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Abstract Ericksen’s problem consists of determining all equilibrium deformations that can
be sustained solely by the application of boundary tractions for an arbitrary incompress-
ible isotropic hyperelastic material whose stress-free configuration is geometrically flat. We
generalize this by first, using a geometric formulation of this problem to show that all the
known universal solutions are symmetric with respect to Lie subgroups of the special Eu-
clidean group. Second, we extend this problem to its anelastic version, where the stress-free
configuration of the body is a Riemannian manifold. Physically, this situation corresponds to
the case where nontrivial finite eigenstrains are present. We characterize explicitly the uni-
versal eigenstrains that share the symmetries present in the classical problem, and show that
in the presence of eigenstrains, the six known classical families of universal solutions merge
into three distinct anelastic families, distinguished by their particular symmetry group. Some
generic solutions of these families correspond to well-known cases of anelastic eigenstrains.
Additionally, we show that some of these families possess a branch of anomalous solutions,
and demonstrate the unique features of these solutions and the equilibrium stress they gen-
erate.
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1 Introduction

Universal deformations in nonlinear elasticity are deformations that exist for all members
of a particular class of materials in the absence of body forces. Given any member of a par-
ticular class of materials, any universal deformation for that class can be maintained by the
application of surface tractions alone. For instance in unconstrained isotropic elastic mate-
rials, only homogeneous deformations are universal. However, adding material constraints,
i.e., restricting the class under consideration, expands the set of universal solutions. In par-
ticular, under the imposition of incompressibility, there are five known families of universal
deformations in addition to the universal homogeneous deformations, now restricted to iso-
choric homogeneous deformations in keeping with the material constraint.

The process of obtaining and classifying all universal solutions is a highly nontrivial task.
This line of research originates in the seminal work of Jerald Ericksen. In 1954, he made
the first systematic attempt to classify all universal deformations in isotropic incompressible
elasticity [7]. His work revealed four families of universal solutions in addition to homo-
geneous solutions. In 1955, he completely solved the analogous problem for unconstrained
elastic bodies, proving that the only compressible universal solutions are homogeneous de-
formations [8]. In the case of incompressible elasticity, another family of universal solutions
was then discovered by Singh and Pipkin [33], with a special case of this family discovered
by Klingbeil and Shield [16]. Additionally, Fosdick [9] noted that a different special case
of this deformation represented a universal solution with constant invariants, a special case
not addressed by Ericksen’s initial work. Further contributions and specializations of this
problem were made by a number of authors [10, 15, 17, 19, 21] and the current conjecture
is that no other solution to Ericksen’s problem exist but a proof of it remains an outstanding
open problem of rational mechanics [1].

Here, we are interested in generalizing Ericksen’s problem to nonlinear anelasticity. In
anelasticity, we consider geometric deformations combining both elastic deformations and
an additional anelastic component to the deformation, i.e., one that does not contribute to the
strain energy. Such theories are known to be relevant in many situations that generalize clas-
sical nonlinear elasticity [5] such as thermal effects [27, 34], plastic flows [18], dislocations
and defects [3, 25, 37], growth and remodeling [14, 23, 30, 35, 36], and swelling [28, 29].
Such processes are characterized by the presence of eigenstrains [22] that do not produce
corresponding stresses or, equivalently, by changing the intrinsic geometry of the reference
configuration from Euclidean to Riemannian. These eigenstrains are generally incompatible,
and therefore further elastic strains are typically required to embed bodies with nontrivial
eigenstrains into Euclidean space, with the resulting self-equilibrating elastic stresses gen-
erated by this strain referred to as residual stresses.

The first step in this research program was to generalize Ericksen’s theorem for com-
pressible isotropic materials to anelastic deformations. By using a geometric formulation, it
was proved that only covariantly homogeneous deformations are universal [40]. The second
step, considered here, is to extend the current classification of isotropic incompressible non-
linear elasticity to isotropic incompressible nonlinear anelasticity. This general problem is
more involved than the classical Ericksen problem as we have to determine simultaneously
both the anelastic and elastic components that render the solutions universal.

While anelastic deformations can be modeled through a multiplicative decomposition
[31], it is equivalent but more appropriate in our context to model them as a stress-free
evolution of a general Riemannian manifold, the material manifold, via some anelastic pro-
cess [6, 14, 24, 37]. This non-Euclidean material configuration contains all the informa-
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Table 1 Standard forms of the Cauchy deformation tensors for the generic branches of the three symmetric
anelastic incompressible isotropic universal deformation families

Family Coordinates Generic Cauchy tensor Incompressibility

U2 Cartesian {x, y, z} [
cab

] =
⎡

⎢
⎣

c11 (x) 0 0

0 c22 (x) c23 (x)

0 c23 (x) c33 (x)

⎤

⎥
⎦ det cab = 1

U3 Cylindrical {r, θ, z} [
cab

] =
⎡

⎢
⎣

c11 (r) 0 0

0 c22 (r) c23 (r)

0 c23 (r) c33 (r)

⎤

⎥
⎦ det cab = r2

U4 Spherical {r, θ,φ} [
cab

] =
⎡

⎢
⎣

g (r)−2 0 0

0 g (r) r2 sin2 φ 0

0 0 g (r) r2

⎤

⎥
⎦ Identically Satisfied

tion of the anelastic processes. It can then be mapped by an elastic deformation into the
current Euclidean configuration. Only the strain induced by the elastic component appears
in the strain-energy formulation, which models the notion that the anelastic deformation
changes the relaxed geometry of the material, and that only the further elastic deformation
stores energy by straining the material. In looking for universal solutions, both the Rie-
mannian metric of the material manifold and the elastic deformation are unknowns to be
determined.

In this paper, we extend the currently known families of incompressible universal solu-
tions to the anelastic setting in an appropriately symmetric way, which will be precisely de-
fined shortly. In the process of doing this, we discover that under these symmetry conditions,
all families exhibit a branch of generic universal solutions that contain arbitrary functions as
parameters, but some families also contain anomalous universal solution branches outside
of these, whose form is fixed up to a finite number of constants. Additionally, we find that
the six classical families of universal solutions merge into three distinct anelastic families,
characterized by their respective symmetry groups. The Cauchy deformation tensors of the
generic branches of these families can all be expressed in the forms presented here in Ta-
ble 1, with the standard forms of the anomalous branches presented in Sect. 8, as they are
more involved. In Sect. 2, we provide an overview of the geometric features of anelasticity
and provide the relevant governing equations of elasticity in this context. The known univer-
sal solution families are summarized in Sect. 3. Then, in Sect. 4 we compute the appropriate
symmetry group for each family and impose this symmetry on the metric tensor field a
priori. We then formulate the problem of extending the universal families to the anelastic
setting and outline the techniques used in our analysis in Sect. 5. In Sect. 6 we derive the
form of the generic solutions for each family and obtain the constant invariant conditions
that are necessary for anomalous solutions to exist. In Sect. 7 we present the general form of
the anomalous solutions, relegating the explicit calculations to Appendix B. In Sect. 8, we
examine the overlap of these families of solutions. Finally, we present some visualizations
of the Riemannian geometry of strains and stresses induced by these anomalous solutions
in Sect. 9, and summarize our results in Sect. 10. We have provided two other appendices,
Appendix A containing summaries of the algebraic and group theoretic tools we employ in
our analysis, and Appendix C, detailing particular features of the Lie algebra se(3), which
plays a key role in our analysis.
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Fig. 1 General motion from B
to C; ϕ maps a point in B to its
corresponding point in the
current configuration ϕ(B)

2 Nonlinear Elasticity and Anelasticity

In the geometric formulation of nonlinear elasticity, we define the ambient space to be a
Riemannian manifold (S,m), where m is a fixed background metric. Since we are interested
in universal deformations that take place in Euclidean space we assume that the ambient
space is Euclidean. Then, a body is defined as a Riemannian manifold (B,M). We define a
motion as an isotopy ϕ

ϕ : B ×R→ C ⊂ S, (1)

parameterized by time t that gives a homeomorphism at each time t between the reference
configuration B and the physical configuration at time t defined by ϕ(B, t) (see Fig. 1): We
use coordinate charts {XA} and {xa} for B and C, respectively. We utilize uppercase Latin
letters to denote most quantities and indices in the reference configuration, and lowercase
Latin letters to denote most quantities and indices in the physical configuration.

The homeomorphism at time t , ϕ(−, t), can be interpreted physically as determining the
position of a small piece of material at time t , given its position in B, which is interpreted
as an initial position, though the important feature of the reference configuration is that it
specifies the relaxed geometry of the body; it is not necessarily the initial configuration of the
body. While in elasticity, (B,M) is Euclidean, for an anelastic system, (B,M) may not be
Euclidean and, in such case, ϕ0 ≡ ϕ(−,0) is not the identity map. Since ϕ0(B) and ϕ(B, t)

correspond to physical configurations, we model them as subsets of Euclidean space, and
hence, we identify positions with vectors.

Since we are interested in equilibrium states, we restrict our attention to a finite time
t∗ > 0 and suppress the explicit time-dependence so that we define, with a slight abuse of
notation, ϕ(B) = ϕ(B, t∗).

2.1 Kinematics

The local properties of deformations are encapsulated in the derivative of the map ϕ that we
explore next. The tangent space of B at X ∈ B is denoted by TXB. The tangent space of the
corresponding point x = ϕ(X) in the ambient space is denoted by Tϕ(X)C. The deformation
gradient F is the derivative map of ϕ:

F(X) = T ϕ(X) : TXB → Tϕ(X)C. (2)

With respect to the coordinate charts {XA} and {xa}, F it is defined as follows

F = ∂ϕa

∂XA

∂

∂xa
⊗ dXA . (3)

The adjoint of F is

FT(X, t) : Tϕ(X)C → TXB , g (FV,v) = M
(
V,FTv

)
, ∀V ∈ TXB, v ∈ Tϕ(X)C . (4)
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In components, (F T)A
a = MABmabF

b
B . Note that the adjoint explicitly depends on the

metrics M and m. The right Cauchy-Green deformation tensor is defined as

C(X) = FT(X)F(X) : TXB → TXB. (5)

It is straightforward to see that C� = ϕ∗m, which has components CAB = Fa
AF b

Bmab [20].
The Jacobian relates the material and spatial Riemannian volume elements as dv(x,m) =
JdV (X,M), where J is given by

J =
√

det m
det M

det F . (6)

2.2 Equilibrium Equations

The balance of linear momentum in the absence of body and inertial forces in terms of the
Cauchy stress tensor reads

divσ = 0 , (7)

where div is the spatial divergence operator, defined in components as

(divσ )a = σab |b = ∂σ ab

∂xb
+ σacγ b

cb + σ cbγ a
cb , (8)

and γ a
bc is the Christoffel symbol of the Levi-Civita connection ∇m of the metric m in the

coordinate chart {xa}, defined as ∇m
∂b

∂c = γ a
bc∂a . The local form of the balance of angular

momentum reads σab = σba , i.e., the Cauchy stress is symmetric.
The first Piola-Kirchhoff stress is defined as P = JσF−	, and in components, P aA =

Jσab(F−1)A
b . F	 is the deal of F, and is defined as F	 = ∂ϕa

∂XA dXA ⊗ ∂
∂xa . The balance of

linear momentum in terms of P reads Div P = 0. In components

P aA|A = ∂P aA

∂XA
+ P aB
A

AB + P cAF b
Aγ a

bc = 0 , (9)

where 
A
BC is the Christoffel symbol of the Levi-Civita connection ∇M of the metric M in

the coordinate chart {XA}, defined as ∇M
∂B

∂C = 
A
BC∂A. The balance of angular momen-

tum in terms of P reads PFT = FPT.

2.3 Constitutive Equations

In this paper we restrict ourselves to bodies that are isotropic in the absence of eigen-
strains. We also assume that the elastic deformations are incompressible. The left Cauchy-
Green stretch tensor is defined as B� = (

ϕ−1
)
∗ (m−1) and has components BAB =

(F−1)A
a(F

−1)B
b mab , where mab are components of m−1. The spatial analogues of C�

and B� are defined as

c� = (
ϕ−1

)∗
M, cab = (

F−1
)A

a

(
F−1

)B
b MAB, and b� = ϕ∗(M−1), bab = Fa

AF b
BMAB,

(10)
where b� is called the Finger deformation tensor. The two tensors C and b have the same
principal invariants, which are denoted by I1, I2, and I3 [26]. In the case of an isotropic
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solid the energy function W depends only on I1, I2, and I3. If the material is incompressible
(I3 = 1), W = W(I1, I2), and the Cauchy stress has the following representation [32]1

σ =
(

−p + 2I2
∂W

∂I2

)
m−1 + 2

∂W

∂I1
b� − 2

∂W

∂I2
c�, (12)

where p is a Lagrange multiplier that is associated with the incompressibility constraint
J = 1.

2.4 Ericksen’s Problem

The classical elastic Ericksen problem is stated as follows: Determine all equilibrium de-
formations ϕ : B → C with B,C ⊂ E

3 that can be sustained by an arbitrary incompressible
isotropic hyperelastic solid with suitable boundary tractions.

The emphasis of the classical problem is that both configurations are Euclidean. Here, we
consider a generalized version of this problem applicable to anelastic systems. The anelastic
Ericksen problem relaxes the requirement that B ⊂ E

3 and is stated as follows: Determine all
Riemannian manifolds (B,M), and all maps ϕ : B → C with C ⊂ E

3 that can be sustained
by an arbitrary incompressible isotropic hyperelastic solid with suitable boundary tractions.

These problems are treated locally in the sense that the equilibrium equations are locally
satisfied by these deformations for arbitrary incompressible isotropic hyperelastic materi-
als. We do not address non-local problems such as self-intersection or self-contact beyond
requiring that our solutions be locally homeomorphisms, which is guaranteed by the condi-
tion det F > 0. This condition ensures that over some domain our solution is an embedding,
rather than an immersion.

3 The Known Universal Deformations

We begin with the known families of incompressible universal solutions in the absence of
eigenstrains. We merely present them and direct the reader to the original papers for their
derivation [7, 8, 16, 33]. The corresponding deformation gradients are derived explicitly in
[14]. The emphasis and novelty here is in the particular type of symmetry associated to each
family as they will play a key role in the generalization of the problem to anelastic systems.
Expressed in terms of the standard Cartesian coordinates {x, y, z}, cylindrical polar coordi-
nates {r, θ, z}, or spherical polar coordinates {r, θ,φ} (letting capital letters denote reference
configuration coordinates, and lower case letters denote current configuration coordinates),
we have the following six universal families.

Family 0: Homogeneous Deformations Using the Cartesian coordinates {xa} = {x, y, z}
and {XA} = {X,Y,Z}, this family is most compactly expressed as

xa = Fa
AXA + ca, (13)

1As p is a scalar field to be determined the stress representation can equivalently be written as

σ = −pm−1 + 2
∂W

∂I1
b� − 2

∂W

∂I2
c�. (11)
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Fig. 2 All homogeneous deformations amount to a combination of stretching, shearing, and rotation. The
shearing vanishes on a specific set of principal basis vectors by virtue of the polar decomposition of Fa

A

Fig. 3 The stretching, shearing,
and bending of a rectangular
block around a cylinder

where Fa
A is a constant tensor with detFa

A = 1, and ca is a constant vector. A deformation
of this type is depicted in Fig. 2. The form of equation (13) immediately reveals that the
deformation gradient is Fa

A, as evidenced by the induced tangent map dxa = Fa
AdXA.

Since the deformation gradient F is constant, Fa
A(XA) = Fa

A, the transformation

XA → X̄A = XA + CA, ∀CA ∈R, (14)

leaves the deformation gradient unchanged, and hence, CAB remains unchanged. In terms
of symmetry group, we notice that the action XA → XA + CA is precisely the action of
T(3) ⊂ SE(3) on E

3.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block When expressed
using cylindrical polar coordinates {r, θ, z} and Cartesian coordinates {X,Y,Z} in the cur-
rent and reference configurations, respectively, universal deformations in this family take
the form

r = √
A(2X + D), θ = B (Y + E) , z = Z

AB
− BCY + F, (15)

though the parameters E and F correspond to rigid motions, and hence, can be safely disre-
garded. These parameters generate rotation around and translation along the r = 0 axis, as
seen in Fig. 3. We can compute the deformation gradient, which when expressed on mixed
orthonormal frames, takes the form

F = A

r
er ⊗ EX + Breθ ⊗ EY − BCez ⊗ EY + 1

AB
ez ⊗ EZ, (16)

or in terms of a mixed coordinate bases, we have the components

[
Fa

A = ∂xa

∂XA

]
=

⎡

⎢
⎣

A
r

=
√

A
2X+D

0 0

0 B 0
0 −BC 1

AB

⎤

⎥
⎦ . (17)
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Fig. 4 Straightening and
subsequent stretching and
shearing of an annular wedge

Working in terms of the mixed bases will often be advantageous when computing sym-
metries and the components of arbitrary metric tensors, as these bases are automatically
induced by the coordinate map. Additionally, we demand AB 
= 0 to ensure the deformation
is invertible; the incompressibility condition is automatically satisfied. We compute CAB as

[CAB] =
⎡

⎣
A

2X+D
0 0

0 B2
(
A(2X + D) + C2

) −C
A

0 −C
A

1
A2B2

⎤

⎦ , (18)

and note that this remains unchanged under the transformation

Y → Ȳ = Y + C1, Z → Z̄ = Z + C2, ∀C1,C2 ∈ R. (19)

This is precisely the action of T(2) ⊂ SE(3) on E
3.

Family 2: Straightening, Stretching, and Shearing of an Annular Wedge Deforma-
tions in this family are most naturally expressed using Cartesian and cylindrical polar coor-
dinates {x, y, z} and {R,�,Z} in the current and reference configurations respectively, and
take the form

x = 1

2
AB2R2 + D, y = �

AB
+ E, z = Z

B
+ C�

AB
+ F. (20)

An example of one of these deformations is depicted in Fig. 4. The corresponding deforma-
tion gradient is

F = AB2Rex ⊗ ER + 1

ABR
ey ⊗ E� + C

ABR
ez ⊗ E� + 1

B
ez ⊗ EZ, (21)

or, in terms of the induced coordinate bases

[
Fa

A

] =
⎡

⎣
AB2R = √

2AB2 (x − D) 0 0
0 1

AB
0

0 C
AB

1
B

⎤

⎦ . (22)

We demand AB 
= 0 to ensure the deformation is invertible, and as in the previous case, the
incompressibility condition is automatically satisfied. Thus

[CAB] =
⎡

⎣
A2B4R2 0 0

0 1+C2

A2B2
C

AB2

0 C

AB2
1

B2

⎤

⎦ . (23)
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Fig. 5 The twisting, extension,
and axial shearing of a
cylindrical sector

The transformation

� → �̄ = � + 
, Z → Z̄ = Z + K, ∀
,K ∈ R, (24)

leaves these components unchanged. This is the action of SO(2) × T(1) ⊂ SE(3) on E
3.

Family 3: Torsion, Extension, and Shearing of an Annular Wedge When expressed in
cylindrical polar coordinates, deformations in this family take the form

r2 = AR2 + B, θ = C� + DZ + G, z = E� + FZ + H, (25)

and an example of a deformation from this family is depicted in Fig. 5. The deformation
gradient can be naturally expressed on orthonormal cylindrical polar bases as

F = AR

r
er ⊗ ER + Cr

R
eθ ⊗ E� + Dreθ ⊗ EZ + E

R
ez ⊗ E� + F ez ⊗ EZ, (26)

or equivalently on the coordinate bases, it has components

[
Fa

A

] =
⎡

⎢
⎣

√
A(r2−B)

r2 =
√

A2R2

AR2+B
0 0

0 C D

0 E F

⎤

⎥
⎦ . (27)

We have the incompressibility condition A(CF − DE) = 1, which also ensures invertibil-
ity. Thus, CAB is written as

[CAB] =
⎡

⎣
A2R2

AR2+B
0 0

0 C2
(
AR2 + B

) + E2 CD
(
AR2 + B

) + EF

0 CD
(
AR2 + B

) + EF D2
(
AR2 + B

) + F 2

⎤

⎦ , (28)

and notice that CAB does not depend on � or Z.

Family 4: Inflation/Eversion of a Sphere In spherical polar coordinates {r, θ,φ} and
{R,�,
}, deformations in this family take the form

r3 = ±R3 + A3, θ = ±�, φ = 
. (29)

An example of one of these deformations is depicted in Fig. 6. The deformation gradient on
orthonormal bases reads

F = ±R2

r2
er ⊗ ER + r

R

(
eφ ⊗ E
 ± eθ ⊗ E�

)
, (30)
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Fig. 6 Inflation of a spherical
cap

or, in terms of the coordinate bases, we have the components

[
Fa

A

] =

⎡

⎢
⎢
⎣

R2

(±R3+A3)
2
3

= (±r3∓A3)
2
3

r2 0 0

0 ±1 0
0 0 1

⎤

⎥
⎥
⎦ . (31)

Incompressibility and invertibility are trivially satisfied. Thus

[CAB] =

⎡

⎢⎢
⎣

R4

(±R3+A3)
4/3 0 0

0
(±R3 + A3

)2/3
sin2 
 0

0 0
(±R3 + A3

)2/3

⎤

⎥⎥
⎦ . (32)

We can then represent this tensor on an orthonormal spherical basis (using the standard
Euclidean metric) as

C(X) = R4

(±R3 + A3
)4/3 ER ⊗ ER +

(±R3 + A3
)2/3

R2
(I − ER ⊗ ER) , (33)

where I is the identity tensor, and ER = X
|X| . This obeys the symmetry transformation

C (QX) = QC(X)QT, ∀Q ∈ SO(3), (34)

which is symmetry under the prolonged action of SO(3) ⊂ SE(3) on TE3 ⊗ T∗
E

3.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge
When expressed in cylindrical polar coordinates {r, θ, z} and {R,�,Z}, deformations in this
family take the form

r = AR, θ = B logR + C� + D, z = EZ + F. (35)

An example of one of these deformations is presented in Fig. 7. The deformation gradient
expressed on orthonormal bases is written as

F = Aer ⊗ ER + ABeθ ⊗ ER + ACeθ ⊗ E� + Eez ⊗ EZ, (36)

or, on the coordinate bases

[
Fa

A

] =
⎡

⎣
A 0 0
B
R

C 0
0 0 E

⎤

⎦ =
⎡

⎣
A 0 0
AB
r

C 0
0 0 E

⎤

⎦ . (37)
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Fig. 7 The inflation, bending,
extension, and azimuthal
shearing of an annular wedge

In order to satisfy incompressibility, we have A2CE = 1. This family is peculiar, as the
stretch generated by the other inhomogeneous families has an eigenvector along the direc-
tion of inhomogeneity, but this one does not. Additionally, the invariants of b for this family
are spatially constant.

When we generalize these deformations to include an anelastic component, we have to
change the incompressibility condition from det F = 1 to

J =
√

det m
det M

det F = 1, (38)

to reflect the fact that we are only constraining the elastic component of the deformation to
be isochoric. It is easier however, to consider square of this equation in the form

det b = 1, (39)

which in components reads

det
(
Fa

AMABF b
B

) = detmab. (40)

This is because when we move to the anelastic setting, the stretch b is a more natural object
to work with, since it captures geometric data about the material manifold, but itself lives in
Euclidean space. The right Cauchy-Green strain reads

[CAB] =
⎡

⎣
A2 + A2B2 A2BCR 0
A2BCR A2C2R2 0

0 0 E2

⎤

⎦ , (41)

which is invariant under changes in Z or �.

3.1 Summary of the Symmetry Groups

The symmetries we have calculated are all generated by the usual action of Lie subgroups
of the special Euclidean group on the reference configuration. For each family, there is some
continuous family of rotations and/or translations, which once prolonged, leaves the right
Cauchy-Green stretch tensor field unchanged. In a similar manner, we can compute symme-
tries of the left Cauchy-Green stretch tensor field, which also happen to be Lie subgroups of
the special Euclidean group but, acting now on the current configuration. These groups are
summarized in Table 2, expressed in terms of the group of n-dimensional rotations SO(n)

and the group of n-dimensional translations T(n).
Interestingly enough, for each family, the symmetry group of C does not necessarily

match the symmetry group of b, but the dimensions of these two groups do match, as their
actions are related through the maps relating the coordinates in the two configurations. Ad-
ditionally, when we impose the symmetries of C on the material manifold, families with 3-
dimensional Lie symmetries automatically satisfy the equilibrium conditions, but those only
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Table 2 Symmetry of the
universal stretch tensor fields;
these are subgroups of
SE(3) = SO(3)� T(3)

Family C� = (
FTF

)�
Dimension b = FFT Dimension

0 T(3) 3 T(3) 3

1 T(2) 2 SO(2) × T(1) 2

2 SO(2) × T(1) 2 T(2) 2

3 SO(2) × T(1) 2 SO(2) × T(1) 2

4 SO(3) 3 SO(3) 3

5 SO(2) × T(1) 2 SO(2) × T(1) 2

containing a 2-dimensional Lie symmetry require additional constraints to satisfy equilib-
rium. This seems to suggest that the dimension of the symmetry group plays a role in con-
straining the material response, and sufficiently high dimensional symmetries are sufficient
for guaranteeing equilibrium.

These symmetries can be summarized as a single key property, namely that for a given
universal deformation and its associated deformation gradient F and right Cauchy-Green
tensor, C = FTF = M−1ϕ∗m, we have that C� = ϕ∗m is invariant under the prolonged ac-
tion of a Lie subgroup of the special Euclidean group acting on the reference configuration.
We will use this key property when studying the anelastic Ericksen problem, and accord-
ingly refer to the symmetries of C� as ‘universal symmetries’.

4 General Construction

The previous section demonstrated a remarkable symmetry property of the known universal
solutions in the absence of eigenstrain. We can use these symmetries to generalize Ericksen’s
problem to anelastic systems. The problem is then to find a suitable metric on the material
manifold that preserves both the symmetry and the general functional form of the universal
deformations. The eigenstrains and metric associated with this new metric are referred to as
‘universal’. This can be achieved by the following construction:

• First, in the absence of eigenstrains, the body is embedded in the ambient space with an
induced metric M̄. The material manifold is the flat Riemannian manifold (B,M̄) and the
deformation is a map from this manifold to the ambient space.

• Second, in the presence of eigenstrains the natural configuration of the body is a Rieman-
nian manifold (B,M), where M has non-vanishing curvature [12, 38, 39]. In this case,
the deformation is a map from (B,M) to the ambient space (S,m).

• Third, we choose curvilinear coordinates {XA} on B and curvilinear coordinates {xa}
on C ⊂ S . These coordinates are not necessarily associated with the metrics M̄ and M.
We know of the previously presented classes of universal deformations xa = ϕ(XA) for
(B,M̄). We fix these functional dependences ϕ on the coordinates and determine the
metrics M compatible with these solutions.

• Fourth, we pull back m under the deformation ϕ, and consider the three manifolds:
(B,M̄), (B,M), and (B, ϕ∗m). We have two candidates for determining the symmetry
to apply to M: M̄ and ϕ∗m. We use ϕ∗m since it captures information about the de-
formation. We compute its symmetries, and demand M to have these same symmetries.
Explicitly, since both M̄ and m are Euclidean metrics, both are invariant under the full
action of SE(3) acting on their respective base spaces. By considering Euclidean sym-
metries of ϕ∗m, we are identifying Euclidean symmetries in the current configuration
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Fig. 8 Here we have prescribed
the coordinate transformations
for each family at every stage of
the motion. The unknown
quantity to be determined is the
metric tensor field M of the
material manifold, which dictates
the stress-free geometry

that are mapped to Euclidean symmetries in the reference configuration when pulled back
under the classical universal deformation in question.

• Fifth, we compute the deformation mapping (B,M) to (C,m), where now M is restricted
by the derived symmetries, and compute the specific metrics M that generate universal
eigenstrains.

4.1 Universal Equilibrium Equations

We fix the coordinate labels for the anelastic component of the local deformation; if XA

are coordinates for the material manifold, we write the anelastic deformation in terms of
coordinates as

XA = δA

Ā
X̄Ā, (42)

where δA

Ā
is the Kronecker delta, and use the metric tensor field to reflect the change in

geometry (see Fig. 8). In other words, we convect the referential coordinates along with
the anelastic motion onto the intermediate configuration. This allows us to trivially pull the
material metric tensor back to the reference configuration using

MĀB̄ = δA

Ā
MAB δB

B̄
, (43)

and treat MĀB̄ as our unknown quantity. Since MĀB̄ and CĀB̄ live in the same space, we can
immediately impose the symmetry of CĀB̄ on MĀB̄ , which naturally imposes a symmetry
on MAB via (43).

After determining the most general form of a metric tensor field obeying these symme-
tries, we can compute the general form of the elastic left Cauchy-Green tensor

bab = Fa
AMABF b

B, (44)

and its inverse in terms of the undetermined components of the metric tensor field. Both of
these appear in the Cauchy stress of an incompressible isotropic elastic solid, which has the
following representation

σab = −pmab + 2W1b
ab − 2W2c

ab, (45)
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in terms of Wi = ∂W/∂Ii , where I1 and I2 are the two non-trivial invariants of b, and p is the
Lagrange multiplier corresponding to the incompressibility constraint. We seek equilibrium
solutions, hence we must satisfy

∇bσ
ab = −mab∇bp + 2∇b

(
W1b

ab
) − 2∇b

(
W2c

ab
) = 0. (46)

We wish to eliminate the pressure field from the analysis, so we take a second covariant
derivative, lower the upper free index, and compute the antisymmetric part. This operation
eliminates the pressure identically and yields the condition

ma[d∇c]∇bσ
ab = 1

2
mad∇c∇bσ

ab − 1

2
mac∇d∇bσ

ab = 0, (47)

which must be satisfied for arbitrary choices of the strain energy function W . Because W

is arbitrary, we can freely vary its partial derivatives independently, so in order to satisfy
(47) for any W , we require each of the terms multiplying a partial derivative of W to vanish
independently. This yields nine independent conditions that must be satisfied, corresponding
to the nine independent mixed partial derivatives of W that appear: W1, W2, W11, W12, W22,
W111, W112, W122, and W222. These universal equilibrium equations are

mad∇c∇bb
ab − mac∇d∇bb

ab = 0, (48)

mad∇c∇bc
ab − mac∇d∇bc

ab = 0, (49)

mad∇bb
ab∇cI1 + mad∇cb

ab∇bI1 + madb
ab∇c∇bI1

− mac∇bb
ab∇dI1 − mac∇db

ab∇bI1 − macb
ab∇d∇bI1 = 0,

(50)

mad∇bb
ab∇cI2 − mad∇bc

ab∇cI1 + mad∇cb
ab∇bI2

− mad∇cc
ab∇bI1 + madb

ab∇c∇bI2 − madc
ab∇c∇bI1

− mac∇bb
ab∇dI2 + mac∇bc

ab∇dI1 − mac∇db
ab∇bI2

+ mac∇dc
ab∇bI1 − macb

ab∇d∇bI2 + macc
ab∇d∇bI1 = 0,

(51)

mad∇bc
ab∇cI2 + mad∇cc

ab∇bI2 + madc
ab∇c∇bI2

− mac∇bc
ab∇dI2 − mac∇dc

ab∇bI2 − macc
ab∇d∇bI2 = 0,

(52)

madb
ab∇cI1∇bI1 − macb

ab∇dI1∇bI1 = 0, (53)

madb
ab∇cI2∇bI1 + madb

ab∇cI1∇bI2 − madc
ab∇cI1∇bI1

− macb
ab∇dI2∇bI1 − macb

ab∇dI1∇bI2 + macc
ab∇dI1∇bI1 = 0,

(54)

madb
ab∇cI2∇bI2 − madc

ab∇cI2∇bI1 − madc
ab∇cI1∇bI2

− macb
ab∇dI2∇bI2 + macc

ab∇dI2∇bI1 + macc
ab∇dI1∇bI2 = 0,

(55)

madc
ab∇cI2∇bI2 − macc

ab∇dI2∇bI2 = 0. (56)

Each of these nine equations is antisymmetric in the two free indices. Therefore, each equa-
tion has three independent components providing an overdetermined system of 27 scalar
conditions that must be satisfied. Imposing the universal symmetries lead to two different
situations depending on the symmetry:
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Case I: For two universal families (the homogeneous and spherical deformations) these
equations are trivially satisfied and do not lead to any new conditions.

Case II: For the other families, these equations will either require particular off-diagonal
components of the metric tensor to vanish2 (Case IIa) or the invariants to be constant (Case
IIb). For Case IIa the equilibrium equations are trivially satisfied. This is the so-called
generic case for all the remaining families analysed in Chap. 7. Case IIb corresponds to
the anomalous solutions. In this case the symmetry condition generates a set of ordinary
differential equations constraining these components in terms of a single independent vari-
able. In addition to satisfying these, we also must satisfy three algebraic constraints, namely
that the invariants of b are spatially constant. This leaves us with an overdetermined system
of four linear differential equations, one linear algebraic equation and two nonlinear alge-
braic equations for the six unknown components of the metric tensor field. We can integrate
the differential equations, and use the linear algebraic equation to express the other two
algebraic equations in terms of the following 15 ≤ n ≤ 18 variables: a single unknown com-
ponent of the metric tensor, the remaining independent variable in space (e.g., radius), the
integration constants introduced by our integration of the ordinary differential equations, the
deformation parameters, and the two constant invariants. Therefore, the remaining algebraic
conditions are polynomial equations in these n variables that are quadratic in the unknown
component of the material metric tensor field. We compute the resultant (see Appendix A.1)
of these polynomials in this component, and demand it vanish for the two equations to have
a common solution, since our metric tensor must simultaneously satisfy both. This resultant
is itself a polynomial in the dependent variable that must vanish. Because we seek solutions
that are universal over an open set, we can send each of the coefficients of the resultant to
zero identically. This leaves us with a set of algebraic equations relating the integration con-
stants, the deformation parameters, and the invariants that must be necessarily satisfied in
order for these anomalous solutions to exist. These algebraic equations are solved in Chap. 8.

5 Symmetries of the Material Metric

Family 0: Homogeneous Deformations Recall that the action XA → XA + CA is the
action of T(3) ⊂ SE(3) on E

3. We seek to impose this symmetry on the material metric
tensor field, and hence demand

MAB(X̄D) = MAB(XD + CD) = MAB(XD). (57)

Taking the derivative of this with respect to CD gives

∂MAB

∂CD
= ∂MAB

∂X̄E

∂X̄E

∂CD
= ∂MAB

∂X̄D
= 0, (58)

and hence, we consider constant metric tensor fields. It is however, more useful to express
this condition in terms of the current configuration variables, which we can do via the chain
rule

∂MAB

∂XD
= ∂MAB

∂xa

∂xa

∂XD
= ∂MAB

∂xa
F a

D = 0. (59)

2More precisely, in Family 5 one off diagonal component vanishes, and another becomes fully determined
by the other metric components; it does not vanish, but its indeterminacy is eliminated nonetheless.
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Since F is invertible, this implies that MAB is constant when expressed in terms of the
current configuration coordinates as well. Additionally, it is more useful to consider the
inverse metric tensor field MAB , which also must be constant in order for the identity

MABMBC = δA
C, (60)

to hold.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block Recall, that the
symmetry associated with this deformation is the action of T(2) ⊂ SE(3) on E

3. We there-
fore require the same invariance for MAB :

MAB (X,Y + C1,Z + C2) = MAB (X,Y,Z) . (61)

Taking the derivative with respect to C1 and C2 independently gives the conditions

∂MAB(X, Ȳ , Z̄)

∂C1
= ∂MAB(X, Ȳ , Z̄)

∂Ȳ

∂Ȳ

∂C1
= ∂MAB(X, Ȳ , Z̄)

∂Ȳ
= 0, (62)

∂MAB(X, Ȳ , Z̄)

∂C2
= ∂MAB(X, Ȳ , Z̄)

∂Z̄

∂Z̄

∂C2
= ∂MAB(X, Ȳ , Z̄)

∂Z̄
= 0. (63)

Therefore, we assume that the metric tensor is of the form MAB(X), which because of the
form of the deformation, can be recast into the form MAB(r), and equivalently MAB(r).

Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder Here, we
require that the metric is invariant under the action of SO(2) × T(1) ⊂ SE(3) on E

3:

MAB (R,� + 
,Z + K) = MAB (R,�,Z) , (64)

and hence, by the same reasoning as before one finds

∂MAB(R, �̄, Z̄)

∂�̄
= ∂MAB(R, �̄, Z̄)

∂Z̄
= 0. (65)

Note that this does not imply ∂M
∂�

= 0, since the basis vectors of C do change with �.
Rather, the components MAB do not change with � when M is represented with respect
to a cylindrical polar basis. We can use the equation MABMBC = δC

A to show that ∂MAB

∂�
=

∂MAB

∂Z
= 0. Hence, we write MAB(R) or equivalently MAB(x). This symmetry of MAB is

precisely the action SO(2) × T(1) ⊂ SE(3) prolonged to TE3 ⊗ TE3, with ⊗ denoting the
tensor product bundle, the bundle formed by taking fiberwise tensor products.

Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge
As with Family 2, we demand that MAB be invariant under the transformation

� → �̄ = � + 
, Z → Z̄ = Z + K, ∀
,K ∈ R, (66)

which renders the conditions

∂MAB(R, �̄, Z̄)

∂�̄
= ∂MAB(R, �̄, Z̄)

∂Z̄
= 0. (67)

So we consider metric tensor fields of the form MAB(R), or equivalently, MAB(r).
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Fig. 9 The set of orthonormal
eigenspaces at a point X are
affine spaces that must be
preserved under all rotations
fixing the origin and X, however
these swept areas are generally
not affine spaces, but rather cones

Family 4: Inflation/Eversion of a Sphere Here, we demand the invariance of M(X) un-
der the prolonged action of SO(3) ⊂ SE(3) on T∗

E
3 ⊗ T∗

E
3. We then seek the most general

positive-definite symmetric tensor field that satisfies

M (QX) = QM(X)QT, ∀Q ∈ SO(3). (68)

Because M(X) is positive-definite and symmetric, we can represent it in spectral form on an
orthonormal basis {ua} as

M(X) =
3∑

i=1

m2
i (X)ui (X) ⊗ ui (X). (69)

We then consider the subgroup of rotations leaving X fixed. Under this one-parameter fam-
ily, we have the symmetry condition

M(X) = QM(X)QT, ∀Q such that QX = X. (70)

This implies that (suppressing the X dependence)

m2
i ui = Mui = QMQTui ⇒ m2

i QTui = MQTui , (71)

i.e., the rotated vector QTui lies in the same eigenspace as the eigenvector ui . For this to
hold for all Q in this one-parameter family, the eigenspaces of M at the point X must be
unchanged by these rotations, i.e., the swept vector QTui remains in the eigenspace. Gen-
erally, a rotating vector sweeps out a cone, which not being an affine space, cannot be the
eigenspace of a linear operator, as depicted in Fig. 9.

However, there are two degenerate cases where cones become affine spaces, where the ro-
tation axis and swept vector are coincident, and where they are perpendicular, which means
that the eigenspaces of M at X must contain the axis of the rotation, and the plane orthogonal
to it, as depicted in Fig. 10, forcing M(X) to be of the form

M(X) = m2
1(X)ER(X) ⊗ ER(X) + m2

2(X) (I − ER(X) ⊗ ER(X)) , (72)
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Fig. 10 When the eigenspaces
are parallel and perpendicular to
the position vector of X, they can
remain invariant under these
rotations, provided that the
eigenvalues of the two orthogonal
eigenvectors are equal

Fig. 11 As we rotate the point
X, we see that the eigenspaces
are unchanged when expressed
on an orthonormal spherical
basis, i.e., they rotate with X,
hence their associated
eigenvalues must be constant on
concentric spherical surfaces

because for each X, the axis of rotation is ER(X). Imposing the more general symmetry
condition (68), on this spectral form, we get the condition

m2
1 (QX)ER(X) ⊗ ER(X) + m2

2 (QX) (I − ER(X) ⊗ ER(X))

= m2
1(X)ER(X) ⊗ ER(X) + m2

2(X) (I − ER(X) ⊗ ER(X)) ,
(73)

which implies that

m2
1 (QX) = m2

1(X), m2
2 (QX) = m2

2(X), ∀Q ∈ SO(3). (74)

This ultimately requires that m1 and m2 depend on X solely through its norm, R = |X|,
since for any two points, X1 = Rn1, and X2 = Rn2, where n1 and n2 are unit vectors, we
can construct orthogonal transformations such that n2 = Qn1. Hence, because the functions
m1 and m2 take on the same values whenever their arguments have the same norm, these
functions must only depend on their argument through its norm, as shown in Fig. 11. We
then have

M(X) = m2
1(R)ER(X) ⊗ ER(X) + m2

2(R) (I − ER(X) ⊗ ER(X)) , (75)
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which is the general form of the pullback of our material metric tensor.3 Computing the
components of MAB then gives

[MAB(R)] =
⎡

⎣
m2

1(R) 0 0
0 m2

2(R)R2 sin2 
 0
0 0 m2

2(R)R2

⎤

⎦ . (76)

Since m1 and m2 are arbitrary, and R is only a function of r , this can be rewritten as

[MAB(R)] = [MAB(R(r))] =
⎡

⎣
m2

1(r) 0 0
0 m2

2(r) sin2 φ 0
0 0 m2

2(r)

⎤

⎦ , (77)

and equivalently

[
MAB(r)

] =
⎡

⎢
⎣

m2
1(r) 0 0

0
m2

2(r)

sin2 φ
0

0 0 m2
2(r)

⎤

⎥
⎦ . (78)

These metrics are precisely the form considered by Ben Amar and Goriely [2], and Yavari
and Goriely [38], though the first represents this tensor on an orthonormal spherical basis,
and the second works with the components of the metric tensor rather than its inverse, as we
have done.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge
As in other cases, we have the following symmetry relations for M:

∂MAB(R, �̄, Z̄)

∂�̄
= ∂MAB(R, �̄, Z̄)

∂Z̄
= 0, (79)

so we ultimately consider inverse metric tensor fields of the form MAB(r).
In conclusion, we note that the application of the symmetry condition leads to a reduction

of the independent variables to a single one (either the radial variable r in cylindrical or
spherical coordinates, or x for the deformation of rectangular blocks).

6 Generic Universal Solutions

Having established the symmetry conditions on the material metric, we can express the uni-
versal equilibrium equations under these restrictions. For all families (Case I and IIa), these
equations will have generic solutions, and in some cases, these solutions are the only ones
satisfying the symmetry conditions. Other families also have anomalous solutions (Case
IIb) outside of these generic branches that occur only when the invariants of the tensor b,
or equivalently C, are constant; these will be addressed in the next section. The nature of
the anomalous solutions differs markedly from the generic solutions found here: generic
solutions contain arbitrary functions as free parameters, while the form of the anomalous
solutions is determined up to a finite number of undetermined constants. Additionally, for

3The methodological difference in the symmetry calculation for this family is due to the topology of SO(3).
This group is not the product of Lie groups, and hence, we cannot express its action by independently varying
coordinates as we do in the other families; while � → � + �1 is a rotation, 
 → 
 + �2 is not.



310 C. Goodbrake et al.

generic solutions, the eigenvectors of b are contained within or perpendicular to the span
of the infinitesimal generators of the symmetry group, while for anomalous solutions, this
alignment does not occur. While the invariants, and hence, their gradients could be calcu-
lated explicitly in terms of the unknown inverse metric components, it is easier to keep these
functions unevaluated at the moment, because we will ultimately show that they must be
constant for the anomalous solution to exist.

We then fix an orthonormal frame on these constructed intermediate configurations, and
express the anelastic deformation required to generate these intermediate configurations in
terms of these frames. We note that since we are in reality only determining the elastic com-
ponent of these motions, the factor A corresponds to the universal motion, while the factor G
corresponds to the stretch required to obtain the universal intermediate configurations from
the classical reference configurations, which play no dynamic role. Hence after computing
A = FG−1, so long as the geometry of the intermediate configuration is retained, the factor
G can be discarded, which corresponds to the fact that we can prepend an arbitrary com-
patible anelastic deformation onto our universal deformations. As this is supplementary to
our main results, we will simply give G on some orthonormal anholonomic frame, leaving
further computations to interested readers.

Family 0: Homogeneous Deformations The deformation mapping written in Cartesian
coordinates is given by (13), and the deformation gradient Fa

A is constant. We compute the
left Cauchy-Green tensor as

bab = Fa
AMABF b

B, (80)

which is also constant, and hence its invariants are constant. The Cauchy stress takes the
form

σab (x, y, z) = −p (x, y, z)mab + 2W1b
ab − 2W2c

ab, (81)

and the equilibrium equations read

∇bσ
ab = −mab∇bp (x, y, z) = 0. (82)

Because mab is invertible, this implies that p is constant, and the equilibrium equations are
satisfied simply because of the assumed form of MAB . The only remaining condition is the
incompressibility condition which, in the chosen coordinate systems, reads

detbab = detmab = 1. (83)

We can express this constraint as a condition on MAB , or as a condition on Fa
A. In

reality, these conditions are equivalent, since we have

(detFa
A)

2 detMMN = 1, (84)

and one can be freely transformed into the other by changing coordinates. However, for the
other families, it will be easier to express this condition as a restriction on the inverse metric
tensor, so for consistency we choose the invertible tensor Fa

A and then enforce

detMAB = 1

(detFa
A)2 , (85)

which ensures that the volume form in the material manifold agrees with that in the current
configuration.
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Because the material metric is constant, its Levi-Civita connection produces no curva-
ture, and thus the material manifold is Euclidean. This is useful when using a multiplicative
decomposition of the deformation gradient into elastic and anelastic factors F = AG, as we
can choose a Cartesian frame {eα} in the material manifold and its corresponding coframe
{ϑα}, in which case the anelastic factor must satisfy Gα

AGβ
Bδαβ = MAB . Since the matrix

of components MAB is positive definite and symmetric, we can take the matrix of compo-
nents Gα

A to be its unique positive-definite symmetric square root, in which case we satisfy
Gα

AGβ
Bδαβ = MAB . Alternatively, we may prescribe the anelastic factor in such a way that

the induced material metric is valid. In this case, since MAB is constant, any constant invert-
ible anelastic factor will furnish a valid material metric. The incompressibility constraint
becomes det(Aa

αA
b
βδαβmbc) = 1, which furnishes a differential equation constraining the

volume in the current configuration to agree with that in the material manifold.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block The deformation
for this family is given in (15) with the deformation gradient (16). We compute the quantity
ma[l∇k]∇bσ

ab = 0, which for this family, only has two independent nonzero components,
and we take the coefficients of the partial derivatives of W to vanish independently. The
W111 coefficient of this equation gives the conditions

[
ABrM12(r)

B(M13(r)−ACM12(r))
r

]

I ′
1(r)

2 =
[

0
0

]
. (86)

The first equation implies that either M12(r) = 0, or I1 is constant, because AB 
= 0 to
ensure the invertibility of the deformation. If I1 is not constant, we have M12(r) = 0. The
second component then becomes M13(r) = 0. Therefore, if I1 is not constant, we have that
M12(r) = M13(r) = 0.

If I1 is constant, we can examine the W122 component, which implies the conditions
[

ABrM12(r)
B(M13(r)−ACM12(r))

r

]

I ′
2(r)

2 =
[

0
0

]
. (87)

Therefore, I2 is constant, or M12(r) = M13(r) = 0 and we have established that either
M12(r) = M13(r) = 0, or all the invariants of b are constant, which is the condition for
the anomalous solution. Hence, in this section, we take M12(r) = M13(r) = 0 and we con-
sider the constant invariant case in the next section. With M12(r) = M13(r) = 0, we have
the equilibrium equation satisfied, i.e., all of its terms identically vanish. We only have to
satisfy incompressibility. Demanding detbab = detmab , we have the condition

M11(r)
[
M22(r)M33(r) − (

M23(r)
)2

]
= 1. (88)

Since M11(r) 
= 0, and M22(r) 
= 0, the relation

M33(r) = 1

M11(r)M22(r)
+

(
M23(r)

)2

M22(r)
, (89)

ensures that the incompressibility is satisfied. Hence, we have the generic solution

[
MAB(r)

] =
⎡

⎢
⎣

M11(r) 0 0
0 M22(r) M23(r)

0 M23(r) 1
M11(r)M22(r)

+ (M23(r))
2

M22(r)

⎤

⎥
⎦ , (90)
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which, by writing MAB(X) = MAB (r(X)), can finally be written in terms of the referential
variables as

[
MAB(X)

] =
⎡

⎢
⎣

M11(X) 0 0
0 M22(X) M23(X)

0 M23(X) 1
M11(X)M22(X)

+ (M23(X))
2

M22(X)

⎤

⎥
⎦ . (91)

The current form of MAB automatically captures incompressibility because we imposed a
particular form of r(X). If we leave this unspecified, we can simply say that MAB is of the
form

[MAB(X)] =
⎡

⎣
M11(X) 0 0

0 M22(X) M23(X)

0 M23(X) M33(X)

⎤

⎦ , (92)

and use the incompressibility constraint to determine r(X). This is equivalent to introducing
a change in coordinates rescaling X.

When using a multiplicative decomposition, F = AG, we can choose an orthonormal
frame {eα} and its coframe {ϑα} in the material manifold, and require Gα

AGβ
Bδαβ = MAB .

Since MAB is block diagonal, positive definite, and symmetric, we can take Gα
A to be its

unique positive definite symmetric square root. Because the components MAB are arbitrary
functions of X, we can take Gα

A to be of the form

[
Gα

A(X)
] =

⎡

⎣
G1

1(X) 0 0
0 G2

2(X) G2
3(X)

0 G2
3(X) G3

3(X)

⎤

⎦ , (93)

which will yield a suitable MAB . Additionally, we can multiply G by an arbitrary local
rotation Q yielding QG, which may be more useful depending on the particular problem.4

This is equivalent to choosing a different orthonormal frame in the material manifold, which
being non-Euclidean in general, does not possess a preferred orthonormal frame to begin
with.

Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder Re-
call that any deformation in this family is given by (20) with deformation gradient (21).
We compute the equilibrium condition ma[l∇k]∇bσ

ab = 0, and to aid computations, we
use the incompressibility constraint detbab = detmab by evaluating cab as cab det (bn

m) =
cab det

(
bnpmpm

)
.

The W111 coefficient of the equilibrium equation has two independent components giving
the conditions

√
2 (x − D)

A

[
M12(x)

CM12(x) + AM13(x)

]
I ′

1(x)2 =
[

0
0

]
. (94)

If I1 is constant, we satisfy these equations, but if I1 is not constant, we have M12(x) =
M13(x) = 0, since A(x − D) 
= 0.

4For example, if the eigenstrain corresponds to anelastic simple shear, it may be more natural to express G
in an upper triangular form, rather than a symmetric form.
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If I1 is constant, we then consider the W122 component of the equilibrium condition to
obtain

√
2 (x − D)

A

[
M12(x)

CM12(x) + AM13(x)

]
I ′

2(x)2 =
[

0
0

]
, (95)

which again implies that either M12(x) = M13(x) = 0, or I2 is constant. Therefore, unless
the invariants of b are constant, we have M12(x) = M13(x) = 0. Setting these components to
0 satisfies equilibrium, and so we compute the incompressibility condition detbab = detmab .
This becomes

2 (x − D)

AB2
M11(x)

[
M22(x)M33(x) − (

M23(x)
)2

]
= 1, (96)

which implies that

M33(x) = AB2

2 (x − D)M11(x)M22(x)
+

(
M23(x)

)2

M22(x)
. (97)

Bringing all of these together we have

[
MAB(x)

] =
⎡

⎢
⎣

M11(x) 0 0
0 M22(x) M23(x)

0 M23(x) AB2

2(x−D)M11(x)M22(x)
+ (M23(x))

2

M22(x)

⎤

⎥
⎦ , (98)

or in terms of referential coordinates, writing MAB(R) = MAB (x(R)),

[
MAB(R)

] =
⎡

⎢
⎣

M11(R) 0 0
0 M22(R) M23(R)

0 M23(R) 1
R2M11(R)M22(R)

+ (M23(R))
2

M22(R)

⎤

⎥
⎦ . (99)

This is the generic solution, and we have set up the conditions for the anomalous solution,
namely that the invariants of b must be constant.

As before, we can introduce a coordinate rescaling, treating x as an unknown function of
R, which allows the tensor MAB to take the form

[
MAB(R)

] =
⎡

⎣
M11(R) 0 0

0 M22(R) M23(R)

0 M23(R) M33(R)

⎤

⎦ , (100)

and turns the incompressibility constraint into a differential equation that can be integrated
to determine x(R). If a multiplicative decomposition of F = AG is used, we can express G
on an orthonormal frame in the form

[
Gα

A(R)
] =

⎡

⎣
G1

1(R) 0 0
0 G2

2(R) G2
3(R)

0 G2
3(R) G3

3(R)

⎤

⎦ , (101)

which guarantees that MAB = Gα
AGβ

Bδαβ is of the proper form. As before, an arbitrary
local rotation Q can be imposed yielding the factor QG, where G is as above, and this new
factorization will yield a material metric of the proper form.
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Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge
This family of deformations can be written using cylindrical polar coordinates in both con-
figurations as given in (25) with deformation gradient (26).

As before, we compute the W111 coefficient of the equilibrium equation and obtain

√
A

(
r2 − B

)
I ′

1(r)
2

[
Cr Dr
E
r

F
r

][
M12(r)

M13(r)

]
=

[
0
0

]
. (102)

The matrix on the left-hand side is invertible, since its determinant, CF − DE, being a
factor of the determinant of F, is nonzero to ensure invertibility. Therefore, we have either
I1 being constant, or both M12(r) and M13(r) must be zero.

If I1 is constant, we examine the W122 coefficient of the equilibrium equation and obtain

√
A

(
r2 − B

)
I ′

2(r)
2

[
Cr Dr
E
r

F
r

][
M12(r)

M13(r)

]
=

[
0
0

]
, (103)

which as before implies that M12(r) = M13(r) = 0, or I2 is constant. Therefore, to satisfy
equilibrium, we must have all of the invariants of b being constant, or M12(r) = M13(r) = 0.
The latter of these conditions is also sufficient to guarantee equilibrium. We only have to
satisfy incompressibility, which amounts to the equation

A(CF − DE)2 (r2 − B)M11(r)
[
M22(r)M33(r) − (

M23(r)
)2

]
= 1, (104)

which we can do by setting

M33(r) = 1

A(CF − DE)2
(
r2 − B

)
M11(r)M22(r)

+
(
M23(r)

)2

M22(r)
. (105)

This gives the generic solution

[
MAB(r)

] =
⎡

⎢
⎣

M11(r) 0 0
0 M22(r) M23(r)

0 M23(r) 1
A(CF−DE)2(r2−B)M11(r)M22(r)

+ (M23(r))
2

M22(r)

⎤

⎥
⎦ , (106)

or in referential variables, writing MAB(R) = MAB(r(R)),

[
MAB(R)

] =
⎡

⎢
⎣

M11(R) 0 0
0 M22(R) M23(R)

0 M23(R) 1
A2R2(CF−DE)2M11(R)M22(R)

+ (M23(R))
2

M22(R)

⎤

⎥
⎦ . (107)

As in the other families, we can introduce a coordinate rescaling to express the material
metric in the form

[MAB(R)] =
⎡

⎣
M11(R) 0 0

0 M22(R) M23(R)

0 M23(R) M33(R)

⎤

⎦ , (108)
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which means that on some orthonormal frame, the anelastic factor of a multiplicative de-
composition F = AG takes the form

[
Gα

B(R)
] =

⎡

⎣
G1

1(R) 0 0
0 G2

2(R) G2
3(R)

0 G2
3(R) G3

3(R)

⎤

⎦ . (109)

Doing this turns the incompressibility condition into a differential equation for the unknown
function r(R), and as before, any other compatible anelastic factor can be expressed as QG,
where Q is an arbitrary local rotation and G is as above.

Family 4: Inflation/Eversion of a Sphere For this family, the symmetry enforced on the
metric tensor automatically satisfies the universal equilibrium equations without additional
restrictions. Demonstrating this, under this symmetry, the left Cauchy-Green tensor reads

[
bab

] =

⎡

⎢
⎢
⎣

(±r3∓A3)
4
3

r4 m2
1(r) 0 0

0
m2

2(r)

sin2(φ)
0

0 0 m2
2(r)

⎤

⎥
⎥
⎦ , (110)

and its inverse is

[
cab

] =

⎡

⎢
⎢⎢
⎣

r4

(±r3∓A3)
4
3 m2

1(r)

0 0

0 1
m2

2(r)r4 sin2(φ)
0

0 0 1
m2

2(r)r4

⎤

⎥
⎥⎥
⎦

. (111)

We can compute the invariants of b as

I1 =
(±r3 ∓ A3

) 4
3

r4
m2

1(r) + 2r2m2
2(r),

I2 =
m2

2(r)

[
2
(±r3 ∓ A3

) 4
3 m2

1(r) + r6m2
2(r)

]

r2
,

I3 = (±r3 ∓ A3
) 4

3 m2
1(r)m

4
2(r) = 1.

(112)

Notice in particular, that these invariants only depend on r . The Cauchy stress is diagonal
with components

σ 11 = −p + 2
(±r3 ∓ A3

) 4
3 m2

1(r)W1

r4
− 2r4W2

(±r3 ∓ A3
) 4

3 m2
1(r)

, (113)

σ 22 = 2r4m4
2(r)W1 − 2W2 − r2m2

2(r)p

m2
2(r)r

4 sin2 (φ)
, (114)

σ 33 = − p

r2
+ 2m2

2(r)W1 − 2W2

r4m2
2(r)

. (115)
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Taking the divergence of this tensor and setting it equal to zero gives

∇bσ
1b = 4W2

r3m2
2(r)

+ 4r4m′
1(r)W2

(±r3 ∓ A3
) 4

3 m3
1(r)

− 4rm2
2(r)W1 − ∂p

∂r
(116)

− 2r3
((±2r2 ∓ 6A3

)
W2 + r

(±r3 ∓ A3
) (

I ′
2(r)W22 + I ′

1(r)W 12
))

(±r3 ∓ A3
) 7

3 m2
1(r)

± 2
(
r3 − A3

) 1
3 m2

1(r)
(
2
(
r3 + A3

)
W1 ± r

(
r3 − A3

) (
I ′

2(r)W12 + I ′
1(r)W 11

))

r5

+ 4
(±r3 ∓ A3

) 4
3 m1(r)m

′
1(r)W1

r4
= 0,

∇bσ
2b = − 1

r2 sin2 φ

∂p

∂θ
= 0, (117)

∇bσ
3b = − 1

r2

∂p

∂φ
= 0. (118)

Therefore, the undetermined pressure must only depend on r , and the components of ∇bσ
ab

only depend on r . Using ∂p

∂θ
= 0 and ∂p

∂φ
= 0, and defining va = ∇bσ

ab , we can compute
V a

c = ∇cv
a . For simplicity, we will only compute the off-diagonal components of this ten-

sor. Note that

va =
⎡

⎣
v1(r)

0
0

⎤

⎦ , (119)

and V a
c = ∂cv

a + vdγcd
a . Computing the off-diagonal components, we get

V 1
2 = ∂v1

∂θ
+ v1γ21

1 = 0, V 2
3 = ∂v2

∂φ
+ v1γ31

2 = 0, V 3
1 = ∂v3

∂r
+ v1γ11

3 = 0,

V 2
1 = ∂v2

∂r
+ v1γ11

2 = 0, V 3
2 = ∂v3

∂θ
+ v1γ21

3 = 0, V 1
3 = ∂v1

∂φ
+ v1γ31

1 = 0.

(120)

Therefore, V a
c is diagonal. Because mab is also diagonal, we conclude that Vbc is diag-

onal, and hence, is identically symmetric. Recognizing Vbc as mbaV
a
c = mba

(∇c∇dσ
ad

)
,

this means that the equilibrium equations are automatically satisfied for an appropriate pres-
sure field, because the antisymmetric part of mba

(∇c∇dσ
ad

)
vanishes simply due to the

symmetry of the tensor field MAB .
We now only need to satisfy the incompressibility condition det b = 1. Computing this

yields

(±r3 ∓ A3
) 4

3 m2
1(r)m

4
2(r) = 1, (121)

or in referential variables, writing m1(R) = m1(r(R)), R4m2
1(R)m4

2(R) = 1. Therefore, the
final form of the inverse material metric tensor for this family is

[
MAB

] =
⎡

⎢
⎣

m2
1(R) 0 0
0 1

m1(R)R2 sin2 

0

0 0 1
m1(R)R2

⎤

⎥
⎦ . (122)
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Alternatively, introducing a coordinate rescaling as before, the material metric tensor takes
the form

[MAB] =
⎡

⎣
m1(R) 0 0

0 m2(R) sin2 φ 0
0 0 m2(R)

⎤

⎦ , (123)

and we obtain a differential equation that can be integrated to determine r(R). Then, taking
a multiplicative decomposition of F = AG, we can express G using an orthonormal frame
in the material manifold yielding

[
Gα

A

] =
⎡

⎣
G1(R) 0 0

0 G2(R) sin
 0
0 0 G2(R)

⎤

⎦ , (124)

which again can be left multiplied by an arbitrary local rotation Q if desired.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge
For this family, we have the deformation as given in (35) with deformation gradient (36).
Again, we compute the equilibrium condition ma[l∇k]∇bσ

ab = 0, and look at the W111 coef-
ficient. This contains two independent equations:

[
AEM13(r)

Ar
(
ABM11(r) + CrM12(r)

)
]

I ′
1(r)

2 =
[

0
0

]
. (125)

If I1 is constant, this equation is satisfied, and if I1 is not constant, we require M13(r) = 0,

and M12(r) = −ABM11(r)

Cr
. If I1 is constant, we examine the W122 coefficient in the equilib-

rium equation and obtain

[
AEM13(r)

Ar
(
ABM11(r) + CrM12(r)

)
]

I ′
2(r)

2 =
[

0
0

]
, (126)

which implies either I2 is constant, or M13(r) = 0 and M12(r) = −ABM11(r)

Cr
. Hence, we

either have all of the invariants of b constant, or we have M13(r) = 0 and M12(r) =
−ABM11(r)

Cr
, which characterizes the generic solution.

The conditions on the components of the metric are sufficient to satisfy equilibrium, so
we only have to satisfy incompressibility. The incompressibility condition in this case reads

A2E2M11(r)
[(

C2r2M22(r) − A2B2M11(r)
)
M33(r) − C2r2M23(r)2

] = 1. (127)

We solve this for M22(r) to obtain

M22(r) = 1

A2C2E2r2M11(r)M33(r)
+

(
M23(r)

)2

M33(r)
+ A2B2M11(r)

C2r2
, (128)

which gives the generic solution

[
MAB(r)

] =
⎡

⎢
⎣

M11(r) −ABM11(r)

Cr
0

−ABM11(r)

Cr

1+A2C2E2r2(M23(r))
2
M11(r)

A2C2E2r2M11(r)M33(r)
+ A2B2M11(r)

C2r2 M23(r)

0 M23(r) M33(r)

⎤

⎥
⎦ , (129)
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or in referential variables, writing MAB(R) = MAB(r(R)),

[
MAB(R)

] =

⎡

⎢⎢
⎣

M11(R) −BM11(R)

CR
0

−BM11(R)

CR

1+A4C2E2R2(M23(R))
2
M11(R)

A4C2E2R2M11(R)M33(R)
+ B2M11(R)

C2R2 M23(R)

0 M23(R) M33(R)

⎤

⎥⎥
⎦ . (130)

Unlike the other families, the standard Euclidean inverse metric MAB(R) =
diag{1,R−2,1} is not a member of the generic solution branch for this family. This is be-
cause this Euclidean metric yields a special case of the anomalous solution, having constant
invariants.

In principle, we can rescale our coordinates and compute the form of the anelastic fac-
tor in a multiplicative decomposition for a member of this family as we have done for the
previous families. However we will not concern ourselves with the multiplicative decom-
position for this family, because its generic solution branch does not contain the solution
without eigenstrain. As such, any continuous process based on this family beginning with
zero eigenstrain will not lie in this solution branch, but rather on the anomalous branch, and
so the multiplicative decomposition associated with this generic branch is of limited use.

7 The Anomalous Universal Solutions

As we have covered cases I and IIa in the previous section, we turn our attention to case
IIb. The groundwork for this case, namely the spatial constancy of the strain invariants has
already been laid in our analysis of case IIa in Sect. 6. The analysis for each family follows
the same general pattern, so we will merely outline these steps here in an example appearing
in Family 5, then present the results. Details are given in Appendix B.

Step 1: For the anomalous solution, we start with the equations derived from the equilibrium
conditions: four second-order linear differential equations for each family, involving the
six undetermined components of the inverse metric tensor. By integrating the equilibrium
conditions, up to two of these components can be expressed in terms of the other variables.

We take, as an example the deformation

r = R, θ = logR + �, z = Z, (131)

for which we compute the components of bab as

[
bab

] =
⎡

⎢
⎣

M11 M12 + M11

r
M13

M12 + M11

r
M22 + 2 M12

r
+ M11

r2 M23 + M13

r

M13 M23 + M13

r
M33

⎤

⎥
⎦ . (132)

The first universal equilibrium equation is ma[l∇k]∇bb
ab = 0, which in these coordinates

amounts to the two equations

M13(r)′′ + M13(r)′

r
− M13(r)

r2
= 0, (133)

r
(
5M12(r)′ + M11(r)′′ + rM12(r)′′) + 3M12(r) + 3M11(r)′ = 0. (134)
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The general solution of these equations is

M13(r) = α1r + α2

r
, M12(r) = γ1

r
+ γ2

r3
− M11(r)

r
. (135)

For the purposes of our example, we will take γ2 = 0, γ1 = 0, and M13(r) = r . With this,
bab becomes

[
bab

] =
⎡

⎣
M11 0 r

0 M22 − M11

r2 M23 + 1
r M23 + 1 M33

⎤

⎦ . (136)

Next, we compute the equilibrium condition ma[l∇k]∇bc
ab = 0, which is simplified by mul-

tiplying cab by the condition det b = 1. This condition puts the remaining two ODEs in the
form

r
(
r2M23(r)′′ + 7rM23(r)′ + 8M23(r) + 8

) = 0, (137)

3M12(r) + 3M11(r)′ + r
(
5M12(r)′ + M11(r)′′ + rM12(r)′′) = 0. (138)

Integrating these equations gives the solutions

r4M23(r) = r2μ1 + μ2 − r4, r6M22(r) = r4M11(r) + r4β1 + r2β2, (139)

which gives bab as

[
bab

] =
⎡

⎣
M11 0 r

0 β1
r2 + β2

r4
μ1
r2 + μ2

r4

r
μ1
r2 + μ2

r4 M33

⎤

⎦ . (140)

Step 2: After integrating these equations, we have the three constant invariant conditions for
each family to solve. The constant trace condition is linear in the unknown components of
the inverse metric, so we can use it to solve for one undetermined inverse metric component
in exchange for introducing the trace of b as a parameter.

We have the constant trace condition

I1 = babmab = M11 + M33 + β1 + β2

r2
, (141)

hence,

M33 = I1 − M11 − β1 − β2

r2
. (142)

The incompressibility condition det b = 1 then can be written as

(
β1r

6 + β2r
4
)
M11(r)2 +

[(
r2μ1 + μ2

)2 + (
r3β1 + rβ2

)2 − I1

(
β1r

6 + β2r
4
)]

M11(r)

+ r6
(
1 + β1r

2 + β2

) = 0,

(143)
and the constant second invariant condition can be written as

r6M11(r)2 − r4
(
I1r

2 − β1r
2 − β2

)
M11(r) + (

r2μ1 + μ2

)2 + (
β1r

3 + β2r
)2

+ r8 + I2r
6 − I1r

4
(
β1r

2 + β2

)
.

(144)
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Step 3: We are left with two nonlinear algebraic equations. The first is the incompressibility
condition det b = 1, and the second is the constancy of the second invariant of b. Both are
quadratic equations in the remaining component of the inverse metric tensor, which creates
an overdetermined system. We compute the resultant of these two equations in this compo-
nent, and demand this resultant vanish to ensure that these two equations have a common
root. The resultant of these equations is itself a polynomial in the other undetermined inte-
gration constants: the invariants of b, and the remaining independent spatial coordinate.

Even in our simplified example, the resultant of these equations in M11(r) yields a rela-
tively lengthy polynomial equation p(r) = 0. It can be immediately simplified by noticing
that one of the coefficients is simply μ6

2, so μ2 = 0 is a necessary condition for there to be a
common solution to these two equations. It can be further simplified by noting that after us-
ing μ2 = 0, one of the coefficients becomes β6

2 , so we demand β2 = 0. With this, a different
coefficient becomes μ6

1, and hence μ1 = 0 as well.

Step 4: Therefore, the resultant is a polynomial equation of the form p (q) = 0, which must
hold for all values of the independent variable q (which is either r or x depending on the
family). Accordingly, we set each coefficient to zero independently, and obtain an overdeter-
mined system of nonlinear polynomial equations for the undetermined constants. We wish
to find all the solutions to these equations, and so we compute a primary decomposition of
the radical ideal generated by these equations. These equations are simple enough that this
can be done with the assistance of a symbolic algebra package, though even then the compu-
tations are rather cumbersome (see Appendix B). After we have done this, we are left with
a set of conditions on the undetermined constants that are necessary and sufficient for the
existence of a common root of the original quadratic equations in the undetermined inverse
metric component over an open set. We substitute these constants into these equations and
use them to solve for the final component of the inverse metric tensor, which gives us the
general form of the anomalous solution. In all of these cases, despite encountering branching
conditions in the course of analyzing the conditions on the constants, the separate branches
ultimately are redundant, and we are left with a single anomalous solution branch for each
family.

For our example, using the conditions μ2 = 0, β2 = 0, and μ1 = 0, the polynomial simply
becomes

(
β3

1 − I1β
2
1 + I2β1 − 1

)2
r18 = 0, which demands β3

1 − I1β
2
1 + I2β1 − 1 = 0, be-

cause r > 0. We recognize that this is the eigenvalue equation for the tensor b, so we require
β1 to be an eigenvalue of b. We can satisfy this by writing I1 = β1 + e1 and I2 = β1e1 + 1

β1
,

where e1 = λ1 + λ2 is the sum of the other two eigenvalues of b and we have used in-
compressibility in the form λ1λ2β1 = 1. When we substitute these conditions back into the
original equations for M11, they both become (up to some nonzero constant)

β1M
11(r)2 − e1β1M

11(r) + r2β1 + 1 = 0. (145)

This equation can be solved for M11 and we obtain

M11(r) = 1

2

(

e1 ±
√

e2
1 − 4

(
r2 + 1

β1

))

, (146)
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which gives one example of MAB as

[
MAB

]
=

1

2

⎡

⎢
⎢⎢
⎣

e1 ±
√

e2
1 − 4R2 − 4

β1
− 1

R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
2R

− 1
R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
1
R

(
e1 ±

√
e2

1 − 4R2 − 4
β1

)
+ β1

R2 −2

2R −2 e1 ∓
√

e2
1 − 4R2 − 4

β1

⎤

⎥
⎥⎥
⎦

.

(147)

This lets us compute the corresponding elastic left Cauchy-Green stretch tensor as

[
bab

] =

⎡

⎢⎢
⎢⎢
⎣

1
2

(
e1 ±

√
e2

1 − 4
(
r2 + 1

β1

))
0 r

0 β1
r2 0

r 0 1
2

(
e1 ∓

√
e2

1 − 4
(
r2 + 1

β1

))

⎤

⎥⎥
⎥⎥
⎦

. (148)

We can verify that bab satisfies the equilibrium conditions and the constant invariant condi-
tions.

Completely determining the universal anelastic extensions of these families amounts to
doing a similar analysis for each of the remaining families, but in full generality, i.e., not as-
suming particular values for the parameters appearing in the deformation, nor selecting val-
ues for the integration constants a priori. These computations are included in Appendix B,
only the results are presented next. As we are considering the case where the strain in-
variants are constant, the set of universal equilibrium equations reduces to (48) and (49).
Ordinarily these equations have three independent components, but in our case, one of these
components vanishes identically for each equation, hence we have four ordinary differential
equations to solve for each anomalous branch, together with the three algebraic equations
constraining the strain invariants to be constant.

Family 1: Bending, Stretching, and Shearing of a Rectangular Block Integrating the
equilibrium equations (48) and (49) and solving the constant invariant conditions gives the
following anomalous solution branch for this family:

M12(r) = α1

r2
+ α2, (149)

M13(r) = AB2Cα1

r2
+ γ1r

2 + γ2, (150)

M11(r)= e1r
2

2A2
±

r

√
B2e2

1r
2−4

(
B2r2

(
e2+A2B2M12(r)2

) + (
AB2CM12(r)−M13(r)

)2
)

2A2B
,

(151)

M22(r) = A2B4e2
(
e1r

2 − A2M11(r)
)
M12(r)2 + [

AB2CM12(r) − M13(r)
]2

B2e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

] , (152)
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M23(r) = AC
(
AB2CM12(r) − M13(r)

)2

e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

]

+ A2B2
(
e1e2r

2 − r2 − A2e2M
11(r)

)
M12(r)M13(r)

e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

] , (153)

M33(r) = A2B2

e2r2

[
AB2

(
C2 + r2

)
M12(r) − CM13(r)

]2 + e2

(
e1r

2 − A2M11(r)
)
M13(r)2

(
AB2CM12(r) − M13(r)

)2 + r2M12(r)2
.

(154)

Here the constants e1 and e2 are the elementary symmetric polynomials in two of the three
free eigenvalues of b

e1 = λ1 + λ2, e2 = λ1λ2, (155)

with the incompressibility condition determining the third eigenvalue as λ3 = 1
λ1λ2

. The pa-

rameters e1 and e2 must be positive with e2
1 > 4e2, since b is positive definite. The remaining

constants, α1, α2, γ1, and γ2 are arbitrary, subject to the condition that the choice of e1, e2,
α1, α2, γ1, and γ2 must yield a positive-definite metric tensor. One can explicitly verify that
the invariants of b generated by this metric are

I1 = e1 + 1

e2
= λ1 + λ2 + λ3,

I2 = e1

e2
+ e2 = λ1λ2 + λ2λ3 + λ3λ1,

I3 = λ1λ2λ3 = 1.

(156)

Additionally, we can express this in terms of the referential variables by expressing r in
terms of X by the relation r = √

A(2X + D).

Family 2: Straightening, Stretching, and Shearing of a Sector of a Cylinder With this
family, it is prudent to make the substitution ξ = x − D, which allows us to express the
anomalous solution branch as

M12(ξ) = α1ξ + α2√
ξ

, (157)

M13(ξ) = γ1ξ + γ2√
ξ

, (158)

M11(ξ) =
√

Ae1 ±
√

Ae2
1 − 4

[
Ae2 + 2ξ

((
AM13(ξ) + CM12(ξ)

)2 + M12(ξ)2
)]

4A
3
2 B2ξ

, (159)

M22(ξ) =
A2B2

[(
CM12(ξ) + AM13(ξ)

)2 + e2

(
e1 − 2AB2ξM11(ξ)

)
M12(ξ)2

]

e2

[
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

] , (160)
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M23(ξ) = −
AB2

[
C

(
CM12(ξ) + AM13(ξ)

)2 + CM12(ξ)2
]

e2

(
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

) ,

− AB2
[(

A − e1e2 + 2AB2e2ξM11(ξ)
)
M12(ξ)M13(ξ)

]

e2

[
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

] , (161)

M33(ξ) = B2

e2

((
1 + C2

)
M12(ξ) + ACM13(ξ)

)2 + A2e2

(
e1 − 2AB2ξM11(ξ)

)
M13(ξ)2

M12(ξ)2 + (
AM13(ξ) + CM12(ξ)

)2 .

(162)

Alternatively, we can express this in terms of referential variables using the equation ξ =
1
2AB2R2. As in the previous case, e1 and e2 are the elementary symmetric polynomials in
the free eigenvalues of b, λ1 and λ2.

e1 = λ1 + λ2, e2 = λ1λ2. (163)

With this, the third eigenvalue is determined via the incompressibility condition λ3 = 1
λ1λ2

.
This ensures that the invariants of b are

I1 = e1 + 1

e2
= λ1 + λ2 + λ3,

I2 = e1

e2
+ e2 = λ1λ2 + λ2λ3 + λ3λ1,

I3 = λ1λ2λ3 = 1.

(164)

The constants e1, e2, α1, α2, γ1, γ2 are largely arbitrary, apart from the condition that e1 > 0,
and e2

1 > 4e2 > 0, and that the constants are chosen such that the metric tensor is positive
definite.

Alternatively, we have the case where the anelastic strain is compatible, and we have

[MAB(R)] =
⎡

⎣
M11R

2 M12R M13R

M12R M22 M23

M13R M23 M33

⎤

⎦ , (165)

where {M11,M12,M13,M22,M23,M33} are constants and detMAB(R) = R2. At first glance
this case appears slightly more general than the previous one under the special case
α1 = γ1 = 0, because for a fixed overall deformation, there are five independent parameters
determining this solution, while setting α1 = γ1 = 0 in the other family yields a special case
of (165) depending on the free parameters α2, γ2, e1, and e2. However, this case causes the
stretch tensor bab to be constant, which requires that the material manifold be Euclidean, and
a constant isochoric stretch only depends on two independent stretches, with the remaining
degrees of freedom representing a global rotation, which we can freely add or remove. This
case appears to not be a special case of the previous branch, because once we eliminate the
dependence on ξ , we no longer have a preferred direction, and hence we spontaneously gain
additional rotational degrees of freedom that can be removed by the choice of the orientation
of our current configuration Cartesian coordinates.

Physically, this amounts to the reference configuration deforming anelastically into a
parallelepiped, which can be elastically deformed into the desired block, as that elastic de-
formation is homogeneous. Indeed, the stress required to accomplish this is always constant,
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and hence equilibrium conditions are trivially satisfied. One can easily verify that the only
nonzero Christoffel symbol generated by this metric is 
1

11 = 1
R

, which generates a vanish-
ing curvature tensor R = 0. In fact, the anelastic strain can be integrated up to an arbitrary
rigid rotation and translation to obtain the position vector

xA = R2

2
ε1 + �ε2 + Zε3, (166)

where εa is an arbitrary right-handed set of linearly independent vectors spanning a paral-
lelepiped with unit volume. With this, the constants Mab = εa ·εb , i.e., the arbitrary constants
appearing in the metric tensor are given by the Euclidean inner products of the constant basis
vectors.

Family 3: Inflation, Bending, Torsion, Extension, and Shearing of an Annular Wedge
For this solution, it is prudent to define the functions

p(r) = γ1 + γ2

r2
, q(r) = α1r

2 + α2. (167)

With these definitions, we have the following anomalous solution branch

M12(r) = Dq(r) − Fp(r)√
r2 − B

, (168)

M13(r) = Ep(r) − Cq(r)√
r2 − B

, (169)

M11(r) = r2
e1 ±

√
e2

1 − 4
[
e2 + A(CF − DE)2

(
p(r)2 + q(r)2

r2

)]

2A
(
r2 − B

) , (170)

M22(r) =
(
Dr2p(r) + Fq(r)

)2 + e1e2r
2 (Dq(r) − Fp(r))2

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− Ae2 (Fp(r) − Dq(r))2
(
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) , (171)

M23(r) = Ae2 (Ep(r) − Cq(r)) (Fp(r) − Dq(r))
(
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− e1 (Cq(r) − Ep(r)) (Dq(r) − Fp(r))

(CF − DE)2
(
q(r)2 + p(r)2r2

)

−
(
Cp(r)r2 + Eq(r)

) (
Dp(r)r2 + Fq(r)

)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) , (172)

M33(r) =
(
Cr2p(r) + Eq(r)

)2 + e1e2r
2 (Cq(r) − Ep(r))2

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− Ae2 (Ep(r) − Cq(r))2
(
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) . (173)
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As with the other families, we can use the deformation equation r = √
AR2 + B , to recast

this into the referential variables. Additionally, the parameters e1 and e2 are the same as the
previous families, and other than demanding that the eigenvalues they determine be positive,
we also demand that the choice of variables α1, α2, γ1, γ2, e1, and e2 leaves the metric tensor
positive definite.

Family 5: Inflation, Bending, Extension, and Azimuthal Shearing of an Annular Wedge
To facilitate the analysis of this family, it is useful to define the function f (r) = γ1 + γ2

r2 .
With this, we have

M13(r) = α1r + α2

r
, (174)

M11(r) =
e1 ±

√
e2

1 − 4
(
e2 + A2f (r)2 + A2E2M13(r)2

)

2A2
, (175)

M12(r) = f (r) − ABM11(r)

Cr
, (176)

M22(r) = e2f (r)2
(
e1 + A2

(
B2 − 1

)
M11(r)

)

C2r2e2

(
f (r)2 + E2M13(r)2

)

+ E2
(
1 + A2B2e2M

11(r)
)
M13(r) − 2ABe2f (r)

(
f (r)2 + E2M13(r)2

)

C2r2e2
(
f (r)2 + E2M13(r)2

) , (177)

M23(r) = −ABM13(r)

Cr
− M13(r)f (r)

(
1 − e1e2 + A2e2M

11(r)
)

Ce2r
(
f (r)2 + E2M13(r)2

) , (178)

M33(r) = f (r)2 + E2e2
(
e1 − A2M11(r)

)
M13(r)2

E2e2

(
f (r)2 + E2M13(r)2

) . (179)

Again, the constraints on the constants appearing are as before, and are only necessary to
ensure the positive definiteness of b and the metric tensor. We can recast this into referential
variables using r = AR, if desired.

8 Merging of Universal Solution Families

After obtaining the previous results, it is natural to ask if solutions in one family corre-
spond to solutions in another, and if so, to what extent? It is possible that the material mani-
folds, and the corresponding elastic deformations from two different families differ only by
a change of coordinates, or equivalently, by a compatible anelastic deformation connecting
the reference configurations of the two total deformations.

8.1 Equivalent Universal Solutions

Two universal deformations, ϕ1 : (M1
R,M1

) → (
M1

c,m1
)
, and ϕ2 : (M2

R,M2
)→ (

M2
c,m2

)

are said to be equivalent if there exist two isometries � : (
M1

R,M1
) → (

M2
R,M2

)
, and

ψ : (M1
c,m1

) → (
M2

c,m2
)

such that

ψ ◦ ϕ1 = ϕ2 ◦ �, (180)
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or, equivalently, the following diagram commutes:

(
M1

R,M1
) (

M1
c,m1

)

(
M2

R,M2
) (

M2
c,m2

)

ϕ1

� ψ

ϕ2

(181)

For general manifolds, this is a difficult task, as we not only have to determine whether or
not two isometries exist, i.e., solve the Riemannian manifold equivalence problem twice, but
also whether or not they satisfy equation (180). However, in our case, the current configura-
tions of the universal deformations are both Euclidean, and hence ψ must be an element of
SE(3). Additionally, ϕ1 and ϕ2 are invertible and in principle known, so if we can find ψ ,
we can solve for � = ϕ−1

2 ◦ ψ ◦ ϕ1. It is then a simple matter of checking whether or not �

is an isometry.
We choose coordinates for all of these manifolds, writing current configuration coordi-

nates as {xa}, and material manifold coordinates as {XA}, with each set numbered by the
universal deformation pertaining to it. In terms of these coordinates, these maps are

x1
a = ϕ1

(
X1

A
)
,

x2
a = ϕ2

(
X2

A
)
,

x2
a = ψ

(
x1

b
)
,

X2
A = �

(
X1

B
)
,

(182)

where we have used different indices on the different sides of the equations to emphasize
that in principle each new coordinate depends on all of the old coordinates. These maps
prolong to tangent maps (F1)

a
A, (F2)

a
A, ha

b , HA
B , satisfying

dx1
a = (F1)

a
AdX1

A,

dx2
a = (F2)

a
AdX2

A,

dx2
a = ha

bdx1
b,

dX2
A = HA

BdX1
B.

(183)

In terms of these tangent maps, we then have the isometry conditions
(
M1

)
AB

= HD
AHE

B

(
M2

)
DE

, (184)
(
m1

)
ab

= hc
ahd

b

(
m2

)
cd

, (185)

and the prolongation of equation (180) as

ha
b (F1)

b
A = (F2)

a
BHB

A. (186)

Because both current configurations are Euclidean, we can trivially satisfy equation (185)
by choosing ψ to be an element of SE(3), and we can then use equation (186) to express
equation (184) in terms of ha

b as

(
M1

)
AB

= (F1)
a

Ahb
a

(
F−1

2

)D

b

(
M2

)
DE

(F1)
c

Bhc
d

(
F−1

2

)E

d. (187)
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We can write this expression in terms of the inverse of bab = Fa
AF b

BMAB for each defor-
mation and obtain

(c1)ab = hc
a (c2)cd hd

b, (188)

and hence

(b2)
ab = ha

chb
d (b1)

cd . (189)

8.2 Relationships Between the Six Universal Families

We would like to identify which families are likely to contain overlap, and take note of
Table 2. Specifically, the left Cauchy-Green tensor of each family is symmetric with respect
to the prolonged action of a subgroup of SE(3). Therefore, if two universal deformations
are equivalent, their corresponding strain tensors should have isomorphic symmetry groups.
Denoting the symmetry group of b1 as K1 ⊂ SE(3), and the symmetry group of b2 as K2 ⊂
SE(3), we seek ψ ∈ SE(3) such that

ψK1 = K2ψ. (190)

This immediately identifies a possible correspondence between Families 1, 3, and 5, because
their symmetry groups are isomorphic. Additionally, we expect that there might be some
universal solutions in Family 2 that are also in Family 0, since the symmetry group of Family
2 is a subgroup of that of Family 0, though we can immediately recognize that there are
solutions in Family 2 that are not equivalent to any in Family 0, because not all solutions in
Family 2 are invariant under the action of the full symmetry group of Family 0.

This observation immediately reveals that, up to an element of these symmetry groups,
ψ must be the obvious one implied by our choice of coordinates in each family, because it
must send invariant sets of K1 to invariant sets of K2. We recall that if a (sub)group K acts
on a manifold M, an invariant set of K is a set SK ⊂ M such that ∀x ∈ SK , and ∀k ∈ K ,
k•x ∈ SK . Here we consider the smallest nonempty invariant sets: the orbits of a single point
under the action of the subgroup Ki . The invariant sets of the symmetry groups of Families
1, 3, and 5 are concentric cylinders, hence any potential ψ connecting these two families
must map a family of concentric cylinders to another. The coordinates for each family were
chosen such that this family of cylinders is centered on the z axis, hence we require ψ to be
a Euclidean isometry mapping the z axis to itself. Apart from rotations and translation that
leave the left Cauchy-Green tensor fields unchanged, this restricts ψ to either be the identity,
or a rotation reversing the orientation of the z axis. We will see that we can freely take ψ to
be the identity.

We first show that Family 0 is contained within Family 2. To do this, we must find an
equivalent deformation in Family 2 for any choice of deformation in Family 0. Identifying
our coordinate systems (i.e., taking ψ to be the identity), we can express the left Cauchy-
Green tensor field for any deformation in Family 0 as

[
bab(x, y, z)

] =
⎡

⎣
b11 b12 b13

b12 b22 b23

b13 b23 b33

⎤

⎦ . (191)

We choose a universal solution in Family 2 with material inverse metric of the form

[
MAB(R)

] =

⎡

⎢⎢
⎣

M̃11

R2
M̃12

R
M̃13

R

M̃12

R
M̃22 M̃23

M̃13

R
M̃23 M̃33

⎤

⎥⎥
⎦ , (192)
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with M̃AB being appropriate constants, which is one of the cases where the material mani-
fold is Euclidean. Pushing this forward to the current configuration, we obtain the equations

⎡

⎣
b11 b12 b13

b12 b22 b23

b13 b23 b33

⎤

⎦ =

⎡

⎢
⎢
⎣

A2B4M̃11 BM̃12 CBM̃12 + ABM̃13

BM̃12 M̃22

A2B2
CM̃22

A2B2 + M̃23

AB2

CBM̃12 + ABM̃13 CM̃22

A2B2 + M̃23

AB2
C2M̃22

A2B2 + 2CM̃23

AB2 + M̃33

B2

⎤

⎥
⎥
⎦ .

(193)
Therefore, for any given element of Family 0, the choices

M̃11 = b11

A2B4
, (194)

M̃12 = b12

B
, (195)

M̃13 = b13 − Cb12

AB
, (196)

M̃22 = A2B2b22, (197)

M̃23 = AB2
(
b23 − Cb22

)
, (198)

M̃33 = B2
(
b33 − 2Cb23 + C2b22

)
, (199)

yield an equivalent member of Family 2. Also we note that these compatible material man-
ifolds are contained as special cases of the non-homogeneous branch of Family 2 via the
same argument presented in Sect. 7. Denoting UA to be the set of universal deformations
corresponding to family A, we conclude that

U0 ⊂ U2. (200)

We then seek to establish similar correspondences between the sets U1, U3, and U5. First, we
consider an element of U5 lying in its generic branch. The left Cauchy-Green tensor field
of this element is fully determined by specifying three functions of R, hence implicitly of r

through R = A
r

, namely M11(r), M23(r), and M33(r), along with values for the constants A,
C, and E. Labeling these choices M̃11(r), M̃23(r), M̃33(r), Ã, C̃, and Ẽ, we seek elements
in Families 1 and 3 that generate the same stretch tensor field.

The left Cauchy-Green tensor field for the generic branch of Family 1 depends on three
arbitrary functions of X(r) = r2

2A
− D

2 , M11(X(r)), M22(X(r)), and M23(X(r)) as well as
the constants A, B , C. If we select the functions and constants such that

M11(X(r)) = Ã2r2M̃11(r)

A2
, (201)

M22(X(r)) =
[
Ã2Ẽ2r2M̃11(r)

]−1 + C̃2M̃23(r)2

B2M̃33(r)
, (202)

M23(X(r)) = A

⎡

⎢
⎣C

[
Ã2Ẽ2r2M̃11(r)

]−1 + C̃2M̃23(r)2

M̃33(r)
+ C̃ẼM̃23(r)

⎤

⎥
⎦ , (203)
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it is straightforward to verify that the stretch tensor fields generated coincide. Therefore, the
generic solution branch of Family 5 is contained in the generic solution branch of Family 1,
since we can find universal solutions in Family 1 that are equivalent to any universal solution
in Family 5.

Similarly, the generic branch of Family 3 depends on three functions of r through R(r) =
r2−B

A
: M11(R(r)), M22(R(r)), and M23(R(r)) as well as the constants A, B , C, D, E,

and F . The choice

M11(R(r)) = Ã2r2M̃11(r)

A(r2 − B)
, (204)

M22(R(r))

= −
EF + Ã2Ẽ2r2M̃11(r)

[
CẼM̃33(r) − C̃EM̃23(r)

][
DẼM̃33(r) − C̃FM̃23(r)

]

Ã2Ẽ2 (CF − DE)2 r2M̃11(r)M̃33(r)
,

(205)

M23(R(r)) =
F 2 + Ã2Ẽ2r2M̃11(r)

[
C̃FM̃23(r) − DẼM̃33(r)

]2

Ã2Ẽ2 (CF − DE)2 r2M̃11(r)M̃33(r)
, (206)

also generates an identical stretch field, hence the generic branch of Family 5 is also con-
tained in the generic branch of Family 3.

We have shown that the generic branch of Family 5 is contained in those of both Family
1 and Family 3. To examine the opposite direction, suppose we take an arbitrary member of
the generic branch of Family 1, defined by parameters M̃11(X(r)), M̃22(X(r)), M̃23(X(r)),
Ã, B̃ , and C̃, and seek to find a solution in Family 5 that generates the same stretch tensor
field. Elements in Family 5 depend on the parameters M11(R(r)), M23(R(r)), M33(R(r)),
A, C, and E, and the choice

M11(R(r)) = Ã2M̃11(X(r))

A2r2
, (207)

M23(R(r)) = M̃23(X(r))

ÃCE
− B̃2C̃2M̃22(X(r))

CE
, (208)

M33(R(r)) =
1 + M̃11(X(r))

[
M̃23(X(r)) − ÃB̃2C̃M̃22(X(r))

]2

E2Ã2B̃2M̃11(X(r))M̃22(X(r))
, (209)

generates the same stretch tensor fields as the member of Family 1. Hence, the generic
solution branch of Family 1 is contained in the generic branch of Family 5. Coupled with
the previous result, we conclude that the generic solution branches for Families 1 and 5
are equivalent, in that every universal solution in one of these branches has at least one
equivalent universal solution in the other.

Next, choosing an arbitrary universal solution in the generic branch of Family 3, we seek
a universal solution in Family 5 that is equivalent. Choosing parameters M̃11(r), M̃22(r),
M̃23(r), Ã, B̃ , C̃, D̃, Ẽ, and F̃ determining an arbitrary solution in Family 3, we can choose
an element of Family 5 by specifying the parameters A, C, E, M11(R(r)), M23(R(r)), and
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M33(R(r)), where R(r) = r
A

. If we choose these such that

M11(R(r)) = Ã(r2 − B̃)M̃11(r)

A2r2
, (210)

M23(R(r)) = 1

CEM̃22(r)

[
D̃F̃

Ã
(
C̃F̃ − D̃Ẽ

)2 (
r2 − B̃

)
M̃11(r)

(211)

+
(
C̃M̃22(r) + D̃M̃23(r)

)(
ẼM̃22(r) + F̃ M̃23(r)

)]

, (212)

M33(R(r)) = 1

E2M̃22(r)

⎡

⎢
⎣

F̃ 2

Ã
(
C̃F̃ − D̃Ẽ

)2
(r2 − B̃)M̃11(r)

+
(
ẼM̃22(r) + F̃ M̃23(r)

)2

⎤

⎥
⎦ ,

(213)

we obtain a universal solution that is equivalent to the specified solution in Family 3. Hence,
the generic solution branch of Family 3 is contained within that of Family 5. Coupled with
our previous results, this result implies that the generic solution branches of Families 1, 3,
and 5 are all equivalent to each other.

Next we consider the anomalous solution branches for these families. First, we select an
arbitrary member of Family 3 anomalous solution branch by specifying the parameters Ã, B̃ ,
η̃ = D̃Ẽ − C̃F̃ ,5 ẽ1, ẽ2, α̃1, α̃2, γ̃1, and γ̃2. We seek to find solutions in Family 1 anomalous
solution branch, and Family 5 solution branches that generate equivalent solutions.

First examining Family 1, we can select values for constants α1, α2, γ1, γ2, e1, e2, A, B ,
and C. It is straightforward to verify that the choice

α1 = γ̃2, α2 = γ̃1, γ1 = α̃1, γ2 = α̃2 + Cγ̃1,

B = 1

η̃
√

Ã
, A = Ãη̃2, e1 = ẽ1, e2 = ẽ2,

(214)

generates an equivalent solution. Likewise for Family 5, we can choose values for the pa-
rameters α1, α2, γ1, γ2, e1, e2, A, and E, where the specific choices

A = η̃

√
Ã, E = 1, α1 = α̃1, α2 = α̃2, γ1 = γ̃1, γ2 = γ̃2, e1 = ẽ1, e2 = ẽ2,

(215)
generate a solution that is equivalent to the arbitrary solution from Family 3. Hence the
anomalous branch from Family 3 is contained in both that of Family 1 and Family 5.

Conversely, we select an arbitrary member of the anomalous branch of Family 5 by
specifying the parameters α̃1, α̃2, γ̃1, γ̃2, ẽ1, ẽ2, Ã, and Ẽ. We can verify that the choice of
parameters

A = Ã, η =
√

Ã, e1 = ẽ1, e2 = ẽ2, α1 = Ẽα̃1, α2 = Ẽα̃2, γ1 = γ̃1, γ2 = γ̃2,

(216)
yields a solution from Family 3 that is equivalent to the arbitrary one from Family 5.

5While the anomalous branch for Family 3 depends on the parameters C, D, E, and F , they only appear in
the combination DE − CF , hence it is sufficient to only specify this value.
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Finally, we select an arbitrary member of the anomalous branch of Family 1 by specifying
the parameters α̃1, α̃2, γ̃1, γ̃2, ẽ1, ẽ2, Ã, B̃ , and C̃, and seek an equivalent solution in Family
3. The parameter choices

A = Ã2, B = B̃, η = 1, e1 = ẽ1, e2 = ẽ2,

α1 = γ̃1

ÃB̃
, α2 = γ̃2

ÃB̃
− B̃C̃α̃2, γ1 = B̃α̃2, γ2 = B̃α̃1,

(217)

generate such a solution. Hence, we deduce that the anomalous branches of Families 1 and
5 are contained in that of Family 3, which combined with our previous results implies that
the anomalous branches of all the three families are the same.

Therefore, having examined both the generic and anomalous branches of these families,
we conclude that U1 = U3 = U5. Hence, in the anelastic setting, our initial six families of
universal solutions have collapsed into three families U2, U3, and U4, one corresponding to
each of the three surfaces with constant principal curvatures in 3D Euclidean space: planes,
cylinders, and spheres, respectively. These surfaces are the invariant sets of the symmetry
groups of the left Cauchy-Green tensor fields, and they played a central role in [7], being the
level sets of the strain invariants. Here, we see that not only are the invariants of b constant on
these surfaces, but b itself is symmetric with respect to these surfaces in the manner induced
by the action of the special Euclidean group. This symmetry is present even in the degenerate
case when the invariants of b are constant, which is why we can identify the symmetry
groups even in the anomalous solution branches. In the classical problem, similar surfaces
can be identified in the material manifold, since in the absence of eigenstrains, the material
manifold and the reference configuration coincide. These surfaces are invariant sets of the
symmetry groups of the right Cauchy-Green tensor fields, and prevent the identification of
the classical families with each other, since the only two classical families with matching
invariant sets in both configurations are Families 3 and 5. These however cannot be identified
with each other because solutions in Family 5 have constant invariants, while those in Family
3 do not. Hence, it is only after the addition of eigenstrains that many of the classical families
become redundant.

8.3 Standard Forms of the Three Distinct Universal Families

We note that there is some redundancy in the parameterizations we currently have, which is
exhibited by observing that the parameter selections we have used to identify the families
with each other are not mutual inverses. We can reparametrize to eliminate this redundancy
and have a single representation for strain field of each family. Concretely, we can express
the left Cauchy-Green stretch field for the anomalous branches of U3 in the following stan-
dard form:

b11 = m ±
√

m2 −
[
p + (

b13
)2 + (

b12r
)2

]
,

b22 =
(
b13

)2 − p
(
b12r

)2 (
b11 − 2m

)

pr2
[(

b13
)2 + (

b12r
)2

] ,

b33 =
(
b12r

)2 − p
(
b13

)2 (
b11 − 2m

)

p
[(

b13
)2 + (

b12r
)2

] , (218)
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b12 = γ2

r3
+ γ1

r
, b23 = −b12b13

(
1 + b11p − 2pm

)

p
[(

b13
)2 + (

b12r
)2

] , b13 = rα1 + α2

r
,

where p is the product of the two free eigenvalues of b, and m is the mean of the two free
eigenvalues. The inverse of this, cab , is the push forward of the material metric, and has
components

c11 = 2m − b11

p
, c22 =

(
prb13

)2 + b11
(
r2b12

)2

p
[(

rb12
)2 + (

b13
)2

] , c33 = b11
(
b13

)2 + (
prb12

)2

p
[(

rb12
)2 + (

b13
)2

] ,

c12 = − r2b12

p
, c13 = −b13

p
, c23 = b12b13

(
b11 − p2

)
r2

p
[(

rb12
)2 + (

b13
)2

] .

(219)

The generic branch of this family likewise has a standard expression:

[
bab(r)

] =
⎡

⎣
b11(r) 0 0

0 b22(r) b23(r)

0 b23(r) b33(r)

⎤

⎦ , (220)

with the incompressibility condition det b = 1 taking the form r2b11(r)[b22(r)b33(r) −
(b23(r))2] = 1. The inverse of this form then takes the form

[
cab(r)

] =
⎡

⎣
c11(r) 0 0

0 c22(r) c23(r)

0 c23(r) c33(r)

⎤

⎦ , (221)

with the incompressibility condition being c11(r)
[
c22(r)c33(r) − (c23(r))

2
] = r2. The pos-

itive definiteness condition is equivalent to c11 (r) > 0, c22(r) > 0, and c33(r) > 0 in
addition to the incompressibility condition (221), or in the anomalous solution, requir-
ing m > 0, and 0 < p < m2. An example of one of these generic solutions was investi-
gated by Yavari and Goriely [39], with the parameter choices c11 (r) = λ2, c22 (r) = λ2r2,

c23 (r) = r2 (ψ (λr) − τ), and c33 (r) = 1+λ2r2(ψ(λr)−τ)2

λ4 .
Similarly, the left Cauchy-Green tensor field for the anomalous branch of the family U2

takes the standard form

b11 = m ±
√

m2 −
[
p + (

b12
)2 + (

b13
)2

]
,

b22 =
(
b13

)2 − p
(
b12

)2 (
b11 − 2m

)

p
[(

b12
)2 + (

b13
)2

] ,

b33 =
(
b12

)2 − p
(
b13

)2 (
b11 − 2m

)

p
[(

b12
)2 + (

b13
)2

] ,

b12 = α1x + α2, b23 = −b12b13
(
1 + pb11 − 2pm

)

p
[(

b12
)2 + (

b13
)2

] , b13 = γ1x + γ2,

(222)
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with p and m defined as previously. Inverting this to obtain cab , one obtains

c11 = 2m − b11

p
, c22 = b11

(
b12

)2 + (
pb13

)2

p
[(

b12
)2 + (

b13
)2

] , c33 = b11
(
b13

)2 + (
pb12

)2

p
[(

b12
)2 + (

b13
)2

] ,

c12 = −b12

p
, c13 = −b13

p
, c23 = b12b13

(
b11 − p2

)

p
[(

b12
)2 + (

b13
)2

] .

(223)

The left Cauchy-Green tensor for the generic branch of this family also has a standard form

[
bab(x)

] =
⎡

⎣
b11(x) 0 0

0 b22(x) b23(x)

0 b23(x) b33(x)

⎤

⎦ , (224)

with the incompressibility condition becoming b11(x)
[
b22(x)b33(x) − (

b23(x)
)2

]
= 1. The

inverse of this then takes the standard form

[
cab(x)

] =
⎡

⎣
c11(x) 0 0

0 c22(x) c23(x)

0 c23(x) c33(x)

⎤

⎦ , (225)

with the incompressibility condition

c11(x)
[
c22(x)c33(x) − (c23(x))2

] = 1. (226)

The positive-definiteness condition is equivalent to requiring c11(x) > 0, c22(x) > 0, and
c33(x) > 0, in addition to the incompressibility condition (226), or in the anomalous case,
requiring m > 0, and 0 < p < m2.

Finally, the spherically-symmetric family U4 can be expressed in the standard form
through its left Cauchy-Green tensor

[
bab

] =
⎡

⎢
⎣

g(r)2 0 0
0 1

g(r)r2 sin2 φ
0

0 0 1
g(r)r2

⎤

⎥
⎦ , (227)

which has the inverse

[
cab

] =
⎡

⎣
g(r)−2 0 0

0 g(r)r2 sin2 φ 0
0 0 g(r)r2

⎤

⎦ . (228)

The incompressibility condition and positive definiteness is automatically satisfied for arbi-
trary functions g(r) satisfying g(r) > 0. In terms of parameters defined by Goriely [14] in
Chapter 15.1.1, this function is g(r) = αr = α−2: it is the radial stretch.

These standard forms make it clear that universal solutions in anelasticity can be catego-
rized by computing the tensor c�, and comparing the result with the standard forms here. As
a consequence of this, the symmetry of the elastic strain in the current configuration deter-
mines which family any particular universal solution belongs to, as it is this symmetry that
is reflected in c�.
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We have examined particular symmetry groups, namely T(2), T(1)×SO(2), and SO(3).
All of these are Lie subgroups of SE(3), and specifically they are generated by two inde-
pendent generators; choosing two translational generators yields T(2), choosing a rotation
and a translation about the axis of that rotation yields T(1)×SO(2), and choosing two rota-
tions fixing a common point yields SO(3). We show in Appendix C that any Lie subgroup
of SE(3) generated by two arbitrary independent generators contains at least one of these
groups by necessity, hence we have the following theorem:

Theorem 8.1 (Classification of symmetric universal solutions) Any universal solution that
is equivariant under the action of two independent 1-dimensional Lie subgroups of SE(3) is
contained in one of the three universal families U2, U3, or U4.

This allows us to precisely state our conjecture regarding the completeness of our classi-
fication in terms of symmetry:

Conjecture 8.1 (Symmetry necessity) A deformation must be equivariant with respect to
the action of two independent one-dimensional Lie subgroups of SE(3) in order to be uni-
versal, hence our classification is complete.

9 Graphic Representation

Because the material manifolds are generally non-Euclidean, visualizing them is difficult.
A way to overcome this difficulty is to approximate their geometry as “piecewise Eu-
clidean” and examine the deformation of each piece. This approach is similar to the three-
dimensional version of approximating a curved surface with a polyhedron, and then repre-
senting that polyhedron in the plane by its net. The original surface can then be build up by
connecting appropriate edges, but because of the curved nature of the surface, these edges
cannot all be connected without distorting the pieces, or lifting them out of the plane. To
demonstrate this technique, we will first start with a two-dimensional example, and then
move on to a Euclidean three-dimensional example, and then finally apply the techniques to
examples of material manifolds obtained from our analysis.

9.1 A Two-Dimensional Example

We know that representing spherical geometry in the plane isometrically is an egregiously
impossible task [11]. To get around this, we only do this approximately, and allow for in-
compatibility by partitioning and separating our domain in multiple pieces. We can then
stretch each piece in such a way that the deformed pieces can be approximately recombined
in three-dimensional space to form an upper hemisphere. The deformed pieces are individu-
ally flat, so they can all be placed in the plane, but not in a way such that they can be pieced
together without gaps (see Fig. 12).

Explicitly, we want to take the region r ∈ [0,1], θ ∈ [0,2π), where r and θ are polar co-
ordinates in the plane, and map it to the surface z = √

1 − r2 in three-dimensional space. The
stretch induced by this map is described by the metric tensor with cylindrical components

[
Mαβ

] =
[ 1

1−r2 0
0 r2

]
, (229)
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Fig. 12 We start with a disk,
partition it, and separate the
resulting pieces to allow for room
for each piece to strain without
overlapping its neighbors. We
then strain each piece, and
recombine the deformed cells to
create an approximation of an
upper hemisphere. Here each cell
[Ri−1,Ri ] × [�j−1,�j ] is
positioned so both the position of
the point
(r, θ) = ((Ri−1 + Ri)/2,

(�j−1 + �j )/2), and the
orientation of its tangent plane
match that of the exact map from
the disk to the hemisphere

which we can approximate as constant on each piece, while keeping each piece in the plane,
by evaluating the metric at r∗ = (rmax − rmin)/2. The deformed pieces can then be rigidly
translated and rotated in three-dimensional space to approximate the desired spherical sur-
face, with the approximation becoming better as the partition becomes finer (see Fig. 13).

This two-dimensional example allows one to see the correspondence between the de-
formed partitioned approximation and the recombined non-Euclidean configuration, which
is important because once we move up to three-dimensional examples, we are no longer
able to recombine the strained pieces; we must deduce properties of its geometry from the
deformed partitioned approximation alone. Additionally, while we assembled the resulting
deformed pieces into a hemisphere by lifting them into a higher dimensional Euclidean
space, we could have assembled them into any number of other surfaces that are isomet-
ric to the hemisphere. Because we only determine the intrinsic geometry of the material
manifold, there is no preferred isometric embedding in some higher dimensional Euclidean
space, unless as above, we explicitly specify the embedding.

9.2 A Three-Dimensional Euclidean Example

Just as in the two-dimensional example, we can partition a flat three-dimensional body, ex-
plode it, and approximate strains on each piece to represent the non-Euclidean geometry of
our deformations. The only difference is that, in general, we cannot recombine the distorted
pieces into a cohesive whole, because the resulting shape is not globally flat. However, if
the strain that we impose is actually induced by a map between Euclidean spaces, we can
apply this procedure to the partitioned pieces, and observe the local strain, while separately
observing the global deformation. We can then compare the two results to see which features
are preserved by this local partitioning approach to better interpret the results of applying
this procedure to our derived material metrics.

Consider the following map given in cylindrical polar coordinates

r = R, θ = ν�, z = Z + μν�. (230)

This map produces azimuthal shear and angular stretching. Choosing μ = 2 and ν = 1
2 , and

mapping the domain R ∈ [2,3], � ∈ [
0, 2π

3

]
, Z ∈ [0,1], we obtain a transformation shown
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Fig. 13 As the partitioning gets
finer, the resulting approximation
of the anelastic strain becomes
more and more accurate

Fig. 14 Angular stretching and
azimuthal shear of an annular
wedge. Elements of this body
have been artificially separated to
better show the deformation of
the internal elements

Fig. 15 With just knowledge of the strain at each point, we cannot recover the local rotation necessary to
piece the elements together, nor the global rotation present in the overall deformation

in Fig. 14. If we instead compute the strain tensor, and use it as a material metric for the
current configuration, we obtain

[MAB] =
⎡

⎣
1 0 0
0 ν2

(
r2 + μ2

)
μν

0 μν 1

⎤

⎦ . (231)

Applying this stretch to our partitioned domain, we obtain the depiction shown in Fig. 15.
This side-by-side comparison shows what is happening when we do this piecewise transfor-
mation, namely we capture the strain of each piece, but we do not capture any local rotation
that is present in the global deformation. This is because local rotations produce no strain, so
they do not contribute to the strain tensor, and hence, we cannot expect to be able to capture
them through this reconstruction.
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9.3 Anomalous Anelastic Strains

For the anomalous families, we will use the partitioning technique to attempt to visualize the
deformations. We note that not all choices of parameters are valid over arbitrary domains.
In particular, the parameters must be chosen such that the metric is positive definite over
the chosen domain, in addition to making sure that the strain tensor b is positive definite,
a much simpler task as this requires e1 and e2 to be positive with e2

1 > 4e2. We also depict
the total overall deformation, coloring the current configuration by the trace of the Cauchy
stress required to maintain it for a Mooney-Rivlin solid with strain energy of the form

W = μ1

2
(I1 − 3) + μ2

2
(I2 − 3) , (232)

both in the presence and absence of anelastic strain. Because the invariants of the left
Cauchy-Green tensor are constant for the anomalous universal eigenstrains, any choice of
strain energy is indistinguishable from a Mooney-Rivlin energy, and the only invariant of
the Cauchy stress that can potentially vary spatially is the pressure generated due to the con-
straint stress. Here we choose the two material parameters in the Mooney-Rivlin energy to
each be equal to 1, though different choices of parameters would yield qualitatively similar
results.

Family 1 For this family we choose the reference domain X ∈ [0,1], Y ∈ [0,6], and Z ∈
[0,4], and take the deformation parameters A = 3

2 , B = 1, C = 1
4 , D = 2, E = 0, F = 0. To

examine the effects of anomalous universal eigenstrain on the equilibrium stress distribution,
we consider the same overall deformation, and contrast the stress generated in the presence
of eigenstrain with that generated in the absence of eigenstrain. For the anelastic strain
parameters, we use

α1 = −1, α2 = 1

8
, γ1 = −1

8
, γ2 = 6

11
,

e1 = 9
4 ,

e2 = 9
8 ,

⇔ λ1 = 3
2 ,

λ2 = 3
4 .

(233)

One can verify that this ensures that M is positive definite over the chosen domain. To visu-
alize the anelastic strain, we subdivide the domain, separate the pieces, and approximate the
anelastic strain on each (see Fig. 16). This anelastic strain is generally not compatible, i.e.,
the deformed pieces cannot be reassembled in Euclidean space without further deformation.
We map the body into the current configuration, and color it to denote the spherical part of
the Cauchy stress generated by a Mooney-Rivlin solid. This requires us to integrate the inde-
terminate constraint pressure field, both with and without eigenstrain. Without eigenstrain,
we have the following differential equations for the constraint pressure

∂p

∂r
=

1
B2 + A2

(
B2C2 − 1

) − (
B2 + 3

A2

)
r4

r3
,

∂p

∂θ
= 0,

∂p

∂z
= 0, (234)

which can be easily integrated to obtain

p(X) = p(R) = −
1

B2 + A2
(
B2C2 − 1

)

2r2
− B2 + 3

A2

2
r2. (235)

Notice in particular that p does not vary with z or θ . Additionally, only the gradient of p

affects the motion, which allowed us to ignore the integration constant when integrating the
above equations.
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Fig. 16 A depiction of the anomalous anelastic strain for one element of Family 1

When there is eigenstrain, we obtain a different set of differential equations determining
p(X):

∂peig

∂r
= k(R),

∂peig

∂θ
= 2AB (1 + e2)

e2
α2,

∂peig

∂z
= 2 (1 + e2)

e2
γ1, (236)

where k(R) is an algebraic function of r alone. We can in principle integrate these to obtain

peig(X) = peig (r, θ, z) =
∫ r

r0

k
(
r̂
)
dr̂ + 2AB (1 + e2)

e2
α2θ + 2 (1 + e2)

e2
γ1z. (237)

In contrast with the ordinary case, when we have eigenstrain, we can generate pressure gra-
dients that vary with θ and z. Interestingly enough, even the generic universal eigenstrain
cannot generate pressure gradients in these directions; the anomalous universal eigenstrain
is the only universal eigenstrain that can create pressure gradients in these directions. This
suggests that the measurement of these pressure gradients can be used to partially measure
the eigenstrain, and conversely these anomalous solutions can be used to generate pressure
gradients in these directions to, for example, counteract the pressure generated by body
forces. We then compute the first stress invariant, the trace of the Cauchy stress, or equiva-
lently its spherical part, for the material both in the absence and presence of eigenstrain, and
plot the resulting stress invariant in Fig. 17.

Family 2 For this family, we choose the reference domain R ∈ [2,3], � ∈ [0,5], and
Z ∈ [0,4], and take the deformation parameters A = 1, B = 3

4 , C = 1
4 , D = 0, E = 0,

F = 0. These parameters define the total deformation, allowing us to examine the effects
of eigenstrain on the Cauchy stress. In particular, we take the parameters appearing in the
anelastic strain to be

α1 = 1

8
, α2 = −2

5
, γ1 = 1

8
, γ2 = − 3

13
,

e1 = 21
10 ,

e2 = 9
10 ,

⇔ λ1 = 3
2 ,

λ2 = 3
5 .

(238)

This ensures that the metric is positive definite over the chosen domain. We subdivide and
explode the domain, and apply our anelastic strain to each piece, as shown in Fig. 18. We are
then left with a set of differential equations determining the constraint stress. In the absence
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Fig. 17 Without eigenstrain
(top), only radial pressure
gradients can be sustained. With
the imposition of the anomalous
eigenstrain (bottom), linear
pressure gradients with z and θ

can also be sustained

Fig. 18 A depiction of the anomalous anelastic strain for Family 2

of eigenstrain, we have

∂p

∂x
= 2AB2 + 1

2AB2 (x − D)2 ,
∂p

∂y
= 0,

∂p

∂z
= 0. (239)

Upon integration, we obtain

p(X) = p(x) = 2AB2 (x − D) − 1

2AB2 (x − D)
. (240)

In contrast, when we consider eigenstrain, we have the equations

∂peig

∂x
= k(x),

∂peig

∂y
=

√
2 (1 + e2)√

Ae2

α1,
∂peig

∂z
=

√
2 (1 + e2)√

Ae2

(Cα1 + Aγ1) , (241)

where as before k(x) is an algebraic function of x. We can integrate these equations to obtain

peig(X) = peig (x, y, z) =
∫ x

x0

k
(
x̂
)
dx̂ +

√
2 (1 + e2)√

Ae2

α1y +
√

2 (1 + e2)√
Ae2

(Cα1 + Aγ1) z.

(242)
As before, the presence of this anomalous universal eigenstrain generates pressure gradients
in directions that are not possible in their absence, in this case, the y and z directions.
Again, even the generic branch of universal eigenstrains cannot generate pressure gradients
in these directions, further highlighting the unique nature of the anomalous solutions. We
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Fig. 19 Without eigenstrain
(top), the pressure generated by
this deformation only varies with
x. When we impose the
anomalous eigenstrain (bottom),
the pressure generated can also
vary with both y and z

then compute the trace of the Cauchy stress, and plot the resultant distributions both in the
absence and presence of eigenstrain (see Fig. 19).

Family 3 For this family, we choose the domain R ∈ [2,3], � ∈ [0,5], and Z ∈ [0,4], and
the deformation parameters A = 1, B = 0, C = 5

4 , D = 1
6 , E = 1

4 , F = 5
4 , G = −π

4 , H = 0.
This completely defines the total deformation, allowing us to examine the stress generated
with eigenstrain in contrast with that generated without eigenstrain. We take

α1 = 1

8
, α2 = −2

5
, γ1 = 1

8
, γ2 = − 3

13
,

e1 = 21
10 ,

e2 = 9
10 ,

⇔ λ1 = 3
2 ,

λ2 = 3
5 ,

(243)

as our anelastic parameters. Over the defined domain, these choices ensure that the anelastic
metric tensor is positive definite. We then partition and explode the domain, approximating
the eigenstrain on each piece, depicting the result in Fig. 20. As before, we obtain differential
equations for p, yielding in the elastic case

∂p

∂r
= E2

(DE − CF)2 r3
− D2r +

B − BF 2

(DE−CF)2 + r2 + F 2r2

(DE−CF)2

Ar3

+ A
[
B

(
3 + C2

)
r − (

1 + C2
)
r3

]

(
r2 − B

)2 ,

∂p

∂θ
= 0,

∂p

∂z
= 0,

(244)

which can be integrated to obtain

p(X) = p(R) = 1

2

[
2
[
(DE − CF)2 + F 2

]
log(R)

A(DE − CF)2 − 2AB

r2 − B
− D2r2 − E2

(DE − CF)2 r2

− B
[
(DE − CF)2 − F 2

]

A(DE − CF)2 r2
− A

(
1 + C2

)
log

(
B − r2

)
]

. (245)
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Fig. 20 A depiction of the anomalous anelastic strain for Family 3

Fig. 21 Without eigenstrain
(top), the pressure only varies
radially. With the anomalous
eigenstrain (bottom), the pressure
can vary linearly with z and θ

In contrast, in the presence of eigenstrain, we have the differential equations

∂peig

∂r
= k(R),

∂peig

∂θ
= 2

(
A2 + e2

)
(DE − CF)√
Ae2

γ1,

∂peig

∂z
= 2

(
A2 + e2

)
(DE − CF)√
Ae2

α1,

(246)

with k(R) an algebraic expression in r as in other families. This pressure can be integrated
to obtain

p(X) = p (r, θ, z) =
∫ r

r0

k
(
r̂
)
dr̂ + 2

(
A2 + e2

)
(DE − CF)√
Ae2

γ1θ

+ 2
(
A2 + e2

)
(DE − CF)√
Ae2

α1z. (247)

We compute the first invariant of the Cauchy stress and color the deformation according to
it in Fig. 21. As in other families, the presence of this anomalous branch of universal eigen-
strain can generate pressure gradients in directions that do not occur otherwise, specifically
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Fig. 22 A depiction of the anomalous anelastic strain for Family 5

pressure that varies with θ and z. This property would allow one to indirectly measure the
eigenstrain by measuring the pressure variation required to sustain this deformation. Like-
wise, if we can specify the eigenstrain, we can create specific pressure gradients that would
otherwise be impossible for the generic branch.

Family 5 For this final family, we choose the same domain as in Family 3, i.e., R ∈ [2,3],

� ∈ [0,5], and Z ∈ [0,4], and we take the deformation parameters to be A =
√

4
5 , B = 1,

C = 1, D = − π
4 , E = 5

4 , F = 0. Choosing the anomalous eigenstrain parameters as

α1 = −1

8
, α2 = 1

2
, γ1 = − 1

10
, γ2 = 1

4
,

e1 = 9
4 ,

e2 = 9
8 ,

⇔ λ1 = 3
2 ,

λ2 = 3
4 ,

(248)

we subdivide and explode our domain, then approximate the eigenstrain on each piece. The
result of this is depicted in Fig. 22. As with the other families, we are left with a set of
differential equations determining the constraint stress. When eigenstrain is absent, we have
the equations

∂p

∂r
= −

(
B2 + C2 − 1

) (
1 + A4C2

)

A2C2r
,

∂p

∂θ
=

2B
(
A4 + 1

C2

)

A2
,

∂p

∂z
= 0, (249)

which can be integrated to obtain

p(X) = p (r, θ, z) = − (B2 + C2 − 1)(1 + A4C2)

A2C2
log(R) +

2B
(
A4 + 1

C2

)

A2
θ. (250)

When we consider the anomalous solution, we have the equations

∂p

∂r
= k(R),

∂p

∂θ
= 2A(1 + e2)

e2
γ1,

∂p

∂z
= 2AE (1 + e2)

e2
α1, (251)

in terms of an algebraic function k(R) which can be integrated to obtain

p(X) = p (r, θ, z) =
∫ r

r0

k
(
r̂
)
dr̂ + 2A(1 + e2)

e2
γ1θ + 2AE (1 + e2)

e2
α1z. (252)

When we compute the pressure gradient in the case of the generic universal solution, we ob-
tain a pressure that only varies with r . We see that the anomalous branch generates pressure
gradients that vary with θ and z, unlike the generic solutions. We can compute the trace of
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Fig. 23 Without eigenstrain
(top), this family allows for
pressure gradients in both the
radial and azimuthal directions.
With eigenstrain (bottom), an
axial pressure gradient can also
be sustained

the Cauchy stress, both with eigenstrain and without eigenstrain, and use this to color the
deformed configurations in Fig. 23. Notice that unlike other families, the constraint pressure
in the absence of eigenstrains can vary in a direction different than in the generic anelastic
situation, specifically, for an eigenstrain in the generic solution branch, we have ∂p/∂θ = 0,

but in the absence of eigenstrain, we have ∂p/∂θ = 2B
(
A4 + 1

C2

)
/A2. This is due to the

fact that the standard Euclidean metric in terms of cylindrical polar coordinates lies on the
anomalous solution branch, and not within the generic branch. In the elastic case, when the
azimuthal shearing term does not vanish, corresponding to B 
= 0, we have a pressure vari-
ation in θ that is necessarily nonzero. In the anomalous case, we can determine the pressure
variation in both θ and z by adjusting our choices for γ1 and α1, allowing us to determine
the pressure variation in these directions independently of the overall total deformation by
choosing the anelastic strain appropriately. Specifically, we can have arbitrarily large az-
imuthal shearing, while also causing the azimuthal pressure variation to vanish. While the
other families also allow us to select the ordinarily absent components of the pressure gra-
dient in a similarly arbitrary way, this family is unique in having one of these pressure
gradients present without eigenstrain, so the anomalous universal eigenstrain allows us to
both create pressure variations in these directions, but also remove pressure variations that
are ordinarily necessary to maintain the overall deformation.

Additionally, with the anomalous anelastic solution branch, the azimuthal pressure vari-
ation ∂p/∂θ = 2A(1 + e2)γ1/e2 does not depend on the degree of azimuthal shearing, i.e.,
it is independent of B . While the anomalous eigenstrain itself does depend explicitly on B ,
if the eigenstrain and the total deformation are simultaneously varied by changing B , the
azimuthal pressure gradient should not change. Doing this in practice would be difficult,
because fundamentally the parameter B partially determines the overall deformation, hence
both the overall deformation and the eigenstrain would have to be simultaneously controlled
in precise ways to realize this thought-experiment. Thankfully, this does not have to be done
dynamically; a new value of B could be selected, the overall deformation could be con-
trolled, and once it is established, it is fixed. Then the eigenstrain could be controlled until
the universal eigenstrain corresponding to the chosen value of B is obtained. After this is
done, the pressure variation could be measured, and this process can be repeated to establish
the independence of the azimuthal pressure gradient.
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10 Conclusions

We have generalized the universal solutions of Ericksen’s problem to the case of anelasticity.
The main idea was to first identify the symmetry group associated with each solution of
the classical Euclidean problem and use this symmetry group in a non-Euclidean setting by
finding the possible metrics that guarantee each symmetry group. We used both the structure
of existing universal solutions for a given M̄ and their symmetries to find possible material
metrics M. This was done by interpreting the classical universal deformations passively as
coordinate changes. Then all local changes in geometry can be captured by changing the
metrics. In this way, once we moved away from M̄ to the general M, we recognized that
any homeomorphism can be expressed by the particular coordinate maps for each family,
since the coordinates themselves no longer hold any specific interpretation. By identifying
an appropriate symmetry to impose on M for each family a priori, we accomplished the
following:

• First, we constrained this problem to a point where it is still nontrivial, but solvable in a
systematic algorithmic way.

• Second, because this symmetry depends on the classical family of universal solutions, our
construction provided a direct extension and classification of the new anelastic solutions
consistent with the elastic ones.

• Third, it is likely that these symmetries play a fundamental role in constraining the classi-
cal problem; the known classes of universal deformations all have particular symmetries.
Identifying the relevant symmetries to impose on M highlights this explicitly and we
conjecture that all possible cases of anelastic universal solutions possess such symme-
try. Specifically, all known universal solutions are preserved under the induced action of
subgroups of the special Euclidean group. These subgroups are precisely those having
two-dimensional invariant sets, which are either parallel planes, concentric cylinders, or
concentric spheres.

It should also be noted that the generic solution branches and the anomalous solution
branches differ largely in character. The generic solution branches contain arbitrary func-
tions, and as such are infinite dimensional, while the anomalous solution branches are en-
tirely determined up to a handful (∼ 10) of arbitrary constants, 6 of which are not redundant,
and have a highly nontrivial structure. In all cases, the different branches of the analysis
ultimately yield the same family of anomalous solutions. These anomalous branches also
allow for the pressure required to sustain these deformations to vary in directions that would
otherwise not be supported, even on the generic anelastic branch. This suggests possible
applications of these anomalous branches in manipulating the surface tractions required to
sustain these deformations, as well as a way to indirectly measure some of the eigenstrain
parameters.

Additionally, symmetry appears to play an important role in these universal solutions.
The right Cauchy-Green stretch tensor field for every family is invariant under some sub-
group of SE(3), the group of orientation preserving isometries of 3D Euclidean space. The
dimension of the Lie symmetry seems to play an important role as well; equilibrium con-
ditions for families with three-dimensional Lie symmetries (Families 0 and 4) are trivially
satisfied by imposing that symmetry on the material manifold, while families containing
two-dimensional Lie symmetries require further restrictions.

While we have framed this problem in the context of an anelastic deformation from Eu-
clidean space with the usual metric in the chosen coordinates to some Riemannian manifold,
and a further elastic deformation back to Euclidean space, we do not make use of the ini-
tial Euclidean space in our analysis, nor do we detail any specific mechanism driving the
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anelastic deformation. The Euclidean reference configuration appears in the initial presen-
tation of these universal solutions in nonlinear elasticity, therefore we use it as a comparison
when displaying the elastic stress generated by these deformations, but there is no need for
it to be the initial state of our undefined anelastic process. Provided our anelastic evolution
arrives at the material manifolds derived here, the remainder of the deformation can be ac-
complished elastically. Therefore, the anelastic deformation can in principle map from any
configuration; there is no need for a Euclidean reference. Even if the reference is Euclidean
(as we tend to model physical space as Euclidean), there is no need for the coordinates used
to be the typical Cartesian, cylindrical polar, or spherical polar coordinates used in the elas-
tic case; they can be curvilinear coordinates, dramatically broadening the range of anelastic
deformations to which our results are applicable.

Finally, we remark that neither the classical Ericksen’s problem, nor the anelastic Er-
icksen’s problem presented here has been proved to be fully solved and there may still be
universal solutions unaccounted for. However, our conjecture, based on the correspondence
between solution families and their symmetry groups, is that both classifications are actually
complete. An additional work demonstrating that the strain fields of these universal solu-
tions must by necessity be symmetric with respect to two one-dimensional Lie subgroups of
SE(3) would prove that this classification is complete.
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Appendix A: Methods and Tools

In the course of our analysis, we shall use a few tools that are infrequently used in nonlinear
elasticity. Here we present a brief summary of these tools, and provide references to further
sources for interested readers.

A.1 Algebraic Tools

Some techniques from elimination theory [4] will be used in our analysis of universal solu-
tions. Chiefly among these is the method of resultants. We will not use resultants in their full
generality, but rather will only need to compute the resultant of two quadratic polynomials,
and as such will only provide the details necessary to substantiate our usage. Consider two
polynomials

p1(x) =
k∑

i=0

aix
i, and p2(x) =

r∑

j=0

bjx
j . (253)
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The resultant of p1 and p2 is a multivariate polynomial in {a0, . . . , ak, b0, . . . , br} that
vanishes if and only if there exists a common solution to the equations p1(x) = 0, and
p2(x) = 0. This will be useful to us because we will consider multivariate polynomials re-
cursively as single variable polynomials, with coefficients in some extended field, and the
method of resultants gives us a way of reducing the number of necessary equations that must
be satisfied, while reducing the number of variables we must consider.

As an example, consider two quadratic polynomials p1(x) = a1x
2 + b1x + c1, and

p2(x) = a2x
2 +b2x + c2. We seek a condition on {a1, b1, c1, a2, b2, c2} such that there exists

x̂ satisfying p1

(
x̂
) = p2

(
x̂
) = 0. Taking the linear combination a2p1

(
x̂
) − a1p2

(
x̂
) = 0

gives us a linear condition on x̂, namely

(a2b1 − a1b2) x̂ = a1c2 − a2c1. (254)

Then taking the combination b1p2

(
x̂
)−b2p1

(
x̂
) = 0 gives the condition (a2b1 − a1b2) x̂2 +

b1c2 − b2c1 = 0, which under the above linear restriction becomes

(a1c2 − a2c1) x̂ = b2c1 − b1c2. (255)

Cross multiplying and subtracting the two linear equations (254) and (255) gives a necessary
condition on the coefficients of p1 and p2 for there to be a common solution, namely

(a1c2 − a2c1)
2 − (b2c1 − b1c2) (a2b1 − a1b2) = 0. (256)

The left hand side is precisely the resultant of two quadratic polynomials, and so we denote

Resx

(
a1x

2 + b1x + c1, a2x
2 + b2x + c2

) ≡ (a1c2 − a2c1)
2 − (b2c1 − b1c2) (a2b1 − a1b2) .

(257)
The vanishing of the resultant is a necessary condition for the existence of a common root
of the two quadratic equations in x.

Additionally, we will repeatedly use the fact that if a polynomial p(x) vanishes on an
open set U , i.e., p(x) = 0, ∀x ∈ U , then, by the fundamental theorem of algebra, all its
coefficients vanish identically, i.e., p(x) is the zero polynomial.

A.2 Group Action on Manifolds

Symmetry will play an important role in our construction. As group theory lies at the heart
of any discussion of symmetry, we present some definitions from the theory of Lie groups,
and reference the reader to Gorbatsevich et al. [13] for a full treatment. We recall that a semi-
direct product is a generalization of a direct product, where only one factor must be a normal
subgroup of the result. For instance, T(n), the group of translations of Euclidean space,
is a normal subgroup of the special Euclidean group SE(n), while the group of rotations,
SO(n) is not, hence SE(n) 
= SO(n) × T(n), but rather SE(n) = SO(n)� T(n). The special
Euclidean group, denoted SE(n), consists of all orientation preserving global isometries of
Euclidean space, and is a semi-direct product of SO(n), and T(n). Therefore, an element
of SE(n) can be identified with a tuple (Q|c) consisting of an element Q of SO(n), and an
element c of T(n). The defining feature of SE(n) being how it acts on E

n, we must now
express this action, and hence the natural group operation of SE(n) on E

n in terms of (Q|c).
The action of a group (G,	) on a manifold M, informally, is a map ρ : G × M →

M that preserves the group structure of G. Denoting this action for g ∈ G and x ∈ M as
ρ (g,x) = g • x, this demands (m2 	 m1) • x = m2 • (m1 • x) for all m1, m2 ∈ G, and all x ∈
M. Additionally, denoting the identity of G as e, we demand ρ (e,x) = e • x = x, ∀x ∈ M.
Concisely, a group G acts on an object M via a homomorphism ρ : G → Aut (M).
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Example A.1 Treating E
n as a vector space, i.e., fixing an origin, the action of SE(n) on E

n

in terms of the tuple (Q|c) sends the point x ∈ E
n to the point Qx + c. One can easily verify

that this is an isometry. The action of the element (Q1|c1) followed by the action of the
element (Q2|c2) is then x �→ Q2Q1x + Q2c1 + c2, hence, in this representation, the product
of the special Euclidean group, 	, takes the form (Q2|c2) 	 (Q1|c1) = (Q2Q1|Q2c1 + c2).
We will eventually see that the right Cauchy-Green stretch tensor for each of the known
families of universal solutions is preserved under the prolonged action of some Lie subgroup
of SE(3).

The action of a group on a manifold can then be prolonged to its tangent bundle. This
prolonged action can be determined by fixing an arbitrary group element g̃, and considering
the action of this element as a map ρ(g̃) : M → M. The existence of inverse elements in
G guarantees that this map is invertible, since ρ(g̃)−1 = ρ(g̃−1). Provided M has a smooth
structure, and ρ(g̃) is a smooth function of x, this map can then be differentiated to obtain
the corresponding induced tangent map, i.e., the push forward map, which then determines
the action of g̃ on the tangent bundle of M. The invertibility of ρ(g̃) then provides a group
action on the cotangent bundle via the pull-back induced by the inverse map. Notice that,
generally, we consider the prolonged action of a group on bundles over M, not merely on
individual tangent spaces, because underlying points in the base space are not generally
fixed, i.e., the base space and the total space are transformed together. Additionally, even if
certain points in the base space are fixed points under the action of a group element, this does
not guarantee that the tangent spaces at these points are similarly preserved. For example,
in E

3, a rigid rotation preserves the position of the points on its axis, but rotates the tangent
spaces at those points.

Appendix B: Explicit Calculations of the Anomalous Solutions

For families containing anomalous solution branches, we have the necessary (but not suf-
ficient) condition that the invariants of b are constant, with det b = 1 for incompressibility.
For each of these families, we have four linear differential equations, one linear algebraic
equation, and two nonlinear algebraic equations for the six unknown functions comprising
the components of MAB . We will use the linear equations to solve for five of these unknown
functions in terms of the sixth, and then characterize the common solutions to the remaining
two equations to determine the final component.

Family 1

For this family, we consider the case where the invariants of b are constant. This gives the
equation

ma[l∇k]∇bσ
ab = 0, (258)

which, when applying the constant invariant condition and forcing this to hold for all energy
functions requires

ma[k∇l]∇bb
ab = 0, ma[k∇l]∇bc

ab = 0. (259)

The first of these has two nonzero components after substituting the form of MAB . One of
these components yields the differential equation 3M12(r)′ + rM12(r)′′ = 0. This equation
is readily integrated to obtain

M12(r) = α1

r2
+ α2. (260)
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Applying this to the second nonzero component of the condition on the divergence of b
yields the differential equation r4M13(r)′′ − r3M13(r)′ − 8AB2Cα1 = 0, which again can
be integrated to obtain

M13(r) = AB2Cα1

r2
+ γ1r

2 + γ2. (261)

After this, we must compute the condition on c, which we can simplify first by noting that
det b = 1, so we can utilize c = (det b) c, which gives

[cab] =
⎡

⎢
⎣

b22b33 − (
b23

)2
b13b23 − b12b33 b12b23 − b13b22

b13b23 − b12b33 b11b33 − (
b13

)2
b12b13 − b23b11

b12b23 − b13b22 b12b13 − b23b11 b11b22 − (
b12

)2

⎤

⎥
⎦ , (262)

i.e., the cofactor tensor of b equals the inverse of b. When we use this, we obtain two
differential equations, which can be expressed as

(
rα1 + r3α2

)
M23(r)′′ − (

α1 − 3r2α2

)
M23(r)′ − (

AB2Crα1 + r5γ1 + r3γ2

)
M22(r)′′

+ (
AB2Cα1 − 7r4γ1 − 3r2γ2

)
M22(r)′ − 8r3γ1M

22(r) = 0, (263)

and

(
A2B4C2rα1 + AB2Cr5γ1 + AB2Cr3γ2

)
M22(r)′′ + 8AB2Cr3γ1M

22(r)

+ (−2AB2Crα1 − AB2Cr3α2 − r5γ1 − r3γ2
)
M23(r)′′ − 8r3γ1M

23(r)

+ (−A2B4C2α1 + 7AB2Cr4γ1 + 3AB2Cr2γ2

)
M22(r)′ + (

rα1 + r3α2

)
M33(r)′′

+ (
2AB2Cα1 − 3AB2Cr2α2 − 7r4γ1 − 3r2γ2

)
M23(r)′ + (−α1 + 3r2α2

)
M33(r)′ = 0.

(264)

These equations can be integrated to obtain the conditions

(
α1 + r2α2

)
M33(r) − (

AB2Cα1 + r4γ1 + r2γ2

)
M23(r) = β1 + r2β2, (265)

(
AB2Cα1 + r4γ1 + r2γ2

)
M22(r) − (

α1 + r2α2
)
M23(r) = μ1 + r2μ2. (266)

We also have the constant trace condition on b, which becomes

A4B2M11(r) + A2B4r2
(
C2 + r2

)
M22(r) − 2AB2Cr2M23(r) + r2M33(r) = A2B2r2I1.

(267)
We can express this system of equations, linear in M22(r), M23(r), and M33(r), as the matrix
equation

⎡

⎣
0 −r2M13(r) r2M12(r)

r2M13(r) −r2M12 0
A2B4r2

(
r2 + C2

) −2AB2Cr2 r2

⎤

⎦

⎡

⎣
M22(r)

M23(r)

M33(r)

⎤

⎦

=
⎡

⎣
β1 + r2β2

μ1 + r2μ2

A2B2r2I1 − A4B2M11(r)

⎤

⎦ , (268)
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which is invertible, because the determinant of the matrix on the left hand side is

r6
[(

M13(r) − AB2CM12(r)
)2 + (

AB2rM12(r)
)2

]
> 0, (269)

since M12(r) and M13(r) cannot simultaneously vanish. We invert these equations to obtain
expressions for these components of the inverse metric in terms of M11(r), r , and various
constants.

M22 = A2B2
(
I1r

2 − A2M11
) (

M12
)2 + (

μ1 + r2μ2
)
M13 − (

β1 + 2AB2Cμ1 + r2
(
β2 + 2AB2Cμ2

))
M12

r2
[(

M13 − AB2CM12
)2 + (

AB2rM12
)2

] ,

(270)

M23 = −
(
β1 + r2β2

)
M13 + A2B2M12

[
B2

(
C2 + r2

) (
μ1 + r2μ2

) + (
A2M11 − I1r

2
)
M13

]

r2
[(

M13 − AB2CM12
)2 + (

AB2rM12
)2

] , (271)

M33 = A2B2

r2
×

(
β1 + r2β2

) [
B2

(
C2 + r2

)
M12 − 2 C

A
M13

] − M13
[
B2

(
C2 + r2

) (
μ1 + r2μ2

) + (
A2M11 − I1r

2
)
M13

)

(
M13 − AB2CM12

)2 + (
AB2rM12

)2
.

(272)

We then have the other two restrictions, the constancy of the second invariant of b and the
incompressibility constraint. After substituting the above expressions into these conditions,
they become

p1 = A6B2
[
A2B4

(
α1 + r2α2

)2 + r2
(
r2γ1 + γ2 − AB2Cα2

)2]
M11(r)2

+ A4B2r2
[
B2

((
α1 + r2α2

)(
β1 + r2β2

) + r2
(
r2γ1 + γ2 − AB2Cα2

)(
μ1 + r2μ2

))

+ AB4C
(
α1 + r2α2

)(
μ1 + r2μ2

) − A2B4I1

(
α1 + r2α2

)2

− I1r
2
(
r2γ1 + γ2 − AB2Cα2

)2]
M11(r)

+ A6B8
(
α1 + r2α2

)4 + B2r4
(
β1 + r2β2

)2

+ A4B4r2
(
α1 + r2α2

)2[
B2I2r

2 + 2
(
r2γ1 + γ2 − AB2Cα2

)2]

− A3B6CI1r
4
(
α1 + r2α2

)(
μ1 + r2μ2

) + 2AB4Cr4
(
β1 + r2β2

)(
μ1 + r2μ2

)

+ A2r4
[
B2I2r

2
(
r2γ1 + γ2 − AB2Cα2

)2 + (
r2γ1

+ γ2 − AB2Cα2

)4 + B6
(
C2 + r2

)(
μ1 + r2μ2

)2

− B4I1
((

α1 + r2α2
)(

β1 + r2β2
) + r2

(
r2γ1 + γ2 − AB2Cα2

)(
μ1 + r2μ2

))] = 0,

(273)

and

p2 = A4B2
((

α1 + r2α2
)(

β1 + r2β2
) + (

r4γ1 + r2γ2 + AB2Cα1
)(

μ1 + r2μ2
))

M11(r)2

+ r2
[(

β1 + r2β2

)2 + A2B4
(
C2 + r2

)(
μ1 + r2μ2

)2

− A2B2I1
(
AB2Cα1 + r4γ1 + r2γ2

)(
μ1 + r2μ2

)
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+ AB2
(
β1 + r2β2

)(
2C

(
μ1 + r2μ2

) − AI1

(
α1 + r2α2

))]
M11(r)

+ [
A2B4

(
α1 + r2α2

)2 + r2
(
r2γ1 + γ2 − AB2Cα2

)2]

× [
r4 + (

β1 + r2β2

)(
α1 + r2α2

) + (
μ1 + r2μ2

)(
r4γ1 + r2γ2 + AB2Cα1

)] = 0.

(274)

We then compute6 the resultant of these two equations in M11(r), yielding a polynomial
in r that must identically be equal to zero. In order for this to be satisfied, each of its coeffi-
cients must vanish independently. This can be shown by repeatedly taking derivatives of the
equation in r , which will ultimately require each of the coefficients to vanish independently.
Computing this resultant we obtain

ResM11(r) (p1,p2) = A6B2r8
[
A2B4

(
α1 + r2α2

)2 + r2
(
r2γ1 + γ2 − AB2Cα2

)2
]
(...) .

(275)
The factors explicitly shown are identically nonzero, since A and B are nonzero for the
deformation to be invertible, r > 0, and the other factor only vanishes if both M12(r) and
M13(r) vanish, in which case we are no longer on the anomalous solution branch. There-
fore, we take (...) = 0. This factor is massive, being approximately 8000 terms, so it is far
too large to list here, but enough information has been provided to compute it explicitly
if the reader desires. We next take its coefficients to vanish independently, and factor each
coefficient. The shortest of these factors is

A6B2
(
B6μ3

2 − B4I1γ1μ
2
2 + B2I2γ

2
1 μ2 − γ 3

1

)2 = 0, (276)

which can be satisfied in one of two ways. Either both μ2 and γ1 are zero, or ν = B2μ2
γ1

is
an eigenvalue of b. In the first case, after simplification of the other coefficients, we obtain
another equation

B2
(
β3

2 − I1β
2
2A2B2α2 + I2β2A

4B4α2
2 − A6B6α3

2

)2 = 0, (277)

which implies either α2 = β2 = 0, or ν = β2
A2B2α2

is an eigenvalue of b.
Taking α2 = β2 = 0, we obtain another similar eigenvalue equation that implies γ2 =

μ1 = 0 or ν = B2μ1
γ2

is an eigenvalue of b.
Taking γ2 = μ1 = 0, we obtain another eigenvalue equation, but this equation demands

ν = β1
A2B2α1

, because we already have α2 = γ1 = γ2 = 0; α1 = 0 would result in both

M12(r) = 0 and M13(r) = 0, a contradiction. This condition is sufficient for solving all
of the necessary conditions.

Backing up a branch, we can take ν = B2μ1
γ2

as an eigenvalue of b. We then perform

the substitutions I1 = e1 + 1
e2

and I2 = e1
e2

+ e2 with ν = 1
e2

, which expresses the invariants
of b in terms of the elementary symmetric polynomials in the other two eigenvalues. This

reveals an equation with β1 − A2B2α1−ACγ2
e2

as a factor. If this factor is zero, we satisfy all

of the necessary equations. If this factor is not zero, we have either e3
2 − e2e1 + 1 = 0, or

α1 (e2β1 + ACγ2) = 0. In the later case, plugging in α1 = 0 we obtain β1 = −ACγ2
e2

, which
corresponds to the vanishing of the other factor. Likewise, if we take e2β1 + ACγ2 = 0, we

6Symbolic computations were done with Mathematica Version 12.0.0.0, Wolfram Research, Champaign, IL.
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obtain α1 = 0 as a condition. Both of these together however imply that β1 − A2B2α1−ACγ2
e2

=
0, which is a contradiction.

If e3
2 − e1e2 + 1 = 0, this implies that λ1 = 1

λ2
2

or λ2 = 1
λ2

1
. In either case we can express

the remaining equation in terms of only one remaining eigenvalue. This equation has one

factor that we know is nonzero because it corresponds to β1 = A2B2α1−ACγ2
e2

, which would
yield a contradiction. So we take the remaining factor to vanish. This factor is quadratic in
α1. Taking the discriminant of this equation in α1, we obtain

�α1 = −4A6B6γ 4
2 λ4

a, (278)

where λa is the repeated eigenvalue. This discriminant must be non-negative in order for
the factor to vanish with real values of α1. However, this discriminant is identically non-
positive, which means it must be zero. However, the only way for this to happen would be
for γ2 = 0, which is a contradiction.

Having exhausted the options corresponding to α2 = β2 = 0, we consider ν = β2
A2B2α2

as
an eigenvalue of b, and perform the substitutions on the invariants to express the invariants
in terms of elementary symmetric polynomials in λ1 and λ2. Doing this gives five remaining
polynomial equations, which are still rather long and complicated. Ordering these equations
by their length, and taking the second shortest one, we note that this equation is quadratic
in e1. Taking the discriminant of this equation in e1, and demanding it be non-negative, we
obtain

�e1 = −4A6B6e2
2α

2
1

(
β1 + AB2Cμ1

)2 (
A2B2α1 − e2β1 − AB2Ce2μ1

)2

× (
AB2Cα2β1 − β1γ2 + A2B4α1μ1 + A2B4C2α2μ1 − AB2Cγ2μ1

)4 ≥ 0. (279)

This quantity is identically non-positive, and so the only way we can have solutions with
real values for e1 is if this quantity is zero. There are four factors that can possibly be zero:
α1, β1 + AB2Cμ1, A2B2α1 − e2β1 − AB2Ce2μ1, and AB2Cα2β1 − β1γ2 + A2B4α1μ1 +
A2B4C2α2μ1 − AB2Cγ2μ1.

First consider α1 = 0. Inserting this, many of the remaining equations have a factor β1 +
AB2Cμ1. If this factor vanishes, the remaining equations both contain the factor AB2Cα2 −
γ2 +B2e2μ1. The vanishing of this factor satisfies all of the equations. If this factor does not
vanish, we can take the resultant of the remaining factors in e1, and obtain

A2B6α2
2

(
AB2Cα2 − γ2

)2
μ2

1

(
AB2Cα2 − γ2 + B2e2μ1

)2 = 0. (280)

Only two factors here can vanish, namely μ1 and AB2Cα2 − γ2. If we take μ1 = 0 and
insert it into the remaining two equations, one simplifies to imply AB2Cα2 − γ2 = 0. Like-
wise, if we instead take AB2Cα2 − γ2 to vanish, we obtain μ1 = 0, hence both must vanish.
However, if both of these vanish, the original term AB2Cα2 − γ2 +B2e2μ1 vanishes, a con-
tradiction.

We can then consider the case when β1 
= −AB2Cμ1. Taking the remaining factor of the
shortest equation, we have

A2
(
AB2Cα2 − γ2

)4 + B2
(
β1 + AB2Cμ1

)2 = 0. (281)

This requires AB2Cα2 − γ2 = 0 and β1 + AB2Cμ1 = 0, but the second of these is a con-
tradiction. This exhausts the case where α1 = 0, so we take α1 
= 0, and consider the next
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factor β1 + AB2Cμ1 = 0. Inserting this into the equations, we obtain

A10B14α4
1

(
A2α2

1 + B2μ4
1

) = 0. (282)

This cannot vanish for α1 
= 0, so we come to a contradiction.
Next, we consider α1 
= 0 and β1 + AB2Cμ1 
= 0, and take A2B2α1 − e2β1 −

AB2Ce2μ1 = 0. Solving this for β1, and inserting this into the equations, we obtain the
condition

AB2Cα2 − γ2 + B2e2μ1 = 0, (283)

which can be solved for μ1 and is sufficient to satisfy the remaining equations. Finally,
we consider the remaining option with α1 
= 0, β1 + AB2Cμ1 
= 0, and A2B2α1 − e2β1 −
AB2Ce2μ1 
= 0 with AB2Cα2β1 − β1γ2 + A2B4α1μ1 + A2B4C2α2μ1 − AB2Cγ2μ1 = 0.
This equation can be solved for either β1 or μ1. If γ2 
= AB2Cα2, we can solve this for β1

and obtain

β1 = AB2Cγ2 − A2B4
(
α1 + C2α2

)

AB2Cα2 − γ2
μ1. (284)

If we insert this, we obtain

μ1 = γ2 − AB2Cα2

B2e2
, (285)

as a necessary and sufficient condition for the remaining equations to be satisfied. This yields

β1 = −AB2Cγ2 + A2B4
(
α1 + C2α2

)

B2e2
. (286)

However, with these, the equation A2B2α1 − e2β1 − AB2Ce2μ1 = 0 is satisfied, a contra-
diction. Hence, we consider γ2 = AB2Cα2, which requires μ1 = 0. With this, we have the
conditions β1 
= 0, α1 
= 0, and A2B2α1 − e2β1 
= 0. With these, the remaining equations
demand

e3
2 − e1e2 + 1 = 0, (287)

which in turn demands either λ1 = 1
λ2

2
or λ2 = 1

λ2
1
. Denoting the repeated eigenvalue as λa ,

we obtain the necessary condition λa = 1. However, with this we have β1 = A2B2α1, which
contradicts the above inequality conditions, i.e., this case is already accounted for in the
previous cases.

This exhausts the options with μ2 = γ1 = 0, so we consider ν = B2μ2
γ1

as an eigenvalue of
b. Inserting this into our equations yields

β2 = A2B2α2 − ACγ1

e2
. (288)

This requires e3
2 − e1e2 + 1 = 0, or if not, μ1 = γ2−AB2Cα2

B2e2
.

In the later case, we have α2 = 0 or β1 = A2B2(α1+C2α2)−ACγ2
e2

. This second option satisfies

the remaining equation, so we then consider α2 = 0. With this, we obtain β1 = A2B2α1−ACγ2
e2

,
which is a special case of the previous option.
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We then consider e3
2 − e1e2 + 1 = 0, which demands a repeated eigenvalue. This then

demands that this repeated eigenvalue λa = 1, which means that all eigenvalues are the
same. This allows us to solve for β1 and μ1 as

μ1 = γ2 − AB2Cα2

B2
, β1 = A2B2

(
α1 + C2α2

) − ACγ2. (289)

This satisfies the remaining conditions, and so our analysis is complete, having exhausted
all possible branches of solutions.

In order to depict this branching set of conditions, we can express the steps of the analysis
in a tree. Each node on these trees represents a system of equations, and each edge represents
one partial solution to these equations. Terminal nodes are color coded corresponding to
whether they are consistent (green) or not (red). Nodes and edges are then labelled below the
tree with the relevant equation/solutions utilized at each step of the analysis. The following
is the tree for this family:

Nodes

• 0: B6μ3
2 − I1B

4μ2
2γ1 + I2B

2μ2γ
2
1 − γ 3

1 = 0
• −: β3

2 − I1A
2B2β2

2α2 + I2A
4B4β2α

2
2 − A6B6α3

2 = 0

• +: β2 = A2B2α2−ACγ1
e2

, and (B2μ1e2 − γ2 + AB2Cα2)(e
3
2 − e2e1 + 1) = 0

• −−: B6μ3
1 − I1B

4μ2
1γ2 + I2B

2μ1γ
2
2 − γ 3

2 = 0
• −+: α1

(
β1 + AB2Cμ1

) (
A2B2α1 − e2β1 − AB2Ce2μ1

)
(
AB2Cα2β1 − β1γ2 + A2B4α1μ1 + A2B4C2γ2μ1

) = 0
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• +−: α2

(
A2B2

(
α1 + C2α2

) − ACγ2 − β1e2

) = 0

• ++: μ1 = γ2−AB2Cα2
B2 , and β1 = A2B2

(
α1 + C2α2

) − ACγ2

• − − −: β3
1 − I1A

2B2β2
1α1 + I2A

4B4β1α
2
1 − A6B6α3

1 = 0

• − − +: B2μ1
γ2

is an eigenvalue of b

• − + −:
(
β1 + AB2Cμ1

)
(...) = 0

• − + +:
(
β1 + AB2Cμ1

) (
A2B2α1 − e2β1 − AB2Ce2μ1

)
(
AB2Cα2β1 − β1γ2 + A2B4α1μ1 + A2B4C2γ2μ1

) = 0

• + − −: β1 = A2B2α1−ACγ2
e2

, and β1 
= A2B2α1−ACγ2
e2

• + − +: μ1 = γ2−AB2Cα2
B2e2

, and β1 = A2B2(α1+C2α2)−ACγ2
e2

• − − +−: β1 = A2B2α1−ACγ2
e2

• − − ++: α1

(
e3

2 − e2e1 + 1
)
(e2β1 + ACγ2) = 0

• − + −−:
(
γ2 − AB2Cα2 − B2e2μ1

)
(...) = 0

• − + −+: γ2 = AB2Cα2 ⇒ β1 = −AB2Cμ1, and β1 
= −AB2Cμ1

• − + +−: α1 = 0, and α1 
= 0
• − + ++:

(
A2B2α1 − e2β1 − AB2Ce2μ1

)
(
AB2Cα2β1 − β1γ2 + A2B4α1μ1 + A2B4C2γ2μ1

) = 0
• − − + + −: γ2 = 0, and γ2 
= 0
• − − + + +: β1e2 − A2B2α1 − ACγ2 = 0, and β1e2 − A2B2α1 − ACγ2 
= 0

• − + − − −: μ1 = γ2−AB2Cα2
B2e2

• − + − − +: μ1 = γ2−AB2Cα2
B2e2

, and μ1 
= γ2−AB2Cα2
B2e2

• − + + + −: μ1 = γ2−AB2Cα2
B2e2

• − + + + +: μ1 = γ2−AB2Cα2
B2e2

, and β1 = A2B2(α1+C2α2)−ACγ2
e2

⇒ A2B2α1 − e2β1 −
AB2Ce2μ1 = 0, and A2B2α1 − e2β1 − AB2Ce2μ1 
= 0

Edges (labelled by child node):

• −: γ1 = 0, and μ2 = 0

• +: B2μ2
γ1

is an eigenvalue of b
• −−: β2 = 0, and α2 = 0
• −+: β2

A2B2α2
is an eigenvalue of b

• +−: e3
2 − e1e2 + 1 
= 0

• ++: e3
2 − e1e2 + 1 = 0 ⇒ λa = 1

• − − −: γ2 = 0, and μ1 = 0

• − − +: B2μ1
γ2

is an eigenvalue of b
• − + −: α1 = 0
• − + +: α1 
= 0

• + − −: β1 
= A2B2(α1+C2α2)−ACγ2
e2

, and α2 = 0

• + − +: β1 = A2B2(α1+C2α2)−ACγ2
e2

• − − +−: β1e2 − A2B2α1 − ACγ2 = 0
• − − ++: β1e2 − A2B2α1 − ACγ2 
= 0
• − + −−: β1 = −AB2Cμ1

• − + −+: β1 
= −AB2Cμ1

• − + +−: β1 + AB2Cμ1 = 0
• − + ++: β1 + AB2Cμ1 
= 0
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• − − + + −: e3
2 − e2e1 + 1 = 0

• − − + + +: α1 = 0 ⇔ e2β1 + ACγ2 = 0
• − + − − −: γ2 = AB2Cα2 + B2e2μ1

• − + − − +: γ2 
= AB2Cα2 + B2e2μ1 ⇒ μ1 = 0, and γ1 = AB2Cα2

• − + + + −: A2B2α1 − e2β1 − AB2Ce2μ1 = 0
• − + + + +: A2B2α1 − e2β1 − AB2Ce2μ1 
= 0

The reader should note that this tree is not unique; there are potentially numerous ways
we could have performed these algebraic eliminations, but ultimately, we have derived these
conditions as necessary, and we have shown they are sufficient as well, and so any other
sequence of algebraic reductions would yield equivalent results. The branches of this tree
are all special cases of the conditions

μ1 = γ2 − AB2Cα2

B2e2
, (290)

β2 = A2B2α2 − ACγ1

e2
, (291)

μ2 = γ1

B2e2
, (292)

β1 = A2B2
(
α1 + C2α2

) − ACγ2

e2
. (293)

Note that these values are always well defined, since B 
= 0, and e2 = λ1λ2 > 0, even though
in their derivation we considered branching cases that are mutually exclusive. After these
substitutions, both of the constant invariant conditions become

A4B2M11(r)2 − A2B2e1r
2M11(r) + A2B4

(
α1 + r2α2

)2

+ r2
(
r2γ1 + γ2 − AB2Cα2

)2 + B2e2r
4 = 0, (294)

which let us solve for M11(r) as

M11(r) = e1r
2

2A2
±

r

√
B2e2

1r
2 − 4

[
B2r2

(
e2+A2B2M12(r)2

) + (
AB2CM12(r) − M13(r)

)2
]

2A2B
,

(295)
and hence, completely determine the anomalous inverse metric tensor field for this family.

M12(r) = α1

r2
+ α2, (296)

M13(r) = AB2Cα1

r2
+ γ1r

2 + γ2, (297)

M11(r) = e1r
2

2A2
±

r

√
B2e2

1r
2 − 4

[
B2r2

(
e2+A2B2M12(r)2

) + (
AB2CM12(r) − M13(r)

)2
]

2A2B
,

(298)

M22(r) = A2B4e2
(
e1r

2 − A2M11(r)
)
M12(r)2 + [

AB2CM12(r) − M13(r)
]2

B2e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

] , (299)
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M23(r) = AC
[
AB2CM12(r) − M13(r)

]2

e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

]

+ A2B2
(
e1e2r

2 − r2 − A2e2M
11(r)

)
M12(r)M13(r)

e2r2
[(

AB2CM12(r) − M13(r)
)2 + r2M12(r)2

] , (300)

M33(r) = A2B2

e2r2

[
AB2

(
C2 + r2

)
M12(r) − CM13(r)

]2 + e2

(
e1r

2 − A2M11(r)
)
M13(r)2

[
AB2CM12(r) − M13(r)

]2 + r2M12(r)2
.

(301)

One can check that in all cases, the equilibrium conditions are satisfied, and that the
invariants of b are

I1 = e1 + 1

e2
, I2 = e1

e2
+ e2, I3 = 1, (302)

as expected.

Family 2

As above, we compute the equations

ma[k∇l]∇bb
ab = 0, ma[k∇l]∇bc

ab = 0. (303)

The first of these contains a component

4ξ 2M12(ξ)′′ + 4ξM12(ξ)′ − M12(ξ)

2
√

2ξ
3
2 A

1
2

= 0, (304)

where here we have made the substitution x = ξ + D. The denominator is nonzero, so we
can simply take the numerator to be zero, and integrate it. This yields

M12(ξ) = α1ξ + α2√
ξ

. (305)

Substituting this into the other component of this equation, we obtain a differential equation
for M13(ξ):

√
A

[
4ξ 2M13(ξ)′′ + 4ξM13(ξ)′ − M13(ξ)

]

2
√

2ξ
3
2

= 0, (306)

which has the same general solution as the equation for M12(ξ), and hence

M13(ξ) = γ1ξ + γ2√
ξ

. (307)

The first of the remaining differential equations is

√
2
(
(α1ξ + α2)M23(ξ)′′ − (γ1ξ + γ2)M22(ξ)′′ + 2α1M

23(ξ)′ − 2γ1M
22(ξ)′)

A
3
2 B2

= 0, (308)
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which equivalently reads
[
(α1ξ + α2)M23(ξ) − (γ1ξ + γ2)M22(ξ)

]′′ = 0, and integrates to

(α1ξ + α2)M23(ξ) − (γ1ξ + γ2)M22(ξ) = μ1ξ + μ2. (309)

The second equation is

√
2
(
2Cγ1M

22(ξ)′ + 2 (Aγ1 − Cα1)M23(ξ)′ − 2Aα1M
33(ξ)′

)

A
3
2 B2

+
√

2
(
C (γ1ξ + γ2)M22(ξ)′′ + (A(γ1ξ + γ2) − C (α1ξ + α2))M23(ξ)′′ − A(α1ξ + α2)M33(ξ)′′

)

A
3
2 B2

= 0,

(310)

or equivalently
[
(γ1ξ + γ2)

(
AM23(ξ) + CM22(ξ)

) − (α1ξ + α2)
(
AM33(ξ) + CM23(ξ)

)]′′ = 0. (311)

We can add C times the previous differential equation, and divide by A to obtain
[
(γ1ξ + γ2)M23(ξ) − (α1ξ + α2)M33(ξ)

]′′ = 0, (312)

which integrates to

(γ1ξ + γ2)M23(ξ) − (α1ξ + α2)M33(ξ) = β1ξ + β2. (313)

Finally, we have the constant trace condition on b, which reads
(
1 + C2

)
M22(ξ) + 2ACM23(ξ) + A2M33(ξ) = −2A3B4ξM11(ξ) + A2B2I1. (314)

These equations can be solved for M22(ξ), M23(ξ), and M33(ξ), as the determinant of these
equations is

− (α1ξ + α2)
2 − (C (α1ξ + α2) + A(γ1ξ + γ2))

2 < 0, (315)

which only vanishes if both M12(ξ) and M13(ξ) vanish.
We then have the solution in terms of the yet-to-be determined component M11(ξ), and

numerous undetermined constants. Denoting α = α1ξ + α2, γ = γ1ξ + γ2, μ = μ1ξ + μ2,
β = β1ξ + β2, and h = A2B2I1 − 2A3B4ξM11(ξ), we have

⎡

⎣
M22(ξ)

M23(ξ)

M33(ξ)

⎤

⎦ = 1

α2 + (Cα + Aγ )2

⎡

⎣
hα2 + A(Aαβ − 2Cαμ − Aγμ)

hαγ + A2βγ + (
1 + C2

)
αμ

− (
1 + C2

)
αβ + γ

(−2ACβ + hγ + (
1 + C2

)
μ

)

⎤

⎦ .

(316)
Under these substitutions, the constant second invariant condition is written as

4A2B4ξ 2M11(ξ)2 − 2Aξ
[
B2I1

[
α2 + (Cα + Aγ )2

] + αβ + γμ
]

α2 + (Cα + Aγ )2 M11(ξ)

= −2A5B4γ 4 + A4B4γ 2 (I2 + 8Cαγ ) + 2A3B4αγ
(
CI2 + 2αγ + 6C2γα

) + (
1 + C2

)
μ2

A2B4
[
α2 + (Cα + Aγ )2

]

−
2
[
B4

(
1+C2

)2
α4 − Cβμ

]
+ A

[
β2 + B4

(
1 + C2

)
α2 (I2 + 8Cαγ ) + B2I1 (αβ + γμ)

]

AB4
[
α2 + (Cα + Aγ )2

] ,

(317)
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and the incompressibility condition reads

4A2B2ξ 2 (αβ + γμ)

α2 + (Cα + Aγ )2 M11(ξ)2 − 2ξ
[
μ2 + B2I1 (αβ + γμ) + (Cμ − Aβ)2

]

α2 + (Cα + Aγ )2 M11(ξ)

= AB2 − 2αβ − 2γμ

AB2
. (318)

Clearing denominators and computing the resultant of these equations in M11(ξ), we obtain

ResM11(ξ) (p1,p2) = 16A4B8ξ 4
(
α2 + (Cα + Aγ )2

)
(...) . (319)

This must vanish for solutions to exist, so we take (...) = 0, since the remaining factors are
nonzero.

We then take the coefficients of this polynomial in ξ to vanish independently, factor these
coefficients, and order them by length. The first of these demands

A(Cα1 + Aγ1)β1 = (
ACγ1 + (

1 + C2
)
α1

)
μ1. (320)

If this equation can be solved for β1, we can perform this substitution and obtain the condi-
tion

μ3
1 − I1μ

2
1

(
AB2 (Cα1 + Aγ1)

) + I2μ1

(
AB2 (Cα1 + Aγ1)

)2 − (
AB2 (Cα1 + Aγ1)

)3 = 0,

(321)
which requires that ν = − μ1

AB2(Cα1+Aγ1)
be an eigenvalue of b. We perform the usual substi-

tutions with the invariants to express equations in terms of e1 and e2, then take discriminants
of the resulting equations in e1, and demand non-negativity. This yields the condition

β2 = A2B2 (α1γ2 − α2γ1) + (1 + C2)e2α1μ2 + ACe2γ1μ2

Ae2 (Cα1 + Aγ1)
, (322)

or

e2α1β2 = − (
B2

(
Aγ1 (Cα2 + Aγ2) + α1

(
α2 + C2α2 + ACγ2

)) + e2γ1μ2

)
. (323)

In the first case, substitution yields either

μ2 = −AB2 (Cα2 + Aγ2)

e2
, (324)

or not, in which case e3
2 − e1e2 + 1 = 0. In the first case, we satisfy the equations and obtain

β2 = −B2(α2 + C2α2 + ACγ2)

e2
. (325)

Otherwise, we take e3
2 − e2e1 + 1 = 0.

Substituting this yields λ1 = λ2 = 1, which reduces the equations to only one. After
removing nonzero factors of this equation, we obtain something quadratic in μ2, which after
taking the discriminant and demanding non-negativity yields α2γ1 = α1γ2. With this, if α1 
=
0, we obtain the final necessary result μ2 = −AB2 (Cα2 + Aγ2), which is a contradiction,
since it is the case considered earlier with λ1 = λ2 = 1. If α1 = 0, we require α2 = 0, since
Cα1 + Aγ1 
= 0. With this, we require μ2 = −A2B2γ2, again, a contradiction.
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Next, we consider the case where

e2α1β2 = − (
B2

(
Aγ1 (Cα2 + Aγ2) + α1

(
α2 + C2α2 + ACγ2

)) + e2γ1μ2

)
. (326)

If α1 
= 0, we solve this expression for β2 and obtain the necessary and sufficient condition

μ2 = −AB2 (Cα2 + Aγ2)

e2
, (327)

with

β2 = −B2
(
(1 + C2)α2 + ACγ2

)

e2
. (328)

If α1 = 0, we can solve for μ2 to obtain

μ2 = −AB2 (Cα2 + Aγ2)

e2
. (329)

This requires

β2 = −B2
(
(1 + C2)α2 + ACγ2

)

e2
. (330)

Alternatively, if Cα1 + Aγ1 = 0, we obtain γ1 = −Cα1
A

, which implies α1μ1 = 0. If we
assume α1 = 0, and insert this relation into the equations, we obtain μ2

1 +(Aβ1 − Cμ1)
2 = 0,

so we can freely take μ1 = 0. With this, we obtain an eigenvalue equation that demands that
either ν = − β1

B2α1
is an eigenvalue of b, or that β1 = α1 = 0. In the first case, we perform the

usual substitutions and take discriminants in e1 and demand non-negativity, which yields

μ2 = −AB2 (Cα2 + Aγ2)

e2
, (331)

or not, in which case

β2 = Ce2μ2 − AB2α2

Ae2
. (332)

In the first case, we have the sufficient condition

β2 = −B2
[
(1 + C2)α2 + ACγ2

]

e2
, (333)

or not, in which case e3
2 − e1e2 + 1 = 0. With this, we then obtain the condition λ1 = λ2 = 1,

and then requiring discriminants in β2 to be non-negative, Cα2 +Aγ2 = 0. With this, we take
γ2 = −C

A
α2, which requires β2 = −B2α2, which is a special case of the previous solution.

Next, we consider β2 = Ce2μ2−AB2α2
Ae2

. This requires the necessary and sufficient condition

μ2 = −AB2 (Aγ2 + Cα2)

e2
, (334)

which is the same as before.
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The previously examined cases are all particular instances of the following anomalous
solution:

M12(ξ) = α1ξ + α2√
ξ

, (335)

M13(ξ) = γ1ξ + γ2√
ξ

, (336)

M11(ξ) =
√

Ae1 ±
√

Ae2
1 − 4

[
Ae2 + 2ξ

((
AM13(ξ) + CM12(ξ)

)2 + M12(ξ)2
)]

4A
3
2 B2ξ

, (337)

M22(ξ) =
A2B2

[(
CM12(ξ) + AM13(ξ)

)2 + e2

(
e1 − 2AB2ξM11(ξ)

)
M12(ξ)2

]

e2

[
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

] , (338)

M23(ξ) = −
AB2

[
C

(
CM12(ξ) + AM13(ξ)

)2 + CM12(ξ)2
]

e2

[
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

] ,

− AB2
[(

A − e1e2 + 2AB2e2ξM11(ξ)
)
M12(ξ)M13(ξ)

]

e2

[
M12(ξ)2 + (

AM13(ξ) + CM12(ξ)
)2

] , (339)

M33(ξ) = B2

e2

((
1 + C2

)
M12(ξ) + ACM13(ξ)

)2 + A2e2

(
e1 − 2AB2ξM11(ξ)

)
M13(ξ)2

M12(ξ)2 + (
AM13(ξ) + CM12(ξ)

)2 .

(340)

Finally, when β1 = α1 = 0, we are left with only one equation. In principle it can be
solved for I2, but because I2 does not appear in any of the other equations, we can simply
use the remaining constants as a transcendence basis in lieu of actually solving it. When
we do this, we recognize that with γ1 = α1 = β1 = μ1 = 0, we obtain bab being constant.
Hence, we can take any constant positive-definite tensor with det b = 1, and obtain MAB via
MAB = (F−1)A

ab
ab(F−1)B

b , which one can easily see generates a positive-definite sym-
metric metric tensor, since b is positive-definite and symmetric. This, however, implies that
the material manifold is Euclidean, since c is the push forward of the material metric ten-
sor, and it is constant in Cartesian coordinates. Therefore, the curvature tensor based on c
vanishes, and the anelastic deformation is stress free, i.e., Euclidean.

In general, a metric MAB(R) arising from this case has the form

[MAB(R)] =
⎡

⎣
M11R

2 M12R M13R

M12R M22 M23

M13R M23 M33

⎤

⎦ , (341)

where the constants {M11,M12,M13,M22,M23,M33} satisfy M11M22M33 + 2M12M13M23 −
M2

13M22 − M2
23M11 − M2

12M33 = 1. Any choice of these constants that yields a positive-
definite metric generates an admissible constant tensor b. Though not immediately obvious,
all of the above solutions are part of the same branch, apart from a global rigid rotation,
which can be freely removed. The analysis tree for this family is:
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Nodes:

• 0: A(Cα1 + Aγ1)β1 = (
ACγ1 + (

1 + C2
)
α1

)
μ1

• −: β3
1 + I1B

2α1β
2
1 + I2B

4α2
1β1 + B6α3

1• +:
(
Aβ2e2 (Cα1 + Aγ1) − A2B2 (γ2α1 − α2γ1) − (

1 + C2
)
e2α1μ2 − ACe2γ1μ2

)
(
e2α1β2 + B2

(
Aγ1 (Cα2 + Aγ2) + α1

(
α2 + C2α2 + ACγ2

)) + e2γ1μ2
) = 0

• −−: bab is constant
• −+:

(
μ2e2 + AB2 (Cα2 + Aγ2)

) (
Aβ2e2 + AB2α2 − Ce2μ2

) = 0
• +−:

(
μ2e2 + AB2 (Cα2 + Aγ2)

) (
e3

2 − e1e2 + 1
) = 0

• ++: e2α1β2 + B2
(
Aγ1 (Cα2 + Aγ2) + α1

(
α2 + C2α2 + ACγ2

)) + e2γ1μ2 = 0
• − + −:

(
β2e2 + B2

((
1 + C2

)
α2 + ACγ2

)) (
e3

2 − e1e2 + 1
) = 0

• − + +: μ2 = −AB2(Cα2+Aγ2)

e2

• + − −: μ2 = −AB2(Cα2+Aγ2)

e2• + − +: α1γ2 = α2γ1

• + + −: μ2 = −AB2(Cα2+Aγ2)

e2

• + + +: β2 = −B2((1+C2)α2+ACγ2)
e2

• − + −−: μ2 = −AB2(Cα2+Aγ2)

e2
and β2 = −B2((1+C2)α2+ACγ2)

e2

• − + −+: λa = 1 ⇒ Cα2 + Aγ2 = 0 ⇒ β2 = −B2α2&β2 
= −B2α2

• + − +−: μ2 = −AB2 (Cα2 + Aγ2) 
= −AB2 (Cα2 + Aγ2)

• + − ++: μ2 = −A2B2γ2 
= −A2B2γ2

Edges (labelled by child node):

• −: γ1 = −C
A
α1 ⇒ μ1 = 0
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• +: γ1 
= C
A
α1 ⇒ ν = − μ1

AB2(Cα1+Aγ1)• −−: β1 = α1 = 0
• −+: ν = − β1

B2α1

• +−: β2 = A2B2(α1γ2−α2γ1)+(1+C2)e2α1μ2+ACe2γ1μ2
Ae2(Cα1+Aγ1)

• ++: e2α1β2 = − (
B2

(
Aγ1 (Cα2 + Aγ2) + α1

(
α2 + C2α2 + ACγ2

)) + e2γ1μ2

)

• − + −: μ2 = −AB2(Cα2+Aγ2)

e2

• − + +: β2 = Ce2μ2−AB2α2
Ae2

• + − −: μ2e2 + AB2 (Cα2 + Aγ2) = 0
• + − +: μ2e2 + AB2 (Cα2 + Aγ2) 
= 0 and e3

2 − e1e2 + 1 = 0

• + + −: β2 = −(B2(Aγ1(Cα2+Aγ2)+α1(α2+C2α2+ACγ2))+e2γ1μ2)
e2α1

• + + +: α1 = 0 and μ2 = −AB2((1+C2)α2+ACγ2)
e2

• − + −−: β2 = −B2((1+C2)α2+ACγ2)
e2

• − + −+: β2 
= −B2((1+C2)α2+ACγ2)
e2

&e3
2 − e1e2 + 1 = 0

• + − +−: γ2 = α2γ1
α1• + − ++: α1 = α2 = 0

Family 3

For this family, we can write the remaining equations corresponding to the coefficients of
terms involving W1 and W2, and solve them before recasting the results in terms of the
components of M. First, we take the equation ma[l∇k]∇bb

ab = 0, which has two nonzero
components yielding

r2b12′′(r) + 5rb12′(r) + 3b12(r) = 0, (342)

r2b13′′(r) + rb13′(r) − b13(r) = 0. (343)

Solving these yields

b12(r) = a1r
−1 + a2r

−3 =
√

A
(
r2 − B

)

r

(
CM12 + DM13

)
, (344)

b13(r) = b1r + b2r
−1 =

√
A

(
r2 − B

)

r

(
EM12 + FM13

)
. (345)

Reparameterizing these equations to simplify constants yields the equation
[
C D

E F

][
M12

M13

]
=

[
γ1 + γ2r

−2

α1r
2 + α2

]
DE − CF√

r2 − B
, (346)

which gives
[
M12

M13

]
=

[−F D

E −C

][
γ1 + γ2r

−2

α1r
2 + α2

](
r2 − B

)− 1
2 . (347)

With this, we have the W2 equations involving c, which are

8r3α1b
23(r) + 7r4α1b

23′(r) + 3r2α2b
23′(r) − 3r2γ1b

33′(r) + γ2b
33′(r)

+ r5α1b
23′′(r) + r3α2b

23′′(r) − r3γ1b
33′′(r) − rγ2b

33′′(r) = 0, (348)
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and

8r3α1b
22(r) + 7r4α1b

22′(r) + 3r2α2b
22′(r) − 3r2γ1b

23′(r) + γ2b
23′(r)

+ r5α1b
22′′(r) + r3α2b

22′′(r) − r3γ1b
23′′(r) − rγ2b

23′′(r) = 0, (349)

which have the common solution
(
r2γ1 + γ2

)
b33(r) − r2

(
r2α1 + α2

)
b23(r) = μ1 + μ2r

2, (350)
(
r2γ1 + γ2

)
b23(r) − r2

(
r2α1 + α2

)
b22(r) = β1 + β2r

2. (351)

We also have the constant trace condition that amounts to b11(r) + r2b22(r) + b33(r) = I1,
which lets us solve for b22(r), b23(r), and b33(r), as these equations are linear in these com-
ponents, and the determinant of the linear system is −[(r(r2γ1 + γ2))

2 + (r2(r2α1 + α2))
2],

which is nonzero. Additionally, we have the following relations between the components of
b and the components of M

⎡

⎣
C2 2CD D2

CE DE + CF DF

E2 2EF F 2

⎤

⎦

⎡

⎣
M22(r)

M23(r)

M33(r)

⎤

⎦ =
⎡

⎣
b22(r)

b23(r)

b33(r)

⎤

⎦ , (352)

which can be inverted, as the determinant of this system is (CF − DE)3 
= 0. Doing this,
we define

p(r) = γ1 + γ2

r2
, q(r) = α1r

2 + α2, (353)

and obtain

M12(r) = Dq(r) − Fp(r)√
r2 − B

, (354)

M13(r) = Ep(r) − Cq(r)√
r2 − B

, (355)

M22(r) = F 2
(
I1p(r)2r2 − q(r)

(
β1 + r2β2

) − p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

+ D2r2
(
I1q(r)2 + q(r)

(
β1 + r2β2

) + p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

− 2DF
(
I1p(r)r2

(
β1 + r2β2

) − q(r)
(
μ1 + r2μ2

)) + A
(
r2 − B

)
(Fp(r) − Dq(r))2 M11(r)

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

) ,

(356)

M23(r) = −EF
(
I1p(r)2r2 − q(r)

(
β1 + r2β2

) − p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

+ CDr2
(
I1q(r)2 + q(r)

(
β1 + r2β2

) + p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

+ DE
(
I1p(r)r2q(r) + p(r)r2

(
β1 + r2β2

) − q(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

+ CF
(
I1p(r)r2

(
β1 + r2β2

) − q(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)
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+ A
(
r2 − B

)
(Fp(r) − Dq(r)) (Ep(r) − Cq(r))M11(r)

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

) , (357)

M33(r) = E2
(
I1p(r)2r2 − q(r)

(
β1 + r2β2

) − p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

+ C2r2
(
I1q(r)2 + q(r)

(
β1 + r2β2

) + p(r)
(
μ1 + r2μ2

))

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

)

− 2EC
(
I1p(r)r2

(
β1 + r2β2

) − q(r)
(
μ1 + r2μ2

)) + A
(
r2 − B

)
(Ep(r) − Cq(r))2 M11(r)

(CF − DE)2 r2
(
p(r)2r2 + q(r)2

) .

(358)

We are then left with the constant invariant condition for I2 and the incompressibility con-
dition. We simplify notation by writing μ = μ1 + r2μ2 and β = β1 + r2β2. These equations
are

A2
(
r2 − B

)2
(q(r)β − p(r)μ)M11(r)2

r4
(
q(r)2 + p(r)2r2

)

− A
(
r2 − B

) (
I1q(r)r2β + r2β2 − I1p(r)r2μ + μ2

)
M11(r)

r4
(
q(r)2 + p(r)2r2

)

+ A(DE − CF)2 (q(r)β − p(r)μ)

r2
= 1, (359)

A2
(
r2 − B

)2
M11(r)2

r4
− A

(
r2 − B

) (
I1

(
q(r)2 + p(r)2r2

) + q(r)β − p(r)μ
)
M11(r)

r2
(
q(r)2 + p(r)2r2

)

+ I2 + A(CF − DE)2
(
q(r)2 + p(r)2r2

)

r2
+ I1r

2 (q(r)β − p(r)μ) + r2β2 + μ2

r2
(
q(r)2 + p(r)2r2

) = 0

(360)

We take the discriminant of these equations in M11(r), and demand this vanish. We remove
nonzero factors, and then demand each coefficient in r vanish independently. The first con-
dition we obtain is α3

1 + I2α
2
1β2 + I1α1β

2
2 + β3

2 = 0, which implies that either ν = − β2
α1

is
an eigenvalue of b, or α1 = β2 = 0. In the first case, we obtain μ2 = γ1

e2
. This yields two

subcases:

β1 = −α2

e2
, (361)

or alternatively

e3
2 − e1e2 + 1 = 0. (362)

In this first subcase, we obtain the sufficient condition μ1 = γ2
e2

, or e3
2 − e1e2 + 1 = 0. How-

ever, when we take e3
2 − e1e2 + 1 = 0, we obtain the same value for μ1, and hence, this

second condition is redundant. If we take the subcase, e3
2 − e1e2 + 1 = 0 and β1 
= − α2

e2
, we

obtain λ1 = λ2 = 1.
We then obtain the sufficient condition

μ1 = α1γ2 − γ1 (α2 + β1)

α1
, (363)
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which further yields β1 = −α2, which is again a special case of the already discov-
ered solutions. Next, we consider α1 = β2 = 0. Inserting this, we obtain the equation
μ3

2 −I1μ
2
2γ1 +I2μ2γ

2
1 −γ 3

1 = 0, which implies ν = μ2
γ1

is an eigenvalue of b, or μ2 = γ1 = 0.
In the first case, we take discriminants in e1 and demand non-negativity, which yields the
condition

γ2μ1 (e2μ1 − γ2) (β1γ2 + α2μ1) = 0. (364)

Beginning with γ2 = 0, we obtain

μ4
1

[
A(CF − DE)2 α4

2 + μ2
1

] = 0, (365)

which requires that μ1 = 0. With this, we then obtain equations with the common factor
α2 + e2β1. Hence, it is sufficient if this factor vanishes. If it does not, we can take the
resultant of the remaining two equations in β1 to obtain (e3

2 − e1e2 + 1)α2 = 0. If α2 = 0, we
obtain that β1 = 0 as well, which is a case of the previously solved condition. If we instead
take e3

2 − e1e2 + 1 = 0, we obtain the condition β1 = −α2λ2, which is a special case of the
previously solved condition, so we can always take β1 = − α2

e2
.

Next, we assume γ2 
= 0 and take μ1 = 0. Doing this yields

γ 4
2

[
γ 2

2 + A(CF − DE)2 β4
1

] = 0, (366)

which demands γ2 = 0, a contradiction. We then assume γ2 
= 0, μ1 
= 0, and take μ1 =
γ2
e2

. This requires β1 = − α2
e2

, which is also sufficient. Finally, we assume μ1e2 − γ2 
= 0 in
addition to γ2 
= 0 and μ1 
= 0, and take β1 = − α2μ1

γ2
. This demands

(μ1 − λ1γ2) (μ1 − λ2γ2) = 0. (367)

Making the first factor vanish reveals λ1 = λ2 or λ2 = 1
λ2

1
. The first case ultimately requires

λ2 = 1, but this also means e2 = 1, and hence μ1e2 − γ2 = 0, a contradiction. In the case
where λ2 = 1

λ2
1
, this contradiction is immediate. The steps are identical for the case where

μ1 = λ2γ2, and so we have exhausted this branch of solutions.
Next, we take μ2 = γ1 = 0. This returns

α3
2 + I2α

2
2β1 + I1α2β

2
1 + β3

1 = 0, (368)

which requires ν = − β1
α2

be an eigenvalue of b, or α2 = β1 = 0. In the first case, we obtain
a sufficient condition μ1 = γ2

e2
. If this condition is not met, we can take the resultant of the

remaining two equations in γ2 and obtain the necessary condition

(
e3

2 − e1e2 + 1
)
μ1 = 0. (369)

Taking μ1 = 0 yields γ2 = 0. Taking e3
2 − e1e2 + 1 = 0, i.e., λ1 = 1

λ2
2

yields μ1 = γ2λ2 = γ2
e2

,

again obtaining the previous sufficient condition. Finally, if α2 = β1 = 0, we obtain

μ3
1 − I1γ2μ

2
1 + I2γ

2
2 μ1 − γ 3

2 = 0, (370)

which demands that μ1 = γ2
e2

, since γ2 cannot vanish without leaving the anomalous solution
branch. This exhausts all solution branches of this family and reveals all solutions to be cases
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of the anomalous solution

β1 = −α2

e2
,

β2 = −α1

e2
,

μ1 = γ2

e2
,

μ2 = γ1

e2
.

(371)

This lets us solve for M11(r), and finally obtain the anomalous solution

p(r) = γ1 + γ2

r2
, (372)

q(r) = α1r
2 + α2, (373)

M12(r) = Dq(r) − Fp(r)√
r2 − B

, (374)

M13(r) = Ep(r) − Cq(r)√
r2 − B

, (375)

M11(r) = r2
e1 ±

√
e2

1 − 4
[
e2 + A(CF − DE)2

(
p(r)2 + q(r)2

r2

)]

2A
(
r2 − B

) , (376)

M22(r) =
(
Dr2p(r) + Fq(r)

)2 + e1e2r
2 (Dq(r) − Fp(r))2

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− Ae2 (Fp(r) − Dq(r))2 (
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) , (377)

M23(r) = Ae2 (Ep(r) − Cq(r)) (Fp(r) − Dq(r))
(
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− e1 (Cq(r) − Ep(r)) (Dq(r) − Fp(r))

(CF − DE)2
(
q(r)2 + p(r)2r2

)

−
(
Cp(r)r2 + Eq(r)

) (
Dp(r)r2 + Fq(r)

)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) , (378)

M33(r) =
(
Cr2p(r) + Eq(r)

)2 + e1e2r
2 (Cq(r) − Ep(r))2

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

)

− Ae2 (Ep(r) − Cq(r))2 (
r2 − B

)
M11(r)

e2 (CF − DE)2 r2
(
q(r)2 + p(r)2r2

) . (379)

The analysis tree for this family is
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Nodes:

• 0: α3
1 + I2α

2
1β2 + I1α1β

2
2 + β3

2 = 0
• −: (β1e2 + α2)

(
e3

2 − e1e2 + 1
) = 0

• +: γ 3
1 − I2γ

2
1 μ2 + I1μ

2
2γ1 − μ3

2 = 0
• −−: μ1 = γ2

e2• −+: β1 = −α2 
= −α2

• +−: γ2μ1 (e2μ1 − γ2) (β1γ2 + α2μ1) = 0
• ++: β3

1 + I1β
2
1α2 + I2β1α

2
2 + α3

2 = 0
• + − −: μ1 = 0 and β1 = − α2

e2• + − +: μ1 (e2μ1 − γ2) (β1γ2 + α2μ1) = 0
• + + −: (μ1e2 − γ2) (...)1 = 0 and (μ1e2 − γ2) (...)2 = 0
• + + +: μ1 = γ2

e2• + − +−: γ2 = 0 
= 0
• + − ++: (e2μ1 − γ2) (β1γ2 + α2μ1) = 0
• + + −−: μ1 = γ2

e2

• + + −+:
(
e3

2 − e1e2 + 1
)
μ1 = 0

• + − + + −: β1 = − α2
e2• + − + + +: (μ1 − λ1γ2) (μ1 − λ2γ2) = 0

• + + − + −: μ1 = γ2 = 0
• + + − + +: μ1 = γ2

e2• + − + + +−: μ1 = γ2
e2


= γ2
e2• + − + + ++: μ1 = γ2

e2

= γ2

e2
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Edges (labelled by child node):

• −: ν = − β2
α1

⇒ μ2 = γ1
e2• +: α1 = β2 = 0

• −−: β1 = − α2
e2

• −+: β1 
= − α2
e2

and e3
2 − e1e2 + 1 = 0 ⇒ λa = 1

• +−: ν = μ2
γ1• ++: μ2 = γ1 = 0

• + − −: γ2 = 0
• + − +: γ2 
= 0
• + + −: ν = −β1

α2

• + + +: β1 = α2 = 0 ⇒ μ3
1 − I1γ2μ

2
1 + I2γ

2
2 μ1 − γ 3

2 = 0
• + − +−: μ1 = 0
• + − ++: μ1 
= 0
• + + −−: μ1e2 − γ2 = 0
• + + −+: Resγ2 ((...)1 , (...)2) = 0
• + − + + −: μ1 = γ2

e2• + − + + +: μ1 
= γ2
e2

, μ1 
= 0, and γ2 
= 0
• + + − + −: μ1 = 0
• + + − + +: μ1 
= 0
• + − + + +−: μ1 = λ1γ2

• + − + + ++: μ1 = λ2γ2

Family 5

First addressing the equilibrium equations involving b, we obtain the equations

r2M13′′(r) + rM13′(r) − M13(r) = 0, (380)

3CM12(r) + 3ABM11′(r) + 5CrM12′(r) + ABrM11′′(r) + Cr2M12′′(r) = 0, (381)

which simplify upon defining the auxiliary function f = CrM12(r) + ABM11(r), which
makes the second equilibrium equation rf ′′(r) + 3f ′(r) = 0. These equations can be inte-
grated to obtain

f (r) = γ1 + γ2

r2
⇒ M12(r) = γ1 + γ2

r2 − ABM11(r)

Cr
, (382)

M13(r) = α1r + α2

r
. (383)

Next, we have the equilibrium equations derived from c, which are

8ABr3α2
1 + 8Cr3α1M

23(r) + Cr2
(
7r2α1 + 3α2

)
M23′(r) + (−3r2γ1 + γ2

)
M33′(r)

+ Cr3
(
r2α1 + α2

)
M23′′(r) − r

(
r2γ1 + γ2

)
M33′′(r) = 0, (384)

− 8ABα2γ2 − 8C2r6α1M
22(r) + A2B2r3

(
3r2α1 − α2

)
M11′(r)

− C2r5
(
7r2α1+3α2

)
M22′(r) + Cr3

(
3r2γ1−γ2

)
M23′(r) + A2B2r4

(
r2α1 + α2

)
M11′′(r)

− C2r6
(
r2α1 + α2

)
M22′′(r) + Cr4

(
r2γ1 + γ2

)
M23′′(r) = 0. (385)
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These equations can be integrated to obtain
(
r2γ1 + γ2

)
M33(r) − Cr2

(
r2α1 + α2

)
M23(r) = r2μ1 + μ2 + ABr4α2

1, (386)

C2r4
(
r2α1 + α2

)
M22(r) − Cr2

(
r2γ1 + γ2

)
M23(r) = A2B2r2

(
r2α1 + α2

)
M11(r)

+ r4β1 + r2β2 − ABα2γ2, (387)

which coupled with the constant trace condition

E2r2M33(r) + c2r4M22(r) = −A2
(
1 − B2

)
M11(r) − 2AB

(
r2γ1 + γ2

) + I1r
2, (388)

lets us solve for M22(r), M23(r), and M33(r) in terms of undetermined constants, and

M11(r). The determinant of this system is −C3r6
[
E2r2

(
r2α1 + α2

)2 + (
r2γ1 + γ2

)2
]


= 0,

so we can always invert these equations. Denoting γ = γ1r
2 + γ2, α = α1r

2 + α2, μ =
μ1r

2 + μ2, and β = β1r
2 + β2, we obtain

M22(r) = γ 2
(
I1r

2 − 2ABγ
) + E2r2

(
r2αβ − AB

(
α2γ + α2

2γ + αα2 (γ2 − 2γ )
) − γμ

)

C2r4
(
E2r2α2 + γ 2

)

+
A2

(
B2 − γ 2

E2r2α2+γ 2

)
M11(r)

C2r2
, (389)

M23(r) = −AB
(
E2r2α (α − α2)

2 + γ (2αγ − α2γ2)
) + r2

(
I1αγ − βγ − E2αμ

)

Cr2
(
E2r2α2 + γ 2

)

− A2αγM11(r)

CE2r2α2 + Cγ 2
, (390)

M33(r) = I1r
2α2 − r2αβ − ABα2γ − 2ABαα2γ + ABα2

2γ + ABαα2γ2 + γμ

E2r2α2 + γ 2

− A2r2α2M11(r)

E2r2α2 + γ 2
. (391)

This leaves us with the incompressibility condition, and the constant second invariant of b to
satisfy. As in the other cases, these equations are quadratic in M11(r), and we compute their
resultant in M11(r), factor each coefficient in r and demand they all vanish independently.

The first of these is the equation

E6
[
(β1 + ABα1γ1)

3 − I1 (β1 + ABα1γ1)
2 α1 + I2 (β1 + ABα1γ1)α2

1 − α3
1

]2 = 0, (392)

which implies that either ν = β1+ABα1γ1
α1

is an eigenvalue of b, or α1 = 0 and β1 = 0. In the
first case, we immediately obtain μ1 = 2ABα1α2 + γ1

E2e2
, which upon substitution yields

(
e3

2 − e1e2 + 1
)
(e2β2 − α2 + ABe2 (α2γ1 + α1γ2)) = 0, (393)

which requires β2 = α2
e2

−AB (α2γ1 + α1γ2), or if not, λ1 = 1
λ2

2
. Tackling this latter case first,

after substitution we demand λ2 = 1 to avoid a contradiction and obtain

μ2 = −α2γ1 + β2γ1 + α1γ2 + AB
[
E2α1α

2
2 + γ1 (α2γ1 + α1γ2)

]

E2α1
. (394)
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This, however, reduces the remaining equations to requiring β2 = α2
e2

− AB (α2γ1 + α1γ2),
so we can immediately consider this case. One of the remaining equations then implies

γ1

(
ABE2e2α

2
2 + γ2 − E2e2μ2

) (
e3

2 − e1e2 + 1
) = 0. (395)

Taking μ2 = ABE2e2α2
2+γ2

E2e2
is sufficient, so then we consider the case where μ2 
= ABE2e2α2

2+γ2

E2e2
.

With this, we first take γ1 = 0, but this leads immediately to a contradiction, so we then
consider e3

2 − e1e2 + 1 = 0. However, this case also immediately leads to a contradiction, so
we next consider β1 = α1 = 0. This yields the equation

E6μ3
1 − I1γ1E

4μ2
1 + I2γ

2
1 E2μ1 − γ 3

1 = 0, (396)

which implies that ν = E2μ1
γ1

is an eigenvalue of b, or γ1 = μ1 = 0. In the first case, we take
discriminants in e1 and demand non-negativity to obtain

γ2

(
ABα2

2 − μ2

)(
ABE2e2α

2
2 + γ2 − E2e2μ2

)

× (
ABE2e2α

3
2 + β2γ2 + ABα2γ1γ2 − E2α2μ2

) = 0. (397)

Examining these factors one at a time, we first consider γ2 = 0. With this, we get the equation

(
ABα2

2 − μ2
) [

A2α4
2 + (

ABα2
2 − μ2

)2
]

= 0, (398)

hence, we take μ2 = ABα2
2 . Inserting this yields either the sufficient condition

β2 = α2

e2
− ABα2γ1, (399)

or β2 
= α2
e2

− ABα2γ1, in which case we can take the resultant of the remaining nonzero
factors in β2 to require

α2

(
e3

2 − e1e2 + 1
) = 0. (400)

If we take α2 = 0 we obtain β2 = 0, which is a special case of the sufficient condition
above. If we take e3

2 − e1e2 + 1 = 0, we ultimately see that the sufficient condition is also
necessary. Considering γ2 
= 0, we then take μ2 = ABα2

2 . However, substituting this yields
an expression that is positive-definite in γ2 being equal to 0, so we have a contradiction.

Next, considering γ2 
= 0 and μ2 
= ABα2
2 , we take ABE2e2α

2
2 +γ2 −E2e2μ2 = 0. Doing

this reveals the necessary and sufficient condition β2 = α2
e2

− ABα2γ1. In the last case, we
have

β2 = −ABE2α3
2 − ABα2γ1γ2 + E2α2μ2

γ2
, (401)

which implies the sufficient condition

μ2 = ABE2e2α
2
2 + γ2

E2e2
, (402)

or if not we can take resultants in μ2 with the remaining nonzero factors to obtain the
necessary condition

(
e2

1 − 4e2
) (

e3
2 − e1e2 + 1

) = 0, (403)
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which requires either λ1 = λ2 or λ1 = 1
λ2

2
, i.e., b has a repeated eigenvalue. If we take λ1 =

λ2, and look for different values of μ2, we obtain

μ2 = ABE2α2
2 + γ2λ2

E2
. (404)

Substituting this into the remaining equations, we see that either λ2 = 1 or α2 = 0, both
of which reduce this value of μ2 to the previous sufficient condition. Taking λ1 = 1

λ2
2

and

looking for different solutions immediately requires α2 = 0, which then further implies μ2 =
γ2

E2λ2
2
. This, however, demands λ2 = 1, and we realize that the previous sufficient condition

was also necessary.
Next, considering μ1 = γ1 = 0, we obtain the eigenvalue equation β3

2 − I1α2β
2
2 +

I2α
2
2β2 − α3

2 = 0, which demands b have the eigenvalue ν = β2
α2

, or β2 = α2 = 0. In the
first case, we obtain the sufficient condition

μ2 = ABE2e2α
2
2 + γ2

E2e2
. (405)

Taking the resultant of the remaining factors yields γ2(e
3
2 − e1e2 + 1) = 0, which has solu-

tions γ2 = 0 or λ1 = 1
λ2

2
. Taking γ2 = 0 shows that in this case the sufficient condition is also

necessary, and taking λ1 = 1
λ2

2
reveals that the sufficient condition is necessary in all cases.

Finally, we take α2 = β2 = 0. This reveals only one remaining equation E6μ3
2 −

I1γ2E
4μ2

2 + I2γ
2
2 E2μ2 − γ 3

2 = 0, which, since γ2 
= 0, requires the eigenvalue ν = E2μ2
γ2

,
and hence μ2 = γ2

E2e2
. The analysis tree is then
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Nodes:

• 0: (β1 + ABα1γ1)
3 − I1 (β1 + ABα1γ1)

2 α1 + I2 (β1 + ABα1γ1)α2
1 − α3

1 = 0
• −:

(
e3

2 − e1e2 + 1
)
(e2β2 − α2 + ABe2 (α2γ1 + α1γ2)) = 0

• +:
(
E2μ1

)3 − I1
(
E2μ1

)2
γ1 + I2

(
E2μ1

)
γ 2

1 − γ 3
1 = 0

• −−:
(
E2e2μ2 − ABE2e2α

2
2 − γ2

) (
e3

2 − e1e2 + 1
) = 0

• −+: β2 = α2
e2

− AB (α2γ1 + α1γ2) 
= α2
e2

− AB (α2γ1 + α1γ2)

• +−: γ2

(
ABα2

2 − μ2

) (
ABE2e2α

2
2 + γ2 − E2e2μ2

)
(
ABE2e2α

3
2 + β2γ2 + ABα2γ1γ2 − E2α2μ2

) = 0
• ++: β3

2 − I1α2β
2
2 + I2α2β2 − α3

2 = 0

• − − −: μ2 = ABE2e2α2
2+γ2

E2e2

• − − +: μ2 = ABE2e2α2
2+γ2

E2e2

= ABE2e2α2

2+γ2

E2e2

• + − −: ABα2
2 − μ2 = 0 and (β2e2 − α2 + ABe2α2γ1) (...)a = 0

• + − +: γ2 = 0 
= 0

• + + −: μ2 = ABE2e2α2
2+γ2

E2e2• + + +: μ2 = γ2
E2e2• + − −−: β2 = α2

e2
− ABα2γ1

• + − −+: α2

(
e3

2 − e1e2 + 1
) = 0

• + − +−: γ2 = 0 
= 0
• +−++:

(
ABE2e2α

2
2 + γ2 − E2e2μ2

) (
ABE2e2α

3
2 + β2γ2 + ABα2γ1γ2 − E2α2μ2

) = 0
• + − + + −: β2 = α2

e2
− ABα2γ1

• + − + + +:
(
e2

1 − 4e2

) (
e3

2 − e1e2 + 1
) = 0

• + − + + +−: ABE2e2α
2
2 + γ2 − E2e2μ2 = 0 
= 0

• + − + + ++: ABE2e2α
2
2 + γ2 − E2e2μ2 = 0 
= 0

Edges (labelled by child node):

• −: ν = β1+ABα1γ1
α1• +: α1 = β1 = 0

• −−: β2 = α2
e2

− AB (α2γ1 + α1γ2)

• −+: λ1 = 1
λ2

2

• +−: ν = E2μ1
γ1• ++: γ1 = μ1 = 0

• − − −: μ2 = ABE2e2α2
2+γ2

E2e2

• − − +: μ2 
= ABE2e2α2
2+γ2

E2e2
and e3

2 − e1e2 + 1 = 0
• + − −: γ2 = 0
• + − +: γ2 
= 0
• + + −: ν = β2

α2• + + +: β2 = α2 = 0
• + − −−: μ2 = ABα2

2 and β2 = α2
e2

− ABα2γ1

• + − −+: Resβ2 ((...)a , (...)b) = 0
• + − +−: μ2 = ABα2

2• + − ++: μ2 
= ABα2
2• + − + + −: ABE2e2α

2
2 + γ2 − E2e2μ2 = 0

• + − + + +: ABE2e2α
2
2 + γ2 − E2e2μ2 
= 0

• + − + + +−: e2
1 = 4e2

• + − + + ++: e3
2 − e1e2 + 1 = 0
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These are all special cases of the solution

μ1 = 2ABα1α2 + γ1

E2e2
, (406)

μ2 = ABE2e2α
2
2 + γ2

E2e2
, (407)

β1 = α1

e2
− ABα1γ1, (408)

β2 = α2

e2
− AB (α2γ1 + α1γ2) , (409)

which lets us solve for M11(r) and obtain the anomalous solution

f (r) = γ1 + γ2

r2
, (410)

M13(r) = α1r + α2

r
, (411)

M11(r) =
e1 ±

√
e2

1 − 4
(
e2 + A2f (r)2 + A2E2M13(r)2

)

2A2
, (412)

M12(r) = f (r) − ABM11(r)

Cr
, (413)

M22(r) = e2f (r)2
(
e1 + A2

(
B2 − 1

)
M11(r)

)

C2r2e2

(
f (r)2 + E2M13(r)2

)

+ E2
(
1 + A2B2e2M

11(r)
)
M13(r) − 2ABe2f (r)

(
f (r)2 + E2M13(r)2

)

C2r2e2

(
f (r)2 + E2M13(r)2

) , (414)

M23(r) = −ABM13(r)

Cr
− M13(r)f (r)

(
1 − e1e2 + A2e2M

11(r)
)

Ce2r
(
f (r)2 + E2M13(r)2

) , (415)

M33(r) = f (r)2 + E2e2

(
e1 − A2M11(r)

)
M13(r)2

E2e2

(
f (r)2 + E2M13(r)2

) . (416)

Appendix C: The Role of Symmetry

We note that the left Cauchy-Green stretch tensor fields present in all the known universal
solutions, both classical and anelastic, are equivariant under the defining action of a Lie
subgroup of the special Euclidean group. In particular, these subgroups all have at least two
independent generators, with the three anelastic families separated by the nature of these
generators; taking two purely translational generators yields U2, taking one translational and
one rotational yields U3, and taking two rotational yields U4. Of course, these families are
not simply symmetric with respect to an arbitrary choice of generators of these natures;
the translational generator in U3 is orthogonal to the plane of rotation determined by the
rotational generator of U3, and both of the rotational generators for U4 fix a common point.
It is then natural to ask if there are other universal solutions that are likewise equivariant
with respect to a similar subgroup, but without these specific generator choices.
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C.3 The Lie Algebra se(n)

To examine the subgroup structure in terms of generators, we turn our attention to se(3),
the Lie algebra associated to the Lie group SE(3). We can represent the group SE(n) as a
subgroup of GL(n + 1) in the following way: The element (Q|c) ∈ SE(n) is identified with
the (n + 1) × (n + 1) matrix

[
Q c

0 1

]
, (417)

where 0 is a 1×n block of 0’s. It is clear that the standard matrix multiplication in GL(n + 1)

agrees with the group action determined by the defining action of SE(n) on E
n. As a re-

minder of Example A.1, the defining action of the special Euclidean group induces the
group action

(Q2|c2) 	 (Q1|c1) = (Q2Q1|Q2c1 + c2) . (418)

Translating this into the representation (417), we have

[
Q2 c2

0 1

][
Q1 c1

0 1

]
=

[
Q2Q1 Q2c1 + c2

0 1

]
, (419)

which clearly captures the induced group structure in terms of standard matrix multiplica-
tion. Taking the derivative of this representation around the identity yields a representation
of the Lie algebra se(n):

[
� u

0 0

]
, (420)

where � is a skew symmetric matrix, u is an n × 1 column vector, and 0 is a 1 × n block of
0’s. We seek to examine the subalgebra structure of se(n), and in particular, se(3), since sub-
algebras with two generators will directly correspond to Lie subgroups with two generators
by way of the exponential map.

The defining feature of SE(n) being its action on E
n, we expect there to be an analogous

representation for En such that this action is reflected by the standard action of GL(n + 1)

on R
n+1. Indeed the analogous representation takes the point with position vector X ∈ R

n

to the vector

[
X

1

]
∈ R

n+1. Under this representation, the special Euclidean group acts via

matrix multiplication as follows:

[
Q c

0 1

][
X

1

]
=

[
QX + c

1

]
, (421)

which clearly agrees with the action as defined previously.

C.4 Subalgebras of se(3)

Under the above representation, an arbitrary element of se(3) takes the form

⎡

⎢⎢
⎣

0 −ζ ε α

ζ 0 −δ β

−ε δ 0 γ

0 0 0 0

⎤

⎥⎥
⎦ , (422)
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and the Lie bracket becomes the matrix commutator. Clearly elements of this form span
a 6-dimensional subspace of R4×4. We are interested in Lie subalgebras generated by the
two generators, hence we consider two arbitrary elements of se(3), examine their product,
and check for linear dependence. Doing this successively will identify proper subalgebras
generated by two elements.

We first want to choose our coordinates in such a way to simplify our calculations. We
seek to align our coordinate frame with the axial vector of the skew symmetric submatrix �.
The axial vector of � lies in the null space of �, which is spanned by the vector

[
δ, ε, ζ

]T
,

unless � = 0, in which case we do not have to do anything at this step. These two options
are exhaustive, since the eigenvalues of � are {0,±√−δ2 − ε2 − ζ 2}.

Provided � 
= 0, we can choose a Cartesian coordinate system such that e3 is the normal-
ized axial vector:

e3 = 1
√

δ2 + ε2 + ζ 2

⎡

⎣
δ

ε

ζ

⎤

⎦ . (423)

We do this by considering any rotation mapping the normalized axial vector to e3. Denoting
such a rotation R, we change coordinates by computing

[
R 0
0 1

]
⎡

⎢
⎢
⎣

0 −ζ ε α

ζ 0 −δ β

−ε δ 0 γ

0 0 0 0

⎤

⎥
⎥
⎦

[
RT 0
0 1

]
. (424)

When we apply this coordinate transformation, our chosen element of the Lie algebra takes
the form ⎡

⎢
⎢
⎣

0 −ω 0 α

ω 0 0 β

0 0 0 γ

0 0 0 0

⎤

⎥
⎥
⎦ , (425)

where ω = √
δ2 + ε2 + ζ 2, and the α, β , and γ here have been relabeled, being independent

linear combinations depending on R of the old α, β , and γ , which were arbitrary to begin
with.

Next, we seek to apply a coordinate translation to simplify the translation portion of our
chosen element. To do this, we seek to identify the fixed points of this action. The velocity of
points under the action of the one-parameter subalgebra generated by this element is given
by

⎡

⎢⎢
⎣

0 −ω 0 α

ω 0 0 β

0 0 0 γ

0 0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x

y

z

1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

α − ωy

ωx + β

γ

0

⎤

⎥⎥
⎦ . (426)

Hence, if ω 
= 0, we can choose a coordinate translation that sets the point [−β/ω α/ω 0]T

to be the origin. Under this transformation, our chosen element takes the form
⎡

⎢⎢
⎣

1 0 0 β/ω

0 1 0 −α/ω

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0 −ω 0 α

ω 0 0 β

0 0 0 γ

0 0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −β/ω

0 1 0 α/ω

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −ω 0 0
ω 0 0 0
0 0 0 u

0 0 0 0

⎤

⎥⎥
⎦ .

(427)
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Here, u = γ , but we shall explicitly use u and ω to emphasize that we have expressed this
element of se(3) in a coaxial coordinate system. In the case where � = 0, we simply choose
our coordinate rotation so that our translation vector is aligned with e3, which sets our chosen
Lie algebra element to the form above with ω = 0.

C.4.1 2-Dimensional Subalgebras

Obviously, provided that the generators we select are linearly independent, they span a
two-dimensional vector space, hence all subalgebras containing them are at least two-
dimensional. In order for us to identify two-dimensional subalgebras, we simply need to
establish necessary and sufficient conditions for the two generators and their bracket to be
linearly dependent. We select a coordinate system that is coaxial with one of our generators,
and hence have

v1 =

⎡

⎢⎢
⎣

0 −ω 0 0
ω 0 0 0
0 0 0 u

0 0 0 0

⎤

⎥⎥
⎦ , (428)

and select another arbitrary generator,

v2 =

⎡

⎢⎢
⎣

0 −ζ ε α

ζ 0 −δ β

−ε δ 0 γ

0 0 0 0

⎤

⎥⎥
⎦ . (429)

Taking the Lie bracket of these two elements, we obtain

[v1, v2] =

⎡

⎢
⎢
⎣

0 0 δω −uε − βω

0 0 εω uδ + αω

−δω −εω 0 0
0 0 0 0

⎤

⎥
⎥
⎦ . (430)

We then require the Lie bracket of our generators to be within their span, i.e., we seek all
solutions to the equations

a1v1 + a2v2 + [v1, v2] = 0, (431)

which explicitly become

a2α − uε − βω = 0,

a2β + uδ + αω = 0,

a1u + a2γ = 0,

a2δ − εω = 0,

a2ε + δω = 0,

a2ζ + a1ω = 0.

Taking the combination δ (a2ε + δω = 0) − ε (a2δ − εω = 0) yields the equation

(ε2 + δ2)ω = 0, (432)
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which implies that either ω = 0, or both δ = 0 and ε = 0. If ω = 0, we consider the combi-
nations

ε (a2α − uε = 0) − α (a2ε = 0) = −uε2 = 0, (433)

δ (a2β + uδ = 0) − β (a2δ = 0) = uδ2 = 0. (434)

Since v1 
= 0, u 
= 0, hence we require δ = ε = 0. With these substitutions, [v1, v2] vanishes,
and we have

v1 =

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 u

0 0 0 0

⎤

⎥⎥
⎦ , (435)

and

v2 =

⎡

⎢
⎢
⎣

0 −ζ 0 α

ζ 0 0 β

0 0 0 γ

0 0 0 0

⎤

⎥
⎥
⎦ . (436)

If ζ 
= 0, we can always reselect our origin to eliminate α and β , while leaving v1 unchanged.
Hence we obtain the symmetry of family U3. If ζ = 0, we have two independent translational
symmetries, which yields the symmetry found in family U2.

Now we turn our attention to the case where ω 
= 0, and consider the combination

α (a2β + αω = 0) − β (a2α − βω = 0) = (
α2 + β2

)
ω = 0. (437)

Since ω 
= 0, we require α = β = 0. This leaves us with v1 as initially specified and

v2 =

⎡

⎢
⎢
⎣

0 −ζ 0 0
ζ 0 0 0
0 0 0 γ

0 0 0 0

⎤

⎥
⎥
⎦ , (438)

which means that v1 and v2 generate independent screw motions about the same axis, cor-
responding to the symmetry of family U3.

C.4.2 3-Dimensional Subalgebras

Defining v3 = [v1, v2], and provided v3 
= 0, v1, v2, and v3 span a three-dimensional vector
space. The span of these three vectors must be closed under the Lie bracket, hence we require

a1v1 + a2v2 + a3v3 + [v1, v3] = 0, (439)

and

b1v1 + b2v2 + b3v3 + [v2, v3] = 0. (440)

We know that if v3 = 0 then v1 and v2 generate a two-dimensional subalgebra, hence we can
freely assume v3 
= 0.

First, we recognize that if ω = 0, both v1 and v3 are pure translations. They are linearly
independent provided δ 
= 0 and ε 
= 0, in which case v3 = 0. Hence, the bracket of a pure
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translation with a non-coaxial rotation yields another translation that is linearly independent
of the original translation. Hence, t(2) is contained in such a Lie subalgebra, and hence
all universal solutions that are symmetric with respect to the subgroups corresponding to
these subalgebras are contained in U2. If the rotation is coaxial with the translation, then
the bracket vanishes and we are reduced to the already solved two-dimensional case; hence
from now on, we can safely assume ω 
= 0.

The equations we must tackle are explicitly

a1u + a2γ = 0,

a2ζ + a1ω = 0,

b1u + b2γ + u
(
δ2 + ε2

) + 2ω (αδ + βε) = 0,

b2ζ + b1ω + ω
(
δ2 + ε2

) = 0,

b2δ − b3εω − δζω = 0,

b2ε + b3δω − εζω = 0,

a2δ − a3εω − δω2 = 0,

a2ε + a3δω − εω2 = 0,

b2β + b3uδ − uεζ + b3αω − γ εω − βζω = 0,

a2α − a3uε − a3βω − 2uδω − αω2 = 0,

b2α − b3uε − uδζ − b3βω − γ δω − αζω = 0,

a2β + a3uδ + a3αω − 2uεω − βω2 = 0.

Taking the linear combination

δ
(
a2ε + a3δω − εω2 = 0

) − ε
(
a2δ − a3εω − δω2 = 0

) = a3

(
δ2 + ε2

)
ω = 0, (441)

coupled with the condition ω 
= 0 yields either a3 = 0 or both δ = 0 and ε = 0. If δ = ε = 0,
v3 is a pure translation that is orthogonal to the axis of v1, hence, taking [v1, v3] generates
another pure translation orthogonal to the axis of v1 and that of v3, hence we capture the
symmetry t(2) as a subgroup of our symmetry group, and hence this case is captured in
family U2.

If either ε 
= 0 or δ 
= 0, we have a3 = 0, which upon substitution yields δ(a2 − ω2) = 0
and ε

(
a2 − ω2

) = 0. These equations together imply a2 = ω2. Substituting this new relation
into our equations, two of our equations reduce to

−2uδω = 0, − 2uεω = 0, (442)

which together imply that u = 0, since δ and ε cannot simultaneously vanish and ω 
= 0;
hence v1 must be a pure rotation, not simply a screw motion. With this, our first equation
becomes γω2 = 0, hence γ = 0 as well. When we insert this relation into our equations, we
obtain

2 (αδ + βε)ω = 0, (443)

which implies that the inner product of the axial vector of v2 with its translation vector is
zero. This implies that v2 is also a pure rotation, since this inner product is unchanged under
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coordinate transformations. This can be seen by noting that the velocity field u induced by
the action of an element of se(3) is given by

⎡

⎢
⎢
⎣

u1

u2

u3

0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 −ζ ε α

ζ 0 −δ β

−ε δ 0 γ

0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x

y

z

1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

εz − ζy + α

ζx − δz + β

δy − εx + γ

0

⎤

⎥
⎥
⎦ . (444)

Taking the inner product of this with the embedding of the axial vector
[
δ ε ζ 1

]T

yields

αδ + βε + γ ζ, (445)

which, not depending on position, is an invariant of the velocity field. Since the velocity field
is coordinate independent, we know that this invariant will be preserved under coordinate
changes. When we express our generator in a coordinate system aligned with its axis, this
invariant becomes ωu, which vanishes if either our generator is a pure translation or a pure
rotation. In our analysis, we have for v2, αδ + βε = 0 together with γ = 0, hence we know
v2 is either a pure translation or a pure rotation. We know that v2 is not a pure translation
since either δ or ε is nonzero. Additionally, we know that the axial vectors of v1 and v2 are
linearly independent, since either δ or ε is nonzero.

Summing up our progress thus far, we have shown that both v1 and v2 must be pure
rotations. In fact, their axes of rotation intersect, hence they generate so(3), the symmetry
present in U4, indicating that our classification captures all three-dimensional cases. To see
this, note that we have aligned our coordinates so that the axis of rotation for v1 is the z axis.
We seek to show that the axis of rotation for v2 intersects the z axis.

First notice that for rotations about the origin, the velocity field generated is of the form

v = ω ∧ X, (446)

where ω is the axial vector of �, and ∧ is the standard cross product. This implies that
the velocity vector at a point is orthogonal to the plane spanned by the axial vector of the
rotation, and the position vector X. Since (446) assumes we have chosen our origin such that
the axis of rotation passes through the origin, this plane is equivalently the plane containing
the axis of rotation and the point X. Therefore, for the generator v2, we can examine the
velocity generated at the origin, and recognize that it lies entirely in the x, y plane. If this
velocity is nonzero, we know that the plane passing through the origin that is orthogonal
to this translation contains the axis of rotation of v2. This plane also contains the z axis,
since all planes passing through the origin that are orthogonal to a nonzero vector in the x, y

plane contain the z axis. Therefore the axes of rotation for v1 and v2 are coplanar. We have
already established that they are not parallel, since the axial vectors for v1 and v2 are linearly
independent, hence they must intersect at some point. If the velocity generated by v2 at the
origin is zero, then the axis of rotation of v2 passes through the origin, and hence not only
intersects the z axis, but intersects it at the origin.

We have therefore shown that all three-dimensional Lie subalgebras of se(3) that are
generated by two linearly independent generators either contain t(2) as a subalgebra, or are
so(3), the algebra associated with the set of rotations about a fixed point, and hence universal
solutions that are equivariant with respect to the associated Lie groups are contained in one
of our discovered families.
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C.4.3 4+ Dimensional Subalgebras

Without loss of generality, we assume v1, v2, v3, and v4 = [v1, v3] are linearly independent,
since the other choice would be v4 = [v2, v3], which would be equivalent. Specifically, we
denote V2 = Span (v1, v2), and V3 = Span (v1, v2, [v1, v2]). Provided that v1, v2, and [v1, v2]
are linearly independent, we can write V3 = V2 ⊕Span ([v1, v2]). It suffices to take the fourth
linearly independent element to be of the form

v4 = [u,w] , u ∈ V2, w ∈ Span ([v1, v2]) , (447)

since for all u,w ∈ V2, [u,w] ∈ V3, and for all u,w ∈ Span ([v1, v2]), [u,w] = 0. Since v1

and v2 are arbitrary, we can choose this fourth linearly independent element to be [v1, v3].
Doing this, we have

v4 =

⎡

⎢⎢
⎣

0 0 −εω2 −ω (2uδ + αω)

0 0 δω2 −ω (2uε + βω)

εω2 −δω2 0 0
0 0 0 0

⎤

⎥⎥
⎦ . (448)

Notice that the axial vectors of v1, v3, and v4 are [0,0,ω]T, [−εω, δω,0]T, and
[−δω2,−εω2,0]T respectively. These vectors are mutually orthogonal, hence provided
ω 
= 0 and that ε 
= 0 or δ 
= 0, these span R

3, and hence the rotational components of
these three generators can be used to reduce any fourth linearly independent generator to a
pure translation. As shown earlier, taking the bracket of a pure translation with any other
linearly independent element of se(3) generates a two-dimensional subalgebra: either t(2)

or so(2) × t(1). Therefore, all subalgebras of dimension four or higher contain one of these
two-dimensional subalgebras, hence universal solutions that are symmetric with respect to
such a four-dimensional subalgebra will be contained in either U2 or U3.
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