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In this paper we formulate a geometric theory of thermal stresses. Given a tem-
perature distribution, we associate a Riemannian material manifold to the body,
with a metric that explicitly depends on the temperature distribution. A change in
temperature corresponds to a change in the material metric. In this sense, a tem-
perature change is a concrete example of the so-called referential evolutions. We
also make a concrete connection between our geometric point of view and the
multiplicative decomposition of deformation gradient into thermal and elastic parts.
We study the stress-free temperature distributions of the finite-deformation theory
using curvature tensor of the material manifold. We find the zero-stress temperature
distributions in nonlinear elasticity. Given an equilibrium configuration, we show
that a change in the material manifold, i.e., a change in the material metric will
change the equilibrium configuration. In the case of a temperature change, this
means that given an equilibrium configuration for a given temperature distribution,
a change in temperature will change the equilibrium configuration. We obtain the
explicit form of the governing partial differential equations for this equilibrium
change. We also show that geometric linearization of the present nonlinear theory
leads to governing equations that are identical to those of the classical linear theory
of thermal stresses. © 2010 American Institute of Physics.
#doi:10.1063/1.3313537$

I. INTRODUCTION

Classical elasticity theory quantifies the amount of stretch in a body by using a specific
configuration as the reference configuration. The displacements as measured from the reference
configuration and the strains associated with them are then used to get the stresses via constitutive
relations. This viewpoint works nicely when there is a relaxed, stress-free configuration that can be
used as the reference configuration. However, this is not always the case. A body may have various
sources of residual stresses, e.g., defects such as dislocations and disclinations, in which case there
may not exist any stress-free configuration. One can observe the existence of these residual
stresses by cutting pieces from the body when there are no external forces and see that the pieces
relax upon being cut. One can deal with these residual stresses in the classical theory5 but we will
use a different approach in this paper; that of geometric elasticity, and the notion of a space that
describes the intrinsic properties of a body with a residual stress distribution.

Temperature enters free energy density as a state variable. In classical linear theory of thermal
stresses,5 it is assumed that there exists a reference temperature T0 at which the body is stress free.
Free energy is then expanded about T0 and only linear and quadratic terms are kept. The governing
equations of this theory consist of those of linearized elasticity and heat conduction with some
coupling terms. Given an equilibrium configuration of the body at temperature T, a change in
temperature will change the equilibrium configuration due to the coupling terms. Similar ideas are
used in the nonlinear theory by looking at thermal stresses as a coupled nonlinear elasticity/heat
conduction problem.
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In this paper, we study thermal stresses geometrically by considering a material manifold that
explicitly depends on temperature. Material manifold is endowed with a Riemanian metric G. We
assume that given a reference temperature distribution T0, when the body is unloaded in a Rie-
mannian manifold !B ,G0" it is stress free. Change in temperature changes the metric. For similar
ideas in the case of dislocations see Refs. 4, 13–16, 18, and 17. We should emphasize that here we
assume that temperature distribution is given. A geometric formulation of the coupled elasticity/
heat conduction will be discussed in a future communication.

As a motivation for our viewpoint, consider a piece from a thin, elastic spherical shell being
forced to lie on a plane, e.g., by being squeezed between two flat surfaces. This constraint will
induce stresses on the shell. Let us for the moment imagine that we are observing this shell from
the two-dimensional !2D" viewpoint of the plane, ignoring the third dimension. When we cut
pieces from the shell !all still forced to lie on the plane", we will observe that the former relax by
a certain amount, demonstrating the “residual stress” on the body. The 2D, planar viewpoint
dictates that there is no stress-free configuration for this piece of material. However, if this same
shell is “forced” to live on the surface of a sphere of appropriate radius, there will be a stress-free
configuration, which may then be used as the reference configuration for measuring the amount of
stretch, etc. The surface of the sphere is intrinsically two dimensional, in the sense that it can be
described without any reference to a third dimension, by using only two coordinates, and an
intrinsic measure of distance, e.g., by using the spherical coordinates

ds2 = R2!d!2 + sin2 !d"2" . !1.1"

This suggests a generalization to three dimensions: given a body with residual stresses with no
apparent stress-free configuration, could it be possible to find some abstract three-dimensional
space in which it would be stress-free? As stated, this is a very general question, and the answer
depends on the source of the residual stresses for the case at hand and the notion of “space” one
is considering.

In this paper, we answer this question affirmatively for a specific source for residual stresses:
that induced by the thermal expansion due to a nonuniform temperature distribution in a solid
material. Our analysis is constructive; given a temperature distribution on a previously stress-free
material, we construct a Riemannian manifold !to be defined shortly" in which the material under
consideration with the given thermal profile would have a stress-free state. This construction is not
of purely academic interest, since given the appropriate constitutive relations, it allows us to
calculate the stresses in an elastic body in a given thermal setting, and is not restricted to a linear
response. The appropriate way to quantify deformations for a body with residual stresses is by
considering a map !“the configuration map”" from the “material manifold” to the three-
dimensional spatial space that the body lives in. The constitutive relations are then written in terms
of this map.

In the remaining of the paper we study the effect of changes in the material manifold on
equilibrium configuration. We do this in a general setting when the material manifold is Riemann-
ian. We also consider the case where the change in metric is small enough so that a linear
approximation would be enough. In the case of small changes in material manifold we obtain the
governing equations of evolution of the equilibrium configuration as a function of changes in the
material manifold.

Let us pause here and explain the main ideas and conclusions. Suppose we have a flat, 2D
elastic material on a plane. If we heat this material in a nonuniform way, it will tend to bend out
from the plane and take the shape of a curved surface. If we then force this curved surface to live
in the flat plane by perhaps squeezing it between two flat, rigid surfaces, we will induce some
stresses on it. This suggests that for a given nonuniform temperature distribution, there may be a
curved, stress-free shape that an “originally flat” elastic material wants to take. When we force this
material to live on a flat plane, we induce “thermal stresses.” Of course in real life, we have
three-dimensional elastic bodies, forever bound to live in flat, three-dimensional Euclidean space.

Here is the main idea: given a material metric G describing the stress-free state of an elastic
material at constant temperature and a spatial metric g !for simplicity, both of these metrics can be
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taken as flat, three-dimensional metrics", we claim that a nonuniform temperature distribution on
the material should be represented as a change in the material metric G. In particular, for a
material with isotropic thermal properties, we claim that the required change in G is just a
pointwise rescaling !i.e., multiplying the metric with a scalar function on the material manifold",
and the way the scaling factor depends on the temperature is determined by the physical properties
of the material. Nonisotropic thermal expansion will also be considered.

We believe this is an example where a change in the material manifold can be clearly under-
stood conceptually. This may be very helpful in understanding the role of the change in material
connection in defect mechanics, where one has to consider not only a change in the metric but also
the “torsion part” of the connection. In particular, we have the hope that an analogy with thermal
expansion will help clarify the often encountered !and, in our opinion, confusing" discussions of
decomposing the deformation gradient F into “elastic” and “plastic” parts. The analog of a plastic
deformation in our case is a change in the temperature, resulting in a change in the material
connection. Such a change in the material connection may induce stresses on a previously stress-
free configuration, and as a result, change the equilibrium configuration. The resultant stresses in
the new equilibrium configuration should be explored with the “usual” geometric elasticity.

This paper is structured as follows. In Sec. II we motivate the connection between thermal
stresses and changes in material metric. We do this by looking at the example of a 2D disk and
study the possibility of the existence of a relaxed configuration embedded in the three-dimensional
Euclidean space for an arbitrary radial temperature distribution. We also study the stress-free
temperature distributions in nonlinear elasticity. In Sec. III we present the main ideas of a geo-
metric formulation of thermal stresses. We study the effect of a change in material manifold on the
equilibrium configuration. In Sec. IV the geometric linearization of the nonlinear theory is pre-
sented. Conclusions are given in Sec. V. To make the paper self-contained, we briefly review the
basic concepts of differential geometry, parallelizable manifolds, and geometric theory of elasticity
in Appendix.

II. THE MATERIAL METRIC AND NONUNIFORM TEMPERATURE DISTRIBUTIONS

Motivation. Suppose we start with a stress-free isotropic material with a uniform temperature
distribution T1 and free boundary conditions and increase its temperature to T2. The material will
expand, and the original distance #L1 between two neighboring points A and B in the solid body
will increase to #L2. The quantity !#L2−#L1" /#L1 turns out to be independent of the two points,
i.e., the expansion is uniform. Note that

#L2 − #L1

#L1
= $!T2 − T1" , !2.1"

where $ is the coefficient of thermal expansion. Let us now assume that we use a Lagrangian
coordinate system, X1 ,X2 ,X3 !the superscripts denote coordinate labels", i.e., assume that the same
material points have the same coordinates before and after the expansion. Then, the distance
between the two points A and B is given approximately in terms of the metric tensor Gij as
follows:

#l % &Gij!XB
i − XA

i "!XB
j − XA

j " , !2.2"

where the components Gij are evaluated at a point between XA and XB. This shows that Gij should
somehow depend on temperature. In other words, this suggests that, in this Lagrangian setting, we
should be using different metric tensors for T1 and T2. Note that this relation between the La-
grangian coordinates and the material manifold works only because the material is in a relaxed,
stress-free state in both temperatures. Otherwise, the distance that the material metric G measures
would not be the spatial distance.

The thermal expansion coefficient. Let us now connect the above description of the material
metric in terms of a temperature distribution to the thermal expansion coefficient used in the
classical theory. We imagine a material with a nonuniform temperature distribution for various
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values of the constant temperature. The thermal expansion coefficient is defined by looking at the
equilibrium volume of the material at different temperatures. Let us therefore look at the volume
element of a material at a given constant temperature. We assume that the material metric is given
by

GIJ!X,T" = HIJ!X"e2%!T", !2.3"

where HIJ is independent of temperature and T=T!X". The volume form associated with this
metric is given as

dV!X,T" = &det'HIJ'eN%!T"dNX , !2.4"

where dNX is shorthand for dX1∧dX2¯ ∧dXN !note that N=2 or 3". Differentiating with respect
to T, we obtain

d

dT
dV!X,T" = &det'HIJ'eN%!T"dNX

Nd%!T"
dT

= dV!X,T"N
d%!T"

dT
. !2.5"

Thus, we can read-off the thermal expansion coefficient in terms of the temperature dependence of
%!T" !note that for thermally isotropic materials volumetric thermal strain is N times the thermal
strain"

$!T" =
d%!T"

dT
. !2.6"

Remark: Suppose HIJ=#IJ, i.e., the initial material manifold is Euclidean. In this case GIJ is
conformally flat. It is known that any 2D Riemannian manifold is conformally flat and the function
% is unique.2 See Appendix for more discussions on this.

A. Stress-free temperature distributions

Before we go into the general geometric theory of thermal stresses, we will first demonstrate
an important application of our geometric approach, that of stress-free temperature distributions.

The 2D case. As in Sec. I, consider a 2D shell restricted to live on a flat planar surface
between two rigid planes. We will assume that initially the shell is at constant temperature, and is
stress-free, with no external or body forces. We would like to find the temperature distributions
that will result in equilibrium configurations with zero stress. Changing the temperature uniformly
will result in uniform expansion, and hence no stress. Are there other temperature distributions
with this property? The answer is yes as is already known in the framework of linear
thermoelasticity.5 Due to the nature of our geometric approach, we will also be able to answer this
question in a nonlinear setting. To the best of our knowledge, this has not been done in the
literature.

The spatial distances between material points are measured by the ambient space metric !the
“spatial metric”", which is Euclidean. A given temperature distribution will result in a change in
the material metric, as described above. A configuration will be stress-free if there is no “stretch”
in the material, i.e., if the material distance between two points is the same as the spatial distance.
This happens only if the two types of metric tensors !spatial and material" agree on the distance
measurements between nearby material points, i.e., only if they are isometric. Since the spatial
metric is assumed to be Euclidean, this means that the material metric, after the change due to a
given thermal distribution, has to be Euclidean.

It is worth emphasizing that one cannot simply set GIJ=#IJ, the precise requirement is that the
pullback of the spatial !Euclidean" metric by the deformation map & has to be equal to the material
metric. This issue is closely related to the fact that a metric may be Euclidean “in disguise,” i.e.,
one can write the flat 2D metric in different coordinate systems, and it is not always easy to
recognize that the metric is flat by simply looking at its components in a given coordinate system.

Riemann’s original work solves this problem for any dimensionality by defining the curvature
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tensor of the metric: a metric is flat, i.e., it can be brought into the Euclidean form #IJ locally by
a coordinate transformation, if and only if its curvature tensor is zero !we have collected the
definitions of various curvature-related quantities of interest in Appendix".2

It turns out that in two dimensions, a weaker requirement is sufficient:2 a metric is flat if and
only if its scalar curvature !the Ricci scalar" is zero. Let us now apply this condition to a 2D
metric, that is, obtained from a nonuniform temperature distribution on an initially stress-free,
planar shell, i.e., GIJ=e2'#IJ, where '!X"=%!T!X"". The Ricci scalar for a metric of this form is
given by34

R = −2 e−2'#2' . !2.7"

Thus, R=0 requires #2'=0, i.e., the exponent in the scale factor has to be a harmonic function.
If we assume that %!T" depends on temperature linearly, we obtain #2T=0. This is exactly the
same condition encountered in linear elasticity, see, e.g., Boley and Weiner.5 This means that for
the case of constant thermal expansion coefficient in two dimensions, harmonic temperature dis-
tributions do not result in any stresses. However, our result is more general: even if the thermal
expansion is nonlinear, we obtain the condition #2'!X"=#2%!T!X""=0, where %!T" gives the
general, nonlinear dependence of !isotropic" thermal expansion to temperature.

It is worth emphasizing the distinction between local and global flatness and the implications
for stress-free thermal distributions. Even though the surface of a right circular cylinder in three
dimensions looks curved, it is locally, intrinsically flat. For any given point on the cylinder, one
can find a finite-sized region containing the point, and a single-valued coordinate system on this
region, for which the metric has the Euclidean form. Physically, this means that for any given
point, we can cut some finite-sized piece containing the point and can lay the piece on a flat plane,
without stretching it. The surface of a sphere in three dimensions, on the other hand, is intrinsi-
cally curved; it is impossible to make any finite-sized piece of the sphere, no matter how small, to
lie on a flat plane without stretching it.

Curvature conditions such as R=0 or #2'=0 can only detect such local issues. That it is
impossible to make a full cylinder lie in a plane nicely !i.e., without tearing, folding, or stretching
it" is due to the global topology of the cylinder, and local restrictions on curvature are not capable
of constraining the global properties sufficiently.

In the context of thermal stresses, this subtlety is nicely demonstrated by the following
example. Let us specialize to the case where ' depends only on the radial coordinate R of an
initially flat annular piece of a material, R0(R(R1. The flatness condition gives

#2' =
1
R

d

dR
(R

d'!R"
dR

) = 0. !2.8"

Solving this gives

e2' = )R2*, !2.9"

where )+0 and * are constants. Assuming T!R0"=T0, and that the coefficient of thermal expan-
sion is a constant $, this solution corresponds to the temperature distribution

T!R" = T0 +
2*

$
ln( R

R0
) . !2.10"

Thus, we are concerned with temperature distributions that result in metrics of the form

dS2 = R2*!dR2 + R2d,2" , !2.11"

where we have set )=1 by a rescaling of R. It may not be immediately obvious that these metrics
are flat, but a transformation to a new radial coordinate r by R=r1/!*+1" gives
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dS2 = c2dr2 + r2d,2, !2.12"

where c=1 / !*+1". A further transformation, R̃= 'c'r, ,̃=, / 'c' gives

dS2 = dR̃2 + R̃2d,̃2, !2.13"

which is the flat 2D metric, except for an important subtlety. In the original coordinates, a point
!R ,," was identified with the point !R ,,+2-". In terms of the new coordinates, this means that
a point !R̃ ,,̃" needs to be identified with the point !R̃ ,,̃+2- / 'c'". The geometric meaning of this
is clear: the metric !2.13", with the proper identifications, is describing an annular piece from a
conical surface, with deficit angle $=2-!1−1 / 'c'", see Fig. 1.

Now, intuitively, one can guess that it will be impossible to make such a conical surface lie on
the plane without tearing, stretching, or folding it. Thus, if we start with an annular shell between
two rigid planes, a temperature distribution of the form !2.10" will indeed result in stresses,
although the related material metric is intrinsically flat. However, if the material consists only of
a simply connected piece of the annulus !say, R1.R.R2, 0.,1.,.,2.2-", the temperature
distribution !2.10" will just cause a stress-free expansion of the material, between the two rigid
planes. See Fig. 2.

This issue exists in the classical theory of elasticity, as well, see Ref. 5, p. 256, where a set of
global conditions have been given for stress-free thermal distributions in two dimensions for
multiply-connected bodies. As an application of these ideas, suppose we are given a temperature
distribution T!X" and are seeking a temperature-dependent coefficient of thermal expansion $!T"
that would result in a stress-free equilibrium state. In general, this amounts to solving the equation

#2' =
d$

dT

$T

$XA

$T

$XB#AB + $
$2T

$XA $ XB#AB =
d$

dT
'#T'2 + $#2T = 0. !2.14"

This equation may or may not admit a solution, depending on T!X", but for the simple case of a
radial temperature distribution T!R", the solution !2.9" dictates that $!T" is given by

FIG. 1. Zero-stress deformation of an annulus to a cone.

FIG. 2. Zero-stress deformation of a simply connected piece of an annulus.
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$!T" =
d%

dT
=

d'

dR

dT

dR

=
*

RT!!R"
. !2.15"

As above, however, this works only for simply connected pieces such as those described by ,1
.,.,2 and R1.R.R2, with ,2−,1.2-. With this in mind, $!T" for some specific radial
temperature distributions are as follows:

T!R" =
T0R1 − T1R0

R1 − R0
+ * T1 − T0

R1 − R0
+R, $!R" = $0

R0

R
, !2.16"

T!R" =
T1R1 − T0R0

R1 − R0
+ *R0R1!T0 − T1"

R1 − R0
+ 1

R
, $!R" = $0

R

R0
, !2.17"

T!R" =
ln!R1

T0/R0
T1"

ln!R1/R0"
+ * T1 − T0

ln!R1/R0"+ln R, $!R" = $0. !2.18"

Let us next consider the case where the 2D material is allowed to bend into the third dimen-
sion, instead of being squeezed between two rigid flat planes. Assume, once again, that we start
with a stress-free, planar piece of material at uniform temperature, and we introduce a nonuniform
temperature distribution. Will the material be able to find a stress-free state by bending into the
third dimension? We will investigate this problem for the special case of a radial temperature
distribution and cylindrically symmetric configurations in three dimensions.

According to our approach, the metric

dS2 = e2%!T!R""!dX2 + dY2" = e2%!T!R""!dR2 + R2d,2" !2.19"

describes the natural, stress-free state of the shell, and for a given configuration in the ambient
three-dimensional space, stresses will be due to a different metric being induced on the shell by
the embedding in the ambient space. We will seek embeddings for which the metric induced from
the ambient space is the same as the intrinsic metric, which, as opposed to the case considered
above, is not necessarily flat.

Let us begin by writing the induced metric for a given configuration with cylindrical symme-
try, which is best done in cylindrical coordinates !/ ," ,z". Instead of the most general configura-
tion, we will seek a solution of the form

"!R,," = , , !2.20"

/!R,," = /!R" , !2.21"

z!R,," = z!R" . !2.22"

For such an embedding, the metric induced from the ambient space is given as

dSinduced
2 = dR2*( dz

dR
)2

+ ( d/

dR
)2

+ /!R"2+ . !2.23"

In order for this induced metric to be the same as the intrinsic, material metric given by !2.19", we
need

/!R" = Re'!R", !2.24"
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( dz

dR
)2

+ ( d/

dR
)2

= e2'!R", !2.25"

where we define '!R"=%!T!R"". Substituting /!R" in the second equation, we obtain

( dz

dR
)2

+ e2'!R"#1 + R'!!R"$2 = e2'!R", !2.26"

which, in principle, lets us solve for z!R". For a region where /!R" is invertible, we can also obtain
the surface in three dimensions as given by z!/", by solving

#1 + R'!!R!/""$2*1 + ( dz

d/
)2+ = 1. !2.27"

Note that for a uniform temperature distribution T!R"=T0, '!!R!/""=0, and hence z!/"=z0, which
is what we expect, i.e., in this case the relaxed configuration is planar. Note also that !2.27" has a
solution only if −2 /R.'!!R".0. In order to have some insight about the meaning of this
constraint, let us specialize to conical metrics described above in !2.13", e2'=)R2*. For this case,
the constraint −2 /R.'!!R".0 translates to −2.*.0, which gives, in terms of the deficit angle
$, 0.$.2-. The condition $.2- is not surprising, but there is nothing wrong with a cone with
negative deficit angle in terms of intrinsic geometry. The lower bound on ' is simply telling us
that it is not possible to embed such a cone in R3 in a cylindrically symmetric way, which makes
intuitive sense, considering the twisted shape of a saddle.

The three-dimensional case. Let us next consider the three-dimensional case. In three dimen-
sions, a vanishing Ricci scalar is not sufficient to guarantee local flatness, however, a three-
dimensional metric is flat if and only if its Ricci tensor vanishes.2 The Ricci tensor RIJ of the
metric GIJ=e2'GIJ

!0" is given in terms of the Ricci tensor RIJ
!0" of GIJ

!0" by the following relation:34

RIJ = RIJ
!0" − !n − 2"#I#J' − GIJ

!0"!G!0""KL#K#L' + !n − 2"#I'#J' − !n − 2"GIJ
!0"!G!0""KL#K'#L' ,

!2.28"

where n is the dimensionality. Now, once again, assume that the initial metric GIJ
!0"=#IJ, RIJ

!0"=0,
and n=3 and replace the covariant derivatives with partial derivatives. This gives

RIJ = − $I$J' − #IJ#
KL$K$L' + $I'$J' − #IJ#

KL$K'$L' = 0. !2.29"

Similar to what is implicitly done in classical linear thermoelasticity, let us assume that the
reference temperature T0 is uniform, i.e., independent of position and that change in temperature
is “small.” This means that $T /$XI is small. But note that

$'

$XI = $!T"
$T

$XI . !2.30"

Therefore, $I' is small too, i.e., quadratic terms in $I' can be ignored. This gives us the condition
that all the second derivatives of ' have to vanish. This means that ' is a linear function of the
original Euclidean coordinates. If we further assume that %!T" is a linear function of temperature,
we see that temperature itself has to be a linear function of the original Euclidean coordinates.
Therefore, we recover the classical result in linearized thermoelasticity that in three dimensions,
the only stress-free temperature distributions for an initially stress-free material depend linearly on
the coordinates.5

In the nonlinear case RIJ=0 is equivalent to the following system of nonlinear partial differ-
ential equations in terms of ':

',12 = ',1',2, !2.31"
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',13 = ',1',3, !2.32"

',23 = ',2',3, !2.33"

',11 + #2' + ',2
2 + ',3

2 = 0, !2.34"

',22 + #2' + ',1
2 + ',3

2 = 0, !2.35"

',33 + #2' + ',1
2 + ',2

2 = 0. !2.36"

Let us first look at the following nonlinear partial differential equation for w=w!x ,y":

$2w

$x $ y
=

$w

$x

$w

$y
. !2.37"

Using the change in variable u=e−w, one obtains

$2u

$x $ y
= 0. !2.38"

Thus, the most general solution is

w!x,y" = − ln#f!x" + g!y"$ !2.39"

for some arbitrary functions f and g. Using !2.31"–!2.33", one can show that

'!X1,X2,X3" = − ln#f!X1" + g!X2" + h!X3"$ !2.40"

for some arbitrary functions f , g, and h. Now substituting !2.40" into !2.33"–!2.36", we obtain

f"!X1" = g"!X2" = h"!X3" . !2.41"

Therefore

f!X1" = c0!X1"2 + d1X1 + d2,

g!X2" = c0!X2"2 + d3X2 + d4,

h!X3" = c0!X3"2 + d5X3 + d6, !2.42"

for some constants c0 ,d1 , . . . ,d6. !note that the case c0=d1=d3=d5=0 corresponds to uniform
temperature distributions". Plugging these back into !2.34"–!2.36", we get

'!X1,X2,X3" = − ln*c0,
i=1

3

!Xi − bi"2+ . !2.43"

Shifting the origin Xi→Xi+bi, this becomes

'!X1,X2,X3" = − ln!c0R2" , !2.44"

where R=&!X1"2+ !X2"2+ !X3"2.
If $ is constant, then this corresponds to the following temperature distribution #note that this

is similar in form to the 2D solution !2.18"$:
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− ln!c0R2" = $!T − T0" or T − T0 = c0 −
2
$

ln R . !2.45"

Note that c0 represents a uniform change in temperature. In order to understand what this solution
represents physically, let us write the metric in polar coordinates

dS2 = e2'#dR2 + R2!d,2 + sin2 ,d02"$ =
1

c2R4 #dR2 + R2!d,2 + sin2 ,d02"$ . !2.46"

Now let us define

R̃ =
1

cR
. !2.47"

In terms of R̃, the metric becomes

dS2 = dR̃2 + R̃2!d,2 + sin2 ,d"2" , !2.48"

which is precisely the flat Euclidean metric in three dimensions. Thus, after the thermal expansion,
the metric is still flat, but the radial coordinate in which it is manifestly so is related to the old
radial coordinate by !2.47" !up to a simple shift of origin". This means that particles at the two
radii R1.R2 move to the new radii R̃1+ R̃2, after the thermal expansion, i.e., the material gets
“inverted.” This may not be possible for a solid ball without tearing it apart, but it is perfectly
possible for a piece from such a ball, as demonstrated in Fig. 3.

B. Connection with multiplicative decomposition of deformation gradient

Geometric study of thermal stresses goes back to the works of Stojanović and his
coworkers.36,37 These researchers extended Kondo’s13–16 and Bilby’s4,3 idea of local elastic relax-
ation in the continuum theory of distributed defects to the case of thermal stresses. See also Refs.
11, 12, and 20 for similar ideas and Refs 23 and 27 for a review of some relevant works. One
should note that the idea of using differential geometry in anelasticity goes back to an earlier work
in Ref. 6.

Stojanović’s idea is similar in spirit to the approach described in this paper: a nonuniform
temperature distribution, in general, leads to residual stresses essentially because the body is
constrained to deform in Euclidean space. If one partitions the body into small pieces, each piece
will individually relax, but it is impossible to realize a relaxed state for the full body by combining
these pieces in Euclidean space. Any attempt to reconstruct the full body by sticking the particles
together will induce deformations on them and will result in stresses. An imaginary relaxed
configuration for the full body is incompatible with the geometry of Euclidean space.

The approach taken in this paper is to ask the question: which space, as opposed to the
Euclidean space, would be compatible with a relaxed state of the body? We claimed above that the
answer to this question is a Riemannian manifold whose metric is related to the nonuniform
temperature distribution by !2.3". This metric describes the relaxed state of the material, and the
strains in a given configuration should be measured with respect to the relaxed state, i.e., the new
material metric. In this setup, the constitutive relation !e.g., a free energy function" is given in

FIG. 3. A nonlinear stress-free thermal deformation of a ball. Note that because of symmetry only deformation of a great
half circle of the projected sphere on a plane passing through the center of the ball is shown in this figure.
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terms of the material metric, the !Euclidean" spatial metric, and the deformation gradient F. The
constitutive relation allows one to calculate the stresses induced for a given configuration, at least
in principle.

Stojanović, on the other hand, takes the following viewpoint. Consider one of the imaginary
relaxed pieces described above. The process of relaxation after the piece is cut corresponds to a
linear deformation of this piece !linear, since the piece is small" !this transformation is not nec-
essarily uniquely determined, see below for a discussion of this issue". Let us call this deformation
FT. If this piece is deformed in some arbitrary way after the relaxation, one can calculate the
induced stresses by using the tangent map of this deformation mapping in the constitutive relation.

Now, in order to calculate the stresses induced for a given deformation of the full body, we
focus our attention to one such particular piece. The deformation gradient of the full body at this
piece F can be decomposed as F=FeFT, where, by definition, Fe=FFT

−1. Thus, as far as this piece
is concerned, the deformation of the full body consists of a relaxation, followed by a linear
deformation given by Fe. The stresses induced on this piece, for an arbitrary deformation of the
full body, can be calculated by substituting Fe in the constitutive relation.

Note that Fe and FT are not necessarily true deformation gradients in the sense that one cannot
necessarily find deformations &e and &T whose tangent maps are given by Fe and FT, respectively.
This is due precisely to the incompatibility mentioned above. However, as long as we have a
prescription for obtaining Fe and FT directly for a given deformation map & for the body and a
temperature distribution, we can calculate the stresses by the following prescription.

For an isotropic material, Stojanović gave the following formula for FT in terms of the
temperature:

!FT"A
B = 1!T"#B

A. !2.49"

This means that a small piece relaxes by a uniform expansion, whose magnitude is determined by
a function 1!T" that characterizes the thermal expansion properties of the material under consid-
eration. Given this formula for FT, we can calculate Fe=FFT

−1 for a given deformation and utilize
a constitutive relation that gives the stresses in terms of Fe.

These two approaches seem very different philosophically, and at first sight, FT, the “incom-
patible intermediate deformation gradient,” perhaps seems a little mysterious from the geometric
standpoint. However, these approaches are related, as we will demonstrate next. Our discussion
can easily be generalized to other sources of residual stresses; a local relaxation approach and the
Riemannian approach are equivalent for a large class of settings !however, there are cases that will
require a further generalization, namely, cases where the material manifold has a connection with
torsion and nonmetricity".

As mentioned above, Stojanović31,32 gave !FT"A
B=1!T"#B

A and related the coefficient of ther-
mal expansion $ to 1!T" by

$!T" = 1!T"
d1!T"

dT
. !2.50"

This can agree with !2.6" only if

e%!T" = 1!T" . !2.51"

In order to show the mechanical equivalence of the two approaches by using this identification, we
need to show that for any given constitutive relation for one of the approaches, one can find a
corresponding constitutive relation for the other approach that predicts the same stresses for all
possible deformations when 1 and % are related through !2.51".

The constitutive relations of the two approaches are formulated in terms of different quanti-
ties: Fe=FFT

−1 on one side and G!T" and F on the other. Let us start with our approach, namely,
assume that a constitutive relation is given in terms of G!T" and F. This takes the form of a scalar
free energy function that depends on G!T", F, as well as on the spatial metric tensor g, and
possibly X and T!X" explicitly
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2 = 2!X,T,G!X,T",F,g" . !2.52"

Now, G, F, and g are tensors, written in terms of specific bases for the material space and the
ambient space. Commonly, bases associated with coordinate systems are used. A change in basis
changes the components of these tensors, but 2, being a scalar, does not change. Let us consider
a change in basis from the original coordinate basis EA of the material space, satisfying

--EA,EB..G = GAB, !2.53"

to an orthonormal basis ÊÂ that satisfies

--ÊÂ,ÊB̂..G = #ÂB̂. !2.54"

The transformation between the two bases is given by a matrix F
Â

B as

ÊÂ = F
Â

BEB. !2.55"

The orthonormality condition gives

F
Â

CF
B̂

DGCD = #ÂB̂. !2.56"

Any F
Â

C that satisfies this equation gives an orthonormal basis. Given such an F
Â

C, we can also

obtain an orthonormal basis for the dual space by using its inverse. Defining FĈ
D as the inverse of

the matrix F
Â

B, i.e., F
Â

BFÂ
C=#C

B and F
Â

BFĈ
B=#

Â
Ĉ, we obtain the dual orthonormal basis /ÊÂ0 in

terms of the original dual basis /EA0 by

ÊÂ = FÂ
BEB. !2.57"

For thermal stresses, assuming that the initial material manifold is Euclidean, GCD
=e2%!T"#CD=1!T"2#CD gives

F
Â

C = #
Â
C
e−%!T" = #

Â
C
1−1!T" , !2.58"

as a solution to !2.56". Here, #
Â
B is 1 for A=B and 0, otherwise, i.e., #

1̂
1=#

2̂
2=#

3̂
3=1, etc. Note that

!2.56" has other solutions, too, which we will comment on below.
Now let us write the components of the total deformation gradient F in the orthonormal basis

/ÊÂ0. The components are transformed by using F

Fa
Â

= F
Â

BFa
B. !2.59"

Now, using !2.58", !2.51", and !2.49", we see that the components Fa
Â

are given precisely by those
of Fe, the “elastic part” of the deformation gradient in Stojanović’s approach:

Fa
Â

= F
Â

BFa
B = #

Â
B
e−%!T"Fa

B = !1!T""−1#
Â
B
Fa

B = !FT
−1"A

BFa
B = !Fe"a

A. !2.60"

Thus, Stojanović’s Fe is nothing but the original deformation gradient, written in terms of an
orthonormal basis in the material space. In passing, we have also shown that there is no need for
a mysterious “intermediate configuration” as the target space of FT, the latter just gives an ortho-
normal frame in the material manifold, and as such, can be treated as a linear map from the tangent
space of the material manifold to itself. As mentioned above, these ideas can be generalized to
other problems with residual stresses.

Rewriting the constitutive relation !2.52" by using an orthonormal basis for the material
manifold, we obtain
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2 = 2!X,T,GAB = #AB,Fa
B = !Fe"a

B,gab" . !2.61"

Thus, given a constitutive relation 2Riem in the Riemannian approach, one can obtain a constitu-
tive relation 2LR in the “local relaxation” approach by simply going to an orthonormal basis by
!2.55" and !2.56" and ignoring the constant terms GAB=#AB and gab=#ab in the functional depen-
dence

2LR!X,T,!Fe"a
B" = 2Riem!X,T,GAB = #AB,Fa

B = !Fe"a
B,gab = #ab" . !2.62"

Going in the opposite direction is also possible; starting with a free energy function for the
Stojanović’s approach, one can derive an equivalent free energy in the Riemannian approach. This
direction may be slightly more confusing, since the metrics of the material manifold and the
spatial manifold are not explicitly written out initially. One proceeds by first writing Fe in terms of
its proper index structure !Fe"a

B in the Riemannian approach and inserting #ab and #AB where
necessary for tensorial consistency, and finally interpreting these as the components of metric
tensors, and performing a change in basis, if desired.

Noncoordinate bases and torsion. Although a coordinate basis /EA=$ /$XA0 is not necessarily
orthonormal, one can always obtain an orthonormal basis by applying a pointwise change in basis
F

Â
B. Moreover, giving an orthonormal basis in this way is equivalent to giving a metric tensor at

each point; the inner product of any two vectors can be calculated by using their components in
the orthonormal basis. We have seen above that in the context of thermoelasticity, this means that
a change in the material metric due to a change in temperature can be given in terms of the
“thermal deformation gradient” of the local relaxation approach.

Given an orthonormal basis /ÊÂ0, it is possible to obtain another one, /Ê
Â
!0, by using an

orthogonal transformation 3
Â

B̂ as

ÊA! = 3
Â

B̂ÊB̂, !2.63"

where 3
Â

B̂ satisfies 3
Â

Ĉ3
B̂

D̂#ĈD̂=#ÂB̂. Let the relation between the original coordinate basis /EA0
and the new orthonormal basis be given by the matrix F!

Â
B as follows:

Ê
Â
! = F!

Â
BEB. !2.64"

The relation between F and F! is given as

F!
Â

B = 3
Â

ĈF
Ĉ

B. !2.65"

Going in the opposite direction, one can see that F and F! represent the same material metric G,

if and only if they are related through !2.65" for some orthogonal matrix 3
Â

B̂. This means that
there is an SO!3" ambiguity in the choice of F, and hence, in that of FT.

As opposed to a coordinate basis, the elements of an orthonormal basis do not necessarily
commute with each other; whereas #EA ,EB$=0 for EA=$ /$XA for an orhonormal basis ÊÂ

=F
Â

BEB, one has30

#ÊÂ,ÊB̂$ = c
ÂB̂

Ĉ ÊĈ, !2.66"

where

c
ÂB̂

Ĉ = FĈ
D(F

Â
E
$F

B̂
D

$XE − F
B̂

E
$F

Â
D

$XE
) . !2.67"

The connection coefficients 4̄
ÂB̂
Ĉ for an orthonormal basis, defined through
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#ÂÊB̂ = 4̄
ÂB̂
Ĉ ÊĈ, !2.68"

are related to the connection coefficients 4AB
C of the coordinate basis by

4̄
ÂB̂
Ĉ

= F
Â

DFĈ
F( $F

B̂
F

$XD + F
B̂

E4DE
F ) . !2.69"

In a coordinate basis, the components of the torsion tensor are given by the antisymmetriza-
tion of the two lower indices of the connection coefficients, i.e. !see Appendix"

TAB
C = 4AB

C − 4BA
C . !2.70"

However, for a noncoordinate basis, the components are given by

TĈ
ÂB̂

= 4̄
ÂB̂
Ĉ

− 4̄
B̂Â
Ĉ

− c
ÂB̂

Ĉ. !2.71"

Our formalism is based on Riemannian geometry and, in particular, on the torsion-free Levi–
Civita connection defined by the metric G!T". Thus, the torsion tensor for the material connection
vanishes in both the coordinate basis and the orthonormal basis. Let us show this explicitly for
F

Â
B=1−1!T"#

Â
B. In the original coordinate basis, the metric tensor is given by GAB=e2%!T"#AB

=12!T"#AB. Thus, the connection coefficients in this basis are

4BC
A = 1−1!1,B#C

A + 1,C#B
A − 1,D#AD#BC" . !2.72"

Using !2.70", we have TA
BC=0. Next, using !2.67" and !2.69" with

FÂ
B = 1#B

Â, F
Â

B = 1−1#
Â
B

, !2.73"

we obtain

c
ÂB̂

Ĉ =
1,D

12 !#
Â
Ĉ
#

B̂
D

− #
B̂
Ĉ
#

Â
D" !2.74"

and

4̄
ÂB̂
Ĉ

= −
1,D

12 #
Â
D

#
B̂
Ĉ

+
1
1

#
Â
D

#
B̂
E
#C

Ĉ4DE
C. !2.75"

Using these in !2.71", we obtain T̄
B̂Ĉ

Â=0. Note that the Riemann curvature tensor has the follow-
ing form:

RA
BCD = 1−2#2!1,C#B

A − 1,B#C
A"1,D + 2!1,B#CD − 1,C#BD"1,E#AE + 1,E1,F#EF!#C

A#BD − #B
A#CD"$

+ 1−1#1,BD#C
A − 1,CD#B

A + !1,CE#BD − 1,BD#CD"#AE$ , !2.76"

which, in general, does not vanish.
Stojanović, on the other hand, calculated a nonvanishing torsion tensor. This discrepancy is

due to the fact that he uses the following connection:

4BC
A = !FT

−1"A
M

$!FT"M
C

$XB . !2.77"

Similar connections have been used in other contexts.13,4 It can be shown that this connection has
vanishing curvature but has nonvanishing torsion. This is related to the so-called canonical con-
nection in absolutely parallelizable manifolds.7,8,38 See also Ref. 9, for similar connections in the

032902-14 A. Ozakin and A. Yavari J. Math. Phys. 51, 032902 "2010!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



context of inhomogeneities and their geometric representations. In Appendix, we give some details
on absolutely parallelizable manifolds and the above connection.

In summary, our geometric approach has a concrete connection with that of Stojanović: in our
approach we use a Riemannian manifold with a temperature-dependent metric as the material
manifold while Stojanović implicitly used the same metric but in an absolutely parallelizable
manifold that is not Riemannian. Using either approach would be fine and a matter of taste,
however, we believe that our approach is more straightforward as we do not introduce an unnec-
essary torsion in the material manifold. Representing changes in temperature by a one-parameter
family of conformal Riemannian metrics enables us to find the zero-stress temperature distribu-
tions even in finite deformations.

C. Anisotropic thermal expansion

So far, we have assumed that thermal expansion is isotropic, i.e., a change in temperature
results in a change in length independent of orientation. Let us now see how one should modify
the theory when a temperature change results in different changes in length in different directions
and in possibly a change in shape. Even in the case of anisotropic thermal expansion all one needs
is a temperature-dependent material metric G!X ,T", but in this case the material metric is no
longer a simple rescaling of the original material metric. The physical idea is the following. Given
any point in the initial stress-free material manifold with metric G0!X", there exists a frame field
/E1!X" ,E2!X" ,E3!X"0 for each material point such that in this frame the material metric is diag-
onal and has the following form:

G!X,T" = e2%1!T"E1
! E1 + e2%2!T"E2

! E2 + e2%3!T"E3
! E3. !2.78"

Given a coordinate basis ẼI=$ /$XI, we have

EI = AJ
IẼJ. !2.79"

Thus

G!X,T" = ,
I

e2%I!T"AJ
IẼJ ! AK

IẼK. !2.80"

III. GEOMETRIC ELASTICITY WITH TEMPERATURE CHANGES

Material manifold. As mentioned in the previous sections, the material manifold describes the
intrinsic “shape” of the natural, stress-free state of the material. The geometry induced by a given
configuration of the material in the spatial manifold may or may not agree with the intrinsic
geometry. The discrepancy between the two geometries !the induced and the intrinsic" is, in
general, a cause for stresses, which are described by geometric constitutive relations. In this
section, we will describe this framework. Due to our approach to thermal stresses, in this paper,
we treat the material and the spatial spaces as Riemannian manifolds, as in Refs. 24 and 36, and
by “geometry,” we understand the Levi–Civita connection associated with the metric tensor. In
general, the geometry of either of these spaces can be given by a more general connection that has
torsion and/or nonmetricity. Such connections have found use in the literature of defect mechanics.

The motion of an elastic body is described by a possibly nonisometric, time-dependent em-
bedding of the material manifold in the spatial manifold !see Fig. 4". There is, however, another
possible source of time dependency: the geometry of the material manifold itself may change in
time !the geometry of the spatial manifold may also change, but we do not consider this issue in
this paper". A change in the geometry of the material manifold is sometimes known as a referential
change !see Refs. 10 and 26 and references therein", and the precise meaning of this has some-
times been a source of confusion in the literature. In this paper, we have a case where the change
in the geometry of the material manifold is described explicitly in terms of the temperature, and
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we believe that the conceptual clarity brought by this simple example may provide insights to
other cases of referential changes, such as those that describe the evolution of defects in a crys-
talline solid.

In Sec. II, we proposed to describe the thermal expansion of an isotropic material by a change
in the material metric, given by Eq. !2.3"

GIJ!X,T" = HIJ!X"e2%!T". !3.1"

Here, %!T" is a function that describes the thermal expansion properties of the isotropic material
under consideration. The coefficient of thermal expansion is given by Eq. !2.6"

$!T" =
d%!T"

dT
. !3.2"

We assume that the temperature distribution in the material is given. If the temperature depends on
time, then the material metric describing the relaxed state of the material will also depend on time,
through !3.1".

We should mention that evolution of reference configuration in the literature of continuum
mechanics is more or less ambiguous. It is believed that an evolving reference configuration can
model dynamics of defects. However, to our best knowledge, there are no concrete examples in
the literature. We believe that the present geometric formulation of thermal stresses in terms of a
temperature-dependent material manifold can make the role of reference manifold clearer and can
shed light on other more complicated problems, e.g., continuum theory of solids with distributed
dislocations.

Conservation of mass. Let us begin by writing the conservation of mass in this setting. If the
temperature is time independent, the usual material version of the conservation of mass holds: the
material density is constant

/0!X,t" = /0!X" . !3.3"

If, however, temperature changes in time, the material metric will expand or contract, so the
material mass density will change. The evolution of the mass density will then be given by

/0!X,T"dV!X,T" = m!X" , !3.4"

where dV!X ,T!t"" is the volume form of the metric G!X ,T" and m!X" is the temperature-
independent !and hence time-independent" differential form representing the mass density !mass
form". This equation tells us that if the material manifold expands due to a temperature change, the
total mass in a material region will not change, and hence the density /0 will decrease inversely
with the increase in the volume of that region. Since the volume form is given by

FIG. 4. !Color online" Motion of a continuum with temperature changes.
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dV!X,T" = &det'HIJ'eN%!T"dNX , !3.5"

we can get the density for a given temperature T in terms of the density at an initial temperature
T0 by using /0!X ,T"dV!X ,T"=/0!X ,T0"dV!X ,T0". This gives

/0!X,T" = eN!%!T0"−%!T""/0!X,T0" . !3.6"

In terms of the coefficient of thermal expansion $=d% /dT, this can be written as

/0!X,T" = /0!X,T0"e−N1T0

T $!5"d5. !3.7"

Incompressibility. Elastic incompressibility means that elastic deformations cannot cause any
changes in volume. Thus, for a given temperature distribution, the deformation map must preserve
the volume element. The volume elements in the material and spatial manifolds, dV!X" and dv!x",
are related by

dv!x!X"" = J!X,T"dV!X,T" , !3.8"

where the Jacobian J is given as

J!X,T" = det F& det g
det G!T"

. !3.9"

Thus, incompressibility means that J!X ,T"=1. Given two Riemannian manifolds, distance pre-
serving maps, i.e., isometries between them may or may not exist. A similar question may arise for
volume-preserving maps: given two Riemannian manifolds !in our case, the material manifold and
the spatial manifold", does there exist a volume-preserving map between them? Moser29 answered
this question in the affirmative, so the study of incompressibility in this setting is not vacuous.

Free energy. The free energy, in addition to explicitly depending on temperature, will depend
on the temperature-dependent material metric tensor as well, i.e.

2 = 2!X,T,G!X,T",F,g" . !3.10"

Therefore, the first Piola–Kirchoff stress, given by

P = P!X,T" = g−1$2

$F
, !3.11"

explicitly depends on the temperature-dependent material metric.
Balance of linear momentum. Let us now look at the governing equations for a given tem-

perature distribution T=T!X". We will only study the static case, for which the balance of linear
momentum reads

Div P = 0 or PaA
'A =

$PaA

$XA + 4AB
A PaB + )bc

a Fc
APbA = 0, !3.12"

where 4AB
C are the connection coefficients for the material metric GAB and )ab

c are the connection
coefficients for the metric gab. !The governing equations for the dynamics case are similar. How-
ever, for the dynamic problem one has to consider an evolving temperature distribution governed
by the heat equation. This will be discussed in a future communication." This is the standard
balance of linear momentum in geometric elastostatics, see, e.g., Ref. 36. For the case of thermal
stresses, the material connection coefficients 4AB

C are those of the metric !2.3", GIJ!X ,T"
=HIJ!X"e2%!T"; they are given in terms of the connection coefficients 4AB

!H"C of the metric HIJ as34

4AB
C = 4AB

!H"C + !#A
C$B' + #B

C$A' − HABHCD$D'" . !3.13"

Suppose the initial material metric HAB is Euclidean. Then, using Cartesian coordinates, we have
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4AB
A = 3$B' . !3.14"

For a Euclidean spatial metric in Cartesian coordinates, gab=#ab, we obtain

$PaA

$XA + 3
$'

$XB PaB = 0. !3.15"

In terms of the thermal expansion coefficient $=d% /dT, this becomes

$PaA

$XA + 3$
$T

$XB PaB = 0. !3.16"

In the following example, we show that in the geometric framework, some nonlinear problems can
be solved analytically.

Example. Let us consider a 2D, incompressible neo-Hookean material in a flat 2D spatial
manifold. The free energy density of a neo-Hookean material in two dimensions has the form

2 = 2!X,C" = 6!tr C − 2" , !3.17"

where C is the Cauchy–Green tensor, or equivalently, the pullback of the spatial metric, CAB
=Fa

AFb
Bgab, and 6 is a material constant. We will assume that this form holds for an isotropic

material under thermal expansion, and, in particular, we assume that there is no explicit tempera-
ture dependence in the free energy apart from the dependence through C. In components

2 = 6!Fa
AFb

BgabGAB − 2" . !3.18"

The “2” is of no particular significance: when the material metric is fixed, it just shifts the free
energy by a constant. When the material metric changes as in !2.3", its contribution to the free
energy is proportional to the temperature-dependent material volume, which, for a given tempera-
ture distribution, is independent of the spatial configuration. We ignore this term and use 2
=2!X ,C"=6 tr C as our definition of the free energy.

Let us assume that initially the material has a flat annular shape R1(R(R2 without any
stresses, at a uniform temperature T0. We would like to calculate the stresses that occur in the new
equilibrium configuration after we change the temperature in a rotationally symmetric way, T
=T!R". In polar coordinates, the spatial metric and its inverse read

g = (grr gr!

g!r g!!
) = (1 0

0 r2 ), g−1 = (grr gr!

g!r g!! ) = (1 0

0 1/r2 ) , !3.19"

and thus det g=r2. The only nonzero connection coefficients are

)!!
r = − r, )r!

! = )!r
! = 1/r . !3.20"

For the temperature-dependent material metric we have

G = (GRR GR,

G,R G,,
) = (1 0

0 R2 )e2%!T!R"", G−1 = (GRR GR,

G,R G,, ) = (1 0

0 1/R2 )e−2%!T!R"",

!3.21"

and thus, det G=R2e4%!T!R"". The following nonzero connection coefficients are needed in the
balance of linear momentum:

4RR
R = '!!R", 4,,

R = − R − R2'!!R", 4R,
, = 4,R

, = 1/R + '!!R" . !3.22"

In terms of the thermal expansion coefficient, these are given as
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4RR
R = $T!!R", 4,,

R = − R − R2$T!!R", 4R,
, = 4,R

, = 1/R + $T!!R" . !3.23"

Given the temperature distribution T=T!R", we are looking for solutions of the form

&!R,," = !r,!" = !r!R",," . !3.24"

Thus

F = (r!!R" 0

0 1
), F−1 = (1/r!!R" 0

0 1
) . !3.25"

This gives the Jacobian as

J =
rr!

Re2%!T" . !3.26"

Incompressibility dictates that

rr! = Re2%!T". !3.27"

This differential equation has the following solution:

r2!R" = 2
R1

R

27e2%!T!7""d7 + r1
2!R" . !3.28"

Note that r1!R" is not known a priori and will be obtained after imposing the traction boundary
conditions at r1 and r2.

In incompressible elasticity, PaA is replaced by PaA−Jp!F−1"A
bgab, where p is an unknown

scalar field !pressure" that will be determined using the constraint J=1,24 i.e.

PaA = 26Fa
BGAB − p!R"!F−1"A

bgab. !3.29"

Therefore, using !3.27", we get the nonzero-stress components as

PrR =
26R

r
− p!R"

r

R
e−2%!T!R"", P!, =

26

R2 e−2%!T!R"" −
p!R"

r2 , !3.30"

where p!R" is an unknown pressure.
Balance of linear momentum in components reads

PaA
'A =

$PaA

$XA + 4AB
A PaB + PbA)bc

a Fc
A = 0. !3.31"

For the radial direction, a=r, we have

PrA
'A =

$PrA

$XA + 4AB
A PrB + PbA)bc

r Fc
A =

$PrR

$R
+ !4RR

R + 4,R
, "PrR + P!,)!!

r F!
,

=
$PrR

$R
+ ( 1

R
+ 2$T!!R")PrR − rP!, = 0. !3.32"

This gives

p!!R" =
26R

r2 e2%!T!R""*2!1 + $RT!" −
R2

r2 e2%!T!R"" −
r2

R2e−2%!T!R""+ . !3.33"

Assuming that p!Ri"=0, we obtain
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p!R" = 2
Ri

R 267

r2!7"
e2%!T!7""*2!1 + $!7"7T!!7"" −

72

r2!7"
e2%!T!7"" −

r2!7"
72 e−2%!T!7""+d7 . !3.34"

For a=!, balance of momentum !3.31" gives

P!A
'A =

$P!,

$,
+ 4A,

A P!, + P!R)rr
! Fr

R + P!,)!!
! F!

, = !4R,
R + 4,,

, "P!, = 0. !3.35"

i.e., this equilibrium equation is trivially satisfied. Therefore, given the temperature distribution
T!R", we can calculate all the thermal stresses analytically.

IV. LINEARIZED THEORY OF THERMAL STRESSES

In this section, we linearize the governing equations of the nonlinear theory presented in Sec.
III about a reference motion. Geometric linearization of elasticity was first introduced by Marsden
and Hughes24 and was further developed by Yavari and Ozakin.37 See also Ref. 28 for similar
discussions. Here, we start with a temperature-dependent material manifold and its motion in an
ambient space. Given a reference motion, we are interested in obtaining the linearized governing
equations with respect to this motion. We will assume that the ambient space manifold is Euclid-
ean. This is not a necessary assumption but it provides a natural setting for most practical prob-
lems of interest and will simplify the subsequent calculations. For simplicity, we will restrict
attention to time-independent solutions.

Suppose a given material with a temperature distribution T!X" and the related material metric
G is in a static equilibrium configuration &. The balance of linear momentum for this material
body reads

Div P + /0B = 0. !4.1"

Now suppose we change the temperature of this material by a small amount #T!X". This will
change the material metric to G!=G+#G, and & will no longer describe a static equilibrium
configuration. A nearby equilibrium configuration may be given by &!=&+#&, and the stress in
this new equilibrium configuration will be P!=P+#P. One would like to calculate the change in
the stress !or the configuration", for a given small change in temperature !see Fig. 5".

While the spirit of this setup is familiar from other linearization problems, some care is
needed in interpreting its meaning. P!X" is a two-point tensor !it has components in both the
material and the ambient spaces: PaA" based at X and &!X", whereas P!!X" is based at X and
&!!X". Defining #P!X"=P!−P is nontrivial for a general ambient space metric. This is related to
the fact that subtracting tangent vectors at different points in a manifold is only defined with

FIG. 5. !Color online" Motion of a continuum with temperature changes.

032902-20 A. Ozakin and A. Yavari J. Math. Phys. 51, 032902 "2010!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



respect to a choice of a path connecting the two points, on which a parallel transport is to be
performed. By restricting our attention to a Euclidean ambient space we sidestep this issue, using
the natural, path-independent parallel transport in Euclidean space. Another issue is the definition
of #&=&!−&. While one can use coordinate systems to make approximate sense of this equation
for two nearby maps, it is a little troublesome geometrically, since the subtraction of two maps
between manifolds is not defined geometrically.

The linearization procedure can be put to firmer footing if instead of talking about two nearby
configurations and the differences of various quantities for these configurations, we describe the
situation in terms of a one-parameter family of configurations around a reference configuration
and calculate the derivatives of various quantities with respect to the parameter. These derivatives
will capture the behavior of the solution as a function of the parameter for small values of the
latter. Thus, let T8!X" be a one-parameter family of temperature distributions on our material
manifold, G8 be the corresponding family of material metrics, &8 be the equilibrium configura-
tions, and P8 be the stresses. Let 8=0 describe the reference equilibrium configuration.33 Now, for
a fixed point X in the material manifold, &8!X" describes a curve in the spatial manifold, and its
derivative at 8=0 gives a vector U!X" at &!X"

U!X" = 3d&8!X"
d8

3
8=0

. !4.2"

Considering #&%8!d&8 /d8", we see that a more rigorous version of #& is the vector field U.
Similarly, one has

#G % 83 d

d8
3

8=0
G8. !4.3"

When the change in G is due to a change in T, we have

3 d

d8
3

8=0
G8 = 2

d%

dT
3dT

$8
3

8=0
G = *G , !4.4"

where *=2!d% /dT"!dT /d8" '8=0=2$!T8"!dT /d8"8=0.
Now consider, in the absence of body forces, the equilibrium equation Div P=0 for the family

of temperature distributions parametrized by 8

Div8 P8 = 0 . !4.5"

Linearization of !4.5" is defined as24,37

3 d

d8
3

8=0
!Div8 P8" = 0 . !4.6"

Once again, one should note that since the equilibrium configuration is different for each 8, P8 is
based at different points in the ambient space for different values of 8, and in order to calculate the
derivative with respect to 8, one, in general, needs to use the connection !parallel transport" in the
ambient space. For the Euclidean case we are considering and a Cartesian coordinate system xa,
this is trivial. In components !4.6" reads

$PaA!8"
$XA + 4AB

A !8"PaB!8" = 0. !4.7"

Thus, the linearized balance of linear momentum reads

$

$XA3 d

d8
3

8=0
PaA!8" + *3 d

d8
3

8=0
4AB

A !8"+PaB + 4AB
A 3 d

d8
3

8=0
PaB!8" = 0. !4.8"

Note that
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FaA = gac $2

$Fc
A

, !4.9"

where 2=2!X ,T ,F ,G ,g" is the material free energy density. In calculating dPaA!8" /d8, we need
to consider the changes in F and G due to the change in the equilibrium configuration, i.e.

dPaA!8"
d8

=
$PaA

$Fb
B

dFb
B

d8
+

$PaA

$GCD

dGCD

d8
. !4.10"

Defining

AaA
b

B =
$PaA

$Fb
B

= gac $22

$Fb
B $ Fc

A

and BaACD =
PaA

GCD
=

$22

$GCD $ Fc
A

, !4.11"

where the derivatives are to be evaluated at the reference configuration 8=0 and noting that

3dFa
A

d8
3

8=0
=

$Ua

$XA , !4.12"

we obtain

3 d

d8
3

8=0
PaA!8" = AaA

b
BUb

,B + BaACDGCD* . !4.13"

Using

4BC
A =

1
2

GAD( $GBD

$XC +
$GCD

$XB −
$GBC

$XD ) !4.14"

and

dGAB

d8
= − GACGBD$GBD

$8
, !4.15"

and plugging into !4.4", we obtain

3 d

d8
3

8=0
4AB

A !8" =
3
2

$*

$XB . !4.16"

With these results, the linearized balance of linear momentum !4.6" becomes

!AaA
b

BUb
,B",A + !BaACDGCD*",A +

3
2

$*

$XB PaB = 0. !4.17"

Assuming that A and B are independent of X, the linearized equilibrium equations are simplified
to read

AaA
b

B $2Ub

$XA $ XB + BaACDGCD
$*

$XA +
3
2

$*

$XB PaB = 0. !4.18"

If the initial configuration is stress-free, we have

AaA
b

B $2Ub

$XA $ XB = − BaACDGCD
$*

$XA . !4.19"

Let us next show that these results agree with those of classical thermoelasticity. We first consider
a special class of isotropic materials.

Saint–Venant–Kirchhoff materials. Saint–Venant–Kirchhoff materials have a constitutive rela-
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tion that is analogous to that of linear isotropic materials, namely, the second Piola–Kirchhoff
stress S is given in terms of the Lagrangian strain E= 1

2 !C−G" as24

S = 9!tr E"G−1 + 26E , !4.20"

or in components

SCD = 9EABGABGCD + 26ECD =
9

2
!CABGAB − 3"GCD + 6!CABGACGBD − GCD" , !4.21"

where 9=9!X" and 6=6!X" are two scalars characterizing the material properties. This means
that S is a linear function of E. We next show that for this class of materials linearization of our
geometric theory leads to linear governing equations that are identical to those of the classical
linear theory of thermal stresses for linear, isotropic materials. We will show later in this section
that this is true for any elastic material.

We can obtain the tensor BaCAB from S as follows:

BaCAB =
$

$GAB
(gab $:

$Fb
C
) =

$PaC

$GAB
= Fa

D
$SCD

$GAB
. !4.22"

Using

$GAB

$GMN
= − GAMGBN, !4.23"

we obtain

BaACDGCD = −2 CMNFa
B!9GABGMN + 26GAMGBN" + !39 + 26"Fa

BGAB. !4.24"

The initial metric is Euclidean; in Cartesian coordinates, GAB=#AB. Since the ambient space is also
Euclidean, we can choose a Cartesian coordinate system whose axes coincide with the initial
location of the material points along the material Cartesian axis. This will give Fa

A=#A
a , where a

and A both range over 1, 2, 3. This gives

BaACDGCD = −
39 + 26

2
#aA. !4.25"

Similarly, for an initially stress-free material manifold, we obtain

AaA
b

B = Fa
MFc

Ngbc#9GAMGBN + 6!GABGMN + GANGBM"$ . !4.26"

For the case of an initially Euclidean material manifold with Cartesian coordinates we have

AaA
b

B $2Ub

$XA $ XB = !9 + 6"Ub,ab + 6Ua,bb. !4.27"

Therefore, Eq. !4.19" reads

!9 + 6"Ub,ab + 6Ua,bb =
39 + 26

2
$*

$xa
. !4.28"

Recalling *=2$!dT /d8" '8=0, and assuming for simplicity that $ is constant, we have

$*

$xa
= 2$

$

$xa
3dT

d8
3

8=0
. !4.29"

Hence
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!9 + 6"Ub,ab + 6Ua,bb = !39 + 26"$
$

$xa
3dT

d8
3

8=0
. !4.30"

In the classical theory of thermal stresses, stress-strain relations in the presence of tempera-
tures changes can be written as

;ij = Cijkl!8kl − $#kl<T" , !4.31"

where Cijkl is the elasticity tensor. In this sense thermal strains are understood as “eigenstrains.”
Equilibrium equations in the absence of body forces read

Cijkl8kl,j = Cijkk$
$<T

$xj
, !4.32"

where once again we have assumed that the elasticity tensor and the coefficient of thermal expan-
sion are constants. When the material is isotropic, Cijkl=6!#ik# jl+#il# jk"+9#ij#kl, and hence

Cijkl8kl,j = 6ui,j j + !9 + 6"uj,ji !4.33"

and

Cijkk$
$<T

$xj
= !26 + 39"$

$<T

$xi
. !4.34"

Thus, equilibrium equations read

6ui,j j + !9 + 6"uj,ji = !26 + 39"$
$<T

$xi
. !4.35"

Recalling that dT /d8 '8=0 is the linearized version of temperature change, i.e., #T%8!dT /d8" ' 8=0
and that U is the geometric version of displacement, it is seen that the linearization of the
geometric theory for Saint–Venant–Kirchhoff materials results in governing equations that are
identical to those of the classical isotropic linear theory.

Let us now see if this holds for more general constitutive equations of the geometric theory.
For a stress-free !Euclidean" initial configuration, the linearized balance of linear momentum is
given by

!AaA
b

BUb
,B + BaACD#CD*",A = 0. !4.36"

Assuming GAB=#AB and Fa
A=#A

a as above, an identity proven in Ref. 24 becomes

AaA
b

B = 2CCADBFc
DFa

Cgcb = 2CCADB#D
c #C

a #bc = 2CaAbB. !4.37"

Noting that *=2$!dT /d8" '8=0, !4.36" becomes

(CaAbBU,B
b + BaACC$3dT

d8
3

8=0
)

,A
= 0. !4.38"

Identifying superscripts and subscripts, identifying the spatial and material indices !by aligning the
material and spatial Cartesian coordinates as above", and using symmetries of C, we can write

(Cljki8ki + Bljkk$3dT

d8
3

8=0
)

,j
= 0. !4.39"

This is identical to !4.31" if

Bljkk = − Cljki#ki = − Cljkk. !4.40"
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Let us first show that this relation always holds for isotropic materials. For isotropic materials
it can be shown that21,22,36

$2

$C
· C +

$2

$G
· G = 0. !4.41"

Or in components

$2

$CAC
CCB +

$2

$GAC
GCB = 0. !4.42"

Note that

B =
$P
$G

= F
$S
$G

= 2F
$22

$C $ G
. !4.43"

Differentiating !4.41" with respect to C and noting that the initial configuration is stress free we
obtain

$22

$C $ C
· C +

$22

$C $ G
· G = 0. !4.44"

Or

1
2C · C + 1

2F−1B · G = 0. !4.45"

Noting that Fa
A=#a

A and CAB=GAB, !4.45" is identical to !4.40".
We now show that Eq. !4.40" holds even for anisotropic elastic solids. For showing this we

use the fact that if the material is thermally homogeneous !i.e., if the thermal expansion properties
do not depend on position" a uniform temperature change <T does not lead to any thermal
stresses. Starting from a stress-free Euclidean configuration, for a uniform temperature change,
one has

#Fa
A = Ua

,A = $<T#a
A and #S = 0. !4.46"

We also know S=S!C ,G", thus

#S =
$S
$C

· #C +
$S
$G

· #G = C · #C + 2$<TF−1B · G = 0. !4.47"

But note that37

#CAB = gabFa
AUb

'B' + gabFb
BUa

'A' = #ab#A
a!$<T#B

b" + #ab#B
b!$<T#A

a" = 2$<T#AB. !4.48"

Substituting !4.48" into !4.47", one obtains !4.40"! In summary, we have proven the following
proposition.

Proposition: Linearization of the present geometric theory yields governing equations that are
identical to those of classical linear elasticity.

V. CONCLUSIONS

In this paper, we presented a geometric theory of thermal stresses in which the material
manifold is temperature dependent. Given a temperature distribution, the material metric is a
Riemannian metric that is obtained by a !nonuniform" rescaling of a reference metric. In particu-
lar, starting from a Euclidean stress-free reference manifold, a nonuniform temperature distribu-
tion leads to a non-Euclidean material manifold. We studied the stress-free temperature distribu-
tions by looking at conditions that guarantee flatness of a Riemannian metric. We recovered some
known facts from the linear theory of thermal stresses and obtained some new results for finite
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deformations. We showed that, in addition to uniform temperature distributions, there are other
zero-stress temperature distributions. We obtained all such temperature distributions. We also
studied the inverse problem, i.e., given a temperature distribution, what inhomogeneous coeffi-
cients of thermal expansion give zero stresses. In the present theory, there is no need to introduce
an “intermediate” configuration. We made an explicit connection between our geometric theory
and the previous works on multiplicative decomposition of deformation gradient in the presence of
temperature changes. Given a temperature distribution, we obtained the temperature-dependent
governing equations. In order to demonstrate the power of the geometric theory, we solved the
example of an axisymmetric temperature distribution and obtained some exact results. We showed
that the linearization of the present geometric theory about a stress-free configuration results in
governing equations that are identical to those of the classical linear thermoelasticity.

Geometric formulation of the coupled problem of elastic deformations with heat conduction
will be studied in a future communication. The ideas presented in this paper can also be used in
modeling bodies with growing mass. Growth and remodeling in biological systems is an important
phenomenon and a geometric study will shed light on the coupling between growth/remodeling
and elastic deformations.

APPENDIX: DIFFERENTIAL GEOMETRY AND CLASSICAL GEOMETRIC ELASTICITY

In this section, in order to make the paper self-contained, we review some notation from
geometric elasticity. For more details refer to Refs. 24, 1, and 25. By classical geometric elasticity
we mean elasticity of bodies with stationary defects !if any" and a fixed material manifold. We
extended this theory for thermal deformations in Sec. III.

For a smooth n-manifold M, the tangent space to M at a point p!M is denoted TpM and the
whole tangent bundle is denoted TM. We denote by B a reference manifold for our body and by
S the space in which the body moves. We assume that B and S are Riemannian manifolds with
metrics G and g, respectively. Local coordinates on B are denoted by /XA0 and those on S by /xa0.

A deformation of the body is a C1 embedding & :B→S . The tangent map of & is denoted
F=T& :TB→TS, which is often called the deformation gradient. In local charts on B and S, the
tangent map of & is given by the Jacobian matrix of partial derivatives of the components of & as

F = T&:TB → TS, T&!X,Y" = !&!X",D&!X" · Y" . !A1"

If Y is a vector field on B, then &"Y=T& ·Y #&−1, or using the F notation, &"Y=F ·Y #&−1 is
a vector field on &!B" called the push forward of Y by &. Similarly, if y is a vector field on
&!B"!S, then &"y=T!&−1" ·y #& is a vector field on B and is called the pullback of y by &.

The cotangent bundle of a manifold M is denoted T"M and the fiber at a point p!M !the
vector space of one-forms at p" is denoted by Tp

"M. If * is a one-form on S, i.e., a section of the
cotangent bundle T"S, then the one-form on B defined as

!&"*"X · VX = *&!X" · !T& · VX" = *&!X" · !F · VX" !A2"

for X!B and VX!TXB, is called the pullback of * by &. Similarly, the push forward of a
one-form $ on B is the one form on &!B" defined by &"$= !&−1""$.

We can associate a vector field *! with a one-form * on a Riemannian manifold M through
the equation

-*x,vx. = --*x
!,vx..x, !A3"

where - , . denotes the natural pairing between the one form *x!Tx
"M and the vector vx!TxM and

where --*x
! ,vx..x denotes the inner product between *x

!!TxM and vx!TxM induced by the
metric g. In coordinates, the components of *! are given by *a=gab*b.

A type ! m
n

"-tensor at X!B is a multilinear map
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T:TX
! B ! ¯ ! TX

! B

m copies

! TXB ! ¯ ! TXB

n copies

→ R . !A4"

T is said to be contravariant of order m and covariant of order n. In a local coordinate chart

T!$1, . . . ,$m,V1, . . . ,Vn" = Ti1. . .im
j1. . .jn

$i1
1 ¯ $im

m V1
j1 ¯ Vn

jn, !A5"

where $k!TX
" B and Vk!TXB.

A two-point tensor T of type ! m r
n s

" at X!B over a map, i.e. & :B→S is a multilinear map,

T:TX
! B ! ¯ ! TX

! B

m copies

! TXB ! ¯ ! TXB

n copies

! Tx
!S ! ¯ ! Tx

!S

r copies

! TxS ! ¯ ! TxS

s copies

→ R ,

!A6"
where x=&!X".

Let y be a vector field on S and & :B→S a regular and orientation preserving C1 map. The
Piola transform of y is defined as

Y = J&"y , !A7"

where J is the Jacobian of &. If Y is the Piola transform of y, then the Piola identity holds:

Div Y = J!div y" # & . !A8"

A p-form on a manifold M is a skew-symmetric ! 0
p

"-tensor. The space of p-forms on M is
denoted by 'p!M". If & :M→N is a regular and orientation preserving C1 map and $
!'p!&!M"", then

2
&!M"

$ = 2
M

&"$ . !A9"

Let - :E→S be a vector bundle over a manifold S and let E!S" be the space of smooth
sections of E and X!S" the space of vector fields on S. A connection on E is a map # :X!S"
=E!S"→E!S", such that ∀f , f1 , f2!C>!S" , ∀a1 ,a2!R:

!i" # f1X1+f2X2
Y = f1#X1

Y + f2#X2
Y , !A10"

!ii" #X!a1Y1 + a2Y2" = a1#X!Y1" + a2#X!Y2" , !A11"

!iii" #X!fY" = f#XY + !Xf"Y . !A12"

A linear connection on S is a connection on TS, i.e., # :X!S"=X!S"→X!S". In a local chart

#$i
$ j = )ij

k $k, !A13"

where )ij
k are Christoffel symbols of the connection and $i=$ /$xi. A linear connection is said to be

compatible with the metric of the manifold if

#X--Y,Z.. = --#XY,Z.. + --Y,#XZ.. . !A14"

It can be shown that # is compatible with g if and only if #g=0. Torsion of a connection is
defined as

T!X,Y" = #XY − #YX − #X,Y$ , !A15"

where

#X,Y$!F" = X!Y!F"" − Y!X!F"" ∀ F ! C>!S" !A16"
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is the commutator of X and Y. # is symmetric if it is torsion-free, i.e.

#XY − #YX = #X,Y$ . !A17"

It can be shown that on any Riemannian manifold !S ,g" there is a unique linear connection # that
is compatible with g and is torsion-free with the following Christoffel symbols:

)ij
k =

1
2

gkl( $gjl

$xi +
$gil

$xj −
$gij

$xl ) . !A18"

This is the fundamental lemma of Riemannian geometry19 and this connection is called the
Levi–Civita connection.

Curvature tensor R of a Riemannian manifold !S ,g" is a ! 1
3

"-tensor R :Tx
"S=TxS=TxS

=TxS→R defined as

R!$,w1,w2,w3" = $!#w1
#w2

w3 − #w2
#w1

w3 − ##w1,w2$w3" !A19"

for $!Tx
"S ,w1 ,w2 ,w3!TxS. In a coordinate chart /xa0

Ra
bcd =

$)bd
a

$xc −
$)bc

a

$xd + )ce
a )bd

e − )de
a )bc

e . !A20"

Note that for an arbitrary vector field w

wa
'bc − wa

'cb = Ra
bcdwd + Td

cbwa
'd. !A21"

An n-dimensional Riemannian manifold is flat if it is isometric to Euclidean space. A Riemannian
manifold is flat if and only if its curvature tensor vanishes. A Riemannian manifold !B ,G" is
conformally flat if there exists a smooth map f :B→R, such that G= f", where " is the Euclidean
metric. In isothermal coordinates the Riemannian metric has the following local form:

G = f!X"!dX1
2 + ¯ + dXn

2" . !A22"

It is know that2 any 2D Riemannian manifold is conformally flat and the map f is unique. A
corollary of this theorem in our theory of thermal stresses is the following. Given any smooth
curved 2D solid that is stress free, there exists a unique change of temperature distribution such
that in the new temperature distribution the 2D solid is flat and still stress-free. Equivalently,
starting from a stress free flat sheet, it is always possible to deform it to any smooth curved shape
by changing temperature without imposing any residual stresses.

For a Riemannian manifold !B ,G" the Weyl–Schouten tensor is defined as30

CIJK = #KRIJ − #JRIK −
1
4
(GIJ

$R
$XK − GIK

$R
$XJ) , !A23"

where RIJ and R are the Ricci tensor and the scalar curvature, respectively. A necessary and
sufficient condition for a Riemannian manifold !B ,G" to be conformally flat is C=0 when
dim B=3.

1. Absolute parallelizable „AP… geometry

In many physical problems in which deformation is coupled with other phenomena, e.g.,
plasticity, growth/remodeling, thermal expansion/contraction, etc., all one can hope to do is to
locally decouple the elastic deformations from the inelastic deformations. This has led to many
works that start from a decomposition of deformation gradient F=FeFi, where Fe is the elastic
deformation gradient and Fi is the remaining local deformation or inelastic deformation gradient.

Given an inelastic deformation gradient, here a thermal deformation gradient, a vector in the
tangent space of X!B, i.e., W!TXB is mapped to another vector Ŵ=FTW. Traditionally these
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vectors are assumed to lie in the tangent bundle of an “intermediate configuration.” In the litera-
ture, intermediate configuration is not clearly defined, and at first glance it seems to be more or
less mysterious as was explained in Sec. II B. These are closely related to parallelizable manifolds
#or absolutely parallelizable !AP" manifolds$ going back to the works of Eisenhart.7,8 See also
Refs. 38 and 35. In an n-dimensional AP-manifold M, one starts with a field of n linearly inde-
pendent vectors /E!A"0 that span the tangent vector at each point. Let us denote the components of
E!A" by E!A"

I . The dual vectors, i.e., the corresponding basis vectors for the cotangent space are
denoted by /E!A"0 with components /EI

!A"0. Note that

EI
!A"E!B"

I = #B
A and EI

!A"E!A"
J = #J

I . !A24"

One is then interested in equipping M with a connection 4JK
I , such that the basis vectors /E!A"0 are

covariantly constant, i.e. !equivalently, the tangent bundle is a trivial bundle, so that the associated
principal bundle of linear frames has a section on M"

E!A"'J
I = 0. !A25"

Note that

E!A"'JK
I − E!A"'KJ

I = RI
LJKE!A"

L + TL
KJE!A"'L

I . !A26"

Thus, !A25" implies that

RI
LJK = 0 !A27"

i.e., M is flat with respect to the connection 4JK
I . Note that

E!A"'J
I =

$E!A"
I

$XJ + 4JK
I E!A"

K . !A28"

Thus

EL
!A"

$E!A"
I

$XJ + 4LK
I = 0. !A29"

Hence

4JK
I = − EJ

!A"
$E!A"

I

$XK = EI
!A"$EJ

!A"

$XK . !A30"

This is similar in form to the connections used by many authors, e.g., in Refs. 4 and 13 for
dislocations, in Ref. 9 for material inhomogeneities, and in Ref. 31 for thermal stresses.

Looking at local charts /XA0 and /UI0 for the reference and intermediate configurations, we
have

dUI = !FT"I
AdXA. !A31"

!FT"I
A can be identified with E!A"

I , and hence

4JK
I = !FT"I

A

$!FT
−1"A

J

$XK !A32"

is the connection used in Refs. 31 and 32. Note that this connection is curvature free but has
nonvanishing torsion.
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2. Geometric elasticity

Let us next review a few of the basic notions of geometric continuum mechanics. A body B is
identified with a Riemannian manifold B and a configuration of B is a mapping & :B→S , where
S is another Riemannian manifold. The set of all configurations of B is denoted C. A motion is a
curve c :R→C ; t!&t in C. It is assumed that the body is stress-free in the material manifold.

For a fixed t, &t!X"=&!X , t" and for a fixed X, &X!t"=&!X , t", where X is position of material
points in the undeformed configuration B. The material velocity is the map Vt :B→R3 given by

Vt!X" = V!X,t" =
$&!X,t"

$t
=

d

dt
&X!t" . !A33"

Similarly, the material acceleration is defined by

At!X" = A!X,t" =
$V!X,t"

$t
=

d

dt
VX!t" . !A34"

In components

Aa =
$Va

$t
+ )bc

a VbVc, !A35"

where )bc
a is the Christoffel symbol of the local coordinate chart /xa0. Note that A does not depend

on the connection coefficients of the material manifold.
Here it is assumed that &t is invertible and regular. The spatial velocity of a regular motion &t

is defined as

vt:&t!B" → R3, vt = Vt # &t
−1, !A36"

and the spatial acceleration at is defined as

a = v̇ =
$v
$t

+ #vv . !A37"

In components

aa =
$va

$t
+

$va

$xb vb + )bc
a vbvc. !A38"

Let & :B→S be a C1 configuration of B in S, where B and S are manifolds. Recall that the
deformation gradient is the tangent map of & and is denoted by F=T&. Thus, at each point X
!B, it is a linear map

F!X":TXB → T&!X"S . !A39"

If /xa0 and /XA0 are local coordinate charts on S and B, respectively, the components of F are

Fa
A!X" =

$&a

$XA !X" . !A40"

The deformation gradient may be viewed as a two-point tensor

F!X":Tx
"S = TXB → R; !$,V" ! -$,TX& · V. . !A41"

Suppose B and S are Riemannian manifolds with inner products -- , ..X and -- , ..x based at X
!B and x!S, respectively. Recall that the transpose of F is defined by
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FT:TxS → TXB, --FV,v..x = --V,FTv..X !A42"

for all V!TXB , v!TxS. In components

!FT!X""A
a = gab!x"Fb

B!X"GAB!X" , !A43"

where g and G are metric tensors on S and B, respectively. On the other hand, the dual of F, a
metric independent notion, is defined by

F#!x":Tx
"S → TX

" B, -F#!x" · $,W. = -$,F!X"W. , !A44"

for all $!Tx
"S ,W!TXB. Considering bases ea and EA for S and B, respectively, one can define

the corresponding dual bases ea and EA. The matrix representation of F# with respect to the dual
bases is the transpose of FA

a . F and F# have the following local representations:

F = Fa
A

$

$xa ! dXA, F# = Fa
AdXA

!
$

$xa . !A45"

The right Cauchy–Green deformation tensor is defined by

C!X":TXB → TXB, C!X" = F!X"TF!X" . !A46"

In components

CA
B = !FT"A

aFa
B. !A47"

It is straightforward to show that

C" = &"!g" = F#gF, i.e. CAB = !gab # &"Fa
AFb

B. !A48"

Let &t :B→S be a regular motion of B in S and P!B a p-dimensional submanifold. The
transport theorem says that for any p-form $ on S

d

dt
2

&t!P"
$ = 2

&t!P"
Lv$ , !A49"

where v is the spatial velocity of the motion. In a special case when $= fdv and P=U is an open
set, one can write

d

dt
2

&t!P"
fdv = 2

&t!P"
* $ f

$t
+ div!fv"+dv . !A50"
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