion and curvature have the following components: Tα

βγ = ωα
βγ − ωα

γβ + cα
βγ and Rα

βλμ =
∂βωα

λμ − ∂λωα
βμ + ωα

βξω
ξ
λμ − ωα

λξω
ξ
βμ + ωα

ξμcξ
βλ, respectively. Torsion and curvature 2-forms are,

respectively, given by T α = dϑα + ωα
β ∧ ϑβ and Rα

β = dωα
β + ωα

γ ∧ ωγ
β . These are Cartan’s first

and second structural equations. The density of Burgers’ vector b at a point X of B is related to torsion
2-from as follows

bα(X;Cs) =
∫

Ωs

Pα
βT β , (2.25)

where Ωs ∈ B is a smooth surface with a boundary given by the curve Cs, and P(Cs)t
τ : TCs(τ)B → TCs(t)B

parallel transports vectors tangent to the manifold at Cs(τ) to Cs(t) (see [27,46] for more details).

3. Examples of anisotropic bodies with distributed defects

In this section, we consider several examples of distributed defects in cylindrical bars made of orthotropic
and monoclinic solids as well as distributed defects in spherical balls made of transversely isotropic solids.
Particularly, we consider cylindrically symmetric distributions of parallel screw dislocations and discli-
nations in an orthotropic medium, a spherically symmetric distribution of point defects in a transversely
isotropic spherical ball, and a cylindrically symmetric distribution of screw dislocations in a monoclinic
medium. We also discuss the effects of the constitutive parameters on the induced stress fields for different
types of defects.

3.1. A cylindrically symmetric distribution of parallel screw dislocations in an orthotropic medium

Let us consider a cylindrically symmetric distribution of screw dislocations parallel to the Z-axis with a
radially symmetric Burgers’ vector density b(R) (in a cylindrical coordinate system (R,Θ, Z)) in an infinite
orthotropic medium. We assume that in the reference configuration the dislocated body is orthotropic.
The material preferred directions at a material point X are denoted by N1(X), N2(X), and N3(X) in
the reference configuration. In the current configuration, the preferred directions are given by n1(x),
n2(x), and n3(x) at the point x corresponding to the material point X. We assume that N1 and N2

are in the radial and axial directions, respectively. Note that N3, which is perpendicular to N1 and
N2, explicitly depends on the distribution of screw dislocations as will be seen in the following. This is
because the geometry of the material manifold has an explicit nontrivial dependence on the dislocation
distribution (see (3.1)). In the current configuration, the body will have monoclinic anisotropy as n1 will

5 Note that for any pair of vector fields U and V on B, one can define a new vector field—the commutator—given by
[U,V]Xf := UX(Vf) − VX(Vf), for any smooth function at X on B.
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be perpendicular to the plane of n2 and n3, which will not be orthogonal in the ambient space. It is
known that the material manifold for a nonlinear solid with distributed dislocations is a Weitzenböck
manifold, i.e., a manifold with torsion having a flat connection and vanishing non-metricity (see [46,72]
for more details). Therefore, the material metric for the dislocated body is written as

G =

⎛

⎝
1 0 0
0 R2 + f(R)2 f(R)
0 f(R) 1

⎞

⎠ , (3.1)

where f(R) is related to the Burgers’ vector density b(R) such that f ′(R) = R
2π b(R). Let us endow

the ambient space with the Euclidean metric g = diag{1, r2, 1}. We then assume an embedding of the
material manifold into the ambient space of the form (r, θ, z) = (r (R) ,Θ, αZ), where α is a positive
constant denoting the longitudinal stretch. Hence, F = diag{r′(R), 1, α}. Assuming incompressibility,

i.e., J =
√

detg
detGdetF = 1, one obtains r(R)

R r′(R)α = 1. Eliminating the rigid body translation by setting
r(0) = 0, one obtains r(R) = 1√

α
R. Therefore, the right Cauchy–Green deformation tensor is written as6

C =

⎛

⎜
⎜
⎜
⎜
⎝

1
α 0 0

0 1
α −α2f(R)

R2

0 − f(R)
α

α2

R2 (R2 + f(R)2)

⎞

⎟
⎟
⎟
⎟
⎠

. (3.2)

Note that N1 = ER, N2 = EZ , and N3 = 1
REΘ − f(R)

R EZ . Note also that N3 is obtained using the
orthonormality of the material preferred directions, and ER = ∂/∂R, EZ = ∂/∂Z, and EΘ = ∂/∂Θ form
a basis for TXB. Using (2.16), the invariants of the strain energy function are simplified and are written
as

I1 = trC =
2
α

+
α2

R2
(R2 + f(R)2) , I2 =

1
2
[
tr(C2) − (trC)2

]
=

1
α2

+ 2α + α
f(R)2

R2
,

I4 =
1
α

, I5 =
1
α2

, I6 = α2 , I7 =
α4

R2
(R2 + f(R)2).

(3.3)

The nonzero components of the Cauchy stress tensor following (2.20) read

σrr =
2
α2

[
WI2

(
α3 +

α3f(R)2

R2
+ 1
)

+ αWI4 + 2WI5

]
+

2WI1

α
− p(R), (3.4)

σθθ =
2αWI1 + 2

(
α3 + 1

)
WI2 − α2p(R)

αR2
, (3.5)

σzz =
2α

R2

[ (
f(R)2 + R2

)
(αWI1 + WI2 + 2α3WI7) + R2(WI2 + αWI6)

]
− p(R), (3.6)

σθz = −2f(R)
R2

(
αWI1 + WI2 + α3WI7

)
. (3.7)

We assume that the stress vanishes when the body is dislocation-free and the longitudinal stretch α = 1
(see also [19,38,61]). Thus

(WI4 + 2WI5) |I1=I2=3,I4=I5=I6=I7=1 = 0 , and (WI6 + 2WI7) |I1=I2=3,I4=I5=I6=I7=1 = 0. (3.8)

6 The symbolic computations in this paper were performed using Mathematica [69].
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In the absence of body and inertial forces, the only nontrivial equilibrium equation is σrb|b = 0, implying7

that (cf. (2.3)) σrr
,r + σrr

r − rσθθ = 0. Therefore, p′(R) = h(R), where

h(R) =
2

αR5

[
2R3f(R)f ′(R)

(
α2WI2 + α2WI1I1 + α(2 + α3)WI1I2 + α2WI1I4 + 2αWI1I5 + α4WI1I7

+ (α3 + 1)WI2I2 + αWI2I4 + 2WI2I5 + α3(α3 + 1)WI2I7 + α4WI4I7 + 2α3WI5I7

)

+ 2α3Rf(R)3f ′(R)
(
αWI1I2 + WI2I2 + α3WI2I7

)
− R2f(R)2

{
2αWI1I2(2 + α3)

+ 2α2WI1I4 + 4αWI1I5 + 2α4WI1I7 + α2WI2 + 2(α3 + 1)WI2I2 + 2αWI2I4 + 4WI2I5

+ 2α3(α3 + 1)WI2I7 + 2α4WI4I7 + 4α3WI5I7 + 2α2WI1I1

}

− 2α3f(R)4
(
αWI1I2 + WI2I2 + α3WI2I7

)
+ R4WI4

]
+

4WI5

α2R
. (3.9)

If one assumes that the medium is a cylindrical bar with a finite radius Ro and the surface R = Ro is
traction-free, one obtains

p(R) =

R∫

Ro

h(ζ)dζ +
2
α2

[(
α3 +

α3f(Ro)2

R2
o

+ 1
)

WI2 |R=Ro
+ αWI4 |R=Ro

+ 2WI5 |R=Ro

]
+

2
α

WI1 |R=Ro
.

(3.10)
Let us employ the so-called standard reinforcing model for compressible materials, which is defined as
[38,39,59]

W = W (I1, I2, I4, I5, I6, I7) = Wiso (I1, I2) + WR
fib (I4, I5) + WZ

fib (I6, I7) , (3.11)

where Wiso denotes the strain energy function for the isotropic base material, whereas WR
fib and WZ

fib

represent the anisotropy effects due to the fiber reinforcement in the radial and longitudinal directions,
respectively. Consider as an example a cylindrical body made of a Mooney–Rivlin solid reinforced with
fibers in the radial and longitudinal directions such that

W (I1, I2, I4, I5, I6, I7) =
μ1

2
(I1 − 3) +

μ2

2
(I2 − 3) +

γ1

2
(I4 − 1)2

+
γ2

2
(I5 − 1)2 +

ξ1

2
(I6 − 1)2 +

ξ2

2
(I7 − 1)2 .

(3.12)

Using (3.9), we have

h(R) = αμ2
f(R)
R3

[2Rf ′(R) − f(R)] +
2
R

1
α2

(
1
α

− 1
)[

αγ1 + 2γ2

(
1 +

1
α

)]
. (3.13)

Thus, from (3.10)

p(R) = αμ2

R∫

Ro

f(ζ)
ζ3

[2ζf ′(ζ) − f(ζ)] dζ +
2
α2

(
1
α

− 1
)[

αγ1 + 2γ2

(
1 +

1
α

)][
1 + ln

R

Ro

]

+
μ1

α
+

μ2

α2

(
α3 +

α3f(Ro)2

R2
o

+ 1
)

.

(3.14)

7 Note that p = p(R) is implied from the other equilibrium equations.
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The physical components of the Cauchy stress read8

σ̂rr =αμ2

(
f(R)2

R2
− f(Ro)2

R2
o

)
+ αμ2

Ro∫

R

f(ζ)
ζ3

[2ζf ′(ζ) − f(ζ)] dζ

− 2
α2

(
1
α

− 1
){

αγ1 + 2γ2

(
1 +

1
α

)}
ln

R

Ro
, (3.15)

σ̂θθ =αμ2

Ro∫

R

f(ζ)
ζ3

[2ζf ′(ζ) − f(ζ)] dζ − αμ2
f(Ro)2

R2
o

− 2
α2

(
1
α

− 1
){

αγ1 + 2γ2

(
1 +

1
α

)}[
1 + ln

R

Ro

]
, (3.16)

σ̂zz = 2α2(α2 − 1)ξ1 +
4α4ξ2

R2

(
f(R)2 + R2

)
[

α4

R2

(
f(R)2 + R2

)
− 1
]

+ αμ2

(
f(R)2

R2
− f(Ro)2

R2
o

)
− 2

α2

(
1
α

− 1
){

αγ1 + 2γ2

(
1 +

1
α

)}[
1 + ln

R

Ro

]

+ αμ2

Ro∫

R

f(ζ)
ζ3

[2ζf ′(ζ) − f(ζ)] dζ + (αμ1 + μ2)
(

α − 1
α2

)
+ α2μ1

f(R)2

R2
, (3.17)

σ̂θz = − f(R)
α

1
2 R

(
αμ1 + μ2 + 2α3ξ2

[
α4

R2

(
R2 + f(R)2

)
− 1
])

. (3.18)

Remark 3.1. From (3.14), for an arbitrary cylindrically symmetric distribution of parallel screw disloca-
tions, the pressure p(R), and hence, σ̂rr, σ̂θθ, and σ̂zz exhibit a logarithmic singularity on the dislocation
axis (R = 0) unless α = 1. Note that this singularity is inherently due to the anisotropy effects, i.e., the
presence of the reinforcement in the radial direction. In particular, the singularity does not occur when
γ1 = γ2 = 0, e.g., when the material is isotropic. Note also that as R → 0, f(R) = b(0)

4π R2 + O(R3), and
thus, f(R)

R is finite at R = 0. This implies that unlike the other stress components, σ̂θz is nonsingular.

Remark 3.2. Note that in the case of fiber-reinforced neo-Hookean materials (μ2 = 0) and a given arbi-
trary cylindrically symmetric distribution of screw dislocations supported on a cylinder of radius Ri, the
stress field for R > Ri is independent of b(R) and is identical to that of a single screw dislocation with
Burgers vector b0 =

∫ Ri

0
ηb(η)dη. Acharya [1] and Yavari and Goriely [72] had observed this for isotropic

neo-Hookean solids.

As an example, let us assume the following Burgers’ vector density distribution:

b(R) =

{
b0 0 < R ≤ Ri,

0 Ri < R ≤ Ro,
(3.19)

where Ri ≤ Ro. Thus,

f(R) =
1
2π

∫ R

0

ηb(η)dη =
b0

4π

{
R2 0 < R ≤ Ri,

R2
i Ri < R ≤ Ro.

(3.20)

Figure 1 depicts the variation of the different components of the Cauchy stress for the Burgers’ vector
density distribution (3.19) such that Ri/Ro = 0.5 and b0Ro = 20. Notice that the σ̂rr and σ̂θθ vanish for
a neo-Hookean solid.

8 The physical components of the Cauchy stress tensor, i.e., σ̂ab = σab√gaagbb (no summation) [60] are given as

σ̂rr = σrr, σ̂θθ = r2(R)σθθ, σ̂zz = σzz , and σ̂θz = r(R)σθz .
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Remark 3.3. As noted by Zubov [81], the energy per unit length (along the dislocation line) of a single
screw dislocation in a Mooney–Rivlin solid is unbounded.9 This is also the case for a fiber-reinforced
Mooney–Rivlin material due to the standard reinforcing model considered here (cf. (3.11)). Let us consider
incompressible isotropic base materials, for which the energy per unit length of a single screw dislocation
remains bounded, i.e., 2π

∫ Ro

0
Wiso(I1(ξ), I2(ξ))ξdξ < ∞, for finite Ro (examples include Varga [81],

incompressible power-law [29,49], generalized incompressible neo-Hookean materials [72], and Hencky
material [71]). Exploiting the standard reinforcing model, the energy function for the fiber-reinforced
material with the isotropic base with the energy function Wiso(I1, I2) is assumed to be given as

W = Wiso(I1, I2) +
γ1

2
(I4 − 1)2 +

γ2

2
(I5 − 1)2 +

ξ1

2
(I6 − 1)2 +

ξ2

2
(I7 − 1)β

. (3.21)

Then, the energy per unit length along a single screw dislocation line is finite if β < 1. To see this, we
need to show that 2π

∫ Ro

0
ξ2
2 (I7(ζ) − 1)β

ζdζ < ∞ as the finiteness of the contribution of the other terms
in the energy per unit length is trivial (cf. (3.3)). Noting that for a single screw dislocation with Burgers
vector bi, b(R) = 2πbi δ2(R), and hence, f(R) = bi

2π H(R), we have

πξ2

Ro∫

0

(I7(ζ) − 1)β
ζdζ = πξ2

Ro∫

0

[
α4

ζ2
(ζ2 + f(ζ)2) − 1

]β

ζdζ = πξ2

Ro∫

0

[
α4 − 1 +

α4b2
i

4π2ζ2

]β

ζdζ < ∞,

(3.22)

provided that β < 1. Similarly, one can show that if the resultant longitudinal force, i.e., FZ = 2π
∫ Ro

0
σ̂zz

(ζ)ζdζ, induced by a single screw dislocation is finite for the isotropic base material with the energy
function Wfib(I1, I2), so is the axial force for the fiber-reinforced material with the energy function (3.21)
when β < 1.

As the underlying geometry of the material manifold explicitly depends on the distribution of defects,
so are the material preferred directions (and thus, the material symmetry group). One of the consequences
of this is that the class of anisotropy of the defective body is, in general, different in the reference and
current configurations given that the reference configuration has a nontrivial geometry, whereas the
geometry of the current configuration is trivial. The next section is aimed at illustrating that depending
on whether the dislocated body is orthotropic in its reference configuration or in its current configuration,
the induced residual stresses are different.

3.2. A cylindrically symmetric distribution of parallel screw dislocations in a monoclinic medium

In the previous section, we assumed that the dislocated body is orthotropic in the reference configuration.
Instead, let us assume that the medium with the cylindrically symmetric distribution of parallel screw
dislocations is orthotropic in its current configuration such that the orthotropic axes are in the radial,
circumferential, and axial directions in the ambient space. In the reference configuration, the material
will be monoclinic such that N3 = R̂ is perpendicular to the plane of N1 = Θ̂ and N2 = Ẑ.10 We assume
the same class of deformations as was assumed in the previous section, and thus, r(R) = 1√

α
R. Hence,

the right Cauchy–Green deformation tensor is given by (3.2). The invariants of the strain energy function

9 Note, however, that the energy of distributed screw dislocations is not necessarily unbounded (see also [50]). In
particular, a Mooney–Rivlin reinforced material with the energy function (3.12) and the Burgers’ vector distribution (3.19)
has a finite energy per unit length.

10 Note that N1 = EΘ/(R2 + f(R)2)1/2 and N2 = EZ are not orthogonal in the nontrivial geometry of the reference
configuration (cf. (3.1)).
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Fig. 1. Stress distribution in a medium with the constitutive equation (3.12) and the dislocation distribution (3.19) such
that Ri/Ro = 0.5, b0Ro = 20, and α = 0.9 for different values of the constitutive parameters

for the monoclinic material are given as

I1 = tr(C) =
2
α

+
α2

R2
(R2 + f(R)2), I2 =

1
2
[
tr(C2) − (trC)2

]
=

1
α2

+ 2α + α
f(R)2

R2
,

I4 =
R2

α(R2 + f(R)2)
, I5 =

R2

α2(R2 + f(R)2)
, I6 = α2, I7 =

α4

R2
(R2 + f(R)2), I8 = 0. (3.23)
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From (2.24), the nonzero components of the Cauchy stress tensor read

σrr =
2WI2

α2

(
α3 +

α3f(R)2

R2
+ 1
)

+
2WI1

α
− p(R), (3.24)

σθθ =
2αWI1 + 2

(
α3 + 1

)
WI2 − α2p(R)

αR2
+

2(αWI4 + 2WI5)
α(R2 + f(R)2)

, (3.25)

σzz =
2α

R2

[ (
f(R)2 + R2

)
(αWI1 + WI2 + 2α3WI7) + R2(WI2 + αWI6)

]
− p(R), (3.26)

σθz = −2f(R)
R2

(
αWI1 + WI2 + α3WI7

)
− 2f(R)

R2 + f(R)2
WI5 +

α

(R2 + f(R)2)
1
2
WI8 . (3.27)

Note that for the stress to vanish when α = 1 and the body is dislocation-free, i.e., f(R) = 0 (identically),
one needs to have (WI4 + 2WI5) = (WI6 + 2WI7) = WI8 = 0, evaluated at I1 = I2 = 3, I4 = I5 = I6 =
I7 = 1, I8 = 0. The equilibrium equation implies that p′(R) = S(R), where

S(R) = − 1
α4R3

[
− 4αf(R) (Rf ′(R) − f(R))

(

α4WI1I1 + α3WI1I2 + α6WI1I7 − R4(αWI1I4 + WI1I5)
(f(R)2 + R2)2

)

− 4f(R)
(
α3 +

α3f(R)2

R2
+ 1
)

(Rf ′(R) − f(R))
{

α4WI1I2 + α3WI2I2 + α6WI2I7

− R4(αWI2I4 + WI2I5)
(f(R)2 + R2)2

}
+ 4α5f(R)WI2 (f(R) − Rf ′(R)) +

2α2R4(αWI4 + 2WI5)
f(R)2 + R2

− 2α5f(R)2WI2

]
. (3.28)

Assuming that the surface R = Ro is traction-free the pressure field is obtained as

p(R) =

R∫

Ro

S(ζ)dζ +
2
α2

(
α3 +

α3f(Ro)2

R2
o

+ 1
)

WI2 |R=Ro
+

2
α

WI1 |R=Ro
. (3.29)

Let us consider the following model for the strain energy function

W = W (I1, I2, I4, I5, I6, I7, I8) = Wiso (I1, I2) + WΘ
fib (I4, I5) + WZ

fib (I6, I7) + WZΘ
fib (I8), (3.30)

where Wiso describes that part of the energy function pertaining to the isotropic base material, while WΘ
fib

and WZ
fib represent the reinforcement effects in the circumferential and axial directions. WZΘ

fib (I8) models
the coupling between the axial and circumferential fibers. Note, however, that I8 = 0, and for the stress
to vanish for the dislocation-free body, one needs WI8 = 0 at I8 = 0, which implies that WZΘ

fib (I8) = 0,
i.e., the coupling term must vanish. A way out would be to require that the coupling term depends on
some other invariants as well, e.g., one can define WZΘ

fib (I1, I8) = ηI8(I1 − 3) for some positive constant
η. For the sake of simplicity, as an example, we consider a fiber-reinforced Mooney–Rivlin material with
the following energy function

W (I1, I2, I4, I5, I6, I7) =
μ1

2
(I1 − 3) +

μ2

2
(I2 − 3) +

λ1

2
(I4 − 1)2

+
λ2

2
(I5 − 1)2 +

ξ1

2
(I6 − 1)2 +

ξ2

2
(I7 − 1)2 . (3.31)
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Therefore, one obtains

S(R) =
1

α2R3 (f(R)2 + R2)

[
α3μ2f(R)(R2 + f(R)2)(2Rf ′(R) − f(R))

+ 2R4

{
αλ1 − R2

f(R)2 + R2
(
2λ2

α2
+ λ1) + 2λ2

}]
. (3.32)

Thus, the physical components of the stress are given as

σ̂rr = αμ2

(
f(R)2

R2
− f(Ro)2

R2
o

)
+

Ro∫

R

S(ζ)dζ, (3.33)

σ̂θθ =

Ro∫

R

S(ζ)dζ − αμ2
f(Ro)2

R2
o

+
2R2

α2(R2 + f(R)2)

[
αλ1

(
R2

α(R2 + f(R)2)
− 1
)

+ 2λ2

(
R2

α2(R2 + f(R)2)
− 1
)]

, (3.34)

σ̂zz = 2α2ξ1(α2 − 1) + 4α4ξ2

(
1 +

f(R)2

R2

)[
α4

(
1 +

f(R)2

R2

)
− 1
]

+

Ro∫

R

S(ζ)dζ

+ αμ2

(
f(R)2

R2
− f(Ro)2

R2
o

)
+ (αμ1 + μ2)(α − 1

α2
) + α2μ1

f(R)2

R2
, (3.35)

σ̂θz = − 1√
α

f(R)
R

(αμ1 + μ2) − 2ξ2α
5
2
f(R)

R

[
α4

(
1 +

f(R)2

R2

)
− 1
]

− 2λ2√
α

Rf(R)
R2 + f(R)2

(
R2

α2(R2 + f(R)2)
− 1
)

. (3.36)

Remark 3.4. For an arbitrary cylindrically symmetric distribution of parallel screw dislocations with a
smooth Burgers’ vector density b(R) in a monoclinic material, the pressure, and hence, σ̂rr, σ̂θθ, and σ̂zz

have a logarithmic singularity on the dislocation axis unless α = 1. Nevertheless, the shear component
σ̂θz is finite and vanishes at R = 0. This is because as R → 0, f(R) = b(0)

4π R2 + O(R3), and thus, from
(3.32)

S(R) =
2 (α − 1)

α2

[
λ1 +

2λ2

α

(
1 +

1
α

)]
1
R

+ O(R). (3.37)

Therefore, p(R) = C − 2(α−1)
α2

[
λ1 + 2λ2

α

(
1 + 1

α

)]
ln R

Ro
+ O(R2) as R → 0, where C is a constant. It is

straightforward to see that when α = 1, the stress is finite and σ̂rr = σ̂θθ = σ̂zz at R = 0.

In Fig. 2, the stress field is shown for the dislocation distribution (3.19), where Ri/Ro = 0.5 and
b0Ro = 20 for different values of the constitutive parameters given by (3.31).

3.3. A parallel cylindrically symmetric distribution of wedge disclinations in an orthotropic medium

Let us consider a parallel cylindrically symmetric distribution of wedge disclinations in an infinite or-
thotropic medium in the reference configuration. In the cylindrical coordinates (R,Θ, Z), assume that the
material orthotropic axes are in the R, Θ, and Z directions. The radial density of the wedge disclinations
is denoted by w(R). The material manifold for a body having a distribution of wedge disclinations is
a Riemannian manifold with a nonvanishing curvature. The material metric for the disclinated body is
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Fig. 2. Stress distribution in a medium with the constitutive equation (3.31) and the dislocation distribution (3.19) such
that Ri/Ro = 0.5, boRo = 20, and α = 0.9 for different values of the constitutive parameters

given by [75]

G =

⎛

⎝
1 0 0
0 f(R)2 0
0 0 1

⎞

⎠ , (3.38)
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where f ′′(R) = − R
2π w(R). The ambient space is endowed with the Euclidean metric g = diag{1, r2, 1}.

We embed the material manifold into the ambient space by looking for mappings11 of the form (r, θ, z) =
(r(R),Θ, αZ), where α is a constant representing the axial stretch of the bar that depends on the axial
boundary conditions. Therefore, the deformation gradient reads F = diag (r′(R), 1, α). Incompressibility

constraint dictates that J =
√

detg
detGdetF = α r(R)

f(R)r
′(R) = 1. Thus, imposing r(0) = 0, we have r(R) =

(
2
α

∫ R

0
f(ξ)dξ

) 1
2
. The right Cauchy–Green deformation tensor reads C = diag

{
1

α2
f(R)2

r(R)2 , r(R)2

f(R)2 , α2
}

. From
(2.16), the invariants of the strain energy function are simplified to read

I1 = tr(C) = α2 +
1
α2

f(R)2

r(R)2
+

r(R)2

f(R)2
, I2 =

1
2
(tr(C2) − tr(C)2) =

1
α2

+ α2 r(R)2

f(R)2
+

f(R)2

r(R)2
,

I4 =
1
α2

f(R)2

r(R)2
, I5 =

1
α4

f(R)4

r(R)4
, I6 = α2, I7 = α4.

(3.39)

The nonzero physical components of the Cauchy stress are as follows12

σ̂rr =
2
α2

f(R)2

r(R)2
(
WI1 + α2WI2 + WI4

)
+

4
α4

f(R)4

r(R)4
WI5 +

2
α2

WI2 − p(R), (3.40)

σ̂θθ = 2
r(R)2

f(R)2
(
WI1 + α2WI2

)
+

2
α2

WI2 − p(R), (3.41)

σ̂zz = 2α2
(
WI1 + WI6 + 2α2WI7

)
+ 2WI2

(
f(R)2

r(R)2
+ α2 r(R)2

f(R)2

)
− p(R). (3.42)

The equilibrium equation implies that p′(R) = k(R), where

k(R) =
2

α8f3r9

[
2α4f4r7f ′ (α2WI1 + WI1I2 − 2WI1I5 + α4WI2 + α2WI2I2 + WI2I4 − 2α2WI2I5 + α2WI4

)

+ 2α2f6r5f ′ (α2WI1I1 +2α4WI1I2 +2α2WI1I4 +α6WI2I2 +2α4WI2I4 +2WI2I5 +α2WI4I4 +4α2WI5

)

− 2α6f2r9f ′ (WI1I1 + 2α2WI1I2 + WI1I4 + α4WI2I2 + α2WI2I4

)

+ 8α2f8r3f ′ (WI1I5 + α2WI2I5 + WI4I5

)
+ 8f10WI5I5rf

′ − 2α6r11f ′ (WI1I2 + α2WI2I2

)

− α3f6r5
(
α2WI1 + 2WI1I2 − 4WI1I5 + α4WI2 + 2α2WI2I2 + 2WI2I4 − 4α2WI2I5 + α2WI4

)

− α5f2r9
(
α2WI1 − 2WI1I2 + α4WI2 − 2α2WI2I2

)
− 8αf10r

(
WI1I5 + α2WI2I5 + WI4I5

)

− 2αf8r3
(
α2WI1I1 +2α4WI1I2 + 2α2WI1I4 +α6WI2I2 + 2α4WI2I4 + 2WI2I5 + α2WI4I4 + 3α2WI5

)

+ 2α5f4r7
(
WI1I1 + 2α2WI1I2 + WI1I4 + α4WI2I2 + α2WI2I4

)
− 8f12WI5I5

αr

]
.

(3.43)
Assuming (3.12) for the energy function, one obtains

p′(R) = − 1
α9fr10

[
− 2α7f2r8f ′ (α2μ2 − 2γ1 + μ1

)
+ α5f4r6

{
α
(
α2μ2 − 2γ1 + μ1

)
− 8(γ1 − 2γ2)f ′}

− 32αγ2f
8r2f ′ + 6α4(γ1 − 2γ2)f6r4 + 28γ2f

10 + α8r10
(
α2μ2 + μ1

) ]
.

(3.44)

11 Note that for the class of deformations that is considered, the material will be orthotropic in its current configuration
as well. The orthotropic axes in the current configuration will be in the radial, circumferential, and axial directions (similar
to those in the reference configuration).

12 When the body is disclination-free f(R) = R, and the stress vanishes if the energy function satisfies (3.8).



 81 Page 18 of 28 A. Golgoon and A. Yavari ZAMP

Knowing that the traction vanishes on the outer boundary R = Ro, one finds

p(Ro) =
1
α2

f(Ro)2

r(Ro)2

{
μ1 + α2μ2 + 2γ1

[
1
α2

f(Ro)2

r(Ro)2
− 1
]}

+
4γ2

α4

f(Ro)4

r(Ro)4

[
1
α4

f(Ro)4

r(Ro)4
− 1
]

+
μ2

α2
. (3.45)

Therefore, p(R) =
∫ R

Ro
p′(ξ)dξ + p(Ro). The stress components are simplified and read

σ̂rr =
1
α2

f(R)2

r(R)2

{
μ1 + α2μ2 + 2γ1

[
1
α2

f(R)2

r(R)2
− 1
]}

+
4γ2

α4

f(R)4

r(R)4

[
1
α4

f(R)4

r(R)4
− 1
]

+
μ2

α2
− p(R), (3.46)

σ̂θθ =
r(R)2

f(R)2
(
μ1 + α2μ2

)
+

μ2

α2
− p(R), (3.47)

σ̂zz =α2
[
μ1 + 2ξ1(α2 − 1) + 4α2ξ2(α4 − 1)

]
+ μ2

[
f(R)2

r(R)2
+ α2 r(R)2

f(R)2

]
− p(R). (3.48)

Example 3.5. For a uniform disclination distribution w(R) = wo, one has f ′′(R) = − R
2π wo, and thus,

f(R) = R − wo

12π R3. Therefore

r(R) =
R

α
1
2

(
1 − wo

24π
R2
) 1

2
, (3.49)

provided that wo < 24π/R2
o.

Remark 3.6. For the uniform disclination distribution, the stress field exhibits a logarithmic singularity
on the disclinations axis unless the axial stretch α = 1. Moreover, when α = 1, the stress is finite and
hydrostatic at R = 0. To see this, as R → 0, r(R) = R

α
1
2

+ O(R3), and f(R) = R + O(R3). From (3.44),
therefore

p(R) = C +
2(1 − α)

α4

[
α2γ1 + 2γ2(1 + α)

]
ln R + O(R2), (3.50)

where C is a constant. Hence, the stress is logarithmically unbounded at R = 0 unless α = 1. Similar to
the case of parallel screw dislocations in an orthotropic medium (cf. Remark. 3.1), the singularity arises
as a result of radial reinforcement effects, and does not, in particular, occur in isotropic materials. Note
that for α = 1, at R = 0, one has σ̂rr = σ̂θθ = σ̂zz = μ1 + 2μ2 +

∫ Ro

0
p′(ξ)dξ − p(Ro).

In Fig. 3, we show the variation of the stress components for the uniform disclination distribution
with wo = 8π/R2

o and for some different values of the constitutive parameters.13

Example 3.7. For a single wedge disclination ω(R) = 2πΘoδ
2(R), where Θo is the angle of the wedge

shape region that is removed in Volterra’s cut-and-weld operation (see [75] for more details). Therefore,
f ′′(R) = −Θo

2π δ(R), which implies that f(R) = R(1 − Θo

2π ), and thus, r(R) = R

α
1
2
(1 − Θo

2π )
1
2 . Figure 4

illustrates the stress distribution for different values of the reinforcement and the base material parameters
in the case of a single wedge disclination of positive sign with Θo = π

2 .

13 Note that the numerical values shown in [75]’s Fig. 4 are not correct. This was caused by a typo in the sign of the
integral term in the numerical evaluation of the pressure function from Eq. (4.23). In other words, the numerical values in
that figure correspond to the following (incorrect) relation for the pressure with a positive sign for the integral term

p(R) = μ
f2(Ro)

r2(Ro)
+ μ

Ro∫

R

⎡

⎢
⎢
⎢
⎣

f(η)f ′(η)
η∫

0

f(ξ)dξ

− f3(η)

4(
η∫

0

f(ξ)dξ)2
− 1

f(η)

⎤

⎥
⎥
⎥
⎦

dη.
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Fig. 3. σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for a uniform disclination distribution
with ωo = 8π/R2

o such that α = 1

Fig. 4. σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for a single positive wedge disclination
with Θo = π/2 such that α = 1
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3.4. Distributed edge dislocations in an orthotropic medium

Next, we consider a distribution of edge dislocations in an orthotropic medium such that the material
preferred directions are parallel to the Cartesian axes in the Cartesian coordinates (X,Y,Z). Let us
consider the orthonormal frame field {eα(X,Y,Z)}3

α=1, where e1, e2, and e3 are in the X, Y , and Z-
directions, respectively. We assume that the edge dislocation distribution consists of dislocations with (i)
the dislocation line parallel to the Z-axis such that the Burgers’ vector density is given by b1(Z)e1 +
c1(Z)e2, (ii) X-oriented Burgers’ vector density b2(X,Y,Z)e1 such that the dislocation line is parallel to
the Y -axis, (iii) Y -oriented Burgers’ vector c2(X,Y,Z)e2 with the dislocation line parallel to the X-axis.
Let us consider the following co-frame field (see also [72])

ϑ1 = eξ(Z)+γ(Y )dX, ϑ2 = eη(Z)+λ(X)dY, ϑ3 = eψ(Z)dZ, (3.51)

where ξ(Z), γ(Y ), η(Z), λ(X), and ψ(Z) are scalar functions to be determined. The corresponding frame
field reads

e1 = e−ξ(Z)−γ(Y )∂X , e2 = e−η(Z)−λ(X)∂Y , e3 = e−ψ(Z)∂Z . (3.52)
Note that G = δαβϑα ⊗ ϑβ , and thus

G = diag
{

e2
(
ξ(Z)+γ(Y )

)
, e2
(
η(Z)+λ(X)

)
, e2ψ(Z)

}
. (3.53)

The above dislocation distribution corresponds to the following torsion 2-forms (cf. (2.25))

T 1 = b1(Z)ϑ3 ∧ ϑ1 + b2(X,Y,Z)ϑ1 ∧ ϑ2, T 2 = c1(Z)ϑ2 ∧ ϑ3 + c2(X,Y,Z)ϑ1 ∧ ϑ2, T 3 = 0. (3.54)

This represents a distribution of edge dislocations with the following total Burgers’ vector density

b(X,Y,Z) = (b1(Z) + b2(X,Y,Z)) e1 + (c1(Z) + c2(X,Y,Z)) e2

= e−ξ(Z)−γ(Y ) [b1(Z) + b2(X,Y,Z)] ∂X + e−η(Z)−λ(X) [c1(Z) + c2(X,Y,Z)] ∂Y .
(3.55)

From (3.51), one obtains

dϑ1 = e−ψ(Z)ξ′(Z)ϑ3 ∧ ϑ1 + e−η(Z)−λ(X)γ′(Y )ϑ2 ∧ ϑ1,

dϑ2 = e−ψ(Z)η′(Z)ϑ3 ∧ ϑ2 + e−ξ(Z)−γ(Y )λ′(X)ϑ1 ∧ ϑ2, dϑ3 = 0.
(3.56)

Metric compatibility implies the following connection 1-forms matrix

ω = [ωα
β ] =

⎛

⎝
0 ω1

2 −ω3
1

−ω1
2 0 ω2

3

ω3
1 −ω2

3 0

⎞

⎠ . (3.57)

Cartan’s first structural equations give the following connection 1-forms

ω1
2 =

(
b2(X,Y,Z) + γ′(Y )e−η(Z)−λ(X)

)
ϑ1 +

(
c2(X,Y,Z) − λ′(X)e−ξ(Z)−γ(Y )

)
ϑ2,

ω2
3 =

(
c1(Z) + η′(Z)e−ψ(Z)

)
ϑ2, ω3

1 =
(
b1(Z) − ξ′(Z)e−ψ(Z)

)
ϑ1.

(3.58)

The second structural equations, i.e., Rα
β = 0 are trivially satisfied if one assumes that

ξ′(Z) = b1(Z)eψ(Z), γ′(Y ) = −b2(X,Y,Z)eη(Z)+λ(X), η′(Z) = −c1(Z)eψ(Z),

λ′(X) = c2(X,Y,Z)eξ(Z)+γ(Y ).
(3.59)

Thus,

η′(Z) = − 1
b2

∂b2

∂Z
, λ′(X) = − 1

b2

∂b2

∂X
, γ′(Y ) = − 1

c2

∂c2

∂Y
, ξ′(Z) = − 1

c2

∂c2

∂Z
, ψ(Z) = ln

[
−1
b1c2

∂c2

∂Z

]
,

(3.60)
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where one needs to have ∂b2
∂Z = − c1b2

b1c2
∂c2
∂Z and − 1

b1c2
∂c2
∂Z > 0. If we assume that b2 and c2 are separable in

X, Y , and Z, i.e., b2 = b2X(X)b2Y (Y )b2Z(Z) and c2 = c2X(X)c2Y (Y )c2Z(Z), then

eη(Z) =
C1

b2Z(Z)
, eλ(X) =

C2

b2X(X)
, eγ(Y ) =

C3

c2Y (Y )
, eξ(Z) =

C4

c2Z(Z)
, eψ(Z) = − c2Z(Z)′

b1(Z)c2Z(Z)
,

(3.61)
where Ci, i = 1, . . . , 4 are constants of integration. The compatibility conditions are written as

C1C2 b2Y (Y ) =
c′
2Y (Y )

c2Y (Y )
, C3C4 c2X(X) = −b′

2X(X)
b2X(X)

,
b′
2Z(Z)

b2Z(Z)
= −c1(Z)

b1(Z)
c′
2Z(Z)

c2Z(Z)
. (3.62)

Therefore, we have the material manifold (3.53) for the edge dislocation distributions with the Burgers’
vector density (3.55). For the sake of simplicity of calculations, in the remaining of this section we consider
two simplified cases of the distribution (3.55): (i) b2(X,Y,Z) = c2(X,Y,Z) = 0, γ(Y ) = 0, λ(X) = 0,
ψ(Z) = 0, and (ii) b2(X,Y,Z) = c2(X,Y,Z) = 0, γ(Y ) = 0, λ(X) = 0, c1(Z) = 0, η(Z) = 0.

Case (i). From (3.55), the Burgers’ vector density reads b = b(Z) = b1(Z)e1+c1(Z)e2 = b1(Z)e−ξ(Z)∂X+
e−η(Z)c1(Z)∂Y , where, using (3.59), ξ′(Z) = b1(Z) and η′(Z) = −c1(Z). The material metric (3.53) is
simplified as G = diag

{
e2ξ(Z), e2η(Z), 1

}
. Looking for solutions of the form (x, y, z) = (X,Y, αZ), the

incompressibility constraint implies that J = α
eξ(Z)+η(Z) = 1, and thus, ξ(Z) + η(Z) = lnα. This means

that ξ′(Z) + η′(Z) = 0, and hence, c1(Z) = b1(Z). Choosing orthonormal vectors N1 = e−ξ(Z)∂X ,
N2 = e−η(Z)∂Y , and N3 = ∂Z as the orthotropic axes, the invariants of the energy function are obtained
from (2.16) as follows

I1 = α2 + e−2ξ(Z) +
1
α2

e2ξ(Z) , I2 =
1
α2

+ e2ξ(Z) + α2e−2ξ(Z) ,

I5 = I2
4 = e−4ξ(Z) , I7 = I2

6 =
e4ξ(Z)

α4
. (3.63)

Therefore, the nonzero components of the Cauchy stress tensor read

σ̂xx = 2e−2ξ(Z)

[
WI1 +

(
e2ξ(Z)

α2
+ α2

)
WI2 + WI4

]
+ 4e−4ξ(Z)WI5 − p(Z), (3.64)

σ̂yy =
2
α2

e2ξ(Z)
[
WI1 +

(
e−2ξ(Z) + α2

)
WI2 + WI6

]
+

4
α4

e4ξ(Z)WI7 − p(Z), (3.65)

σ̂zz = 2α2

[
WI1 +

(
e−2ξ(Z) +

e2ξ(Z)

α2

)
WI2

]
− p(Z). (3.66)

Equilibrium equations imply that σ̂zz = C, where C is a constant. Vanishing of the traction vector on
surfaces parallel to the X − Y plane gives the pressure field as

p(Z) = 2α2

[
WI1 +

(
e−2ξ(Z) +

e2ξ(Z)

α2

)
WI2

]
. (3.67)

Case (ii). The Burgers’ vector density is given by b = b(Z) = b1(Z)e1 = b1(Z)e−ξ(Z)∂X , where ξ′(Z) =
b1(Z). From (3.53), the material metric reads G = diag

{
e2ξ(Z), 1, e2ψ(Z)

}
. We then look for solutions

of the form (x, y, z) = (X,Y, αZ). Incompressibility implies that J = α
eξ(Z)+ψ(Z) = 1, and hence, ξ(Z) +

ψ(Z) = ln α. The orthotropic axes are N1 = e−ξ(Z)∂X , N2 = ∂Y , and N3 = e−ψ(Z)∂Z . The invariants of
the strain energy function read
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I1 = 1 + e−2ξ(Z) + e2ξ(Z) , I2 = 1 + e2ξ(Z) + e−2ξ(Z) , I5 = I2
4 = e−4ξ(Z) , I6 = I7 = 1. (3.68)

The nonzero components of the Cauchy stress are given as

σ̂xx = 2WI2 + 2e−2ξ(Z) (WI1 + WI2 + WI4) + 4e−4ξ(Z)WI5 − p(Z), (3.69)

σ̂yy = 2WI1 + 2WI2

(
e−2ξ(Z) + e2ξ(Z)

)
+ 2WI6 + 4WI7 − p(Z), (3.70)

σ̂zz = 2
(
WI2 + e2ξ(Z)(WI1 + WI2)

)
− p(Z). (3.71)

The equilibrium equation and the vanishing of traction vector on surfaces parallel to X − Y plane give

p(Z) = 2
(
WI2 + e2ξ(Z)(WI1 + WI2)

)
. (3.72)

3.5. A spherically symmetric distribution of point defects in a transversely isotropic ball

In this section, we calculate the stress field of a spherically symmetric distribution of point defects with
the volume density n(R)14 in a transversely isotropic ball of radius Ro. The material manifold of a
medium with distributed point defects is a flat Weyl manifold [73]. Let us assume that the material
preferred direction is radial, i.e., N = R̂,15 where R̂ is a unit vector in the radial direction. The material
metric for the body with a radial distribution of point defects in the spherical coordinates (R,Θ,Φ) reads
G = diag

{
f2(R), R2, R2 sin2 Θ

}
, where

f(R) =
1 − n(R)

1 − 1
R3

∫ R

0
3y2n(y)dy

. (3.73)

We endow the ambient space with the flat Euclidean metric g = diag
{
1, r2, r2 sin2 θ

}
in the spher-

ical coordinates (r, θ, φ). Given an embedding of the form (r, θ, φ) = (r (R) ,Θ,Φ), the deformation
gradient is written as F = diag{r′(R), 1, 1}. The right Cauchy–Green deformation tensor reads C =
diag

{
r′2(R)
f2(R) , r2(R)

R2 , r2(R)
R2

}
. Assuming incompressibility, the Jacobean is expressed as

J =

√
detg
detG

detF =
r2(R)r′(R)

R2f(R)
= 1. (3.74)

This gives r(R) =
(∫ R

0
3ξ2f(ξ)dξ

) 1
3
. Using (2.8), the invariants are written as

I1 = tr(C) =
R4

r4(R)
+ 2

r2(R)
R2

, I2 =
1
2
(tr(C2) − tr(C)2) =

r4(R)
R4

+
2R2

r(R)2
,

I5 = I2
4 =

R8

r8(R)
. (3.75)

14 Note that n(R) < 0 for a distribution of vacancies, and n(R) > 0 for a distribution of interstitials.
15 Note that R̂ = 1

f(R)
ER is the unit vector identifying the material preferred direction, where ER = ∂

∂R
such that

〈〈ER,ER〉〉G = GRR.
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Using (3.74), the nonzero stress components read16

σ̂rr = 2
R4

r4(R)
(WI1 + WI4) + 4

R2

r2(R)
WI2 + 4

R8

r8(R)
WI5 − p(R),

σ̂θθ = σ̂φφ = 2
r2(R)
R2

WI1 + 2
R2

r2(R)
WI2 + 2

r4(R)
R4

WI2 − p(R).
(3.77)

The nontrivial equilibrium equation is simplified to read 1
r′(R)σ

rr
,R + 2

r σrr − 2rσθθ = 0. This gives
p′(R) = q(R), where

q(R) = − 4
R3r19

[
f
{

R9r12 (WI1 + 4WI2I2 − 4WI2I5 + WI4) + R3r18 (WI1 − 4WI2I2)

+ R7r14 [WI2 − 2 (WI1I1 + WI1I4)] + 2R13r8 (WI1I1 + 2WI1I4 + WI4I4 + 3WI5)

+ 2R11r10 (3WI1I2 − 2WI1I5 + 3WI2I4) − 2R5r16 (3WI1I2 + WI2I4) + 8R17r4 (WI1I5 + WI4I5)

+ RWI2r
20 + 12R15WI2I5r

6 + 8R21WI5I5

}
− 2r3

{
R6r12 (WI1 + 2WI2I2 − 2WI2I5 + WI4)

+ R4r14 (WI2 − WI1I1 − WI1I4) + R10r8 (WI1I1 + 2WI1I4 + WI4I4 + 4WI5)

+ R8r10 (3WI1I2 − 2WI1I5 + 3WI2I4) − R2r16 (3WI1I2 + WI2I4) + 4R14r4 (WI1I5 + WI4I5)

− 2WI2I2r
18 + 6R12WI2I5r

6 + 4R18WI5I5

}]
.

(3.78)
Next, we assume an energy function corresponding to a radially reinforced Mooney–Rivlin spherical ball
of the following form

W (I1, I2, I4, I5) =
μ1

2
(I1 − 3) +

μ2

2
(I2 − 3) +

γ1

2
(I4 − 1)2 +

γ2

2
(I5 − 1)2 , (3.79)

where μ1 and μ2 are constants of the Mooney–Rivlin base material, while γ1 and γ2 are nonnegative ma-
terial constants pertaining to the reinforcement strength in the radial direction. Thus, (3.78) is simplified
to read

p′(R) = − 2
R2r19

[
f
{
6R12(γ1 − 2γ2)r8 + R8(μ1 − 2γ1)r12 + μ2R

6r14 + μ1R
2r18 + μ2r

20 + 28γ2R
20
}

− 2R3r3
(
4R6(γ1 − 2γ2)r8 + R2(μ1 − 2γ1)r12 + μ2r

14 + 16γ2R
14
) ]

.

(3.80)
The stress components are also simplified and read

σ̂rr =
R4

r4

[
μ1 + 2γ1

(
R4

r4
− 1
)]

+ 2μ2
R2

r2
+ 4γ2

R8

r8

(
R8

r8
− 1
)

− p,

σ̂θθ = σ̂φφ = μ1
r2

R2
+ μ2

R2

r2
+ μ2

r4

R4
− p.

(3.81)

Assuming that the boundary of the ball is traction-free, one obtains

p(Ro) =
R4

o

r4(Ro)

{
μ1 + 2γ1

[
R4

o

r4(Ro)
− 1
]}

+ 2μ2
R2

o

r2(Ro)
+ 4γ2

R8
o

r8(Ro)

[
R8

o

r8(Ro)
− 1
]

. (3.82)

16 When the body is defect-free, f(R) = 1, and thus, I1 = I2 = 3 and I4 = I5 = 1. If one assumes that the stress
vanishes in this case, one has (see [38,61] for similar conditions)

(
2WI5 + WI4

) |I1=I2=3,I4=I5=1 = 0. (3.76)
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Fig. 5. σ̂rr and σ̂θθ distributions for different values of the constitutive parameters for the point defect distribution (3.84)
with Ri/Ro = 0.3 and no = −0.1

Thus,

p(R) = 2

Ro∫

R

1
ξ2r19(ξ)

{

f(ξ)
[
6ξ12(γ1 − 2γ2)r8(ξ) + ξ8(μ1 − 2γ1)r12(ξ) + μ2ξ

6r14(ξ) + μ1ξ
2r18(ξ)

+ μ2r
20 + 28γ2ξ

20
]

− 2ξ3r3(ξ)
[
4ξ6(γ1 − 2γ2)r8(ξ) + ξ2(μ1 − 2γ1)r12 + μ2r

14(ξ) + 16γ2ξ
14
]
}

dξ

+ p(Ro).
(3.83)

Let us consider the following distribution of point defects in the ball

n(R) =

{
no 0 ≤ R ≤ Ri,

0 Ri < R ≤ Ro.
(3.84)

Therefore, from (3.73)

f(R) =
{

1, 0 ≤ R ≤ Ri,
(1 − no(Ri/R)3)−1, Ri < R ≤ Ro,

(3.85)

and hence,

r(R) =

{
R, 0 ≤ R ≤ Ri,[
R3 + noR

3
i ln (R/Ri)

3−no

1−no

]1/3

, Ri < R ≤ Ro.
(3.86)

Figure 5 shows the stress field variation for the point defect distribution (3.84), when Ri/Ro = 0.3 and
no = −0.1 for different values of the reinforcement and base material constants in (3.79).

Remark 3.8. Consider an arbitrary nonlinear incompressible transversely isotropic spherical ball of radius
Ro such that the material preferred direction is radial. Suppose that the ball is subject to a uniform
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pressure on its boundary and has the point defect distribution (3.84). Then, in the ball R ≤ Ri, the stress
is uniform and hydrostatic. Interestingly, the value of the hydrostatic stress inside the ball R ≤ Ri has an
explicit dependence on the reinforcement parameters (see Fig. 5). To show this, for R ≤ Ri, f(R) = 1 and
r(R) = R, following (3.85) and (3.86), respectively. Therefore, after some simplification, (3.78) implies
that p′(R) = q(R) = 4

R (WI4 + 2WI5) |I1=I2=3,I4=I5=1 = 0 using the relation (3.76). Hence, for R ≤ Ri,
p(R) = C, where C is a constant depending on the reinforcement and the base material parameters. From
(3.77), σ̂rr = σ̂θθ = σ̂φφ = 2 (WI1 + 2WI2) |I1=I2=3,I4=I5=1 − C for R ≤ Ri.

4. Concluding remarks

Despite the crucial role that anisotropy plays in the overall response of materials in the presence of
large strains, the study of defects in nonlinear solids has been overwhelmingly restricted to isotropic
materials to this date. In this paper, we presented a few analytical solutions for the stress fields induced
by distributed line and point defects in nonlinear anisotropic solids. We considered a parallel cylindrically
symmetric distribution of screw dislocations in infinite orthotropic and monoclinic media, and also, a
cylindrically symmetric distribution of parallel wedge disclinations in an orthotropic medium. Because
the material manifold is endowed with a nontrivial Riemannian metric that explicitly depends on the
defect distribution, the material preferred directions, and hence, the class of anisotropy of the defective
body is, in general, different in the reference and current configurations. We observed, in particular, that
for a cylindrically symmetric distribution of screw dislocations, assuming that the body is orthotropic in
its reference (current) configuration, it is monoclinic in its current (reference) configuration. We found
that for an arbitrary cylindrically symmetric distribution of parallel screw dislocations, and for a uniform
wedge disclination distribution, the stress field is logarithmically singular on the dislocation and the
disclination axes unless the axial deformation is suppressed. These stress singularities are inherently due
to the anisotropy effects, e.g., the radial fiber reinforcement, and do not, in particular, arise in isotropic
materials. This observation demonstrates the significance of taking material anisotropy into consideration
in the analysis of solids with distributed defects. For a single screw dislocation, we employed the standard
reinforcing model and discussed the conditions that guarantee that the energy per unit length and the
resultant axial force are finite for a fiber-reinforced material as long as the isotropic base material has a
finite energy per unit length and a finite axial force. For a distribution of edge dislocations, the resulting
stresses are calculated when the medium is orthotropic. Finally, we studied a spherically symmetric
distribution of point defects in a transversely isotropic spherical ball. We showed that for an incompressible
transversely isotropic ball with the radial material preferred direction, a uniform point defect distribution
results in a uniform hydrostatic stress field inside the spherical region the distribution is supported in.
The dynamics, stability, and interactions of defects in anisotropic solids, at finite strains are exciting
problems that will be the subjects of future communications.
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[62] Volterra, V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales scientifiques de l’École normale
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