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Abstract In this paper, the recent literature of finite eignestrains in nonlinear elastic
solids is reviewed, and Eshelby’s inclusion problem at finite strains is revisited. The sub-
tleties of the analysis of combinations of finite eigenstrains for the example of combined
finite radial, azimuthal, axial and twist eigenstrains in a finite circular cylindrical bar
are discussed. The stress field of a spherical inclusion with uniform pure dilatational
eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible
isotropic solids is analyzed. The same problem for a finite circular cylindrical bar is revis-
ited. The stress and deformation fields of an orthotropic incompressible solid circular
cylinder with distributed eigentwists are analyzed.

Keywords Eigenstrain; anelasticity; nonlinear elasticity; inclusion; geometric mechan-
ics; material manifold.

1. Introduction

In general, only part of strain (we assume that some measure of strain is chosen,
e.g., deformation gradient) is directly related to stress through the constitutive
equations. The remaining part is called eigenstrain. Eigenstrain is a hybrid German–
English term whose origin goes back to the pioneering paper of Reissner [1931]
(Eigenspannung means proper or self strain). The term eigenstrain was popularized
by Mura [Kinoshita and Mura, 1971; Mura, 1982]. In the literature, several other
terms can be found that describe the same concept; initial strain [Kondo, 1949],
nuclei of strain [Mindlin and Cheng, 1950], transformation strain [Eshelby, 1957]
and inherent strain [Ueda et al., 1975] (see also [Jun and Korsunsky, 2010; Zhou
et al., 2013]). Inclusions and their stress fields were systematically studied in the
setting of linear elasticity and for infinite bodies by Eshelby [1957]. Eshelby showed
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that for an ellipsoidal inclusion that is embedded in an infinite linear elastic medium
and has uniform eigenstrains, the stress field inside the inclusion is uniform. This
uniformity property does not hold for finite bodies, in general. For a spherical
inclusion centered at a finite ball, Li et al. [2007] showed that, in general, stress
inside the inclusion is not uniform.

Eshelby’s inclusion problem in nonlinear elasticity has been studied only fairly
recently. The study of inclusions has been overwhelmingly restricted to linear elas-
ticity, with the exception of some two-dimensional solutions in the case of harmonic
solids [Ru and Schiavone, 1996; Ru et al., 2005; Kim and Schiavone, 2007, 2008;
Kim et al., 2008]. The first three-dimensional investigation of the stress fields of
inclusions in nonlinear solids was the numerical study of Diani and Parks [2000]. In
the case of a spherical inclusion with pure dilatational eigenstrains in their finite
element simulations, they observed uniform hydrostatic stress inside the inclusion.
This was later proved analytically for incompressible isotropic solids and a class of
compressible isotropic solids by Yavari and Goriely [2013]. For transversely isotropic
and orthotropic solids, Golgoon and Yavari [2018b] proved some similar results. The
first exact solutions for the stress fields of inclusions in nonlinear elasticity were
obtained by Yavari and Goriely [2013]. In that work, a theory of distributed finite
eigenstrains in nonlinear solids was formulated. The idea is to construct a global
natural configuration — the material manifold — for a body with a distribution
of finite eigenstrains. The natural configuration is a Riemannian manifold with a
metric that explicitly depends on the eigenstrain distribution (see Fig. 1). Yavari
and Goriely [2015a] analyzed certain stress singularities induced by distributed
eigenstrains. Yavari and Goriely [2015b] analyzed finite cylindrical bars with dis-
tributed finite eigentwists. The stress fields of finite eigenstrains in elastic wedges
were studied by Golgoon et al. [2016]. Toroidal inclusions with uniform finite pure
dilatational eigenstrains in solid tori were studied by Golgoon and Yavari [2017]. It
was shown that the stress field inside the inclusion is not uniform.

(a) (b)

Fig. 1. (a) In classical nonlinear elasticity both the reference and deformed configurations are
submanifolds of the Euclidean ambient space (S,g). (b) In anelasticity the deformed configuration
is still a submanifold of the Euclidean ambient space while the reference configuration is an abstract
Riemannian manifold. Anelasticity is encoded in the geometry of the material manifold (B, G).
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Suppose in a body B, a subset I ⊂ B has non-vanishing eigenstrains. This subset
is called an inclusion (or inclusions when I is not a connected set). Eigenstrains
change the natural configuration of the body. We model the natural configuration
of the body by a Riemannian manifold (B,G), where G is the so-called material
metric. The distances of material points in the natural configuration are calculated
using G. These distances for a body with eigenstrains, in general, do not agree with
the corresponding distances calculated using the metric of the Euclidean ambient
space. This discrepancy between the two geometries is the source of residual stresses
(see Fig. 2). In the literature, eigenstrains have been used to model a large class of
anelasticity problems including swelling and cavitation [Pence and Tsai, 2005, 2006,
2007; Goriely et al., 2010; Moulton and Goriely, 2011], bulk and surface growth
[Amar and Goriely, 2005; Yavari, 2010; Sozio and Yavari, 2017, 2019], thermal
strains [Stojanovic et al., 1964; Ozakin and Yavari, 2010; Sadik and Yavari, 2015]
and defects [Yavari and Goriely, 2012a 2012b, 2012c; Yavari and Goriely, 2014;
Sadik and Yavari, 2016; Golgoon and Yavari, 2018a].

This paper is organized as follows. In Sec. 2, we tersely review nonlinear elas-
ticity and modeling anisotropy at finite strains. In Sec. 3, we discuss a geometric
theory of finite eigenstrains. We also discuss the subtleties of analyzing combina-
tions of eigenstrains. The problem of radially-symmetric distributions of finite pure
dilatational eigenstrains in a finite spherical ball made of a nonlinear incompressible
elastic solid is revisited in Sec. 4. We present a simple but significant generaliza-
tion of the analysis of Yavari and Goriely [2013]; we assume that the spherical
ball is radially inhomogeneous. A similar problem for finite circular cylindrical bars
is revisited in Sec. 5. The analysis of Yavari and Goriely [2015b] is extended to
orthotropic circular cylindrical bars in Sec. 6. Conclusions are given in Sec. 7.

(a) (b) (c)

Fig. 2. (a) Part of a stress-free 2D body is partitioned into a set of squares. (b) Imagine that
each square is cut from the body. Note that all the squares are already relaxed. In other words
the squares in (b) can be put back together to reconstruct the stress-free configuration (a). (c)
Assume that each square is given a pure dilatational eigenstrain λ. Every square is relaxed to
another square, which is unique up to rigid body translations and rotations. The gray squares
have λ > 1 while the orange ones have λ < 1. The blue squares have no eigenstrain, i.e., λ = 1.
The relaxed squares cannot be put back together without elastic strains. In other words, this
configuration is incompatible. The material metric G is defined such that the area of each square
in the set shown in (a) calculated using G is equal to its relaxed area shown in (c).
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2. Anisotropic Nonlinear Elasticity

Kinematics. Motion in nonlinear elasticity and anelasticity is modeled by a time-
dependent mapping between a reference configuration (or natural configuration)
and the ambient space. This is written as ϕt :B → S, where (B,G) and (S,g) are
the material and the ambient space Riemannian manifolds, respectively [Marsden
and Hughes, 1994] (see Fig. 1). Using the material metric G, one can measure
distances in a natural stress-free configuration. This metric explicitly depends on
eigenstrains. In the ambient space, g is a fixed background metric.a

A line element at X ∈ B in the reference configuration is a vector on B, i.e., an
element of the tangent space TXB. The corresponding line element in the deformed
configuration at x = ϕ(X) is an element of TxS. The deformation gradient F
maps the undeformed line element to its corresponding deformed line element, i.e.,
F(X, t) = Tϕt(X) :TXB → Tϕt(X)S is the tangent map of ϕt. The transpose of F
is denoted by FT, and is defined as

FT(X, t) :Tϕt(X)S → TXB,
〈〈W,FTw〉〉G = 〈〈FW,w〉〉g , ∀W ∈ TXB, w ∈ Tϕt(X)S.

(2.1)

It has components, (FT)A
a = GABF b

B gab. The right Cauchy–Green deformation
tensor is another measure of strain and is defined as C = FTF :TXB → TXB,
which has components CA

B = F a
MF b

B gabG
AM . Note that C� is the pull-back

of the ambient space metric by ϕt, i.e., C� = ϕ∗
t g, where � is the flat operator. In

components, CAB = F a
AF

b
B gab.

Balance laws. The balance of linear momentum in spatial form reads

divg σ + ρb = ρa, (2.2)

where σ is the Cauchy stress, and ρ, b and a are the mass density, body force
and acceleration, respectively. The balance of angular momentum is equivalent to
symmetry of the Cauchy stress.

Incompressibility. The Jacobian of deformation J relates the deformed and unde-
formed Riemannian volume elements dv(x,g) = JdV (X,G), and is defined as

J =

√
detg
detG

detF. (2.3)

aThe metric g can be time-dependent for some problems of physical interest [Arroyo and DeSi-
mone, 2009; Yavari et al., 2016].
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Constitutive equations. The energy function of an inhomogeneous anisotropic
hyperelastic solid at a material point X has the following form:

W = Ŵ (X,C�,G, ζ1, . . . , ζn) , (2.4)

where ζi, i = 1, . . . , n are structural tensors that characterize the material sym-
metry group at the point X [Spencer, 1971, 1982; Boehler, 1979; Liu et al., 1982;
Zheng and Spencer, 1993; Lu and Papadopoulos, 2000]. Using structural tensors
makes the energy function an isotropic function of its arguments. Hilbert’s theo-
rem tells us that for any finite collection of tensors, there exist a finite number
of isotropic invariants forming a basis — an integrity basis — for the space of
isotropic invariants of the collection of tensors. Therefore, if Ij , j = 1, . . . ,m, form
an integrity basis for the set of tensors in (2.4), one has W = W (X, I1, . . . , Im). Let
us define

Wj =
∂W

∂Ij
, j = 1, . . . ,m. (2.5)

Isotropic solids. For isotropic solids, the energy function has the form W =
W (X, I1, I2, I3), where I1 = trC, I2 = detC trC−1 and I3 = detC are the princi-
pal invariants of the right (or left) Cauchy–Green deformation tensor. The Cauchy
stress for compressible and incompressible isotropic solids has the following repre-
sentations:

σab =
2√
I3

[W1b
ab + (I2W2 + I3W3)gab − I3W2 c

ab],

σab = −pgab + 2(W1b
ab −W2 c

ab),

(2.6)

where

bab = F a
AF

b
BG

AB, cab = (F−1)M
m(F−1)N

nGMNg
amgbn, (2.7)

and p is the Lagrange multiplier associated with the incompressibility constraint
J =

√
I3 = 1.

Transversely isotropic solids. Let us assume that the unit vector N(X) iden-
tifies the material preferred direction at a point X in the reference configuration.
The energy function has the form W = W (X,G,C�,A), where A = N ⊗ N is a
structural tensor that represents the transverse isotropy of the material symmetry
group [Doyle and Ericksen, 1956; Spencer, 1982; Lu and Papadopoulos, 2000]. The
energy function W depends on the following five independent invariants:

I1 = trC, I2 = detC tr C−1, I3 = detC, I4 = N ·C ·N, I5 = N ·C2 ·N.
(2.8)
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In components they read

I1 = CA
A, I2 = det(CA

B)(C−1)D
D, I3 = det(CA

B),

I4 = NANBCAB, I5 = NANBCBDC
D

A.
(2.9)

For a compressible transversely isotropic solid, the Cauchy stress tensor has the
following representation [Golgoon and Yavari, 2018b, 2021]:

σab =
2√
I3

[W1b
ab + (I2W2 + I3W3)gab − I3W2 c

ab

+W4 n
anb +W5(nabbcnc + nbbacnc)], (2.10)

where na = F a
AN

A. For incompressible transversely isotropic solids

σab = −pgab + 2[W1b
ab −W2 c

ab +W4 n
anb +W5(nabbcndgcd + nbbacndgcd)].

(2.11)

Orthotropic solids. For an orthotropic material, three G-orthonormal vectors
N1(X), N2(X) and N3(X) specify the orthotropic axes in the reference con-
figuration at a point X . A choice of structural tensors is A1 = N1 ⊗ N1,
A2 = N2 ⊗ N2, and A3 = N3 ⊗ N3. However, only two of the structural ten-
sors are independent because A1 + A2 + A3 = I. The energy function has the
form W = W (X,G,C�,A1,A2) [Doyle and Ericksen, 1956; Spencer, 1982; Lu and
Papadopoulos, 2000]. The energy function W depends on the following seven inde-
pendent invariants:

I1 = trC, I2 = detC tr C−1, I3 = detC, I4 = N1 ·C ·N1,

I5 = N1 ·C2 ·N1, I6 = N2 · C ·N2, I7 = N2 · C2 · N2.
(2.12)

The Cauchy stress tensor has the following representation for compressible
orthotropic solids [Golgoon and Yavari, 2018b, 2021]:

σab =
2√
I3

[W1b
ab + (I2W2 + I3W3)gab − I3W2 c

ab

+W4 n
a
1n

b
1 +W5(na

1b
bcnd

1gcd + nb
1b

acnd
1gcd)

+W6 n
a
2n

b
2 +W7(na

2b
bcnd

2gcd + nb
2b

acnd
2gcd)], (2.13)

where na
1 = F a

AN
A
1 , and na

2 = F a
AN

A
2 . In the case of incompressible solids

σab = −pgab + 2[W1b
ab − I3W2 c

ab

+W4n
a
1n

b
1 +W5(na

1b
bcnd

1 gcd + nb
1b

acnd
1 gcd)

+W6 n
a
2n

b
2 +W7(na

2b
bcnd

2 gcd + nb
2b

acnd
2 gcd)]. (2.14)
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3. A Geometric Theory of Finite Eigenstrains

3.1. The material manifold of an elastic body with distributed

finite eigenstrains

The stress-free body in the absence of eigenstrains is denoted by B, which is a
subset of the Euclidean space and has a metric G0. Let us consider a coordinate
chart {XA

0 } for the Euclidean space. In the absence of eigenstrains the natural
length of a line element dXo is calculated as

dS2
o = 〈〈dX0, dX0〉〉G0 = G0ABdX

A
0 dX

B
0 , (3.1)

where 〈〈, 〉〉G0 is the inner product induced by G0. The same line element with eigen-
strain if allowed to relax in the Euclidean space would be relaxed to another line
element dX, which is unique up to rigid body translations and rotations. Eigenstrain
can be defined as the relaxation map K such that dX = KdXo. Let us describe the
relaxed line element using another coordinate chart {Xα} for the Euclidean space.
Thus, dXα = Kα

AdX
A
o . The length of the relaxed line element is calculated as

dS2 = 〈〈dX, dX〉〉G0 = G0αβdX
αdXβ

= (Kα
AK

β
BG0αβ) dXA

o dX
B
o = 〈〈dX0, dX0〉〉K∗G0 , (3.2)

where G = K∗G0 is the material metric.b Note that Fp of finite plasticity is
a special case of K [Sadik and Yavari, 2017]. Note also that, in general, K is
incompatible, i.e., it is not the tangent of any map from B to itself. Incompatibility
of K is the source of residual stresses (see Fig. 2).

Let us assume that the body is made of an isotropic material in its relaxed
state. The relaxed configuration is locally described by the metric G. Therefore,
W = W (X, I1, I2, I3), where the invariants are calculated using the metric G.
Similarly, for transversely isotropic and orthotropic solids, all the invariants are
calculated using the metric G.

3.2. Combinations of radial, azimuthal, axial and torsional

eigenstrains in a circular cylindrical bar

Let us consider a circular cylindrical bar with radius Ro and length L in its unde-
formed configuration. For this bar we consider the radial, azimuthal and axial eigen-
trains eωR(R), eωΘ(R) and eωZ(R) in the cylindrical coordinates (R,Θ, Z). We also
consider an eigentwist per unit length ψ(R). We next show that unlike the prob-
lems that were considered by Yavari and Goriely [2013, 2015b] having the four
functions ωR(R), ωΘ(R), ωZ(R) and ψ(R) does not specify the material metric
unambiguously. Let us denote the radial, azimuthal, axial and twist eigenstrains

bNote that there is a typo in Eq. (2.7) in Yavari and Goriely [2015b]. However, none of the
calculations were affected by this typo.
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by K1,K2,K3 and K4, respectively, which have the following representations in
cylindrical coordinates:

K1 =

⎡
⎢⎢⎣
eωR(R) 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦, K2 =

⎡
⎢⎢⎣
1 0 0

0 eωΘ(R) 0

0 0 1

⎤
⎥⎥⎦,

K3 =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 eωZ(R)

⎤
⎥⎥⎦, K4 =

⎡
⎢⎢⎣
1 0 0

0 1 ψ(R)

0 0 1

⎤
⎥⎥⎦.

(3.3)

Note that

[K1,K2] = [K2,K3] = [K3,K1] = 0, (3.4)

where [A,B] = AB − BA is the commutator of the matrices A and B. Equa-
tion (3.4) implies that in the absence of eigentwists the material metric is defined
unambiguously as K = Kτ(1),Kτ(2),Kτ(3), where {τ(1), τ(2), τ(3)} is any of the
six permutations of {1, 2, 3}. Note that

[K1,K4] = 0, [K2,K4] =

⎡
⎢⎢⎣
0 0 0

0 eωΘ(R) − 1 ψ(R)(eωΘ(R) − 2)

0 0 0

⎤
⎥⎥⎦,

[K3,K4] =

⎡
⎢⎢⎣

0 0 0

0 0 −ψ(R)

0 0 eωZ(R) − 1

⎤
⎥⎥⎦.

(3.5)

The 24 permutations of {1, 2, 3, 4} give four different total eigenstrain matrices.
However, we are interested in the eigenstrains K1K2K3 and K4. The two total
eigenstrains Ki = K1K2K3K4 and Kii = K4K1K2K3 have the following corre-
sponding material metrics:

Gi =

⎡
⎢⎢⎣
e2ωR(R) 0 0

0 e2ωΘ(R)R2 e2ωΘ(R)R2ψ(R)

0 e2ωΘ(R)R2ψ(R) e2ωZ(R) + e2ωΘ(R)R2ψ(R)2

⎤
⎥⎥⎦,

Gii =

⎡
⎢⎢⎣
e2ωR(R) 0 0

0 e2ωΘ(R)R2 eωΘ(R)+ωZ(R)R2ψ(R)

0 eωΘ(R)+ωZ(R)R2ψ(R) e2ωZ(R)(1 +R2ψ(R)2)

⎤
⎥⎥⎦.

(3.6)
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Note that Gi = Gii if and only if ωΘ(R) = ωZ(R). In the special case of ωR(R) =
ωΘ(R) = ωZ(R) = ω(R), the material metric reads

G = e2ω(R)

⎡
⎢⎢⎣

1 0 0

0 R2 R2ψ(R)

0 R2ψ(R) 1 +R2ψ(R)2

⎤
⎥⎥⎦. (3.7)

4. Radially-Symmetric Eigenstrains in a Finite Spherical Ball

The problem of calculating the deformation and stress fields of a finite spheri-
cal ball with a radially-symmetric distribution of finite eigenstrains was solved by
Yavari and Goriely [2013] for isotropic solids and by Golgoon and Yavari [2018b] for
transversely isotropic solids. In Goodbrake et al. [2020] it was shown that the eigen-
strain distributions considered by Yavari and Goriely [2013] are the only universal
eigenstrains consistent with the universal deformations of incompressible isotropic
spherical shells [Ericksen, 1954]. In this section, we revisit Yavari and Goriely [2013]
analysis for pure dilatational eigenstrains and extend their analysis to radially inho-
mogeneous spherical balls.

Let us consider an inhomogeneous finite ball of radius Ro made of an incom-
pressible isotropic nonlinear elastic solid at R with an energy function W =
W (R, I1, I2).c Also consider a radially-symmetric distribution of pure dilatational
eigenstrains. We assume that in the absence of eigenstrains the body is stress
free. In the spherical coordinates (R,Θ,Φ) a line element dS2

0 = dR2 + R2dΘ2 +
R2 sin2 ΘdΦ2 in the initial stress-free configuration is mapped to the line element
dS2 = e2ω(R)dS2

0 , for some function ω(R). This means that in the presence of
eigenstrains the material metric has the following representation:

G(X) = G(R) = e2ω(R)

⎡
⎢⎢⎣

1 0 0

0 R2 0

0 0 R2 sin2 Θ

⎤
⎥⎥⎦. (4.1)

Note that the material metric is independent of the constitutive equations of the
ball. It is natural to use the spherical coordinates (r, θ, φ) for the Euclidean ambient
space with the metric

g(x) =

⎡
⎢⎢⎣

1 0 0

0 r2 0

0 0 r2 sin2 θ

⎤
⎥⎥⎦. (4.2)

cOur analysis can be easily extended to a ball made of a transversely isotropic solid with radial
material preferred direction [Golgoon and Yavari, 2018b]. Also note that radial deformations
are still universal for radially inhomogeneous isotropic and transversely isotropic spherical balls
[Golgoon and Yavari, 2021].
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Let us consider deformations of the form (r, θ, φ) = (r(R),Θ,Φ). Thus, F =
diag(r′(R), 1, 1), and hence detF = r′(R). For an incompressible solid J = 1,
where

J =

√
detg
detG

detF =
r2(R)r′(R)
R2e3ω(R)

. (4.3)

Therefore, assuming that r(0) = 0, one obtains

r(R) =

[∫ R

0

3ξ2e3ω(ξ)dξ

] 1
3

. (4.4)

Using the representation (2.6) the non-zero components of the Cauchy stress are

σrr(R) = −p(R) + 2W1(R)
e4ω(R)R4

r4(R)
+ 4W2(R)

e2ω(R)R2

r2(R)
,

σθθ(R) = − p(R)
r2(R)

+ 2W1(R)
1

e2ω(R)R2
+ 2W2(R)

[
e2ω(R)R2

r4(R)
+

r2(R)
e4ω(R)R4

]
,

σφφ(R) =
1

sin2 Θ
σθθ,

(4.5)

where

W1(R) =
∂W (R, I1, I2)

∂I1
, W2(R) =

∂W (R, I1, I2)
∂I2

, (4.6)

and

I1 = I1(R) =
R4e4ω(R)

r4(R)
+

2r2(R)e−2ω(R)

R2
,

I2 = I2(R) =
e−4ω(R)(r6(R) + 2R6e6ω(R))

R4r2(R)
.

(4.7)

In the absence of body forces, the only non-trivial equilibrium equation is

σrr
,r +

2
r
σrr − rσθθ − r sin2 θ σφφ =

1
r′(R)

σrr
,R +

2
r
σrr − 2rσθθ = 0, (4.8)

or

d σrr(R)
dR

=
4W1(R)

R

[
eω(R)R

r(R)
− e7ω(R)R7

r7(R)

]
+

4W2(R)
R

[
r(R)
Reω(R)

− e5ω(R)R5

r5(R)

]
.

(4.9)

Therefore

σrr(R) = σrr(Ro) −
∫ Ro

R

{
4W1(ξ)

ξ

[
eω(ξ)ξ

r(ξ)
− e7ω(ξ)ξ7

r7(ξ)

]

+
4W2(ξ)

ξ

[
r(ξ)
ξeω(ξ)

− e5ω(ξ)ξ5

r5(ξ)

]}
dξ. (4.10)
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Fig. 3. A spherical inclusion I with uniform pure dilatational finite eigenstrain centered at a
spherical ball. Left: The material manifold is a Riemannian manifold whose metric has a jump
discontinuity on the boundary of the inclusion. Right: The deformed configuration.

A spherical inclusion in a finite ball. Let us consider an inclusion of radius
Ri < Ro with pure dilatational eigenstrain ω0 (see Fig. 3). This corresponds to the
following eigenstrain distribution in the ball:

ω(R) =

{
ω0, 0 ≤ R ≤ Ri,

0, Ri < R ≤ Ro.
(4.11)

The incompressibility constraint fully determines the kinematics of deformation as

r(R) =

{
eω0R, 0 ≤ R ≤ Ri,

[R3 + (e3ω0 − 1)R3
i ]

1
3 , Ri < R ≤ Ro.

(4.12)

For R < Ri, from (4.12) and (4.9) one can easily see that d σrr(R)
dR = 0. There-

fore, σrr(R) = σi, and σθθ(R) = σrr(R)/r2(R) = σi/r
2(R). Denoting the physical

components of the Cauchy stress by σ̂rr, σ̂θθ and σ̂φφ, it is seen that inside the
inclusion σ̂rr = σ̂θθ = σ̂φφ = σi. In other words, inside the inclusion stress is
homogeneous and hydrostatic. This is a nonlinear analogue of Eshelby’s celebrated
result and a generalization of [Yavari and Goriely, 2013, Proposition 3.1] to radially-
inhomogeneous spherical balls. The value of σi is calculated using the continuity of
traction on the boundary of the inclusion and is written as

σi = σrr(Ri) = σrr(Ro)

−
∫ Ro

Ri

{
4W1(ξ)

ξ

[
ξ

r(ξ)
− ξ7

r7(ξ)

]
+

4W2(ξ)
ξ

[
r(ξ)
ξ

− ξ5

r5(ξ)

]}
dξ. (4.13)

Note that the constant σi explicitly depends on the energy function W (R, I1, I2).
For a homogeneous neo-Hookean spherical ball (α = μ/2, β = 0) the uniform

stress inside the inclusion is calculated as

σi =
μ

2

[
e−4ω0 + 4e−ω0 − 5R3

o + 4(e3ω0 − 1)R3
i

[R3
o + (e3ω0 − 1)R3

i ]
4
3
Ro

]
. (4.14)
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Assuming that σrr(Ro) = 0, outside the inclusion (Ri < R < Ro) the radial stress
has the following distribution:

σrr(R) =
2μR3

i (e
3ω0 − 1)R

[R3 +R3
i (e3ω0 − 1)]

4
3

+
5μR4

2[R3 +R3
i (e3ω0 − 1)]

4
3

− μRo[4R3
i (e

3ω0 − 1) + 5R3
o]

2[R3
i (e3ω0 − 1) +R3

o]
4
3

. (4.15)

Figure 4 shows the distribution of radial stress for four different values of eigenstrain
for Ri

Ro
= 0.2 (solid curves). The corresponding solutions using linear elasticity are

also shown (dashed curves). The classical linear solution is

σrr
lin(R) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
σlin

i = −4μω0

[
1 − R3

i

R3
o

]
, 0 ≤ R ≤ Ri,

−4μω0

[
R3

i

R3
− R3

i

R3
o

]
, Ri < R ≤ Ro.

(4.16)

Fig. 4. Radial stress distribution inside and outside a spherical inclusion. It is assumed that
Ri
Ro

= 0.2 and the ball is made of a homogeneous incompressible neo-Hookean solid. Four different

values of ω0 are considered. The dotted curves are the linear elasticity solutions. It is seen that
for ω0 > 0 the linear elasticity solution overestimates the compressive stress inside the inclusion,
while for ω0 < 0 the linear elasticity solution underestimates the tensile stress inside the inclusion.
Note that unlike the linear solution the nonlinear solution is not symmetric with respect to change
in sign of ω0.
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5. Radially-Symmetric Eigenstrains in a Finite Circular
Cylindrical Bar

In this section, we revisit another example that was analyzed by Yavari and Goriely
[2013] and relax the homogeneity assumption. Let us consider a cylindrical bar
with radius Ro and length L in its initial stress-free configuration in the absence
of eigenstrains. We assume that this solid cylinder is radially inhomogeneous and
is made of an arbitrary incompressible isotropic solid at R with energy function
W = W (R, I1, I2). Now if the cylinder has a radially-symmetric distribution of
finite eigenstrains the problem is to calculate the induced stress field. We assume
that radial and circumferential eigenstrains are equal (the more general case was
discussed by Yavari and Goriely [2013]) but the axial eigenstrain can be different.
In cylindrical coordinates (R,Θ, Z) the material metric has the following represen-
tation:

G = G(R) =

⎡
⎢⎢⎣
e2ω(R) 0 0

0 R2e2ω(R) 0

0 0 e2ωZ(R)

⎤
⎥⎥⎦, (5.1)

where ω(R) and ωZ(R) are some given functions (note that the two functions ω(R)
and ωZ(R) unambiguously specify the metric as was discussed in Sec. 3.2). The
natural coordinates to describe the deformed configuration are the cylindrical coor-
dinates (r, θ, z). We assume deformations of the form (r, θ, z) = (r(R),Θ, λZ), where
λ is a constant axial stretch. Deformation gradient reads F = diag(r′(R), 1, λ), and
hence detF = λr′(R). The incompressibility constraint is written as

J =

√
detg
detG

detF =
λr(R)

Re2ω(R)+ωZ(R)
r′(R) = 1. (5.2)

Assuming that r(0) = 0 this gives

r(R) =
1√
λ

[∫ R

0

2ξe2ω(ξ)+ωZ(ξ)dξ

] 1
2

. (5.3)

Using the representation (2.6) the non-zero components of the Cauchy stress are

σrr(R) = −p(R) + 2W1(R)
e2ω(R)R2

λ2e−2ωZ(R) r2(R)

+ 2W2(R)
[

1
λ2e−2ωZ(R)

+
e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]
,

σθθ(R) = − p(R)
r2(R)

+ 2W1(R)
1

e2ω(R)R2

+ 2W2(R)
[

1
λ2e−2ωZ(R) r2(R)

+
λ2e−2ωZ(R)

e2ω(R)R2

]
,

2150002-13



September 14, 2021 15:50 WSPC/303-JMMP 2150002

A. Yavari

σzz(R) = −p(R) + 2W1(R)λ2e−2ωZ(R)

+2W2(R)
[
e2ω(R)R2

r2(R)
+
λ2e−2ωZ(R) r2(R)

e2ω(R)R2

]
,

(5.4)

where

W1(R) =
∂W (R, I1, I2)

∂I1
, W2(R) =

∂W (R, I1, I2)
∂I2

, (5.5)

and

I1 = I1(R) = λ2e−2ωZ (R) +
r2(R)e−2ω(R)

R2
+
R2e2ω(R)+2ωZ (R)

λ2r2(R)
,

I2 = I2(R) =
e2ωZ(R)

λ2
+
R2e2ω(R)

r2(R)
+
λ2r2(R)e−2(ω(R)+ωZ(R))

R2
.

(5.6)

The only non-trivial equilibrium equation reads

σrr
,r +

1
r
σrr − rσθθ = 0, (5.7)

or

d

dR
σrr(R) =

2
R

[
W1(R)eωZ(R)

λ
+
W2(R)λ
eωZ(R)

] [
1 − e2ωZ(R)λ−2 e

4ω(R)R4

r4(R)

]
. (5.8)

Thus

σrr(R) = σrr(Ro) −
∫ Ro

R

2
ξ

[
W1(ξ)eωZ(ξ)

λ
+
W2(ξ)λ
eωZ(ξ)

]

×
[
1 − e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ. (5.9)

This means that

− p(R) = σrr(Ro) − 2W1(R)
e2ω(R)R2

λ2e−2ωZ(R) r2(R)

− 2W2(R)
[

1
λ2e−2ωZ(R)

+
e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]

−
∫ Ro

R

2
ξ

[
W1(ξ)eωZ(ξ)

λ
+
W2(ξ)λ
eωZ(ξ)

] [
1 − e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ.

(5.10)
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Therefore,

σzz(R) = σrr(Ro) + 2W1(R)λ2e−2ωZ(R)

+ 2W2(R)
[
e2ω(R)R2

r2(R)
+
λ2e−2ωZ(R) r2(R)

e2ω(R)R2

]

− 2W1(R)
e2ω(R)R2

λ2e−2ωZ(R) r2(R)
− 2W2(R)

×
[

1
λ2e−2ωZ(R)

+
e2ω(R)R2

λ2e−2ωZ(R) r2(R)

]

−
∫ Ro

R

2
ξ

[
W1(ξ)eωZ (ξ)

λ
+
W2(ξ)λ
eωZ(ξ)

]

×
[
1 − e2ωZ(ξ)λ−2 e

4ω(ξ)ξ4

r4(ξ)

]
dξ. (5.11)

A cylindrical inclusion in a finite cylindrical bar. Let us consider an inclusion
with radius Ri < Ro such that

ω(R) =

{
ω1, 0 ≤ R < Ri,

0, Ri < R ≤ Ro,
ωZ(R) =

{
ω2, 0 ≤ R < Ri,

0, Ri < R ≤ Ro.
(5.12)

Therefore

r(R) =

⎧⎪⎪⎨
⎪⎪⎩

1√
λ
e

1
2 (2ω1+ω2)R, 0 ≤ R ≤ Ri,

1√
λ

[R2 + (e2ω1+ω2 − 1)R2
i ]

1
2 , Ri < R ≤ Ro.

(5.13)

For R < Ri, from (5.13) and (5.8) one can easily see that d
dRσ

rr(R) = 0, and hence
σrr(R) = σi, whered

σi = σrr(Ro) −
∫ Ro

Ri

2
ξ

[
W1(ξ)λ−1 +W2(ξ)λ

] [
1 − λ−2 ξ4

r4(ξ)

]
dξ. (5.15)

This also implies that inside the inclusion σrr(R) = r2σθθ(R), and thus the physical
component σ̂θθ(R) = σi. From (5.4)1 one can see that inside the inclusion p(R) is

dIn the case of a homogeneous neo-Hookean solid

σi =
μ

2λ

»
e−2ω1 − R2

o

R2
o + (e2ω1 − 1)R2

i

+ ln
R2

i

R2
o

+ ln
R2

o + (e2ω1 − 1)R2
i

e2ω1R2
i

–
. (5.14)
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not uniform. The axial stress reads

σzz(R) = σi + 2W1(R)(λ2e−2ω2 − λ−1eω2) + 2W2(R)(λe−ω2 − λ−2e2ω2).

(5.16)

It is seen that the axial stress is not uniform inside the inclusion unless the inclusion
is homogeneous. For R > Ri:

σzz(R) = σrr(Ro) + 2W1(R)
[
λ2 − R2

λ2 r2(R)

]

+ 2W2(R)
[
R2

r2(R)
+
λ2 r2(R)
R2

− 1
λ2

− R2

λ2 r2(R)

]

−
∫ Ro

R

2
ξ

[
W1(ξ)λ−1 +W2(ξ)λ

] [
1 − λ−2 ξ4

r4(ξ)

]
dξ. (5.17)

Therefore, stress inside the inclusion is not homogeneous unless the inclusion is
homogeneous. Even in that case stress is not necessarily hydrostatic. This is a gen-
eralization of [Yavari and Goriely, 2013, Proposition 3.5] to radially-inhomogeneous
circular cylindrical bars.

The axial force F needed to maintain the deformation is calculated as

F =
∫ ro

0

σzz(r) 2πr dr = 2π
∫ Ro

0

σzz(R) r(R)r′(R) dR

=
2π
λ

∫ Ro

0

Re2ω(R)+ωZ(R)σzz(R) dR. (5.18)

Suppose that there is no axial force, i.e., F = 0. Thus
∫ Ro

0

Re2ω(R)+ωZ(R)σzz(R) dR

= e2ω1+ω2

∫ Ri

0

Rσzz(R) dR+
∫ Ro

Ri

Rσzz(R) dR = 0. (5.19)

For a homogeneous neo-Hookean solid (α = μ/2, β = 0) and for zero axial eigen-
strain ω2 = 0 this gives

λ3 = λ3(ω1, c0) = eω1
coshω1 −

[
1 − 2c0 + c0 ln c0 + c0 ln 1+(e2ω1−1)c0

e2ω1c0

]
sinhω1

1 + 2eω1c0 sinhω1
,

(5.20)

where c0 = R2
i /R

2
o. Note that λ3(0, c0) = 1, and it can be shown that λ3 is a strictly

increasing function of ω1 for ω1 > 0 and is strictly decreasing for ω1 < 0. Therefore,
λ(ω1, c0) > 1 for ω1 �= 0.
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6. Radially-Symmetric Eigentwists in an Orthotropic Circular
Cylindrical Bar

In this section, we extend Yavari and Goriely [2015b]’s analysis to orthotropic solids.
Let us consider a circular cylindrical bar that has initial length L and radius Ro and
is made of an incompressible orthotropic material with an energy function W =
W (R, I1, I2, I4, I5, I6, I7). We also assume that the material preferred directions
are radial, azimuthal and axial, i.e., N1 = R̂, N2 = Ẑ and N3 = Θ̂, where R̂, Ẑ
and Θ̂ are the unit vectors in the radial, longitudinal and circumferential directions,
respectively. We assume an eigentwist distribution ψ(R). In cylindrical coordinates,
the material metric has the following representation:

G(R) =

⎡
⎢⎢⎣
1 0 0

0 R2 ψ(R)R2

0 ψ(R)R2 1 + ψ2(R)R2

⎤
⎥⎥⎦. (6.1)

Therefore

N1 = ER =
∂

∂R
,

N2 =
1√

1 + ψ2(R)R2
,

EZ =
1√

1 + ψ2(R)R2

∂

∂Z
,

N3 =
1
R

EΘ =
1
R

∂

∂Θ
.

(6.2)

In the ambient space, the cylindrical coordinates (r, θ, z) are used and metric has
the representation (4.2). We consider deformations of the following form:

(r, θ, z) = (r(R),Θ + τZ, λZ) , (6.3)

where τ and λ are some unknown constants to be determined. The deformation
gradient reads

F =

⎡
⎢⎢⎣
r′(R) 0 0

0 1 τ

0 0 λ

⎤
⎥⎥⎦. (6.4)

The incompressibility condition is written as

J =

√
detg
detG

detF =
λr(R)r′(R)

R
= 1. (6.5)
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Assuming that r(0) = 0, we have r(R) = R√
λ
. The principal invariants read

I1(R) =
2
λ

+ λ2 +
R2

λ
(τ − ψ(R))2, I2(R) = 2λ+

1
λ2

+
R2

λ2
(τ − ψ(R))2,

I4(R) =
1
λ
, I5(R) =

1
λ2
, I6(R) =

λ3 +R2τ2

λ[1 +R2ψ2(R)]
,

I7(R) =
R2τψ(R)

[
R2τψ(R) − 2

(
λ3 +R2τ2

)]
+

(
λ3 +R2τ2

)2 +R2τ2

λ2[1 +R2ψ2(R)]
.

(6.6)

From (2.14) the Cauchy stress has the following non-zero components:

σrr(R) = −p(R) +
2W1(R)

λ
+ 2

[
λ+

1
λ2

+
R2

λ2
(τ − ψ(R))2

]
W2(R)

+
2W4(R)

λ
+

4W5(R)
λ2

,

σθθ(R) = −λp(R)
R2

+ 2
[

1
R2

+ (τ − ψ(R))2
]
W1(R)

+
2
λ

[
λ3 + 1
R2

+ (τ − ψ(R))2
]
W2(R) +

2τ2

1 +R2ψ2(R)
W6(R)

+
4τ
λ

τ(1 + λ3 +R2τ2) +R2τψ2(R) − ψ(R)(λ3 + 2R2τ2)
1 +R2ψ2(R)

W7(R),

σzz(R) = −p(R) + 2λ2W1(R) + 4λW2(R) +
2λ2

1 +R2ψ2(R)
W6(R)

+ 4λ
λ3 +R2τ2 −R2τψ(R)

1 +R2ψ2(R)
W7(R),

σθz(R) = 2λ(τ − ψ(R))W1(R) + 2(τ − ψ(R))W2(R) +
2λτ

1 +R2ψ2(R)
W6(R)

+ 2

[
τ +

2τ
(
λ3 +R2τ2

) − ψ(R)(λ3 + 3R2τ2)
1 +R2ψ2(R)

]
W7(R).

(6.7)

The radial equilibrium equation (5.7) is simplified to read

dσrr

dR
=

2R(τ − ψ(R))2

λ
W1(R) − 2

λR
W4(R) − 4

λ2R
W5(R)

+
2Rτ2

λ(1 +R2ψ2(R))
W6(R) +

4Rτ
λ2

× τ(1 + λ3 +R2τ2) − ψ(R)(λ3 + 2R2τ2) +R2τψ2(R)
1 +R2ψ2(R)

W7(R). (6.8)
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Assuming that the cylindrical boundary of the bar is traction free, one obtains

σrr(R) =
∫ Ro

R

{
−2ξ(τ − ψ(ξ))2

λ
W1(R) +

2
λξ
W4(R)

+
4
λ2ξ

W5(R) − 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

−4ξτ
λ2

τ(1 + λ3 + ξ2τ2) − ψ(ξ)(λ3 + 2ξ2τ2) + ξ2τψ2(ξ)
1 + ξ2ψ2(ξ)

W7(R)
}
dξ.

(6.9)

Thus, from (6.7)1, one obtains

− p(R) = −2W1(R)
λ

− 2
[
λ+

1
λ2

− R2

λ2
(τ − ψ(R))2

]

×W2(R) − 2W4(R)
λ

− 4W5(R)
λ2

+
∫ Ro

R

{
−2ξ(τ − ψ(ξ))2

λ
W1(R) +

2
λξ
W4(R)

+
4
λ2ξ

W5(R) − 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

− 4ξτ
λ2

τ(1 + λ3 + ξ2τ2) − ψ(ξ)(λ3 + 2ξ2τ2) + ξ2τψ2(ξ)
1 + ξ2ψ2(ξ)

W7(R)
}
dξ.

(6.10)

Therefore, the axial stress is calculated as

σzz(R) = 2
(
λ2 − 1

λ

)
W1(R) + 2

[
λ− 1

λ2
+
R2

λ2
(τ − ψ(R))2

]
W2(R) − 2W4(R)

λ

− 4W5(R)
λ2

+
2λ2

1 +R2ψ2(R)
W6(R) + 4λ

λ3 +R2τ2 −R2τψ(R)
1 +R2ψ2(R)

W7(R)

+
∫ Ro

R

{
−2ξ(τ − ψ(ξ))2

λ
W1 +

2
λξ
W4(R) +

4
λ2ξ

W5(R)

− 2ξτ2

λ(1 + ξ2ψ2(ξ))
W6(R)

− 4ξτ
λ2

τ(1 + λ3 + ξ2τ2) − ψ(ξ)(λ3 + 2ξ2τ2) + ξ2τψ2(ξ)
1 + ξ2ψ2(ξ)

W7(R)
}
dξ.

(6.11)
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The axial force and torque at the two ends of the bar Z = 0, L are calculated as

F = 2π
∫ ro

0

σzzdr =
2π
λ

∫ Ro

0

σzz(R)RdR,

M = 2π
∫ ro

0

σ̂θzr2dr =
2π
λ2

∫ Ro

0

σθz(R)R3dR,

(6.12)

where σ̂θz = rσθz is the physical θz component of the Cauchy stress. Assuming
that there are no applied force and torque at the ends of the bar one obtains the
following two nonlinear algebraic equations for (λ, τ):∫ Ro

0

σzz(R)RdR = 0,
∫ Ro

0

σθz(R)R3dR = 0. (6.13)

7. Conclusions

The nonlinear mechanics of solids with distributed finite eigenstrains was revisited.
In our geometric formulation, the classical reference configuration of nonlinear elas-
ticity is replaced by a Riemannian manifold whose metric explicitly depends on the
distribution of eigentrains. The calculation of the stress field of a spherical inclusion
with pure dilatational eigenstrain centered at a finite spherical ball was revisited.
The analysis of Yavari and Goriely [2013] was extended to radially-inhomogeneous
spherical balls. It was shown that even for this more general case stress is uniform
and hydrostatic inside the inclusion. A similar extension was presented for the prob-
lem of a cylindrical inclusion in a finite circular cylindrical bar made of arbitrary
incompressible isotropic solids. Yavari and Goriely [2015b]’s analysis of eigentwists
in a finite circular cylindrical bar was extended to orthotropic solids. Exact solu-
tions in nonlinear elasticity and anelasticity are quite rare. There are only a handful
of such solutions for simple geometries. These exact nonlinear solutions can serve
as benchmark problems for both the linear solutions and for checking the accuracy
of numerical simulations.
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