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A central tool of nonlinear anelasticity is the
multiplicative decomposition of the deformation
tensor that assumes that the deformation gradient
can be decomposed as a product of an elastic and
an anelastic tensor. It is usually justified by the
existence of an intermediate configuration. Yet,
this configuration cannot exist in Euclidean space,
in general, and the mathematical basis for this
assumption is on unsatisfactory ground. Here, we
derive a sufficient condition for the existence of
global intermediate configurations, starting from
a multiplicative decomposition of the deformation
gradient. We show that these global configurations
are unique up to isometry. We examine the result
of isometrically embedding these configurations in
higher-dimensional Euclidean space, and construct
multiplicative decompositions of the deformation
gradient reflecting these embeddings. As an example,
for a family of radially symmetric deformations,
we construct isometric embeddings of the resulting
intermediate configurations, and compute the
residual stress fields explicitly.

1. Introduction
The theory of nonlinear elasticity is a field theory
that describes elastic deformations in continua. A
motion is modelled as a smooth isotopy, parametrized
by time, such that for each time t, the induced
diffeomorphism ϕt : B → S gives an embedding of the
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body, modelled as a smooth manifold B into the fixed ambient space S. When the kinematics
is considered, a value of t is implicitly fixed, and the image of ϕt is denoted C. Hence at each
moment of time, a deformation is typically modelled as a diffeomorphism between an initial
stress-free configuration B and the current configuration C, both assumed to be smooth manifolds.
In principle, C ⊂ S depends on time, but for the remainder of this paper we shall suppress the
time dependence, since we are concerned with the kinematics at each moment in time, and not
the dynamics of how a body evolves through time. With a slight abuse of notation, we write this
as

ϕ : B → C. (1.1)

The central object of nonlinear elasticity is the so-called deformation gradient F, which is
determined by the tangent map of ϕ. Technically, F(X) = Tϕ|π−1(X), where π is the natural
projection in the tangent bundle onto the base space; F(X) is the restriction of Tϕ to the fibre
over X. Note that Tϕ is a vector bundle morphism mapping the tangent bundle TB to the
tangent bundle TC, hence it also includes ϕ as the map on the base space. Interested readers
will find Husemöller [1] to be an invaluable resource for a complete treatment of vector bundles
and vector bundle morphisms; this treatment is done in categorical language, hence Riehl [2]
or Mac Lane et al. [3] may be a useful resource to readers. Because the manifolds B and C are
parallelizable, their tangent bundles are trivial, hence we can write the vector bundle morphism
Tϕ as Tϕ = (ϕ, F), where here we consider F as a tensor field mapping tangent vector fields on B
to tangent vector fields on C. We consider F(X) as the restriction of this tensor field to the fibre
over X. Geometrically, F(X) is a linear map that sends the vector v ∈ TXB to F(X)v ∈ Tϕ(X)C, where
in coordinates {XA} : B → Rn and {xa} : C → Rn, one has

F(X) =
(

∂ϕa

∂XA

∣∣∣∣
X

)
∂

∂xa ⊗ dXA. (1.2)

The deformation ϕ maps points in B to points in C, and the deformation gradient F(X) maps
tangent vectors of B at the point X to tangent vectors of C at the point ϕ(X). To guarantee that
matter does not penetrate itself, it is required that det F > 0 everywhere, i.e. det F(X) > 0 for all
X ∈B, which ensures that ϕ is locally invertible, and is orientation preserving.

An important tenet of the theory of elasticity is that there exists a reference configuration that is
stress-free. However, there are plenty of physical situations where either this configuration is not
explicitly known or stresses are created by other physical processes than elastic deformations. For
instance, in a growth process different elements of a body change in size or relative position which
induces strains and associated stresses even in the absence of applied loads or body force [4].
Similarly, additional strains appear in thermoelasticity [5], accretion [6,7] and defect mechanics
[8–10]. We call anelastic strains, strains that are not created through elastic deformations. They are
also known in various communities as eigenstrains [11], initial strains [12], inherent strains [13],
transformation strains [14] or residual strains [15].

A central assumption of nonlinear anelasticity is that the anelastic strains are solely created
by a local anelastic deformation tensor field and the deformation gradient can be decomposed
multiplicatively as

F = AG, (1.3)

where the field G generates purely anelastic strain and the field A generates purely elastic
strain. The corresponding conceptual hypothesis, that anelastic contribution can be taken into
account through a multiplicative decomposition of the deformation gradient, follows from early
work in different communities [16]: The earliest work is due to Eckart [17] who introduced
a framework for anelasticity based on ‘relaxability-in-the-small’. In polymer swelling, it was
first discussed by Flory [18]; in the theory of defects by Bilby et al. [19]; in elastoplasticity by
Kröner ([20]; [21, p. 100]; [22, p. 286]); and later was popularized by Lee [23]. In the theory
of thermoelasticity, it was properly formalized by Stojanović et al. [24,25] and in the context of
biological tissues, the multiplicative decomposition was independently proposed in Russia by
Kondaurov & Nikitin [26] and in Japan by Takamizawa et al. [27–29] who used it to characterize
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Figure 1. The multiplicative decomposition: starting from a reference stress-free configuration in Euclidean space, a local
deformation G is applied to eachmaterial point, creating an intermediate configuration that is further deformed by A, to recover
the integrity of the body, into a residually stressed configuration in Euclidean space. (Online version in colour.)

residual stresses in arteries. The same conceptual ideas can also be found in the work of Tranquillo
and Murray on wound healing [30,31]. It became a central concept of biomechanics following the
seminal work of Rodriguez et al. [32], who showed how to translate growth processes in terms
of the tensor field G. There has been recent interest in understanding different aspects of this
decomposition [33–38].

A typical conceptual sketch of the multiplicative decomposition is given in figure 1. From
a practical point of view, this decomposition is perfectly suitable to define all kinematic and
mechanical quantities as well as to obtain the governing equations for anelasticity, from which
theoretical and computational progress can be achieved. Over the years, it has become a
popular tool in the mechanics of large deformations, especially in the biological context where
anelastic strains are generated by growth, remodelling or active processes [4]. However, from a
mathematical point of view there are a number of less-than-satisfactory aspects to this hypothesis.
For instance, it was realized early [39] that a decomposition generating the required strain is not
unique, as for any isometry Q(X), the alternative decomposition F(X) = (A(X)Q(X))(Q−1(X)G(X)),
is equally valid. In practice, it is not a problem as the final solution for the stress is independent of
Q(X). A more serious criticism is related to the mathematical status of this so-called intermediate
configuration. Indeed, while the field F is the derivative of ϕ (or ‘gradient’ of ϕ), in general, by
construction neither A nor G can be written as derivative maps (or ‘gradients’). This property is
called incompatibility or non-integrability and is at the heart of anelasticity: there are no maps
between the reference and intermediate configurations in Euclidean spaces and the usual picture
of a dislocated configuration viewed as a collection of sub-bodies or a disjoint union of vector
spaces shown in figure 1 is unsatisfactory as there could be infinitely many of these pieces and
their connections must be somehow specified.

The purpose of this paper is to show that, using the proper geometric setting, the intermediate
configuration can be properly defined. Since we want this intermediate configuration to be
in some sense equivalent to the multiplicative decomposition we begin with, we exploit
the non-uniqueness of the multiplicative decomposition to attempt to construct a different
decomposition F = ÃG̃ satisfying the following two properties:

(i) The new decomposition generates the same anelastic strain as the original, i.e.

GTG = G̃TG̃. (1.4)
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(ii) The decomposition is induced by the composition of maps between Riemannian
manifolds, i.e.

ϕ = α ◦ γ : (B, M)
γ→ (M, K)

α→ (C, m) , with Tϕ = (ϕ, F), Tα = (α, Ã), Tγ = (γ , G̃).
(1.5)

We seek to identify when this is possible, and when it is, to what extent the maps α and
γ are uniquely defined. The Riemannian manifold (M, K) we will ultimately construct is the
intermediate configuration appearing in geometric theories, hence the problem we seek to solve
can be stated as follows: Given a multiplicative decomposition F = AG of the deformation
gradient field, does there exist an intermediate configuration (M, K) such that the deformation
ϕ can be factored through (M, K), with the tangent maps induced by this factoring generating
a multiplicative decomposition of the deformation gradient that generates the same strain as
the original decomposition? Whenever this is possible, theories based on the multiplicative
decomposition can be reformulated as equivalent theories based on Riemannian intermediate
configurations.

2. Preliminaries
We suppose that we are given a factorization of the tensor field F, and desire to construct a
factorization of ϕ : (B, M) → (C, m) through some Riemannian manifold (M, K) that reflects this
decomposition. We first have to establish the nature of the objects G and A. When one writes,
F = AG, very little is said about G and A. We make a number of implicit assumptions about the
structure of the configurations and these tensors. As a first step, it is important to discuss these
assumptions explicitly. Since F(X) is invertible at each point X, we know that G(X) has a left
inverse and A(X) has a right inverse: G(X) is injective and A(X) is surjective. Explicitly, the right
inverse of A(X) and the left inverse of G(X) are

(A)−1
R (X) = G(X)F−1(X) and (G)−1

L (X) = F−1(X)A(X). (2.1)

Secondly, we have considered F(X) as the restriction of the tangent map Tϕ to the fibre over the
point X, so we ought to frame G(X) and A(X) as the restriction of vector bundle morphisms to
fibres over the point X as well. Doing this, we define the two vector bundle morphisms (idB, G)
and (ϕ, A), the composition of which yields the vector bundle morphism (ϕ, F), where again, the
triviality of the tangent bundle of B lets us decompose these morphisms into the component on
the base space and the component on the fibres. In principle, any two diffeomorphisms γ and α

satisfying ϕ = α ◦ γ could be used to extend G and A into vector bundle morphisms. The non-
integrability of the fields G and A is equivalent to stating that these vector bundle morphisms do
not lie in the image of the tangent bundle functor.

Reframing the maps A and G as vector bundle morphisms has already solved one key problem
with the multiplicative decomposition, namely that we now preserve the underlying topology of
the body throughout the decomposition. In this language the requirement (1.5) can be interpreted
as requiring the existence of vector bundle morphisms (ϕ, F) = (α, Ã) ◦ (γ , G̃) such that (α, Ã)
and (γ , G̃) are not arbitrary vector bundle morphisms, but morphisms that lie in the image of
the tangent functor. Further, since we are interested in the notion of strain, we require that the
manifolds B and C are equipped with metrics say, M and m, respectively. Therefore, we replace
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the smooth manifold B with the Riemannian manifold (B, M), and the smooth manifold C with
the Riemannian manifold (C, m). With this, we consider ϕ as the diffeomorphism

ϕ : (B, M) → (C, m), (2.2)

which lets us compute the Lagrangian strain field induced by ϕ as

E = 1
2

(
FTF − I

)
, (2.3)

where I is the identity tensor. We emphasize that ϕ : B → C is viewed as a morphism in a different
category than ϕ : (B, M) → (C, m), namely we consider the category whose objects are not merely
smooth manifolds, but Riemannian manifolds, and whose morphisms are smooth maps between
Riemannian manifolds. In this category, two Riemannian manifolds are isomorphic if they are
diffeomorphic, even if they are not isometric, much like how two vector spaces may be isomorphic
as vector spaces, even if they have different metric structures. Likewise, as general vector bundles
can be given Riemannian metrics, two metrized vector bundles may be isomorphic as vector
bundles even if their respective metric structures do not agree. Since G(X) can also generate strain,
we require that its codomain has an inner product. Again, this inner product is implicit in the
definition of GT(X). Therefore, it must be initially prescribed along with the decomposition F(X) =
A(X)G(X), though in practice it is often implicitly taken to be the standard inner product on Rm.
Labelling the codomain of G(X) as UX, we have F(X) = A(X)G(X), with

G(X) : TX(B, M) → UX, (2.4)

from the tangent space at X to some inner product space UX and

A(X) : UX → Tϕ(X)(C, m). (2.5)

Because G(X) is injective, its image is a subspace of UX with the same dimension as TX(B, M). If
we consider

Ĝ(X) : TX(B, M) → im(G), (2.6)

such that G(X) = ιX ◦ Ĝ(X) (ιX being the inclusion map im(G(X)) ↪−→ UX), we have an invertible
linear transformation. If we then restrict the domain of A(X) to im(G(X)), we obtain another
invertible linear transformation

Â(X) : im(G(X)) → Tϕ(X)(C, m). (2.7)

The composition of the field ÂĜ is another multiplicative decomposition of the field F, but
consisting of invertible factors. Each factor is still not generally integrable, so this is not the
decomposition we ultimately seek. Next, we turn our attention to the strain induced by the field
G. The inner product structure on UX, being a positive-definite symmetric, bilinear map, admits
a representation as a positive-definite symmetric tensor

h : UX ⊗ UX → R. (2.8)

Since we can parametrize the disjoint union of inner products h by points in B, we can consider
h as a field, though it may be highly irregular. With this, we can now choose a basis {eα}, and its
corresponding dual basis {ϑα}, for UX and express the requirement (1.4) in components as

MADGα
DhαβGβ

B = MADG̃α
Dhαβ G̃β

B, (2.9)

explicitly showing how the inner product structure on UX is implicitly required to examine the
strain induced by G. This structure generally varies from point to point. For now, we make no
assumptions about the smoothness of h, G, or A, other than noticing that the product AG is F,
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which is smooth, being the induced tangent map of the diffeomorphism ϕ. Using h, we can write
UX as the direct sum of orthogonal subspaces, i.e.

UX = im(G(X)) ⊕ im(G(X))⊥, (2.10)

and we can construct the orthogonal projection

πX : UX → im(G(X)). (2.11)

If we denote the inclusion ι⊥X : im(G(X))⊥ → UX and the inclusion ιX : im(G(X)) → UX as before,
this projection satisfies πX ◦ ιX = idim(G(X)), ιX ◦ πX ◦ G(X) = G(X), and πX ◦ ι⊥X = 0. With these
definitions, we have

Ĝ(X) = πX ◦ G(X) and Â(X) = A(X) ◦ ιX. (2.12)

The strain field induced by G is then

EG = 1
2

(
GTG − I

)
, (2.13)

where again I is the identity tensor field. Since G(X) is injective, the field EG is equal to the strain
induced by Ĝ, which is given by expression (2.13) with G replaced by Ĝ. The main assumption
for the rest of this paper is that the field GTG is at least C1.

3. Construction of an intermediate configuration
We can now take advantage of the geometric structure described in the previous section to
construct the intermediate configuration. Given G and h, we can construct a positive-definite,
symmetric tensor field H on B by requiring

H(u, v) = h(Gu, Gv), ∀u, v ∈ Γ (T(B, M)) , (3.1)

where Γ (T(B, M)) is the space of sections of the tangent bundle of (B, M), i.e. the space of tangent
vector fields. The tensor field H = G∗h is the pull-back of h under G, hence can be used to compute
the inner product fields of the vector fields u and v. Since G is injective, and h is positive-definite
and symmetric, H is a positive-definite and symmetric tensor field. If H is smooth with respect to
X, it satisfies the definition of a metric tensor field, and we can build the Riemannian manifold
(B, H). We will show next that this manifold is the intermediate configuration.

The minimal degree of smoothness required for the fundamental theorem of Riemannian
geometry to hold is C1 and the structures that can be defined on the intermediate configuration
will depend on the smoothness of H. Indeed, if H(X) is C1, we can construct the Levi–Civita
connection on (B, H), if it is C2, we can define the Riemann curvature, and if it is Ck with k ≥ 3, we
can construct an isometric embedding in a sufficiently high-dimensional Euclidean space that is
also Ck [40]. Here, we are interested in the case where H is at least C1 which is guaranteed by our
assumption that GTG is C1. Note that if the anelastic strain EG is directly prescribed instead of a
multiplicative decomposition, we instead examine the smoothness of H = (2EG + I)�, and proceed
mutatis mutandis. In general, (B, M) and (B, H) are different Riemannian manifolds, since their
specific geometric structures are encapsulated in the distinct metrics M and H. However, their
topologies are the same, since the metric topology of any Riemannian manifold agrees with its
underlying manifold topology [41], which is the same for both (B, M) and (B, H).

Having defined the two distinct but diffeomorphic Riemannian manifolds, (B, M) and (B, H),
we need to construct a map between them. Because they both have the smooth manifold B at
their core, we can begin with the identity morphism on B. We can then transform this morphism,
which is a morphism in the category of smooth manifolds, into a morphism in our category of
Riemannian manifolds by equipping the domain and the codomain with Riemannian metrics. It
is important to note that even though our original morphism is the identity, we need not use the
same metric for the domain and the codomain. Doing this with the two metric tensor fields M
and H, we consider the map idB : (B, M) → (B, H).



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20200462

...........................................................

From a categorical perspective, there is a forgetful functor from the category of Riemannian
manifolds described earlier to the category of smooth manifolds that forgets the metric structures.
The map idB : (B, M) → (B, H) is a morphism in the category of Riemannian manifolds which
under this forgetful functor becomes the identity map on B in the category of smooth manifolds.
This mapping maps all subsets of points to themselves but with a different geometry by replacing
the metric tensor M by H. This map is defined at the level of points and is smooth. The total
deformation then factors as

(B, M)
idB−→ (B, H)

ϕ̃→ (C, m), (3.2)

where ϕ̃ is the same map as ϕ : (B, M) → (C, m) at the level of points, but with the manifold (B, H)
as its domain, i.e. ϕ maps from the Riemannian manifold (B, M), and ϕ̃ maps from (B, H), but both
of these morphisms become ϕ : B → C under the forgetful functor that forgets metric tensor fields.
Additionally, by construction, the map idB defined above induces the same strain as G, since H
is the pullback of h under G, as can be explicitly checked in components

δA
BHACδC

D = Gα
BhαβGβ

D. (3.3)

This last expression is written in terms of the disjoint union of the frames {eα} [42]; the
interpretation of these as a moving frame depends on the smoothness of G. Specifically, G
can be (highly) discontinuous in which case we just have a collection of frames, one frame for
each tangent space, with no general relationship between the frames at different points. As a
pathological example, G could be square and invertible on points with rational coordinates, and
non-square (but still full rank) on the other points, in which case {eα} at each point would not
even have a consistent number of elements, let alone be interpretable as a moving frame. In this
case, h would not be consistently the same size, but H, its pull back, would be, which is why the
smoothness of H is the important criterion, not the smoothness of h or G separately.

Note that the induced factorization Tϕ = Tϕ̃ ◦ T idB generates the same strain as the original
multiplicative decomposition F = AG. As desired, it is induced by the composition of maps
between Riemannian manifolds. Therefore, taking

γ = idB, α = ϕ̃, (3.4)

satisfies both of our desired conditions (1.4) and (1.5), since

(ϕ, F) = Tϕ = T (α ◦ γ ) = Tα ◦ Tγ = (α, Ã) ◦ (γ , G̃) = (α ◦ γ , ÃG̃). (3.5)

Here, G̃(X) maps a vector in TX(B, M) to the corresponding vector in TX(B, H), which despite
appearing like the identity, generates strain because the inner product H(X) is typically different
than the inner product M(X). If these inner product structures are dropped, then G̃(X) does
become the identity on TXB. The other factor is therefore Ã(X) = F(X)G̃−1(X), which clearly exists
since G̃(X) is trivially invertible.

We now wish to determine the precise relationship between G(X) and G̃(X). We have already
seen that they generate the same strain, but G̃(X) is induced by a map between Riemannian
manifolds, while G(X) is simply a linear map applied to the tangent space of (B, M) at X. Given a
basis {Ei}, i = 1, . . . , n for TX(B, M), there is a natural induced basis for im(G(X)) given as

ēi = G(X)Ei, (3.6)

i.e. we use the images of the basis vectors of TX(B, M) as the basis for im(G(X)). On these bases,
G(X) has the particularly nice form

G(X) = δα
Aēα ⊗ EA, (3.7)

where {EA} is the dual basis of {EA}. The linear map

εX : im(G(X)) → TX(B, H),

ēi �→ Ei,
(3.8)
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F (X)

G (X)

··,·Òh

im(G (X))
G (X)

A (X)

Tj (X) (C, m)

j

j

TX (B, H)

(C, m)
x

(B, H)
X

X

(B, M) idB

TX (B, M) Â (X)

G (X) Ã (X)

UX

pX

eX eX

iX

–1

Figure 2. Construction of a global intermediate configuration. Starting from F= AG, and knowledge of the inner products on
UX , provided the pullback of h is C1, this diagram can be constructed. ThemapsεX and ιX are isometries, and all paths commute,
apart from those starting at UX . (Online version in colour.)

is then an isometry for every X. Note that εX depends on the specific decomposition, but the
composition εX ◦ πX ◦ G(X) = G̃(X), only depends on the strain generated. Therefore, provided
that H is smooth enough for (B, H) to be a Riemannian manifold, we can take the disjoint images
of the tangent spaces of the manifold (B, M) under the maps G(X), and embed them isometrically
into the tangent bundle T(B, H) via the maps εX. These images then inherit the unique Levi–Civita
connection based on the metric tensor H. If εX are interpreted passively as a change of basis,
the decomposition F(X) = Â(X)Ĝ(X) can be interpreted as the same decomposition as F(X) =
Ã(X)G̃(X) = (Â(X) ◦ ε−1

X )(εX ◦ Ĝ(X)), expressed in terms of an anholonomic basis on (B, H). Note
that postcomposition by εX ◦ πX effectively removes any non-smoothness or discontinuities
present in the field G. If Ĝ is C1, we can determine the object of anholonomicity for the
anholonomic basis on (B, H) described above, though this is superfluous to the main result. The
construction of the intermediate configuration and its associated maps is schematically shown in
figure 2.

Next, we wish to see to what extent the factorization ϕ = α ◦ γ : (B, M)
γ→ (B, H)

α→ (C, m) is
unique. Suppose we have a different intermediate configuration, (M, K) that satisfies the two
requirements (1.4) and (1.5). We then write ϕ = α′ ◦ γ ′ with

γ ′ : (B, M) → (M, K)

and α′ : (M, K) → (C, m).

}
(3.9)

Denoting the tangent maps as

Tγ ′ = (
γ ′, G′) , Tα′ = (

α′, A′) , (3.10)
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the anelastic strain requirement (1.4) demands

G̃TG̃ = G′TG′, (3.11)

which in components reads
δA

BHACδC
D = G′A

BKACG′C
D. (3.12)

This, however, is exactly the condition for (B, H) and (M, K) to be isometric under the map γ ′ ◦
γ −1. Hence, the intermediate configuration we constructed is unique up to isometry and it is
sensible to speak of the intermediate configuration rather than an intermediate configuration that
may be one of many. Taken together, we have established the main result:

Theorem 3.1 (Isometric Integrability Theorem). Given a deformation ϕ : (B, M) → (C, m) with the
tangent map Tϕ = (ϕ, F) satisfying det F > 0, and a multiplicative decomposition F = AG, if the codomain
of G has an inner product, and the pullback of this inner product under G, or equivalently GTG, is at least
C1, there exists a Riemannian manifold (B, H), unique up to isometry, such that the composition of maps

ϕ = α ◦ γ : (B, M)
γ→ (B, H)

α→ (C, m) induces a factorization F = ÃG̃ satisfying GTG = G̃TG̃.

4. Isometric embeddings of (B, H)
Considered intrinsically, we are finished, since we have constructed the intermediate
configuration as an abstract Riemannian manifold. However, the intrinsic approach to
Riemannian geometry is notoriously difficult to visualize, hence one may want to produce an
isometric embedding of this intermediate configuration in some higher dimensional Euclidean
space, much like how often (B, M) and (C, m) are thought of as isometrically embedded
submanifolds of the Euclidean space En. It is natural to ask under what conditions the constructed
manifold (B, H) permits an isometric embedding in Em as an n-dimensional submanifold for some
higher dimensional Euclidean space. In this situation, a natural multiplicative decomposition of F
would provide pointwise a sequence of maps En → Em → En that not only gives the local change
in geometry caused by G, but also provides the local orientation under the embedding of (B, H)
into Em. This would be an example of a decomposition where A and G are not square, hence the
projection onto the image of G is non-trivial.

In general, the problem of isometrically embedding an arbitrary Riemannian manifold (M, K)
in Euclidean space Em is multifaceted, in that there may be topological obstructions in addition
to the geometric obstructions that must be overcome. The topological problem was solved by
Whitney [43], showing that a manifold of dimension n can be embedded in Euclidean space
of dimension 2n. Additionally, this bound is sharp, as there are n-dimensional manifolds that
cannot be embedded in Euclidean space of dimension 2n − 1; RP2p

cannot be embedded in
E2p+1−1. Nash [44] solved the geometric problem for C1 isometric embeddings, and later for
Ck isometric embeddings with k ≥ 3 [40]. Specifically to construct these isometric embeddings,
Nash assumes the existence of a smooth embedding of (M, K) in Em, and homogeneously scales
it to obtain a short embedding, one where all distances are shorter than they need to be. He
then constructs an isometric embedding by successively applying corrections, with the minimal
dimension m needed depending on both the desired smoothness of the limit embedding, and the
dimension of M.

For Ck isometric embeddings, Nash’s construction requires m ≥ n/2(3n + 11) for compact
manifolds, and m ≥ n/2(3n2 + 14n + 11) for non-compact manifolds. The large number of
dimensions required for these constructions limits the usefulness of these embeddings, as they
are difficult to visualize. However, for C1 embeddings, Nash only requires m ≥ n + 2, which,
together with Whitney’s results, implies that all two-dimensional manifolds permit C1 isometric
embeddings in E4. Kuiper [45] sharpened Nash’s construction, reducing the minimal number of
extra dimensions to n + 1 by altering the iteration device. This does not guarantee C1 embeddings
of all two-dimensional manifolds in E3, since as in the case of the Klein bottle, topological
obstructions may still be present. However, provided that a smooth embedding in E3 exists, an
isometric embedding can be constructed.
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We seek to take advantage of this construction explicitly. When (B, M), (C, m) ⊂ E2, the
intermediate configuration constructed is a two-dimensional manifold, and hence, topology
allowing, the Nash–Kuiper construction permits an isometric embedding in E3 that we can
in principle visualize. We want to realize extrinsically the geometry of the intermediate
configurations obtained from multiplicative decompositions of two-dimensional deformation
gradients by obtaining such an embedding in E3, which would allow us to interpret the map
γ as a map into E3 yielding this embedding. To do this, we construct the intrinsic geometry of
the intermediate configuration as above to obtain (B, H), and if a smooth embedding of (B, H) in
E3 exists, so does a C1 isometric embedding. Specifically, in our case, assuming (B, M) ⊂ E2 we
can trivially construct a short embedding of (B, H) in E3 by considering (B, M) ↪−→ E2 as a smooth
embedding of (B, H). This embedding can then be appropriately scaled to become short, and then
embedded into E3 via the inclusion E2 ↪−→ E3. Hence, for two-dimensional deformations, we can
always in principle isometrically embed our constructed intermediate configuration (B, H) in E3,
by the Nash–Kuiper algorithm.

These Nash–Kuiper embeddings are often difficult to construct in practice, and the resulting
embeddings, being the limit of increasingly complicated embeddings, are typically impossible
to present in a closed form. To circumvent this and for visualization purposes, we consider
embeddings that can be solved by semi-inverse methods, and simply acknowledge that,
in general, C1 isometric embeddings exist, though they may be prohibitively difficult to
build explicitly. Additionally, to illustrate that the initial decomposition may be particularly
pathological, and yet generate a ‘nice’ intermediate configuration, we will start on purpose
with a multiplicative decomposition with highly discontinuous factors, and a correspondingly
pathological set of inner products h, that generates a C1 metric tensor field H. The pathology we
introduce here is admittedly contrived; it serves to highlight the fact that the smoothness of H
determines when an intermediate configuration can be constructed, rather than the regularity of
other quantities appearing in our analysis thus far.

(a) A radially symmetric example
Consider a radially symmetric deformation given as

r = f (R), θ = Θ , (4.1)

where r and R are the radial coordinates in the current and reference configurations, respectively,
and θ and Θ are the respective angular coordinates. We will prescribe a multiplicative
decomposition of the associated deformation gradient F that places the unknown function
f (R) and its derivatives entirely in the elastic factor A. This ensures that G is specified, and
upon the imposition of a collection of inner products h, fully specifies the data necessary to
define the intermediate configuration. We will then impose zero boundary traction, specify a
strain-energy density function, and compute the residual stress. The factorization of this map
through an isometric embedding of the intermediate configuration yields the interpretation of this
factorization as the reference configuration anelastically evolving into the curved surface obtained
from this embedding, and this surface being subsequently smashed flat elastically.

(i) Geometry

The deformation gradient generated by this map has components

[
Fa

A
]=

⎡
⎣ df

dR
0

0 1

⎤
⎦ . (4.2)

Consider the factorization⎡
⎣ df

dR
0

0 1

⎤
⎦=

⎡
⎣ df

dR

(
1 + IQ (R)

)−1 0

0 R−1

⎤
⎦
[

1 + IQ (R) 0
0 R

]
, (4.3)
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where IQ is the indicator function of the rationals:

IQ (R) =
{

1 if R ∈ Q

0 if R �∈ Q
. (4.4)

Additionally, we impose the inner products

[
hαβ

]=
[(

1 + IQ (R)
)−2 0

0 1 + a
(
R2 − R

)
]

, (4.5)

with 0 < a < 4, a positive constant. Note in particular, that each factor of this decomposition is
nowhere continuous, and that the collection of inner products is also nowhere continuous. This
pathology is academic in nature, since despite G and A being nowhere continuous, F is smooth,
and by construction the discontinuities in G are cancelled by discontinuities in h. We do this to
obtain the smooth metric tensor field H to show that our construction is well defined so long as
H is smooth, even when G, A, and h are not, though in practice, all of these quantities will likely
be smooth everywhere. Demonstrating this, we compute H, which has components

[
HAB = Gα

AGβ
Bhαβ

]
=
[

1 0
0 R2 (1 + a

(
R2 − R

))
]

, (4.6)

and is continuous, and positive definite. Geometrically, the map idB : (B, M) → (B, H) generates
angular contraction within the unit disc and angular stretching outside the unit disc, while
keeping radial distances preserved. In terms of principal stretches, we have

λR = 1, λΘ = 1 + a
(

R2 − R
)

, (4.7)

the latter of which takes its minimum value of 1 − a/4 at R = 1/2.

(ii) Embedding

The symmetry present in H suggests an isometric embedding in E3 may take the form

x = r(R)er(Θ) + z(R)ez. (4.8)

As we will soon see, the solvability of this ansatz depends on the value of a, and the domain
chosen; we will consider the disc-shaped domains R ≤ R∗ for some R∗ yet to be determined
(figure 3). Computing the metric induced by this embedding, and demanding it be equal to H,
one obtains

r = R
√

1 + a
(
R2 − R

)
and z′(R)2 = 1 − [2 + aR (4R − 3)]2

4 + 4aR (R − 1)
. (4.9)

Note that the denominator appearing in the equation for z′(R) is identically positive for 0 < a < 4.
Hence there is no singularity within that range. Additionally, z(R) must be a real function, so it
is clear that when the right-hand side of (4.9) becomes negative, our ansatz ceases to be valid.
Collecting the right-hand side of (4.9) yields the rational expression

z′(R)2 = aR(−16aR3 + 24aR2 − 9aR − 12R + 8)
4
[
1 + a(R2 − R)

] . (4.10)

Clearly, the right-hand side vanishes at R = 0, and the remaining cubic factor is positive at R = 0.
Because the denominator is identically positive, this means that z′(R) is real valued in some finite-
sized disc. Additionally, the discriminant in R of the cubic factor is −6912(a − 4)2a, which being
negative, indicates that the cubic factor only has one real zero, i.e. our ansatz is only solvable in
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Figure 3. Selecting values for a, the blue disc R≤ R∗(a) gets mapped to the orange intermediate configuration. In the region
R> R∗(a), the symmetric ansatz breaks down, and some kind of wrinkling is necessary to accommodate the extra length in
the angular direction. (a) a= 1, (b) a= 2, (c) a= 3. (Online version in colour.)

some finite disc rather than in a finite disc plus some larger annular region. We compute this real
root R∗ and obtain

R∗ (a) = 1
4

[
2 + 4 − a[

(a − 4)(a2 + 2a3/2)
]1/3 −

[
(a − 4)(a2 + 2a3/2)

]1/3

a

]
. (4.11)

Hence, we shall, for any particular value of a, restrict our attention to embeddings of the disc R ≤
R∗(a). Finally, we choose a sign for z′(R) and integrate it by quadrature to obtain the embeddings

x(R, Θ) = R
√

1 + a
(
R2 − R

)
er(Θ) ±

∫R∗

R

√
aρ(−16aρ3 + 24aρ2 − 9aρ − 12ρ + 8)

4
[
1 + a(ρ2 − ρ)

] dρ ez, (4.12)

with the choice of sign indicating a reflection across the plane z = 0, and the bounds on the integral
chosen so that the boundary of the embedded disc lies in the plane z = 0. Taking the gradient of
this embedding yields, the non-square tensor Ḡ

Ḡ =
(

2 + aR(4R − 3)

2
√

1 + aR(R − 1)
er ±

√
aR(−16aR3 + 24aR2 − 9aR − 12R + 8)

4
[
1 + a(R2 − R)

] ez

)
⊗ ER

+
√

1 + a
(
R2 − R

)
eθ ⊗ EΘ , (4.13)

which, in components, reads

[
Ḡα

A
]=

⎡
⎢⎣r′(R) 0

0 1
z′(R) 0

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

2 + aR(4R − 3)

2
√

1 + aR(R − 1)
0

0 1

±
√

aR(−16aR3 + 24aR2 − 9aR − 12R + 8)
4
[
1 + a(R2 − R)

] 0

⎤
⎥⎥⎥⎥⎥⎦ . (4.14)

We demand the corresponding factor Āaα be valid in that

Fa
A = Āa

αḠα
A, (4.15)

and that it also projects vector fields onto the tangent plane of the surface, i.e.

Ān = 0, (4.16)

where n = r′(R)ez − z′(R)er is the normal vector to the embedding. We note that because Ḡ only
maps into the tangent spaces of our surface, this requirement is not strictly necessary, because only
the action of Ā on the range spaces of Ḡ matters. We add this requirement to uniquely determine
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Ā, with the acknowledgement that another choice could be made for Ā that still yields F upon
multiplication by Ḡ. This yields

[
Āa

α

]=
[

f ′(R)r′(R) 0 −f ′(R)z′(R)
0 1 0

]

=

⎡
⎢⎣f ′(R)

2 + aR(4R − 3)

2
√

1 + aR(R − 1)
0 ∓f ′(R)

√
aR(−16aR3 + 24aR2 − 9aR − 12R + 8)

4
[
1 + a(R2 − R)

]
0 1 0

⎤
⎥⎦ , (4.17)

where the new inner product h̄αβ
is the standard Euclidean inner product on E3, which in

cylindrical coordinates reads

[
h̄αβ

]
=

⎡
⎢⎣1 0 0

0 r2 = R2 (1 + a
(
R2 − R

))
0

0 0 1

⎤
⎥⎦ . (4.18)

(iii) Residual stress

The total deformation in general depends on the choice of strain energy density, and there will
be residual stress when boundary tractions are removed, since the non-zero Gaussian curvature
present in the intermediate configuration indicates that additional strain is necessary to embed it
in the plane. The Cauchy stress σ for a two-dimensional isotropic hyperelastic solid with strain-
energy density function W(I1, I2) takes the form

σ = 2√
I2

(
∂W
∂I1

B + I2
∂W
∂I2

I
)

, (4.19)

where I1 = tr(B), I2 = det(B), and B is the left elastic Cauchy–Green tensor, which has components

Ba
b = Fa

AHABFd
Bmdb = Aa

αhαβAd
βmdb = Āa

α h̄αβ Ād
βmdb. (4.20)

In this case, we have

[
Ba

b
]=

⎡
⎢⎣f ′(R)2 0

0
f (R)2

R2
(
1 + a

(
R2 − R

))
⎤
⎥⎦ , (4.21)

hence, I1 = f ′(R)2 + f (R)2/(R2(1 + a(R2 − R))) and I2 = f ′(R)2f (R)2/(R2(1 + a(R2 − R))).
For incompressible materials, the Cauchy stress has the following representation:

σ = 2
∂W
∂I1

B − pI, (4.22)

where p is the Lagrange multiplier associated with incompressibility.
For an incompressible two-dimensional neo-Hookean solid W = μ/2(I1 − 2) and we find

f ′(R)f (R) = R
√

1 + a(R2 − R). This equation can be integrated to obtain

f (R) =
√

2
∫R

0
ρ

√
1 + a

(
ρ2 − ρ

)
dρ. (4.23)

Having obtained the deformation mapping, we only have to solve for the residual stress. We
insert the deformation map into the equilibrium equations div σ = 0, and obtain the following
expression for the radial derivative of p, the Lagrange multiplier field corresponding to the
incompressibility constraint:

dp
dR

= μf ′(R)

[
f (R)

R2
(
1 + a

(
R2 − R

)) − f ′(R)2

f (R)
− 2f ′′(R)

]
, (4.24)

which can be integrated by quadrature and coupled with the zero boundary traction condition to
obtain the full residual stress field, depicted in figure 4.
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a = 1 a = 2 a = 3

a = 1 a = 2 a = 3

–1.0 –0.5 0 0.5 1.0

(b)

(a)

Figure 4. Note that (a) the hoop stress and (b) radial stress become equal at R= 0, indicating that the residual stress at the
centre of the disc is a pure pressure, as would be expected by the symmetry of the problem. (Online version in colour.)

In general to obtain the residual stress field, one needs to solve the traction-free boundary-
value problem div σ = 0, noting that the divergence operator depends on the local geometry of
the ambient space of the current configuration, and the Cauchy stress involves the elastic stretch
generated by embedding the intermediate configuration into this ambient space.

In summary, we started with a pathological multiplicative decomposition of a two-
dimensional deformation, with a fully specified anelastic factor, and obtained an intrinsic
description of the geometry of the intermediate configuration. We then visualized this
configuration by isometrically embedding it in E3. From this embedding, we computed a different
multiplicative decomposition with non-square factors that gives not only the local strain, but
also the local orientation of the embedded tangent spaces. More specifically, since we have an
embedding, we can identify each tangent plane as an affine subspace of E3, and in particular,
we know how this plane is positioned and oriented as a subspace. This is equivalent to knowing
the normal vector to the embedded surface at each point. We then assumed an incompressible
neo-Hookean material and computed the residual stress in the current configuration by solving
the equilibrium equation div σ = 0 with vanishing boundary tractions. This construction can be
interpreted as ‘smashing’ the isometric embedding of the intermediate configuration into a flat
plane, hence creating stresses in the process.

5. Concluding remarks
In this paper, we presented a sufficient condition for global intermediate configurations to
be constructed together with an explicit construction to build it. We demonstrated that when
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this sufficient condition is satisfied for decompositions of two-dimensional deformations, the
resulting intermediate configurations can in principle be isometrically embedded in E3, and
provided an example. Additionally, we have shown that these intermediate configurations are
unique up to isometry, which may be interpreted passively as a change of coordinates.

Here, we have made no assumptions on the nature of any particular source of anelasticity,
as our discussion was purely geometric in nature, and therefore is generally applicable to any
particular anelastic process. Care should be taken however, since we began with some notion of
anelastic strain as the primitive quantity, that if a different measure is taken to be primitive, such
as residual stress, then the intermediate configuration is only uniquely determined to the same
extent that the anelastic strain is uniquely determined.

Alternatively, our construction could be repeated using elastic strain as the primitive strain
measure rather than the anelastic strain. The construction then proceeds as before, mutatis
mutandis, and one obtains an intermediate configuration as we have done. While this similar
construction may appear to be of no additional use, we note that it may be the case that H is
not C1, while the analogous quantity obtained by using the elastic strain is C1, hence gaining on
regularity. For example, in the case of cavitation, there is a subdomain on which F is singular.
Suppose that under the factorization F = AG, where A and G are square, these singularities
exist only in G and not in A. Provided that the collection of inner products h is well behaved,
their pull back under G will not be C1, but their pull back under A−1 will be. This approach
allows one to construct an intermediate configuration based on the topology of C rather than
B, letting one distinguish between elastic and anelastic cavitation. This example, in addition
to the fact that in some experiments elastic strain may be easier to measure, demonstrates that
this alternative construction can be useful, despite being nearly identical in form, since in certain
cases it confers advantages over the construction using G. This is done at the cost of having to
(generalized-)invert A, which must be done with care when A is not square since the generalized
inverse A−1

g must map entirely into im(G) to accurately capture the elastic strain. When det F > 0,
using the right inverse A−1

g = (A)−1
R = GF−1 ensures this.

Since the intermediate configurations constructed here are typically not Euclidean, they are
not generally preserved under a non-trivial action of the special Euclidean group. Hence, in the
development of physical theories involving this configuration, the requirement of equivariance
under non-trivial actions of the special Euclidean group is inappropriate, and should be replaced
instead with equivariance under actions of the symmetry group of the intermediate configuration,
which may only be the trivial group. We further comment on this notion of equivariance. Suppose
we have a map f : A → B, where A and B are G-spaces for some topological group G (G-spaces are
those possessing a group action, i.e. a map G × A → A that agrees with the group structure). The
map f is a G-equivariant map if it “commutes” with the group action, i.e. choosing an arbitrary
element g ∈ G, and denoting the group action on A by �A and the group action on B by �B, we
have

g �B f (x) = f (g �A x), ∀ x ∈ A.

As an example, in Euclidean space the Cauchy stress is an SE(n)-equivariant function of the
deformation ϕ via the relation

σ ((Q|c) �A ϕ) = σ (Qϕ + c) = Qσ (ϕ)QT = (Q|c) �B (σ (ϕ)), ∀ (Q|c) ∈ SE(n).

Note how the action on ϕ ∈ Hom((B, M), En) is different than the action on σ ∈ TEn ⊗ T∗En

(alternatively σ ∈ TEn ⊗ TEn, σ ∈ T∗En ⊗ T∗En, or σ ∈ Ω1(En) ⊗ Ωn−1(En) via application of
musical and Hodge star isomorphisms; see Kanso et al. [46] for a discussion of these
representations.) Both of these actions are ultimately induced by the defining action of SE(n) on
Euclidean space. The lack of such a global Euclidean structure in the intermediate configuration
is why the imposition of ‘invariance’ under superposed rigid body motions on the intermediate
configuration in Casey & Naghdi [39] is inappropriate. The proper ‘invariance’ requirements
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can be obtained by taking the action of the intermediate configuration’s isometry group (which
may be trivial) and prolonging it to actions on the configuration’s tangent bundle, cotangent
bundle and the various vector bundles obtained by taking the tensor product bundles of these
bundles. The proper ‘invariance’ requirements then amount to requiring that constitutive laws be
group equivariant maps with respect to these induced actions. Other examples of equivariance
requirements are material symmetry, where the group in question is the material symmetry group
at each point, and all invariance requirements are special cases of equivariance requirements
where �B is the trivial action g �B x = x, ∀ g ∈ G, ∀ x ∈ B. See Husemöller [1] for a detailed treatment
of G-spaces and group actions.

Finally, here we have only considered the regular case of C1 embeddings that prohibits
explicitly singularities in the anelastic deformation tensor. In particular, if the metric tensor H
either becomes singular or loses positive definiteness on some subset, the topologies of (B, M)
and (B, H) no longer necessarily agree. The singular case is particularly interesting as it can be
used to treat a number of highly relevant problems in mechanics such as cavitation, accretive
growth, point defects, and fracture. All these effects can, in principle, be modelled by using a
singular multiplicative decomposition, though the construction of the appropriate intermediate
configuration is more involved and falls outside the scope of the analysis presented here.
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