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A B S T R A C T

Universal deformations of an elastic solid are deformations that can be achieved for all possible
strain–energy density functions and suitable boundary conditions. They play a central role in
nonlinear elasticity and their classification has been mostly accomplished for isotropic solids
following Ericksen’s seminal work. Here, we address the same problem for transversely isotropic,
orthotropic, and monoclinic solids. In this case, there are no general solutions unless universal
material preferred directions are also specified. First, we show that for compressible transversely
isotropic, orthotropic, and monoclinic solids universal deformations are homogeneous and that
the material preferred directions are uniform as well. Second, for incompressible transversely
isotropic, orthotropic, and monoclinic solids we derive the corresponding universality constraints.
These are constraints that are imposed by equilibrium equations and the arbitrariness of the
energy function. We show that these constraints include those of incompressible isotropic solids.
Hence, we consider the known universal deformations for each of the six known families
of universal deformations for isotropic solids and find the corresponding universal material
preferred directions for transversely isotropic, orthotropic, and monoclinic solids. This work
provides a systematic way to study fiber-reinforced elastic solids analytically.

. Introduction

Universal (controllable) deformations for a given class of materials are those deformations that can be maintained in the absence
f body forces by applying only boundary tractions for all strain–energy functions in that class. In the case of (unconstrained)
ompressible isotropic elastic solids, Ericksen (1955) proved that the only universal deformations are homogeneous deformations.
he constrained case is more involved (Saccomandi, 2001). For instance, in the case of incompressible isotropic solids, Ericksen
1954), motivated by the earlier works of Rivlin (1948, 1949a,b), found four families of universal deformations. He conjectured
hat a deformation with constant principal strain invariants must be homogeneous. Fosdick (1966) found a counter-example, and
his led to the discovery of a fifth family of universal deformations independently by Singh and Pipkin (1965) and Klingbeil and
hield (1966). The six known families of universal deformations are:

• Family 0: Homogeneous deformations
• Family 1: Bending, stretching, and shearing of a rectangular block
• Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell
• Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge
• Family 4: Inflation/inversion of a sector of a spherical shell

∗ Corresponding author at: School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
E-mail address: arash.yavari@ce.gatech.edu (A. Yavari).
vailable online 20 August 2021
022-5096/© 2021 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.jmps.2021.104598
eceived 17 June 2021; Accepted 25 July 2021

http://www.elsevier.com/locate/jmps
http://www.elsevier.com/locate/jmps
mailto:arash.yavari@ce.gatech.edu
https://doi.org/10.1016/j.jmps.2021.104598
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2021.104598&domain=pdf
https://doi.org/10.1016/j.jmps.2021.104598


Journal of the Mechanics and Physics of Solids 156 (2021) 104598A. Yavari and A. Goriely

s
S
1
d
2
w

T

a

T
N
G
a

• Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge
Carroll (1967) and Fosdick (1968) showed that these families are universal dynamically as well for those motions whose acceleration
is curl-free, i.e., is gradient of a potential function. Ericksen’s problem in the case of incompressible isotropic solids has not been
completely solved to this date as the case of deformations with constant principal invariants is still open but the conjecture is
that there is no other possible family. In the setting of linear elasticity, Yavari et al. (2020) showed that universal displacements
explicitly depend on the material symmetry class; the smaller the symmetry group is the smaller the corresponding space of universal
displacements is. Yavari and Goriely (2016) showed that in compressible anelasticity universal deformations are covariantly
homogeneous. For the generalization of Ericksen’s work to incompressible anelasticity, Goodbrake et al. (2020) showed that a key
feature of the analysis is that the extra fields entering the analysis should follow the same symmetry as the deformation.

There has not been any systematic study of universal deformations in anisotropic solids. Ericksen and Rivlin (1954) analyzed a
ubset of Family 1 for two cases of homogeneous anisotropy. They also analyzed Family 3 for an example of homogeneous anisotropy.
ee also (Adkins, 1955a,b). Yet, we know plenty of examples of anisotropic fiber-reinforced systems (Spencer, 1982; Qiu and Pence,
997) with one (i.e. transversely isotropic) or two (i.e. orthotropic) specified material preferred directions that sustain universal
eformations either in rectangular (Melnik and Goriely, 2013) or helical geometry (Holzapfel et al., 2000; Demirkoparan and Pence,
007; Goriely and Tabor, 2013; Demirkoparan and Pence, 2015; Goriely, 2017). The question is then to find all such systems. Here,
e do not specify the material preferred directions a priori; we find conditions for the existence of universal deformations and then

find the universal material preferred directions that satisfy these constraints.
We consider the following six classes of anisotropic materials: (i) compressible transversely isotropic, (ii) compressible or-

thotropic, (iii) compressible monoclinic, (iv) incompressible transversely isotropic, (v) incompressible orthotropic, and (vi) incom-
pressible monoclinic solids. Using the representation of Cauchy stress for each class we find the universality constraints imposed by
both the equilibrium equations in the absence of body forces, and the arbitrariness of the energy function. Perhaps unsurprisingly,
our analysis shows that the set of universality constraints for each class includes those of isotropic solids. In the case of compressible
solids it implies that universal deformations must be homogeneous and we show that the extra universality constraints force the
universal material preferred directions to be uniform for non-isochoric deformations. In the case of incompressible solids we find,
for each of the six known families of universal deformations, the corresponding universal material preferred directions assuming
that they respect the symmetry of the universal deformations encoded in the right Cauchy–Green tensor.

This paper is organized as follows. In Section 2 we briefly review nonlinear anisotropic elasticity. In Section 3, we consider
compressible transversely isotropic, orthotropic, and monoclinic solids. The universal deformations and universal material preferred
directions of incompressible transversely isotropic solids are analyzed for each of the known six families in Section 4. In Sections 5
and 6 similar analyses are presented for incompressible orthotropic and incompressible monoclinic solids. Conclusions are given in
Section 7.

2. Nonlinear anisotropic elasticity

Kinematics. In nonlinear anelasticity a body B is identified with a Riemannian manifold (B,𝐆), where 𝐆 is the material metric that
characterizes the natural distances in the body. In nonlinear elasticity, which is the focus of this paper (B,𝐆) is a submanifold of the
Euclidean 3-space. A deformation of the body is a mapping 𝜑 ∶ B → S, where (S, 𝐠) is another Riemannian manifold — the ambient
space, which is assumed to be the Euclidean 3-space. The material velocity 𝐕𝑡 ∶ B → 𝑇𝜑𝑡(𝐗)S is defined as 𝐕𝑡(𝐗) = 𝐕(𝐗, 𝑡) = 𝜕𝜑(𝐗,𝑡)

𝜕𝑡 .
The spatial velocity is defined as 𝐯 = 𝐕◦𝜑−1

𝑡 . The primary object to study deformations in nonlinear elasticity is the deformation
gradient, which is the tangent map (or derivative) of 𝜑 and is denoted by 𝐅 = 𝑇𝜑. At each material point 𝐗 ∈ B, deformation
gradient is a linear map 𝐅(𝐗) ∶ 𝑇𝐗B → 𝑇𝜑(𝐗)S. With respect to local coordinate charts {𝑥𝑎} and {𝑋𝐴} on S and B, respectively, the
deformation gradient has components

𝐹 𝑎𝐴(𝐗) =
𝜕𝜑𝑎

𝜕𝑋𝐴 (𝐗) . (2.1)

he transpose of deformation gradient is defined as

𝐅𝖳 ∶ 𝑇𝐱S → 𝑇𝐗B, ⟨⟨𝐅𝐕, 𝐯⟩⟩𝐠 = ⟨⟨𝐕,𝐅𝖳𝐯⟩⟩𝐆, ∀𝐕 ∈ 𝑇𝐗B, 𝐯 ∈ 𝑇𝐱S , (2.2)

nd has components

(𝐹 𝖳(𝐗))𝐴𝑎 = 𝑔𝑎𝑏(𝐱)𝐹 𝑏𝐵(𝐗)𝐺𝐴𝐵(𝐗) . (2.3)

he right Cauchy–Green deformation tensor is defined as 𝐂(𝑋) = 𝐅(𝐗)𝖳𝐅(𝐗) ∶ 𝑇𝐗B → 𝑇𝐗B and has components 𝐶𝐴𝐵 = (𝐹 𝖳)𝐴𝑎𝐹 𝑎𝐵 .
ote that 𝐶𝐴𝐵 = (𝑔𝑎𝑏◦𝜑)𝐹 𝑎𝐴𝐹 𝑏𝐵 , which means that 𝐂♭ = 𝜑∗(𝐠), where ♭ is the flat operator induced by the metric 𝐠. The left Cauchy–
reen deformation tensor is defined as 𝐁♯ = 𝜑∗(𝐠♯), which has components 𝐵𝐴𝐵 = (𝐹−1)𝐴𝑎(𝐹−1)𝐵𝑏 𝑔𝑎𝑏. The spatial analogues of 𝐂♭
nd 𝐁♯ are 𝐜♭ and 𝐛♯, respectively, and are defined as

𝐜♭ = 𝜑∗(𝐆), 𝑐𝑎𝑏 =
(

𝐹−1)𝐴
𝑎
(

𝐹−1)𝐵
𝑏 𝐺𝐴𝐵 ,

♯ ♯ 𝑎𝑏 𝑎 𝑏 𝐴𝐵
(2.4)
2

𝐛 = 𝜑∗(𝐆 ), 𝑏 = 𝐹 𝐴𝐹 𝐵𝐺 .



Journal of the Mechanics and Physics of Solids 156 (2021) 104598A. Yavari and A. Goriely

B

w
P
t

T

w
v

C

w
e
n
i
f
t

N

I
i

S

w

w

T
t
𝐗

𝐛♯ is called the Finger deformation tensor. The tensors 𝐂 and 𝐛 have the same principal invariants 𝐼1, 𝐼2, and 𝐼3 (Ogden, 1984),
which are defined as

𝐼1 = tr 𝐛 = 𝑏𝑎𝑎 = 𝑏𝑎𝑏 𝑔𝑎𝑏,

𝐼2 =
1
2
(

𝐼21 − tr 𝐛2
)

= 1
2
(

𝐼21 − 𝑏𝑎𝑏 𝑏𝑏𝑎
)

= 1
2
(

𝐼21 − 𝑏𝑎𝑏𝑏𝑐𝑑 𝑔𝑎𝑐 𝑔𝑏𝑑
)

,

𝐼3 = det 𝐛.

(2.5)

alance laws. Conservation of mass and the balance of linear and angular momenta in material form read
𝜕𝜌0
𝜕𝑡

= 0, (2.6)

Div𝐏 + 𝜌0𝐁 = 𝜌0𝐀, (2.7)
𝐏𝐅𝖳 = 𝐅𝐏𝖳, (2.8)

here 𝜌0 is the material mass density, 𝐁 is body force per unit undeformed volume, 𝐀 is the material acceleration, and 𝐏 is the first
iola–Kirchhoff stress. The relation between 𝐏 and the Cauchy stress 𝝈 is 𝐽𝜎𝑎𝑏 = 𝑃 𝑎𝐴𝐹 𝑏𝐴, where 𝐽 is the Jacobian of deformation
hat relates the material (𝑑𝑉 ) and spatial (𝑑𝑣) Riemannian volume forms as 𝑑𝑣 = 𝐽𝑑𝑉 , and is defined as

𝐽 =
√

det 𝐠
det𝐆

det 𝐅 . (2.9)

he balance equations in terms of the spatial mass density 𝜌 and the Cauchy stress 𝝈 read

𝐋𝐯𝜌 = 0, (2.10)
div𝝈 + 𝜌𝐛 = 𝜌𝐚, (2.11)
𝝈𝖳 = 𝝈, (2.12)

here 𝐛 = 𝐁◦𝜑−1
𝑡 , 𝐚 is the spatial acceleration, and 𝐋𝐯𝜌 is the Lie derivative of the spatial mass density with respect to the spatial

elocity.

onstitutive equations. For an anisotropic hyperelastic solid the energy function (per unit undeformed volume) is written as

𝑊 = �̂� (𝐂♭,𝐆, 𝜻1,… , 𝜻𝑛) , (2.13)

here 𝜻 𝑖, 𝑖 = 1,… , 𝑛 are the structural tensors that characterize the material symmetry group of the solid. Structural tensors make the
nergy function an isotropic function of its arguments. Hilbert’s theorem tells us that for any finite number of tensors there is a finite
umber of isotropic invariants that form an integrity basis for the space of isotropic invariants of the collection of tensors. Therefore,
f 𝐼𝑗 , 𝑗 = 1,… , 𝑚, form an integrity basis for the set of tensors in (2.13), one has 𝑊 = 𝑊 (𝑋, 𝐼1,… , 𝐼𝑚). Using the Doyle–Ericksen
ormula (Doyle and Ericksen, 1956; Marsden and Hughes, 1994; Yavari et al., 2006), one obtains the following representation for
he second Piola–Kirchhoff stress tensor

𝐒 = 2 𝜕�̂�
𝜕𝐂♭

=
𝑚
∑

𝑗=1
2𝑊𝑗

𝜕𝐼𝑗
𝜕𝐂♭

, 𝑊𝑗 ∶=
𝜕𝑊
𝜕𝐼𝑗

, 𝑗 = 1,… , 𝑚 . (2.14)

ote that 𝑆𝐴𝐵 = (𝐹−1)𝐴𝑎𝑃 𝑎𝐵 = 𝐽 (𝐹−1)𝐴𝑎(𝐹−1)𝐵𝑏 𝜎𝑎𝑏.

sotropic solids. For an isotropic solid, the energy function has the form 𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3), where 𝐼1, 𝐼2, and 𝐼3 are the principal
nvariants of the right Cauchy–Green deformation tensor given in (2.5). From (2.14) we have

𝐒 = 2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐼3𝐂−2) + 2𝑊3𝐼3𝐂−1 . (2.15)

imilarly, the Cauchy stress has the representation

𝜎𝑎𝑏 = 2
√

𝐼3

[

𝑊1𝑏
𝑎𝑏 + (𝐼2𝑊2 + 𝐼3𝑊3)𝑔𝑎𝑏 − 𝐼3𝑊2 𝑐

𝑎𝑏] , (2.16)

here 𝑐𝑎𝑏 = (𝐹−1)𝑀𝑚(𝐹−1)𝑁𝑛𝐺𝑀𝑁𝑔𝑎𝑚𝑔𝑏𝑛. For incompressible isotropic solids 𝐼3 = 1, and one writes

𝐒 = −𝑝𝐂−1 + 2𝑊1𝐆♯ − 2𝑊2𝐂−2 , (2.17)

here 𝑝 is the Lagrange multiplier associated with the incompressibility constraint 𝐽 =
√

𝐼3 = 1. The Cauchy stress similarly reads

𝜎𝑎𝑏 = −𝑝𝑔𝑎𝑏 + 2𝑊1𝑏
𝑎𝑏 − 2𝑊2 𝑐

𝑎𝑏 . (2.18)

ransversely isotropic solids. A transversely isotropic solid has a single material preferred direction at every point that is normal to
he plane of isotropy at that point. Let us assume that the unit vector 𝐍(𝐗) identifies the material preferred direction at a point

♭

3

∈ B. The energy function has the form 𝑊 = 𝑊 (𝐆,𝐂 ,𝐀), where 𝐀 = 𝐍 ⊗ 𝐍 is a structural tensor (Doyle and Ericksen, 1956;
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Spencer, 1982; Lu and Papadopoulos, 2000). The energy function 𝑊 depends on the following five independent invariants

𝐼1 = tr 𝐂 , 𝐼2 = det 𝐂 tr 𝐂−1 , 𝐼3 = det 𝐂 , 𝐼4 = 𝐍 ⋅ 𝐂 ⋅ 𝐍 , 𝐼5 = 𝐍 ⋅ 𝐂2 ⋅ 𝐍 . (2.19)

n components

𝐼1 = 𝐶𝐴𝐴 , 𝐼2 = det(𝐶𝐴𝐵)(𝐶−1)𝐷𝐷 , 𝐼3 = det(𝐶𝐴𝐵) , 𝐼4 = 𝑁𝐴𝑁𝐵𝐶𝐴𝐵 , 𝐼5 = 𝑁𝐴𝑁𝐵𝐶𝐵𝑀𝐶
𝑀
𝐴 . (2.20)

he second Piola–Kirchhoff stress tensor is written as

𝐒 =
5
∑

𝑗=1
2𝑊𝑗

𝜕𝐼𝑗
𝜕𝐂♭

, 𝑊𝑗 ∶=
𝜕𝑊
𝜕𝐼𝑗

, 𝑗 = 1,… , 5 , (2.21)

here

𝜕𝐼1
𝜕𝐂♭

= 𝐆♯ ,
𝜕𝐼2
𝜕𝐂♭

= 𝐼2𝐂−1 − 𝐼3𝐂−2 ,
𝜕𝐼3
𝜕𝐂♭

= 𝐼3𝐂−1 ,
𝜕𝐼4
𝜕𝐂♭

= 𝐍⊗ 𝐍 ,
𝜕𝐼5
𝜕𝐂♭

= 𝐍⊗ (𝐂 ⋅ 𝐍) + (𝐂 ⋅ 𝐍)⊗ 𝐍 . (2.22)

rom (2.22), the second Piola–Kirchhoff stress tensor has the following representation

𝐒 = 2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐼3𝐂−2) + 2𝑊3𝐼3𝐂−1 + 2𝑊4 (𝐍⊗ 𝐍) + 2𝑊5 [𝐍⊗ (𝐂 ⋅ 𝐍) + (𝐂 ⋅ 𝐍)⊗ 𝐍] . (2.23)

he Cauchy stress tensor has the following component representation (Ericksen and Rivlin, 1954; Golgoon and Yavari, 2018a,b)

𝜎𝑎𝑏 = 2
√

𝐼3

[

𝑊1𝑏
𝑎𝑏 + (𝐼2𝑊2 + 𝐼3𝑊3)𝑔𝑎𝑏 − 𝐼3𝑊2 𝑐

𝑎𝑏 +𝑊4 𝑛
𝑎𝑛𝑏 +𝑊5 𝓁

𝑎𝑏] , (2.24)

here 𝑛𝑎 = 𝐹 𝑎𝐴𝑁𝐴, and 𝓁𝑎𝑏 = 𝑛𝑎𝑏𝑏𝑐 𝑛𝑐 + 𝑛𝑏𝑏𝑎𝑐 𝑛𝑐 . For an incompressible transversely isotropic solid (𝐼3 = 1), 𝑊 = 𝑊
(

𝐼1, 𝐼2, 𝐼4, 𝐼5
)

.
hus

𝐒 = −𝑝𝐂−1 + 2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐂−2) + 2𝑊4 (𝐍⊗ 𝐍) + 2𝑊5 [𝐍⊗ (𝐂 ⋅ 𝐍) + (𝐂 ⋅ 𝐍)⊗ 𝐍] . (2.25)

he Cauchy stress tensor is represented in components as (Ericksen and Rivlin, 1954; Spencer, 1986; Golgoon and Yavari, 2018a,b)

𝜎𝑎𝑏 = −𝑝𝑔𝑎𝑏 + 2𝑊1𝑏
𝑎𝑏 − 2𝑊2 𝑐

𝑎𝑏 + 2𝑊4 𝑛
𝑎𝑛𝑏 + 2𝑊5(𝑛𝑎𝑏𝑏𝑐𝑛𝑑𝑔𝑐𝑑 + 𝑛𝑏𝑏𝑎𝑐𝑛𝑑𝑔𝑐𝑑 ) . (2.26)

rthotropic solids. Orthotropic solids at every point have reflection symmetry with respect to three mutually perpendicular planes.
uppose that three 𝐆-orthonormal vectors 𝐍1(𝐗), 𝐍2(𝐗), and 𝐍3(𝐗) specify the orthotropic axes in the reference configuration at
point 𝐗. One choice of structural tensors is 𝐀1 = 𝐍1 ⊗ 𝐍1, 𝐀2 = 𝐍2 ⊗ 𝐍2, and 𝐀3 = 𝐍3 ⊗ 𝐍3. However, only two of them are

ndependent as 𝐀1 + 𝐀2 + 𝐀3 = 𝐈. Thus, the energy function has the functional form 𝑊 = 𝑊 (𝐆,𝐂♭,𝐀1,𝐀2) (Doyle and Ericksen,
956; Spencer, 1982; Lu and Papadopoulos, 2000) and is represented in terms of the following seven independent invariants

𝐼1 = tr 𝐂 , 𝐼2 = det 𝐂 tr 𝐂−1 , 𝐼3 = det 𝐂 , 𝐼4 = 𝐍1 ⋅ 𝐂 ⋅ 𝐍1 , 𝐼5 = 𝐍1 ⋅ 𝐂2 ⋅ 𝐍1 , 𝐼6 = 𝐍2 ⋅ 𝐂 ⋅ 𝐍2 , 𝐼7 = 𝐍2 ⋅ 𝐂2 ⋅ 𝐍2 . (2.27)

hus

𝐒 =
7
∑

𝑗=1
2𝑊𝑗

𝜕𝐼𝑗
𝜕𝐂♭

, 𝑊𝑗 ∶=
𝜕𝑊
𝜕𝐼𝑗

, 𝑗 = 1,… , 7 . (2.28)

he second Piola–Kirchhoff stress tensor has the following representation

𝐒 =2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐼3𝐂−2) + 2𝑊3𝐼3𝐂−1 + 2𝑊4
(

𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
[

𝐍1 ⊗ (𝐂 ⋅ 𝐍1) + (𝐂 ⋅ 𝐍1)⊗ 𝐍1
]

+ 2𝑊6
(

𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
[

𝐍2 ⊗ (𝐂 ⋅ 𝐍2) + (𝐂 ⋅ 𝐍2)⊗ 𝐍2
]

.
(2.29)

he Cauchy stress tensor is represented in component form as (Smith and Rivlin, 1958; Spencer, 1986; Golgoon and Yavari, 2018a,b)

𝜎𝑎𝑏 = 2
√

𝐼3

[

𝑊1𝑏
𝑎𝑏 + (𝐼2𝑊2 + 𝐼3𝑊3)𝑔𝑎𝑏 − 𝐼3𝑊2 𝑐

𝑎𝑏 +𝑊4 𝑛
𝑎
1𝑛
𝑏
1 +𝑊5

(

𝑛𝑎1𝑏
𝑏𝑐𝑛𝑑1𝑔𝑐𝑑 + 𝑛

𝑏
1𝑏
𝑎𝑐𝑛𝑑1𝑔𝑐𝑑

)

+𝑊6 𝑛
𝑎
2𝑛
𝑏
2 +𝑊7

(

𝑛𝑎2𝑏
𝑏𝑐𝑛𝑑2𝑔𝑐𝑑 + 𝑛

𝑏
2𝑏
𝑎𝑐𝑛𝑑2𝑔𝑐𝑑

)

]

,
(2.30)

here 𝑛𝑎 = 𝐹 𝑎 𝑁𝐴, and 𝑛𝑎 = 𝐹 𝑎 𝑁𝐴.
4

1 𝐴 1 2 𝐴 2
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For incompressible orthotropic solids (𝐼3 = 1), 𝑊 = 𝑊
(

𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6, 𝐼7
)

. Therefore, using (2.29), one obtains the following
epresentation

𝐒 = −𝑝𝐂−1 + 2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐂−2) + 2𝑊4
(

𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
[

𝐍1 ⊗ (𝐂 ⋅ 𝐍1) + (𝐂 ⋅ 𝐍1)⊗ 𝐍1
]

+ 2𝑊6
(

𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
[

𝐍2 ⊗ (𝐂 ⋅ 𝐍2) + (𝐂 ⋅ 𝐍2)⊗ 𝐍2
]

.
(2.31)

Similarly, the Cauchy stress tensor is given as

𝜎𝑎𝑏 = −𝑝𝑔𝑎𝑏 + 2𝑊1𝑏
𝑎𝑏 − 2𝑊2 𝑐

𝑎𝑏 + 2𝑊4 𝑛
𝑎
1 𝑛

𝑏
1 + 2𝑊5 𝓁

𝑎𝑏
1 + 2𝑊6 𝑛

𝑎
2 𝑛

𝑏
2 + 2𝑊7 𝓁

𝑎𝑏
2 , (2.32)

here 𝓁𝑎𝑏1 = 𝑛𝑎1 𝑏
𝑏𝑐 𝑛𝑑1 𝑔𝑐𝑑 + 𝑛

𝑏
1 𝑏

𝑎𝑐 𝑛𝑑1 𝑔𝑐𝑑 , and 𝓁𝑎𝑏2 = 𝑛𝑎2 𝑏
𝑏𝑐 𝑛𝑑2 𝑔𝑐𝑑 + 𝑛

𝑏
2 𝑏

𝑎𝑐 𝑛𝑑2 𝑔𝑐𝑑 .

onoclinic solids. An example of a transversely isotropic solid is a composite that is made of an isotropic matrix reinforced by a
ingle family of aligned fibers (Spencer, 1986). At the macroscopic scale fibers are the integral curves of the vector field 𝐍. Similarly,
n orthotropic solid can be visualized as an isotropic matrix reinforced by two orthogonal families of fibers. For a monoclinic solid
1 ⋅𝐍2 ≠ 0 but 𝐍3 is still normal to the plane of 𝐍1 and 𝐍2 (Merodio and Ogden, 2020). For such solids, the energy function depends
n nine invariants (Spencer, 1986). Seven of them are identical to the orthotropic invariants (2.27). The two extra invariants are

𝐼8 = g𝐍1 ⋅ 𝐂 ⋅ 𝐍2, 𝐼9 = g2 , (2.33)

here g = 𝐍1 ⋅𝐍2. The term g is included in the expression of 𝐼8 to ensure that 𝐼8 is invariant under both transformations 𝐍1 → −𝐍1,
nd 𝐍2 → −𝐍2. Note that

𝜕𝐼8
𝜕𝐂♭

=
g

2
(

𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1
)

,
𝜕𝐼9
𝜕𝐂♭

= 𝟎 . (2.34)

rom 𝑊 = 𝑊 (𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9), one obtains

𝐒 =2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐼3𝐂−2) + 2𝑊3𝐼3𝐂−1 + 2𝑊4
(

𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
[

𝐍1 ⊗ (𝐂 ⋅ 𝐍1) + (𝐂 ⋅ 𝐍1)⊗ 𝐍1
]

+ 2𝑊6
(

𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
[

𝐍2 ⊗ (𝐂 ⋅ 𝐍2) + (𝐂 ⋅ 𝐍2)⊗ 𝐍2
]

+ g𝑊8
(

𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1
)

.
(2.35)

he Cauchy stress has the component representation

𝜎𝑎𝑏 = 2
√

𝐼3

[

𝑊1𝑏
𝑎𝑏 + (𝐼2𝑊2 + 𝐼3𝑊3)𝑔𝑎𝑏 − 𝐼3𝑊2 𝑐

𝑎𝑏 +𝑊4 𝑛
𝑎
1𝑛
𝑏
1 +𝑊5

(

𝑛𝑎1 𝑏
𝑏𝑐 𝑛𝑑1 𝑔𝑐𝑑 + 𝑛

𝑏
1 𝑏

𝑎𝑐 𝑛𝑑1 𝑔𝑐𝑑
)

+𝑊6 𝑛
𝑎
2𝑛
𝑏
2 +𝑊7

(

𝑛𝑎2 𝑏
𝑏𝑐 𝑛𝑑2 𝑔𝑐𝑑 + 𝑛

𝑏
2 𝑏

𝑎𝑐 𝑛𝑑2 𝑔𝑐𝑑
)

+ g𝑊8
(

𝑛𝑎1 𝑛
𝑏
2 + 𝑛

𝑏
1 𝑛

𝑎
2
)

]

.
(2.36)

or incompressible monoclinic solids (𝐼3 = 1), 𝑊 = 𝑊
(

𝐼1, 𝐼2, 𝐼4, 𝐼5, 𝐼6, 𝐼7, 𝐼8, 𝐼9
)

. Therefore, using (2.29), one obtains the following
epresentation

𝐒 = −𝑝𝐂−1 + 2𝑊1𝐆♯ + 2𝑊2
(

𝐼2𝐂−1 − 𝐂−2) + 2𝑊4
(

𝐍1 ⊗ 𝐍1
)

+ 2𝑊5
[

𝐍1 ⊗ (𝐂 ⋅ 𝐍1) + (𝐂 ⋅ 𝐍1)⊗ 𝐍1
]

+ 2𝑊6
(

𝐍2 ⊗ 𝐍2
)

+ 2𝑊7
[

𝐍2 ⊗ (𝐂 ⋅ 𝐍2) + (𝐂 ⋅ 𝐍2)⊗ 𝐍2
]

+ g𝑊8
(

𝐍1 ⊗ 𝐍2 + 𝐍2 ⊗ 𝐍1
)

.
(2.37)

imilarly, the Cauchy stress tensor is given as

𝜎𝑎𝑏 = −𝑝𝑔𝑎𝑏 + 2𝑊1𝑏
𝑎𝑏 − 2𝐼3𝑊2 𝑐

𝑎𝑏 + 2𝑊4 𝑛
𝑎
1 𝑛

𝑏
1 + 2𝑊5 𝓁

𝑎𝑏
1 + 2𝑊6 𝑛

𝑎
2 𝑛

𝑏
2 + 2𝑊7 𝓁

𝑎𝑏
2 +𝑊8 𝓁

𝑎𝑏
3 , (2.38)

here 𝓁𝑎𝑏3 = g(𝑛𝑎1 𝑛
𝑏
2 + 𝑛

𝑏
1 𝑛

𝑎
2).

emark 2.1. In many references (Merodio and Ogden, 2006; Vergori et al., 2013) the dependence of the energy function on 𝐼9 is
gnored since from (2.34)2 it does not enter the expression of stress. However, in finding the universality constraints one cannot
gnore this dependence as we will see in Section 6.

. Compressible anisotropic solids

ransversely isotropic solids. Let us consider a body made of a compressible transversely isotropic solid. At this point we do not
pecify the material preferred direction 𝐍. In the absence of body forces, the equilibrium equations are div𝝈 = 𝟎, and in components
𝑎𝑏 𝑎𝑏 𝑎 𝑐𝑏 𝑏 𝑎𝑐 𝑎 1 𝑔𝑎𝑘

(

𝑔 + 𝑔 − 𝑔
)

are the Christoffel symbols of the Levi-Civita connection
5

|𝑏 = 𝜎 ,𝑏 + 𝛾 𝑏𝑐𝜎 + 𝛾 𝑏𝑐𝜎 = 0, where 𝛾 𝑏𝑐 = 2 𝑘𝑏,𝑐 𝑘𝑐,𝑏 𝑏𝑐,𝑘



Journal of the Mechanics and Physics of Solids 156 (2021) 104598A. Yavari and A. Goriely

T
𝑊

H

N

w

T

T

N
t

i
d

T

S

associated with the metric 𝐠. It is convenient to use Cartesian coordinates in the ambient space, and hence, 𝜎𝑎𝑏,𝑏 = 0. The Cauchy
stress has the representation (2.24). Substituting (2.24) into the equilibrium equations one obtains

− 𝐼
− 3

2
3 𝐼3,𝑏

[

𝑊1𝑏
𝑎𝑏 + (𝐼2𝑊2 + 𝐼3𝑊3)𝛿𝑎𝑏 − 𝐼3𝑊2 𝑐

𝑎𝑏 +𝑊4 𝑛
𝑎𝑛𝑏 +𝑊5𝓁

𝑎𝑏]

+ 2𝐼
− 1

2
3

[

(𝐼2,𝑏𝑊2 + 𝐼2𝑊2,𝑏 + 𝐼3,𝑏𝑊3 + 𝐼3𝑊3,𝑏)𝛿𝑎𝑏 +𝑊1𝑏
𝑎𝑏
,𝑏 +𝑊1,𝑏𝑏

𝑎𝑏 − 𝐼3,𝑏𝑊2 𝑐
𝑎𝑏 − 𝐼3𝑊2,𝑏 𝑐

𝑎𝑏 − 𝐼3𝑊2 𝑐
𝑎𝑏
,𝑏

+ 𝑊4,𝑏 𝑛
𝑎 𝑛𝑏 +𝑊4 𝑛

𝑎
,𝑏 𝑛

𝑏 +𝑊4 𝑛
𝑎 𝑛𝑏,𝑏 +𝑊5,𝑏 𝓁

𝑎𝑏 +𝑊5 𝓁
𝑎𝑏
,𝑏

]

= 0 .

(3.1)

his should hold for an arbitrary energy function. As 𝑊 is an arbitrary function of its arguments, the coefficient of 𝑊1, 𝑊2, 𝑊3,
4, and 𝑊5 must vanish separately. Therefore

𝑊1 ∶ 𝑏𝑎𝑏,𝑏 = 0 ,

𝑊2 ∶ 𝐼2,𝑏𝛿
𝑎𝑏 − 𝐼3𝑐𝑎𝑏,𝑏 = 0 ,

𝑊3 ∶ 𝐼3,𝑏 = 0 ,

𝑊4 ∶ (𝑛𝑎𝑛𝑏),𝑏 = 0 ,

𝑊5 ∶ 𝓁𝑎𝑏,𝑏 = 0 .

(3.2)

ence, (3.1) is simplified to read

𝑏𝑎𝑏𝑊1,𝑏 + (𝐼2𝛿𝑎𝑏 − 𝐼3 𝑐𝑎𝑏)𝑊2,𝑏 + 𝐼3𝛿𝑎𝑏𝑊3,𝑏 + 𝑛𝑎 𝑛𝑏𝑊4,𝑏 + 𝓁𝑎𝑏𝑊5,𝑏 = 0 . (3.3)

ote that (𝐼3,𝑏 = 0)

𝑊1,𝑏 = 𝑊11𝐼1,𝑏 +𝑊12𝐼2,𝑏 +𝑊14𝐼4,𝑏 +𝑊15𝐼5,𝑏 ,

𝑊2,𝑏 = 𝑊12𝐼1,𝑏 +𝑊22𝐼2,𝑏 +𝑊24𝐼4,𝑏 +𝑊25𝐼5,𝑏 ,

𝑊3,𝑏 = 𝑊13𝐼1,𝑏 +𝑊23𝐼2,𝑏 +𝑊34𝐼4,𝑏 +𝑊35𝐼5,𝑏 ,

𝑊4,𝑏 = 𝑊14𝐼1,𝑏 +𝑊24𝐼2,𝑏 +𝑊44𝐼4,𝑏 +𝑊45𝐼5,𝑏 ,

𝑊5,𝑏 = 𝑊15𝐼1,𝑏 +𝑊25𝐼2,𝑏 +𝑊45𝐼4,𝑏 +𝑊55𝐼5,𝑏 ,

(3.4)

here 𝑊𝑖𝑗 =
𝜕2𝑊
𝜕𝐼𝑖𝜕𝐼𝑗

. Substituting the above relations into (3.3) the coefficients of 𝑊13 and 𝑊23 read

𝑊13 ∶ 𝐼3𝐼1,𝑏𝛿
𝑎𝑏 = 0 ,

𝑊23 ∶ 𝐼3𝐼2,𝑏𝛿
𝑎𝑏 = 0 .

(3.5)

hus, 𝐼1,𝑏 = 𝐼2,𝑏 = 0. Substituting these into (3.4) and using (3.3) the coefficients of 𝑊34 and 𝑊35 read

𝑊34 ∶ 𝐼3𝐼4,𝑏𝛿
𝑎𝑏 = 0 ,

𝑊35 ∶ 𝐼3𝐼5,𝑏𝛿
𝑎𝑏 = 0 .

(3.6)

herefore, 𝐼4,𝑏 = 𝐼5,𝑏 = 0. In summary, we have the following universality constraints

𝐼1, 𝐼2, and 𝐼3 are constant, (3.7)

𝑏𝑎𝑏,𝑏 = 𝑐𝑎𝑏,𝑏 = 0 , (3.8)

𝐼4, and 𝐼5 are constant, (3.9)

(𝑛𝑎𝑛𝑏),𝑏 = 𝓁𝑎𝑏,𝑏 = 0 . (3.10)

ote that (3.7) and (3.8) are the universality constraints for isotropic solids (Ericksen, 1955; Yavari and Goriely, 2016) and imply
hat 𝐹 𝑎𝐴|𝐵 = 0, i.e., homogeneous deformations. Note that 𝐼4,𝑏 = 𝐼4,𝐴(𝐹−1)𝐴𝑏 = 0, and hence 𝐼4,𝐴 = 0. Similarly, 𝐼5,𝐴 = 0.

Suppose 𝐂♭ has eigenvalues 𝜆21 ≥ 𝜆22 ≥ 𝜆23. Let us consider a homogeneous deformation for which the eigenvalues are distinct,
.e., 𝜆21 > 𝜆22 > 𝜆23, and choose a Cartesian coordinate system {𝑋𝐴} for the reference configuration whose axes are the principal
irections of 𝐂♭. With respect to this coordinate system 𝐍 has components 𝑁𝐴. Knowing that 𝐍 is a unit vector we have

(

𝑁1)2 +
(

𝑁2)2 +
(

𝑁3)2 = 1 . (3.11)

he constraint 𝐼4 = 𝛼2 reads

𝜆21
(

𝑁1)2 + 𝜆22
(

𝑁2)2 + 𝜆23
(

𝑁3)2 = 𝛼2 . (3.12)

imilarly, the constraint 𝐼5 = 𝛽2 reads

4 ( 1)2 4 ( 2)2 4 ( 3)2 2
6

𝜆1 𝑁 + 𝜆2 𝑁 + 𝜆3 𝑁 = 𝛽 , (3.13)
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where 𝛼 and 𝛽 are constants. These three constraints can be written as a system of linear equations for 𝑑𝑁𝐴:

⎧

⎪

⎨

⎪

⎩

𝑁1𝑑𝑁1 +𝑁2𝑑𝑁2 +𝑁3𝑑𝑁3 = 0 ,
𝜆21𝑁

1𝑑𝑁1 + 𝜆22𝑁
2𝑑𝑁2 + 𝜆23𝑁

3𝑑𝑁3 = 0 ,
𝜆41𝑁

1𝑑𝑁1 + 𝜆42𝑁
2𝑑𝑁2 + 𝜆43𝑁

3𝑑𝑁3 = 0 .
(3.14)

he determinant of this linear system is 𝑁1𝑁2𝑁3(𝜆21 − 𝜆
2
2)(𝜆

2
2 − 𝜆

2
3)(𝜆

2
3 − 𝜆

2
1). If 𝑁1𝑁2𝑁3 ≠ 0, then 𝑑𝐍 = 𝟎, and hence 𝐍 is a constant

nit vector. Suppose 𝑁3 = 0 (𝑁1 = 0 or 𝑁2 = 0 would be similar). Thus

⎧

⎪

⎨

⎪

⎩

𝑁1𝑑𝑁1 +𝑁2𝑑𝑁2 = 0 ,
𝜆21𝑁

1𝑑𝑁1 + 𝜆22𝑁
2𝑑𝑁2 = 0 ,

𝜆41𝑁
1𝑑𝑁1 + 𝜆42𝑁

2𝑑𝑁2 = 0 .
(3.15)

sing the first equation, the second and third equations are simplified to read (𝜆21 − 𝜆22)𝑁
1𝑑𝑁1 = 0, and (𝜆41 − 𝜆42)𝑁

1𝑑𝑁1 = 0,
espectively. Thus, 𝑁1𝑑𝑁1 = 0. If 𝑁1 = 0, then

(

𝑁2)2 = 1, and hence 𝐍 is a constant unit vector. If 𝑑𝑁1 = 0, then 𝑁2𝑑𝑁2 = 0. If
2 = 0, then (𝑁1)2 = 1, and hence 𝐍 is a constant unit vector. If 𝑑𝑁2 = 0, then 𝐍 is a constant unit vector. Therefore, we conclude

hat 𝐍 is a constant unit vector.
There are two more universality constraints (3.10) that need to be checked. Note that

(𝑛𝑎𝑛𝑏),𝑏 =
(

𝐹 𝑎𝐴𝐹
𝑏
𝐵𝑁

𝐴𝑁𝐵)
,𝐶 (𝐹−1)𝐶𝑏 , (3.16)

hich trivially vanishes for homogeneous deformations and constant 𝐍. Similarly

𝓁𝑎𝑏,𝑏 = 𝓁𝑎𝑏,𝑀 (𝐹−1)𝑀𝑏 , (3.17)

nd

𝓁𝑎𝑏 = 𝑁𝐴𝑁𝐷𝐶𝐶𝐷𝛿
𝐵𝐶 (𝐹 𝑎𝐴𝐹 𝑏𝐵 + 𝐹 𝑏𝐴𝐹 𝑎𝐵) . (3.18)

or homogeneous deformations and constant 𝐍, 𝓁𝑎𝑏,𝑀 = 0, and hence 𝓁𝑎𝑏,𝑏 = 0 is trivially satisfied. In summary, we have proved
he following proposition.

roposition 3.1. For compressible nonlinear transversely isotropic solids the only universal deformations are homogeneous deformations,
nd the anisotropy must be homogeneous, i.e., the material preferred direction is everywhere the same constant unit vector 𝐍.

rthotropic solids. Using a similar argument, the universality constraints coming from the equilibrium equations for arbitrary
ompressible orthotropic solids are

𝐼1, 𝐼2, and 𝐼3 are constant , (3.19)

𝑏𝑎𝑏,𝑏 = 𝑐𝑎𝑏,𝑏 = 0 , (3.20)

𝐼4, and 𝐼5 are constant , (3.21)

(𝑛𝑎1 𝑛
𝑏
1),𝑏 = 𝓁𝑎𝑏1 ,𝑏 = 0 , (3.22)

𝐼6, and 𝐼7 are constant , (3.23)

(𝑛𝑎2 𝑛
𝑏
2),𝑏 = 𝓁𝑎𝑏2 ,𝑏 = 0 . (3.24)

he first two universality constraints imply that universal deformations must be homogeneous and the remaining universality
onstraints force the material preferred directions to be uniform.

roposition 3.2. For compressible nonlinear orthotropic solids the only universal deformations are homogeneous deformations, and the
nisotropy must be homogeneous, i.e., the material preferred directions are everywhere the same three mutually orthogonal constant unit
ectors 𝐍1,𝐍2, and 𝐍3.

onoclinic solids. In deriving the constraints (3.19)–(3.24) orthogonality of the material preferred directions was not used. This
eans that the same universality constraints must hold for monoclinic solids as well. In addition to (3.19)–(3.24), one has the

ollowing extra universality constraints:

𝐼8, and 𝐼9 are constant , (3.25)

(𝑛𝑎3 𝑛
𝑏
3),𝑏 = 𝓁𝑎𝑏3 ,𝑏 = 0 . (3.26)

herefore, universal deformations are homogeneous and 𝐍1,𝐍2, and 𝐍3 are constant unit vectors. This in turn implies that 𝐼8 and 𝐼9
re constant, and (3.25), (3.26) are trivially satisfied. Hence, equilibrium equations hold for arbitrary monoclinic energy functions.
7

herefore, in Proposition 3.2 ‘‘orthotropic’’ can be replaced by ‘‘monoclinic’’.
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4. Incompressible transversely isotropic elastic solids

In the absence of body forces, and using (2.26), the equilibrium equations read
1
2
𝑝,𝑏 𝑔

𝑎𝑏 =
[

𝑊1𝑏
𝑎𝑏 −𝑊2 𝑐

𝑎𝑏 +𝑊4 𝑛
𝑎𝑛𝑏 +𝑊5 𝓁

𝑎𝑏]
|𝑏 . (4.1)

r
1
2
𝑝,𝑎 = 𝑔𝑎𝑚

[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚𝑛𝑛 +𝑊5 𝓁

𝑚𝑛]
|𝑛 . (4.2)

hus
1
2
𝒅𝑝 = 1

2
𝑝,𝑎𝑑𝑥

𝑎 = 𝑔𝑎𝑚
[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚𝑛𝑛 +𝑊5 𝓁

𝑚𝑛]
|𝑛 𝑑𝑥

𝑎 , (4.3)

here 𝒅 is the exterior derivative. In other words, 𝝃 = 𝑔𝑎𝑚
[

𝑊1𝑏𝑚𝑛 −𝑊2 𝑐𝑚𝑛 +𝑊4 𝑛𝑚𝑛𝑛 +𝑊5 𝓁
𝑚𝑛]

|𝑛 𝑑𝑥
𝑎 is an exact 1-form. A necessary

ondition for 𝝃 to be an exact form is that 𝒅𝝃 = 𝟎 (Yavari, 2013). This is equivalent to 𝜉𝑎,𝑏 = 𝜉𝑏,𝑎. But note that 𝜉𝑎|𝑏 = 𝜉𝑎,𝑏 − 𝛾𝑐𝑎𝑏 𝜉𝑐 .
herefore, 𝜉𝑎,𝑏 = 𝜉𝑏,𝑎 is equivalent to 𝜉𝑎|𝑏 = 𝜉𝑏|𝑎, which is more convenient to use in curvilinear coordinates as the metric of the
mbient space is covariantly constant, i.e., 𝑔𝑎𝑏|𝑐 = 0. Thus, the universality constraints read

𝑔𝑎𝑚
[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚𝑛𝑛 +𝑊5 𝓁

𝑚𝑛]
|𝑛𝑏 = 𝑔𝑏𝑚

[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚𝑛𝑛 +𝑊5 𝓁

𝑚𝑛]
|𝑛𝑎 . (4.4)

One can write

𝜉𝑎|𝑏 = 𝑔𝑎𝑚
(

𝑊1𝑏
𝑚𝑛

|𝑛𝑏 −𝑊2 𝑐
𝑚𝑛

|𝑛𝑏 +𝑊4 (𝑛𝑚𝑛𝑛)|𝑛𝑏 +𝑊5 𝓁
𝑚𝑛

|𝑛𝑏 +𝑊1,𝑛𝑏
𝑚𝑛

|𝑏 −𝑊2,𝑛 𝑐
𝑚𝑛

|𝑏 +𝑊4,𝑛 (𝑛𝑚𝑛𝑛)|𝑏 +𝑊5,𝑛 𝓁
𝑚𝑛

|𝑏

+𝑊1,𝑏𝑏
𝑚𝑛

|𝑛 −𝑊2,𝑏 𝑐
𝑚𝑛

|𝑛 +𝑊4,𝑏 (𝑛𝑚𝑛𝑛)|𝑛 +𝑊5,𝑏 𝓁
𝑚𝑛

|𝑛 +𝑊1|𝑛𝑏𝑏
𝑚𝑛 −𝑊2|𝑛𝑏 𝑐

𝑚𝑛 +𝑊4|𝑛𝑏 𝑛
𝑚𝑛𝑛 +𝑊5|𝑛𝑏 𝓁

𝑚𝑛
)

.
(4.5)

ote that 𝑊𝑖 = 𝑊𝑖(𝐼1, 𝐼2, 𝐼4, 𝐼5), 𝑖 = 1, 2, 4, 5, and hence

𝑊1,𝑏 = 𝑊11𝐼1,𝑏 +𝑊12𝐼2,𝑏 +𝑊14𝐼4,𝑏 +𝑊15𝐼5,𝑏 ,

𝑊2,𝑏 = 𝑊12𝐼1,𝑏 +𝑊22𝐼2,𝑏 +𝑊24𝐼4,𝑏 +𝑊25𝐼5,𝑏 ,

𝑊4,𝑏 = 𝑊14𝐼1,𝑏 +𝑊24𝐼2,𝑏 +𝑊44𝐼4,𝑏 +𝑊45𝐼5,𝑏 ,

𝑊5,𝑏 = 𝑊15𝐼1,𝑏 +𝑊25𝐼2,𝑏 +𝑊45𝐼4,𝑏 +𝑊55𝐼5,𝑏 .

(4.6)

ote also that

𝑊1|𝑏𝑛 = 𝑊11𝐼1|𝑏𝑛 +𝑊12𝐼2|𝑏𝑛 +𝑊14𝐼4|𝑏𝑛 +𝑊15𝐼5|𝑏𝑛 +𝑊11,𝑛𝐼1,𝑏 +𝑊12,𝑛𝐼2,𝑏 +𝑊14,𝑛𝐼4,𝑏 +𝑊15,𝑛𝐼5,𝑏 . (4.7)

enoting the independent third order derivatives of the energy function by 𝑊𝑖𝑗𝑘 =
𝜕3𝑊

𝜕𝐼𝑖𝜕𝐼𝑗𝜕𝐼𝑘
, (𝑖 ≤ 𝑗 ≤ 𝑘), we have

𝑊11,𝑛 = 𝑊111𝐼1,𝑛 +𝑊112𝐼2,𝑛 +𝑊114𝐼4,𝑛 +𝑊115𝐼5,𝑛 ,

𝑊12,𝑛 = 𝑊112𝐼1,𝑛 +𝑊122𝐼2,𝑛 +𝑊124𝐼4,𝑛 +𝑊125𝐼5,𝑛 ,

𝑊14,𝑛 = 𝑊114𝐼1,𝑛 +𝑊124𝐼2,𝑛 +𝑊144𝐼4,𝑛 +𝑊145𝐼5,𝑛 ,

𝑊15,𝑛 = 𝑊115𝐼1,𝑛 +𝑊125𝐼2,𝑛 +𝑊145𝐼4,𝑛 +𝑊155𝐼5,𝑛 .

(4.8)

Therefore,
𝑊1|𝑏𝑛 = 𝑊11𝐼1|𝑏𝑛 +𝑊12𝐼2|𝑏𝑛 +𝑊14𝐼4|𝑏𝑛 +𝑊15𝐼5|𝑏𝑛

+ 𝑊111𝐼1,𝑛𝐼1,𝑏 +𝑊112(𝐼2,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼2,𝑏) +𝑊114(𝐼4,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼4,𝑏)

+ 𝑊115(𝐼5,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼5,𝑏) +𝑊122𝐼2,𝑛𝐼2,𝑏 +𝑊124(𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛)

+ 𝑊125(𝐼5,𝑛𝐼2,𝑏 + 𝐼2,𝑛𝐼5,𝑏) +𝑊144𝐼4,𝑛𝐼4,𝑏 +𝑊145(𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛)

+ 𝑊155𝐼5,𝑛𝐼5,𝑏 .

(4.9)

Similarly,

𝑊2|𝑏𝑛 = 𝑊12𝐼1|𝑏𝑛 +𝑊22𝐼2|𝑏𝑛 +𝑊24𝐼4|𝑏𝑛 +𝑊25𝐼5|𝑏𝑛
+ 𝑊112𝐼1,𝑛𝐼1,𝑏 +𝑊122(𝐼2,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼2,𝑏) +𝑊222𝐼2,𝑛𝐼2,𝑏
+ 𝑊244𝐼4,𝑛𝐼4,𝑏 +𝑊255𝐼5,𝑛𝐼5,𝑏 +𝑊124(𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛)

+ 𝑊125(𝐼5,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼5,𝑏) +𝑊224(𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛)

+ 𝑊225(𝐼5,𝑛𝐼2,𝑏 + 𝐼5,𝑏𝐼2,𝑛) +𝑊245(𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛) ,

(4.10)

𝑊4|𝑏𝑛 = 𝑊14𝐼1|𝑏𝑛 +𝑊24𝐼2|𝑏𝑛 +𝑊44𝐼4|𝑏𝑛 +𝑊45𝐼5|𝑏𝑛
+ 𝑊114𝐼1,𝑛𝐼1,𝑏 +𝑊224𝐼2,𝑛𝐼2,𝑏 +𝑊444𝐼4,𝑛𝐼4,𝑏 +𝑊455𝐼5,𝑛𝐼5,𝑏
+ 𝑊124(𝐼2,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼2,𝑏) +𝑊144(𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛)

+ 𝑊244(𝐼4,𝑛𝐼2,𝑏 + 𝐼2,𝑛𝐼4,𝑏) +𝑊145(𝐼5,𝑛𝐼1,𝑏 + 𝐼5,𝑏𝐼1,𝑛)

(4.11)
8

+ 𝑊245(𝐼5,𝑛𝐼2,𝑏 + 𝐼2,𝑛𝐼5,𝑏) +𝑊445(𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛) ,
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𝑊5|𝑏𝑛 = 𝑊15𝐼1|𝑏𝑛 +𝑊25𝐼2|𝑏𝑛 +𝑊45𝐼4|𝑏𝑛 +𝑊55𝐼5|𝑏𝑛
+ 𝑊115𝐼1,𝑛𝐼1,𝑏 +𝑊225𝐼2,𝑛𝐼2,𝑏 +𝑊445𝐼4,𝑛𝐼4,𝑏 +𝑊555𝐼5,𝑛𝐼5,𝑏
+ 𝑊125(𝐼2,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼2,𝑏) +𝑊145(𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼2,1)

+ 𝑊155(𝐼5,𝑛𝐼1,𝑏 + 𝐼1,𝑛𝐼5,𝑏) +𝑊245(𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛)

+ 𝑊255(𝐼5,𝑛𝐼2,𝑏 + 𝐼2,𝑛𝐼5,𝑏) +𝑊455(𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛) .

(4.12)

For 𝜉𝑎|𝑏 = 𝜉𝑏|𝑎 to hold the coefficient of each partial derivative must be symmetric. We define A𝜅
𝑎𝑏 as the matrix of coefficient

f 𝑊𝜅 , where 𝜅 is a multi-index. For isotropic solids there are 9 terms: 𝜅 ∈ Kiso = {1, 2, 11, 22, 12, 111, 222, 112, 122}. In the case of
ransversely isotropic solids there are 25 extra terms:

K = {4, 5, 44, 55, 14, 15, 24, 25, 45, 444, 555, 114, 115, 124, 125, 144, 145, 155, 224, 225, 244, 245, 255, 445, 455} . (4.13)

ach matrix provides 3 conditions so that there are, in total, 102 equations for the 8 unknowns given by the 6 components of the
inger tensor 𝐛♯ and the 2 independent components of the unit vector 𝐍. A deformation 𝜑 is universal with universal material
referred direction 𝐍 if and only if A𝜅

𝑎𝑏 is symmetric for all 𝜅 ∈ K ∪Kiso.

The analysis of this problem is greatly simplified by first considering the coefficients of the 9 terms that appear in the isotropic
ase as well, which are (Ericksen, 1954):

A1
𝑎𝑏 = 𝑏𝑛𝑎|𝑏𝑛 ,

A2
𝑎𝑏 = −𝑐𝑛𝑎 |𝑏𝑛 ,

A11
𝑎𝑏 = 𝑏𝑛𝑎|𝑛𝐼1,𝑏 +

(

𝑏𝑛𝑎𝐼1,𝑛
)

|𝑏 ,

A22
𝑎𝑏 = −𝑐𝑛𝑎 |𝑛𝐼2,𝑏 −

(

𝑐𝑛𝑎𝐼2,𝑛
)

|𝑏 ,

A12
𝑎𝑏 =

(

𝑏𝑛𝑎𝐼2,𝑛
)

|𝑏 + 𝑏
𝑛
𝑎|𝑛𝐼2,𝑏 −

[

(

𝑐𝑛𝑎𝐼1,𝑛
)

|𝑏 + 𝑐
𝑛
𝑎 |𝑛𝐼1,𝑏

]

,

A111
𝑎𝑏 = 𝑏𝑛𝑎𝐼1,𝑛𝐼1,𝑏 ,

A222
𝑎𝑏 = −𝑐𝑛𝑎𝐼2,𝑛𝐼2,𝑏 ,

A112
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼1,𝑏𝐼2,𝑛 + 𝐼1,𝑛𝐼2,𝑏
)

− 𝑐𝑛𝑎𝐼1,𝑛𝐼1,𝑏 ,

A122
𝑎𝑏 = 𝑏𝑛𝑎𝐼2,𝑏𝐼2,𝑛 − 𝑐

𝑛
𝑎
(

𝐼1,𝑏𝐼2,𝑛 + 𝐼1,𝑛𝐼2,𝑏
)

,

(4.14)

here 𝑏𝑛𝑎 = 𝑏𝑚𝑛𝑔𝑚𝑎, and 𝑐𝑛𝑎 = 𝑐𝑚𝑛𝑔𝑚𝑎.1 Symmetry of the nine terms in Eqs. (4.14), in addition to homogeneous deformations, admit
ive classes of deformations (Ericksen, 1954; Singh and Pipkin, 1965; Klingbeil and Shield, 1966). In the sequel, we will find the
niversal preferred material directions for these six families of deformations. The case of constant 𝐼1 and 𝐼2 is still an open problem,
or which we will not be able to say anything about the universal preferred material directions other than those of the Family 5
eformations.

For transversely isotropic solids, in addition to symmetry of these 9 terms, the following 25 terms must be symmetric as well.
he coefficients of the first-order and second-order derivatives of the energy function are:

A4
𝑎𝑏 = (𝑛𝑎𝑛𝑛)|𝑛𝑏 ,

A5
𝑎𝑏 = 𝓁𝑛𝑎 |𝑛𝑏 ,

A44
𝑎𝑏 = (𝑛𝑎𝑛𝑛)|𝑛𝐼4,𝑏 + (𝑛𝑎𝑛𝑛𝐼4,𝑛)|𝑏 ,

A55
𝑎𝑏 = 𝓁𝑛𝑎 |𝑛𝐼5,𝑏 + (𝓁𝑛𝑎𝐼5,𝑛)|𝑏 ,

A14
𝑎𝑏 = 𝑏𝑛𝑎|𝑛𝐼4,𝑏 + (𝑏𝑛𝑎𝐼4,𝑛)|𝑏 + (𝑛𝑎𝑛𝑛)|𝑛𝐼1,𝑏 + (𝑛𝑎𝑛𝑛𝐼1,𝑛)|𝑏 ,

A15
𝑎𝑏 = 𝑏𝑛𝑎|𝑛𝐼5,𝑏 + (𝑏𝑛𝑎𝐼5,𝑛)|𝑏 + 𝓁𝑛𝑎 |𝑛𝐼1,𝑏 + (𝓁𝑛𝑎𝐼1,𝑛)|𝑏 ,

A24
𝑎𝑏 = (𝑛𝑎𝑛𝑛)|𝑛𝐼2,𝑏 + (𝑛𝑎𝑛𝑛𝐼2,𝑛)|𝑏 −

[

𝑐𝑛𝑎 |𝑛𝐼4,𝑏 + (𝑐𝑛𝑎𝐼4,𝑛)|𝑏
]

,

A25
𝑎𝑏 = 𝓁𝑛𝑎 |𝑛𝐼2,𝑏 + (𝓁𝑛𝑎𝐼2,𝑛)|𝑏 −

[

𝑐𝑛𝑎 |𝑛𝐼5,𝑏 + (𝑐𝑛𝑎𝐼5,𝑛)|𝑏
]

,

A45
𝑎𝑏 = (𝑛𝑎𝑛𝑛)|𝑛𝐼5,𝑏 + (𝑛𝑎𝑛𝑛𝐼5,𝑛)|𝑏 + 𝓁𝑛𝑎 |𝑛𝐼4,𝑏 + (𝓁𝑛𝑎𝐼4,𝑛)|𝑏 .

(4.15)

1 Note that 𝑏𝑛 = 𝑏𝑛𝑚𝑔 , and 𝑏 𝑛 = 𝑔 𝑏𝑚𝑛, which are equal. Thus, we use the notation 𝑏𝑛 = 𝑏𝑛 = 𝑏 𝑛. Similarly, the same notation is used for 𝐜.
9

𝑎 𝑚𝑎 𝑎 𝑎𝑚 𝑎 𝑎 𝑎
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The coefficients of the third-order derivatives of the energy function are:

A444
𝑎𝑏 = 𝑛𝑎𝑛

𝑛𝐼4,𝑛𝐼4,𝑏 ,

A555
𝑎𝑏 = 𝓁𝑛𝑎𝐼5,𝑛𝐼5,𝑏 ,

A114
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛
)

+ 𝑛𝑎𝑛𝑛𝐼1,𝑛𝐼1,𝑏 ,

A115
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑛𝐼1,𝑏 + 𝐼5,𝑏𝐼1,𝑛
)

+ 𝓁𝑛𝑎𝐼1,𝑛𝐼1,𝑏 ,

A124
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛
)

− 𝑐𝑛𝑎
(

𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛
)

+ 𝑛𝑎𝑛𝑛
(

𝐼2,𝑛𝐼1,𝑏 + 𝐼2,𝑏𝐼1,𝑛
)

,

A125
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑛𝐼2,𝑏 + 𝐼5,𝑏𝐼2,𝑛
)

− 𝑐𝑛𝑎
(

𝐼5,𝑛𝐼1,𝑏 + 𝐼5,𝑏𝐼1,𝑛
)

+ 𝓁𝑛𝑎
(

𝐼2,𝑛𝐼1,𝑏 + 𝐼2,𝑏𝐼1,𝑛
)

,

A144
𝑎𝑏 = 𝑏𝑛𝑎𝐼4,𝑛𝐼4,𝑏 + 𝑛𝑎𝑛

𝑛 (𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛
)

,

A145
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛
)

+ 𝑛𝑎𝑛𝑛
(

𝐼5,𝑛𝐼1,𝑏 + 𝐼5,𝑏𝐼1,𝑛
)

+ 𝓁𝑛𝑎
(

𝐼4,𝑛𝐼1,𝑏 + 𝐼4,𝑏𝐼1,𝑛
)

,

A155
𝑎𝑏 = 𝑏𝑛𝑎𝐼5,𝑛𝐼5,𝑏 + 𝓁𝑛𝑎

(

𝐼5,𝑛𝐼1,𝑏 + 𝐼5,𝑏𝐼1,𝑛
)

,

A224
𝑎𝑏 = 𝑛𝑎𝑛

𝑛𝐼2,𝑛𝐼2,𝑏 − 𝑐𝑛𝑎
(

𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛
)

,

A225
𝑎𝑏 = 𝓁𝑛𝑎𝐼2,𝑛𝐼2,𝑏 − 𝑐

𝑛
𝑎
(

𝐼5,𝑛𝐼2,𝑏 + 𝐼5,𝑏𝐼2,𝑛
)

,

A244
𝑎𝑏 = −𝑐𝑛𝑎𝐼4,𝑛𝐼4,𝑏 + 𝑛𝑎𝑛

𝑛 (𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛
)

,

A245
𝑎𝑏 = 𝑛𝑎𝑛

𝑛 (𝐼5,𝑛𝐼2,𝑏 + 𝐼5,𝑏𝐼2,𝑛
)

+ 𝓁𝑛𝑎
(

𝐼4,𝑛𝐼2,𝑏 + 𝐼4,𝑏𝐼2,𝑛
)

− 𝑐𝑛𝑎
(

𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛
)

,

A255
𝑎𝑏 = 𝓁𝑛𝑎

(

𝐼5,𝑛𝐼2,𝑏 + 𝐼5,𝑏𝐼2,𝑛
)

− 𝑐𝑛𝑎𝐼5,𝑛𝐼5,𝑏 ,

A445
𝑎𝑏 = 𝑛𝑎𝑛

𝑛 (𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛
)

+ 𝓁𝑛𝑎𝐼4,𝑛𝐼4,𝑏 ,

A455
𝑎𝑏 = 𝑛𝑎𝑛

𝑛𝐼5,𝑛𝐼5,𝑏 + 𝓁𝑛𝑎
(

𝐼5,𝑛𝐼4,𝑏 + 𝐼5,𝑏𝐼4,𝑛
)

.

(4.16)

Goodbrake et al. (2020) showed that all the known universal deformations are symmetric with respect to Lie subgroups of
the special Euclidean group. In order to find universal eigenstrains corresponding to each family, they assumed that the material
metric has the same symmetry as the classical universal deformations do. Note that the symmetry of a universal deformation
𝜑 ∶ B → 𝜑(B) ⊂ S is encoded in the symmetry of 𝐂♭ = 𝜑∗𝐠. Here, we use the same strategy and assume that the material preferred
direction vector 𝐍 has the same symmetries. This symmetry reduction will make the above systems of nonlinear PDEs tractable.

4.1. Family 0: Homogeneous deformations

Homogeneous deformations have the form 𝑥𝑎(𝐗) = 𝐹 𝑎𝐴𝑋𝐴 + 𝑐𝑎, where [𝐹 𝑎𝐴] is a constant matrix and 𝑐𝑎 are constants. The
incompressibility constraint in Cartesian coordinates is written as det[𝐹 𝑎𝐴] = 1. In Cartesian coordinates the right Cauchy–Green
tensor has components 𝐶𝐴𝐵 = 𝐹 𝑎𝐴𝐹 𝑎𝐴 𝛿𝑎𝑏, which are constants. This means that 𝐂♭ is invariant under the action of 𝑇 (3) ⊂ 𝑆𝐸(3) —
the group of translations. We assume that 𝑁𝐴(𝐗) are invariant under 𝑇 (3) as well, or in other words 𝐍 is a constant vector. In this
case all the universality constraints are satisfied. Therefore, for isochoric homogeneous deformations uniform material preferred
directions are universal.

4.2. Family 1: Bending, stretching, and shearing of a rectangular block

With respect to the Cartesian (𝑋, 𝑌 ,𝑍) and cylindrical (𝑟, 𝜃, 𝑧) coordinates in the reference and current configurations, respec-
tively, this family of deformations have the following representation

𝑟(𝑋, 𝑌 ,𝑍) =
√

𝐶1(2𝑋 + 𝐶4) , 𝜃(𝑋, 𝑌 ,𝑍) = 𝐶2(𝑌 + 𝐶5) , 𝑧(𝑋, 𝑌 ,𝑍) = 𝑍
𝐶1𝐶2

− 𝐶2𝐶3𝑌 + 𝐶6 . (4.17)

hus

[𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶1
2𝑋+𝐶4

0 0

0 𝐶2
2
[

𝐶1(2𝑋 + 𝐶4) + 𝐶2
3
]

−𝐶3
𝐶1

0 −𝐶3
𝐶1

1
𝐶2
1𝐶

2
2

⎤

⎥

⎥

⎥

⎥

⎦

, (4.18)

hich is independent of 𝑌 and 𝑍, i.e., 𝐂♭ is invariant under the action of 𝑇 (2) ⊂ 𝑆𝐸(3). We assume that 𝐍 has the same symmetry,
.e.,

𝐍(𝑋, 𝑌 ,𝑍) =
⎡

⎢

⎢

⎣

𝑁1(𝑋)
𝑁2(𝑋)
𝑁3(𝑋)

⎤

⎥

⎥

⎦

, (4.19)

uch that
(

𝑁1(𝑋)
)2 +

(

𝑁2(𝑋)
)2 +

(

𝑁3(𝑋)
)2 = 1.
10
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Symmetry of the coefficients of 𝑊224 for (𝑎, 𝑏) = (1, 2) and (𝑎, 𝑏) = (1, 3) gives2

𝐶1
[

1 + 𝐶2
1𝐶

4
2𝐶

2
3 − 𝐶2

2 (𝐶4 + 2𝑋)2
]2

𝐶3
2 [𝐶1(𝐶4 + 2𝑋)]5∕2

𝑁1(𝑋)𝑁2(𝑋) = 0, (4.20)

√

𝐶1(𝐶4 + 2𝑋)
[

1 + 𝐶2
1𝐶

4
2𝐶

2
3 − 𝐶2

2 (𝐶4 + 2𝑋)2
]2

𝐶4
1𝐶

5
2 (𝐶4 + 2𝑋)4

𝑁1(𝑋)
[

𝐶1𝐶
2
2𝐶3𝑁2(𝑋) −

√

1 −𝑁1(𝑋)2 −𝑁2(𝑋)2
]

= 0. (4.21)

rom (4.20) either 𝑁1(𝑋) = 0, or 𝑁2(𝑋) = 0. If 𝑁2(𝑋) = 0, from (4.21), either 𝑁1(𝑋) = 0 (𝑁3(𝑋) = ±1), or 𝑁1(𝑋) = ±1 (𝑁3(𝑋) = 0).
f 𝑁1(𝑋) = 0, both equations are satisfied. Therefore, we have the following two possibilities:

𝐍 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍 =
⎡

⎢

⎢

⎣

0
𝑓 (𝑋)

±
√

1 − 𝑓 2(𝑋)

⎤

⎥

⎥

⎦

, for any 𝑓 (𝑋) such that 𝑓 2(𝑋) ≤ 1. (4.22)

r equivalently

𝐍 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍 =
⎡

⎢

⎢

⎣

0
cos𝜓(𝑋)
± sin𝜓(𝑋)

⎤

⎥

⎥

⎦

, (4.23)

or some function 𝜓(𝑋). These two vector fields satisfy all the other universally constraints. If either 𝐼4 or 𝐼5 (or both) are constant,
till symmetry of the coefficients of 𝑊224 for (𝑎, 𝑏) = (1, 2) and (𝑎, 𝑏) = (1, 3) gives (4.20) and (4.21). This means that still (4.23) are
olutions. However, for neither solution 𝐼4 or 𝐼5 is constant. Therefore, the only solutions for 𝐍 that respect the symmetry of the
amily 1 deformations are (4.23).

emark 4.1. Ericksen and Rivlin (1954) analyzed a special subset of this family (𝐶3 = 0) and assumed the following two cases

𝐍 =
⎡

⎢

⎢

⎣

1
0
0

⎤

⎥

⎥

⎦

, 𝐍 =
⎡

⎢

⎢

⎣

0
cos 𝜁
sin 𝜁

⎤

⎥

⎥

⎦

, (4.24)

here 𝜁 is a constant. Clearly, these are special cases of (4.23).

emark 4.2. An example of a transversely isotropic solid is a unidirectional fiber composite. One can think of the material preferred
irection unit vector 𝐍(𝑋1, 𝑋2, 𝑋3) as the tangent vector to the fiber at the point (𝑋1, 𝑋2, 𝑋3) in an isotropic matrix. The solution
4.23)1 corresponds to a uniform distribution of fibers parallel to the 𝑋-axis. In the solution (4.23)2 for fixed 𝑋 fibers are distributed
niformly in the 𝑌 𝑍-plane and make an angle 𝜓(𝑋) with the 𝑌 -axis.

.3. Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

With respect to the cylindrical (𝑅,𝛩,𝑍) and Cartesian (𝑥, 𝑦, 𝑧) coordinates in the reference and current configurations, respec-
ively, this family of deformations have the following representation

𝑥(𝑅,𝛩,𝑍) = 1
2
𝐶1𝐶

2
2𝑅

2 + 𝐶4 , 𝑦(𝑅,𝛩,𝑍) = 𝛩
𝐶1𝐶2

+ 𝐶5 , 𝑧(𝑅,𝛩,𝑍) =
𝐶3
𝐶1𝐶2

𝛩 + 1
𝐶2
𝑍 + 𝐶6 . (4.25)

hus

[𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶2
1𝐶

4
2𝑅

2 0 0

0
𝐶2
3+1

𝐶2
1𝐶

2
2

𝐶3
𝐶1𝐶2

2

0 𝐶3
𝐶1𝐶2

2

1
𝐶2
2

⎤

⎥

⎥

⎥

⎥

⎦

, (4.26)

hich is independent of 𝛩, and 𝑍. We assume that 𝐍 has the same symmetry, i.e.,

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

𝑁1(𝑅)
𝑁2(𝑅)
𝑁3(𝑅)

⎤

⎥

⎥

⎦

, (4.27)

uch that
(

𝑁1(𝑅)
)2 + 𝑅2 (𝑁2(𝑅)

)2 +
(

𝑁3(𝑅)
)2 = 1. Symmetry of the coefficients of 𝑊224 for (𝑎, 𝑏) = (1, 2) and (𝑎, 𝑏) = (1, 3) gives

(

𝐶4
1𝐶

6
2𝑅

4 − 1
)2

𝐶6
1𝐶

11
2 𝑅

7
𝑁1(𝑅)𝑁2(𝑅) = 0, (4.28)

2 Symbolic computations were done with Mathematica Version 12.3.0.0, Wolfram Research, Champaign, IL.
11
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Fig. 1. (a) Universal material preferred directions (4.32)1 for Family 2. (b–d) Universal material preferred directions (4.32)2 for Family 2: (b) cos𝜓(𝑅) ≠ 0,±1,
(c) cos𝜓(𝑅) = 0, and (d) cos𝜓(𝑅) = ±1.

(

𝐶4
1𝐶

6
2𝑅

4 − 1
)2

𝐶6
1𝐶

11
2 𝑅

7
𝑁1(𝑅)

[

𝐶1

√

1 −𝑁1(𝑅)2 − 𝑅2𝑁2(𝑅)2 + 𝐶3𝑁2(𝑅)
]

= 0 . (4.29)

From (4.28) either 𝑁1(𝑅) = 0, or 𝑁2(𝑅) = 0. If 𝑁2(𝑅) = 0, from (4.29) either 𝑁1(𝑅) = 0 (𝑁3(𝑅) = ±1), or 𝑁1(𝑅) = ±1 (𝑁3(𝑅) = 0). If
𝑁1(𝑅) = 0, both equations are satisfied. Therefore, we have the following two possibilities:

𝐍 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍 =
⎡

⎢

⎢

⎣

0
𝑓 (𝑅)∕𝑅

±
√

1 − 𝑓 2(𝑅)

⎤

⎥

⎥

⎦

, for any 𝑓 (𝑅) such that 𝑓 2(𝑅) ≤ 1 , (4.30)

or equivalently

𝐍 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍 =
⎡

⎢

⎢

⎣

0
1
𝑅 cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

, (4.31)

for some function 𝜒(𝑅). Replacing the components of 𝐍 with the corresponding physical components and denoting the resulting
array by �̂� the two solutions are

�̂� =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂� =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

. (4.32)

These two vector fields satisfy all the other universality constraints. If either 𝐼4 or 𝐼5 (or both) are constant, then symmetry of the
coefficients of 𝑊224 for (𝑎, 𝑏) = (1, 2) and (𝑎, 𝑏) = (1, 3) gives (4.28) and (4.29), and (4.32) are still solutions. However, for neither
solution 𝐼4 or 𝐼5 is constant. Therefore, the only solutions for 𝐍 that respect the symmetry of the Family 2 deformations are (4.32).
In the solution (4.32)1 fibers are distributed radially. The material preferred direction in the solution (4.32) are sketched in Fig. 1.

Remark 4.3. Assuming that the cylindrical shell is made of a unidirectional fiber composite, the solution (4.32)1 corresponds to
a uniform radial distribution of fibers. In the solution (4.32)2 for fixed 𝑅 fibers are arranged helically when 𝜓(𝑅) ≠ 𝑛𝜋

2 , 𝑛 ∈ Z
(Fig. 1(b)). When cos𝜓(𝑅) = 0, fibers are distributed uniformly parallel to the axis of the cylindrical shell (Fig. 1(c)). When
sin𝜓(𝑅) = 0, fibers are concentric circles parallel to the (𝑅,𝛩) plane (Fig. 1(d)). Examples of fiber-reinforced composite with one or
two families of helical fibers can be found in biological systems (Goriely and Tabor, 2011), in gels (Demirkoparan and Pence, 2007,
2008, 2015), and in the McKibben actuators (Daerden and Lefeber, 2002; Liu and Rahn, 2003) as described in (Goriely, 2017). Note
that, in this universal solution, helical fibers can change orientation as a function of 𝑅. However, in the limit of 𝑅 → 0, one must
have 𝜒(𝑅) → 𝜋∕2 or the vector direction becomes ill-defined.
12
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4.4. Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge

With respect to the cylindrical coordinates (𝑅,𝛩,𝑍) and (𝑟, 𝜃, 𝑧) in the reference and current configurations, respectively, this
amily of deformations have the following representation

𝑟(𝑅,𝛩,𝑍) =

√

𝑅2

𝐶1𝐶4 − 𝐶2𝐶3
+ 𝐶5 , 𝜃(𝑅,𝛩,𝑍) = 𝐶1𝛩 + 𝐶2𝑍 + 𝐶6 , 𝑧(𝑅,𝛩,𝑍) = 𝐶3𝛩 + 𝐶4𝑍 + 𝐶7 . (4.33)

hus

[𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅2

𝐾(𝐾𝐶5+𝑅2) 0 0

0 𝐶2
3 + 𝐶2

1

[

𝑅2

𝐾 + 𝐶5

]

𝐶1𝐶2

[

𝑅2

𝐾 + 𝐶5

]

+ 𝐶3𝐶4

0 𝐶1𝐶2

[

𝑅2

𝐾 + 𝐶5

]

+ 𝐶3𝐶4 𝐶2
4 + 𝐶2

2

[

𝑅2

𝐾 + 𝐶5

]

⎤

⎥

⎥

⎥

⎥

⎦

, (4.34)

here 𝐾 = 𝐶1𝐶4 − 𝐶2𝐶3. Note that 𝐂♭ only depends on 𝑅. We assume that 𝐍 has the same symmetry, i.e.,

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

𝑁1(𝑅)
𝑁2(𝑅)
𝑁3(𝑅)

⎤

⎥

⎥

⎦

, (4.35)

uch that
(

𝑁1(𝑅)
)2 + 𝑅2 (𝑁2(𝑅)

)2 +
(

𝑁3(𝑅)
)2 = 1. Symmetry of the coefficients of 𝑊224 for (𝑎, 𝑏) = (1, 2) gives

𝑁1(𝑅)
(

𝐶1𝑁2(𝑅) + 𝐶2

√

1 −𝑁1(𝑅)2 − 𝑅2𝑁2(𝑅)2
)

= 0 . (4.36)

This implies that either 𝑁1(𝑅) = 0, or 𝐶1𝑁2(𝑅) + 𝐶2
√

1 −𝑁1(𝑅)2 − 𝑅2𝑁2(𝑅)2 = 0. If 𝑁1(𝑅) = 0, then

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

0
𝑓 (𝑅)∕𝑅

±
√

1 − 𝑓 2(𝑅)

⎤

⎥

⎥

⎦

, for any 𝑓 (𝑅) such that 𝑓 2(𝑅) ≤ 1, (4.37)

or equivalently

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

0
1
𝑅 cos𝜓(𝑅)
± sin𝜓(𝑅)

⎤

⎥

⎥

⎦

, (4.38)

or some function 𝜓(𝑅). One can check that (4.38) satisfies all the other universality constraints. Suppose 𝐶1𝑁2(𝑅) + 𝐶2
1 −𝑁1(𝑅)2 − 𝑅2𝑁2(𝑅)2 = 0, or 𝐶1𝑁2(𝑅) + 𝐶2𝑁3(𝑅) = 0. Symmetry of the coefficients of 𝑊114 for (𝑎, 𝑏) = (1, 3) gives

𝐶3𝑁2(𝑅) + 𝐶4𝑁3(𝑅) = 0. Therefore, we have the following system of equations for 𝑁2(𝑅) and 𝑁3(𝑅):
{

𝐶1𝑁2(𝑅) + 𝐶2𝑁3(𝑅) = 0 ,
𝐶3𝑁2(𝑅) + 𝐶4𝑁3(𝑅) = 0 .

(4.39)

he determinant of the coefficient matrix is 𝐶1𝐶4 − 𝐶2𝐶3 ≠ 0 (see (4.33)). Thus, 𝑁2(𝑅) = 𝑁3(𝑅) = 0, and hence

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, (4.40)

hich satisfies all the other universality constraints. In summary, (4.38) and (4.40) are those universal material preferred directions
hat respect the symmetry of the universal deformations (4.33). The universal material preferred directions of Families 2 and 3 are
dentical, see Remark 4.3.

emark 4.4. Ericksen and Rivlin (1954) analyzed this family assuming the solution (4.37) for the special choice of 𝑓 (𝑅) = 0.

4.5. Family 4: Inflation/inversion of a sector of a spherical shell

With respect to the spherical coordinates (𝑅,𝛩,𝛷) and (𝑟, 𝜃, 𝜙) in the reference and current configurations, respectively, this
family of deformations have the following representation

𝑟(𝑅,𝛩,𝛷) = (±𝑅3 + 𝐶3
1 )

1
3 , 𝜃(𝑅,𝛩,𝛷) = ±𝛩 , 𝜙(𝑅,𝛩,𝛷) = 𝛷 . (4.41)

hus

[𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎢

𝑅4
(

𝐶3
1±𝑅

3
)4∕3 0 0

0
(

𝐶3
1 ± 𝑅3)2∕3 0

( 3 3)2∕3 2

⎤

⎥

⎥

⎥

⎥

. (4.42)
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Fig. 2. Radial universal material preferred directions for Family 4.

𝐂♭ can be written as (Goodbrake et al., 2020)

𝐂♭(𝐗) = 𝑅4

(

𝐶3
1 ± 𝑅3

)4∕3
�̂�⊗ �̂� +

(

𝐶3
1 ± 𝑅3)2∕3

𝑅2
(𝟏 − �̂�⊗ �̂�) , (4.43)

where 𝟏 is the identity tensor, and �̂� = 𝐗
|𝐗| . This means that at a point 𝐗, 𝐂♭ is invariant under all those rotations that fix 𝐗. We

assume that 𝐍(𝐗) has the same symmetry, i.e., it is invariant under all those rotations that fix 𝐗. This implies that 𝐍(𝐗) must be
parallel to 𝐗, and because it is a unit vector we conclude that

𝐍(𝐗) = ± 𝐗
|𝐗|

= ±�̂� . (4.44)

Thus, in spherical coordinates

𝐍(𝐗) =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

. (4.45)

These two vector fields satisfy all the other universality constraints, see Fig. 2.

Remark 4.5. Golgoon and Yavari (2021) had observed that radial deformations are universal for transversely isotropic spherical
shells with radial material preferred direction.

4.6. Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

With respect to the cylindrical coordinates (𝑅,𝛩,𝑍) and (𝑟, 𝜃, 𝑧) in the reference and current configurations, respectively, this
family of deformations have the following representation

𝑟(𝑅,𝛩,𝑍) = 𝐶1𝑅 , 𝜃(𝑅,𝛩,𝑍) = 𝐶2 log𝑅 + 𝐶3𝛩 + 𝐶4 , 𝑧(𝑅,𝛩,𝑍) = 1
𝐶2
1𝐶3

𝑍 + 𝐶5 . (4.46)

Thus

[𝐶𝐴𝐵] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1
(

𝐶2
2 + 1

)

𝐶2
1𝐶2𝐶3𝑅 0

𝐶2
1𝐶2𝐶3𝑅 𝐶2

1𝐶
2
3𝑅

2 0
0 0 1

𝐶4
1𝐶

2
3

⎤

⎥

⎥

⎥

⎦

, (4.47)

which only depends on 𝑅. We assume that 𝐍 has the same symmetry, i.e.,

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

𝑁1(𝑅)
𝑁2(𝑅)
𝑁3(𝑅)

⎤

⎥

⎥

⎦

, (4.48)

such that
(

𝑁1(𝑅)
)2 +

(

𝑁2(𝑅)
)2 +

(

𝑁3(𝑅)
)2 = 1. Symmetry of the coefficients of 𝑊444 for (𝑎, 𝑏) = (1, 2) gives

𝑁1(𝑅)[𝐶2𝑁
1(𝑅) + 𝐶3𝑅𝑁

2(𝑅)]

× 𝑑
𝑑𝑅

{

−
[

𝑁1(𝑅)2 + (𝑅𝑁2(𝑅))2
]

+ 𝐶6
1𝐶

2
3
[

𝑁1(𝑅)2 + (𝐶2𝑁
1(𝑅) + 𝐶3𝑅𝑁

2(𝑅))2
]}

= 0 .
(4.49)

If 𝑁1(𝑅) = 0, symmetry of the coefficients of 𝑊555 for (𝑎, 𝑏) = (1, 2) gives

𝑁2(𝑅)[𝑁2(𝑅) + 𝑑 (𝑅𝑁2(𝑅))] = 0 . (4.50)
14

𝑑𝑅



Journal of the Mechanics and Physics of Solids 156 (2021) 104598A. Yavari and A. Goriely

I

f
a

b

T

T

o

f
𝑘

T

T

This implies that

𝑁2(𝑅) = 𝑘
𝑅
. (4.51)

f 𝑅1 ≤ 𝑅 ≤ 𝑅2, we must have 𝑘2 ≤ 𝑅2
1. All the other symmetry constraints are satisfied and thus one solution is3

𝐍(𝑅,𝛩,𝑍) =

⎡

⎢

⎢

⎢

⎣

0
𝑘
𝑅

±
√

1 − 𝑘2

⎤

⎥

⎥

⎥

⎦

, (4.52)

or equivalently

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

0
1
𝑅 cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, (4.53)

or some constant 𝜂. In (4.49) if 𝐶2𝑁1(𝑅) + 𝐶3𝑅𝑁2(𝑅) = 0, arbitrariness of 𝐶2, and 𝐶3 implies that 𝑁1(𝑅) = 𝑁2(𝑅) = 0, which is
lready included in the solution (4.53). If

− 𝑑
𝑑𝑅

[

𝑁1(𝑅)2 + (𝑅𝑁2(𝑅))2
]

+ 𝐶6
1𝐶

2
3
𝑑
𝑑𝑅

[

𝑁1(𝑅)2 + (𝐶2𝑁
1(𝑅) + 𝐶3𝑅𝑁

2(𝑅))2
]

= 0 , (4.54)

ecause 𝐶1 and 𝐶3 are arbitrary one concludes that
[

𝑁1(𝑅)2 + (𝑅𝑁2(𝑅))2
]′ = 0 ,

[

𝑁1(𝑅)2 + (𝐶2𝑁
1(𝑅) + 𝐶3𝑅𝑁

2(𝑅))2
]′ = 0 .

(4.55)

he first equation implies that 𝑁3(𝑅) is constant. For 𝑁3(𝑅) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, symmetry of the coefficients of 𝑊4 for (𝑎, 𝑏) = (1, 2) gives

𝑁3
[

𝑅2 𝑑2

𝑑𝑅2
𝑁1(𝑅) + 𝑅 𝑑

𝑑𝑅
𝑁1(𝑅) −𝑁1(𝑅)

]

= 0 . (4.56)

hus, either 𝑁3 = 0, or 𝑁1(𝑅) = 𝑘1𝑅 + 𝑘2
𝑅 . If 𝑁3 = 0, symmetry of the coefficients of 𝑊255 for (𝑎, 𝑏) = (1, 2) implies that 𝑁1(𝑅) is

constant. The unit vectors

𝐍(𝑅,𝛩,𝑍) =

⎡

⎢

⎢

⎢

⎣

𝛼
± 1
𝑅

√

1 − 𝛼2

0

⎤

⎥

⎥

⎥

⎦

, (4.57)

r equivalently

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

cos 𝜉
± 1
𝑅 sin 𝜉
0

⎤

⎥

⎥

⎦

, (4.58)

or some constant 𝜉, satisfy all the other universality constraints and, hence, are universal material preferred directions. If 𝑁1(𝑅) =
1𝑅 + 𝑘2

𝑅 , symmetry of the coefficients of 𝑊5 for (𝑎, 𝑏) = (1, 3) implies that

𝑁3 [(𝑁3)2 − 1
] [

(𝑁3)2 − 1 + 4𝑘1𝑘2
]

= 0 . (4.59)

herefore, either
(

𝑁3)2 = 1, which is already included in the solution (4.53) when 𝑘 = 1, or
(

𝑁3)2 = 1−4𝑘1𝑘2. If
(

𝑁3)2 = 1−4𝑘1𝑘2,
one has

(𝑁1)2 + (𝑁3)2 = 1 +
(

𝑘1𝑅 −
𝑘2
𝑅

)2
≤ 1 . (4.60)

herefore, 𝑘1𝑅 − 𝑘2
𝑅 = 0, which implies that 𝑘1 = 𝑘2 = 0, or 𝑁1(𝑅) = 0.

If either 𝐼4 or 𝐼5 (or both) is constant, symmetry of the coefficient of 𝑊2 for (𝑎, 𝑏) = (1, 2) results in the following second-order
ODE:

𝑅
{

𝑁1(𝑅)′
[

2𝐶2𝑁
1(𝑅)′ + 2𝐶3𝑅𝑁

2(𝑅)′ + 5𝐶3𝑁
2(𝑅)

]

+ 𝐶3𝑅𝑁
2(𝑅)𝑁1(𝑅)′′

}

+ 𝑁1(𝑅)
{

𝑅
[

2𝐶2𝑁
1(𝑅)′′ + 5𝐶3𝑁

2(𝑅)′ + 𝐶3𝑅𝑁
2(𝑅)′′

]

+ 6𝐶2𝑁
1(𝑅)′ + 3𝐶3𝑁

2(𝑅)
}

= 0 .
(4.61)

If 𝑁1(𝑅) ≠ 0, this gives 𝑁2(𝑅) in terms of 𝑁1(𝑅) as:

𝑁2(𝑅) =
𝑘1

𝑅3𝑁1(𝑅)
+

𝑘2
𝑅𝑁1(𝑅)

−
𝐶2𝑁1(𝑅)
𝐶3𝑅

, (4.62)

3 If we restrict ourselves to the 𝐶 = 0 subset of Family 5, the larger class of material preferred directions (4.38) is a solution.
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Table 1
Universal deformations and universal material preferred directions for incompressible transversely isotropic solids for the six known families of universal
deformations. Note that for Family 3, 𝐾 = 𝐶1𝐶4 − 𝐶2𝐶3.

Family Universal deformations 𝐂♭ Universal material preferred
directions

0 𝑥𝑎(𝑋) = 𝐹 𝑎
𝐴𝑋𝐴 + 𝑐𝑎 𝐶𝐴𝐵 = 𝐹 𝑎

𝐴𝐹 𝑎
𝐴𝛿𝑎𝑏 Any constant unit vector 𝐍

1
⎧

⎪

⎨

⎪

⎩

𝑟(𝑋, 𝑌 ,𝑍) =
√

𝐶1(2𝑋 + 𝐶4)
𝜃(𝑋, 𝑌 ,𝑍) = 𝐶2(𝑌 + 𝐶5)
𝑧(𝑋, 𝑌 ,𝑍) = 𝑍

𝐶1𝐶2
− 𝐶2𝐶3𝑌 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶1

2𝑋+𝐶4
0 0

0 𝐶2
2

[

𝐶1(2𝑋 + 𝐶4) + 𝐶2
3

]

− 𝐶3

𝐶1

0 − 𝐶3

𝐶1

1
𝐶2
1𝐶

2
2

⎤

⎥

⎥

⎥

⎦

�̂� =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂� =
⎡

⎢

⎢

⎣

0
cos𝜓(𝑋)
± sin𝜓(𝑋)

⎤

⎥

⎥

⎦

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥(𝑅,𝛩,𝑍) = 1
2
𝐶1𝐶2

2𝑅
2 + 𝐶4

𝑦(𝑅,𝛩,𝑍) = 𝛩
𝐶1𝐶2

+ 𝐶5

𝑧(𝑅,𝛩,𝑍) = 𝐶3

𝐶1𝐶2
𝛩 + 1

𝐶2
𝑍 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1𝐶

4
2𝑅

2 0 0
0 𝐶2

3+1
𝐶2
1𝐶

2
2

𝐶3

𝐶1𝐶2
2

0 𝐶3

𝐶1𝐶2
2

1
𝐶2
2

⎤

⎥

⎥

⎥

⎦

�̂� =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂� =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

3
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) =
√

𝑅2

𝐶1𝐶4−𝐶2𝐶3
+ 𝐶5

𝜃(𝑅,𝛩,𝑍) = 𝐶1𝛩 + 𝐶2𝑍 + 𝐶6

𝑧(𝑅,𝛩,𝑍) = 𝐶3𝛩 + 𝐶4𝑍 + 𝐶7

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅2

𝐾(𝐾𝐶5+𝑅2 )
0 0

0 𝐶2
1

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
3 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4

0 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4 𝐶2
2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
4

⎤

⎥

⎥

⎥

⎥

⎦

�̂� =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂� =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

4
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝛷) = (±𝑅3 + 𝐶3
1 )

𝜃(𝑅,𝛩,𝛷) = ±𝛩
𝜙(𝑅,𝛩,𝛷) = 𝛷

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝑅4

(𝐶3
1±𝑅

3)4∕3
0 0

0
(

𝐶3
1 ± 𝑅3)2∕3 0

0 0
(

𝐶3
1 ± 𝑅3)2∕3 sin2 𝛩

⎤

⎥

⎥

⎥

⎦

�̂� =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

5
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) = 𝐶1𝑅
𝜃(𝑅,𝛩,𝑍) = 𝐶2 log𝑅 + 𝐶3𝛩 + 𝐶4

𝑧(𝑅,𝛩,𝑍) = 1
𝐶2
1𝐶3

𝑍 + 𝐶5

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1

(

𝐶2
2 + 1

)

𝐶2
1𝐶2𝐶3𝑅 0

𝐶2
1𝐶2𝐶3𝑅 𝐶2

1𝐶
2
3𝑅

2 0
0 0 1

𝐶4
1𝐶

2
3

⎤

⎥

⎥

⎥

⎦

�̂� =
⎡

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, �̂� =
⎡

⎢

⎢

⎣

cos 𝜉
± sin 𝜉

0

⎤

⎥

⎥

⎦

which is clearly not a universal solution as 𝐍 should not depend on the parameters of the universal deformations. Therefore,
𝑁1(𝑅) = 0. Symmetries of the coefficients of 𝑊2 for (𝑎, 𝑏) = (1, 2), and 𝑊5 for (𝑎, 𝑏) = (1, 3), imply that

𝐍(𝑅,𝛩,𝑍) =
⎡

⎢

⎢

⎣

0
± 1
𝑅
0

⎤

⎥

⎥

⎦

, (4.63)

hich is already included in (4.53). Therefore, (4.53) and (4.58) are the only solutions.

emark 4.6. Assuming that the annular wedge is made of a unidirectional fiber composite, in the solution (4.53) fibers are arranged
elically when cos 𝜂 ≠ 0 (Fig. 1(b)). When cos 𝜂 = 0, fibers are distributed uniformly parallel to the axis of the wedge (Fig. 1(c)).
hen sin 𝜂 = 0, fibers are concentric circles parallel to the (𝑅,𝛩) plane (Fig. 1(d)). For the solution (4.58) fibers are parallel to the
𝑅,𝛩) plane and are distributed uniformly in some fixed direction. Table 1 summarizes our results for incompressible transversely
sotropic solids.

. Incompressible orthotropic elastic solids

For orthotropic solids there are seven invariants. Note that 𝐼4 and 𝐼6 have identical forms, and similarly, 𝐼5 and 𝐼7 have identical
orms, see (2.27). This means that the forms of the universality constraints associated with the pair (𝐼6, 𝐼7) are identical to those
ssociated with (𝐼4, 𝐼5). Since most of the analysis relies on the previous case, we only explain briefly the underlying computations
nd give the main results. In the case of orthotropic solids

𝜉𝑎 = 𝑔𝑎𝑚
[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚
1 𝑛

𝑛
1 +𝑊5 𝓁

𝑚𝑛
1 +𝑊6 𝑛

𝑚
2 𝑛

𝑛
2 +𝑊7 𝓁

𝑚𝑛
2

]

|𝑛 . (5.1)

or 𝜉𝑎|𝑏 = 𝜉𝑏|𝑎 to hold for arbitrary energy functions the coefficient of each partial derivative of 𝑊 must be symmetric. There are
our groups of terms:

(i) Nine terms that must be symmetric for isotropic solids as well:

Kiso = {1, 2, 11, 22, 12, 111, 222, 112, 122} . (5.2)

(ii) 25 terms corresponding to 𝐍1:

K𝑖 = {4, 5, 44, 55, 14, 15, 24, 25, 45, 444, 555, 114, 115, 124, 125, 144, 145, 155, 224, 225, 244, 245, 255, 445, 455} . (5.3)

(iii) 25 terms corresponding to 𝐍2:

K𝑖𝑖 = {6, 7, 66, 77, 16, 17, 26, 27, 67, 666, 777, 116, 117, 126, 127, 166, 167, 177, 226, 227, 266, 267, 277, 667, 677} . (5.4)
16
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(iv) 24 terms corresponding to coupling of 𝐍1 and 𝐍2:

K𝑖𝑖𝑖 = {46, 47, 56, 57, 146, 147, 156, 157, 246, 247, 256, 257, 446, 447, 456, 457, 556, 557, 466, 467, 566, 567, 477, 577} . (5.5)

The universality constraints corresponding to the sets K𝑖 and K𝑖𝑖 are identical in form to those corresponding to the extra symmetry
constraints of transversely isotopic solids (4.13). This means that if there are three mutually orthogonal universal material preferred
directions (𝐍1,𝐍2,𝐍3) for transversely isotropic solids, they are universal for orthotropic solids as well if the three pairs (𝐍1,𝐍2),
(𝐍2,𝐍3), and (𝐍3,𝐍1) satisfy the universality conditions corresponding to the set K𝑖𝑖𝑖.

In order to write the constraint equations more compactly, let us denote the pair of vectors (n,m) = (𝐧1,𝐧2). Also, l𝑎𝑏 = 𝓁𝑎𝑏1 , and
k𝑎𝑏 = 𝓁𝑎𝑏2 . The coefficients of the four second-order derivatives of the energy function corresponding to the set K𝑖𝑖𝑖 are:

A46
𝑎𝑏 = [n𝑎 𝐼6,𝑛 n𝑛]|𝑏 + 𝐼6,𝑏[n𝑎 n𝑛]|𝑛 + [m𝑎 𝐼4,𝑛 m

𝑛]
|𝑏 + 𝐼4,𝑏[m𝑎 m

𝑛]
|𝑛 ,

A47
𝑎𝑏 = [n𝑎 𝐼7,𝑛 n𝑛]|𝑏 + 𝐼7,𝑏[n𝑎 n𝑛]|𝑛 + (k𝑛𝑎𝐼4,𝑛)|𝑏 + k𝑛𝑎 |𝑛𝐼4,𝑏 ,

A56
𝑎𝑏 = (l𝑛𝑎𝐼6,𝑛)|𝑏 + l𝑛𝑎 |𝑛𝐼6,𝑏 + (m𝑎𝐼5,𝑛m

𝑛)
|𝑏 + (m𝑎m

𝑛)
|𝑛𝐼5,𝑏 ,

A57
𝑎𝑏 = (l𝑛𝑎𝐼7,𝑛)|𝑏 + l𝑛𝑎 |𝑛𝐼7,𝑏 + (k𝑛𝑎𝐼5,𝑛)|𝑏 + k𝑛𝑎 |𝑛𝐼5,𝑏 .

(5.6)

The coefficients of the twenty third-order derivatives of the energy function corresponding to the set K𝑖𝑖𝑖 read:

A146
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A147
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

,

A156
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

,

A157
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

,

A246
𝑎𝑏 = 𝑐𝑛𝑎

(

𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A247
𝑎𝑏 = 𝑐𝑛𝑎

(

𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

,

A256
𝑎𝑏 = 𝑐𝑛𝑎

(

𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

,

A257
𝑎𝑏 = 𝑐𝑛𝑎

(

𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

,

A446
𝑎𝑏 = n𝑎n

𝑛 (𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A447
𝑎𝑏 = n𝑎n

𝑛 (𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

,

A456
𝑎𝑏 = n𝑎n

𝑛 (𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

+ l𝑛𝑎
(

𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A457
𝑎𝑏 = n𝑎n

𝑛 (𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

+ l𝑛𝑎
(

𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

,

A466
𝑎𝑏 = m𝑎m

𝑛 (𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A467
𝑎𝑏 = m𝑎m

𝑛 (𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

+ k𝑛𝑎
(

𝐼4,𝑏𝐼6,𝑛 + 𝐼4,𝑛𝐼6,𝑏
)

,

A477
𝑎𝑏 = k𝑛𝑎

(

𝐼4,𝑏𝐼7,𝑛 + 𝐼4,𝑛𝐼7,𝑏
)

,

A556
𝑎𝑏 = l𝑛𝑎

(

𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

,

A557
𝑎𝑏 = l𝑛𝑎

(

𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

,

A566
𝑎𝑏 = m𝑎m

𝑛 (𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

,

A567
𝑎𝑏 = m𝑎m

𝑛 (𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

+ k𝑛𝑎
(

𝐼5,𝑏𝐼6,𝑛 + 𝐼5,𝑛𝐼6,𝑏
)

,

A577
𝑎𝑏 = k𝑛𝑎

(

𝐼5,𝑏𝐼7,𝑛 + 𝐼5,𝑛𝐼7,𝑏
)

.

(5.7)

Family 0. We saw that for transversely isotropic solids any constant unit vector is a universal material preferred direction. For any
pair of constant unit vectors, all the terms in (5.6) and (5.7) are trivially symmetric. This means that any three constant unit vectors
(𝐍1,𝐍2,𝐍3) that are mutually orthogonal are universal material preferred directions for isochoric homogeneous deformations.

Family 1. Let us consider two solutions in the family of solutions (4.23), namely

𝐍2 =
⎡

⎢

⎢

⎣

0
𝑓 (𝑋)

±
√

1 − 𝑓 2(𝑋)

⎤

⎥

⎥

⎦

, 𝐍3 =
⎡

⎢

⎢

⎣

0
𝑔(𝑋)

±
√

1 − 𝑔2(𝑋)

⎤

⎥

⎥

⎦

. (5.8)

𝐍2 and 𝐍3 are orthogonal if and only if 𝑓 2(𝑋) + 𝑔2(𝑋) = 1. Thus, 𝑓 (𝑋) = cos𝜓(𝑋), and 𝑔(𝑋) = sin𝜓(𝑋), for an arbitrary function
(𝑋). Therefore, we have the following set of mutually orthogonal universal material preferred directions for transversely isotropic

olids.

𝐍1 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍2 =
⎡

⎢

⎢

⎣

0
cos𝜓(𝑋)
± sin𝜓(𝑋)

⎤

⎥

⎥

⎦

, 𝐍3 =
⎡

⎢

⎢

⎣

0
sin𝜓(𝑋)

∓ cos𝜓(𝑋)

⎤

⎥

⎥

⎦

. (5.9)
17
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One can check that for any pair of mutually orthogonal vectors in the above set all the terms in (5.6) and (5.7) are symmetric.
Therefore, (5.9) is a family of universal material preferred directions for orthotropic solids.

Families 2 and 3. The solutions for material preferred directions for transversely isotropic solids for Families 2 and 3 are very similar
to those of Family 1. Therefore, we have the following family of universal material preferred directions

𝐍1 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, 𝐍2 =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)

𝑅
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

, 𝐍3 =
⎡

⎢

⎢

⎣

0
sin𝜒(𝑅)

𝑅
∓cos𝜒(𝑅)

⎤

⎥

⎥

⎦

, (5.10)

for an arbitrary function 𝜒(𝑅). One can check that for any pair of mutually orthogonal vectors in the above set all the terms in (5.6)
and (5.7) are symmetric. Therefore, these are universal material preferred directions.

Family 4. In the case of transversely isotropic solids, there are only two solutions for the material preferred directions (4.45) that
are parallel. This means that in the case of orthotropic solids Family 4 is not universal.

Family 5. Let us consider arbitrary members of the two families of solutions (4.53) and (4.58)

𝐍1 =

⎡

⎢

⎢

⎢

⎣

0
𝑘
𝑅

±
√

1 − 𝑘2

⎤

⎥

⎥

⎥

⎦

, 𝐍2 =

⎡

⎢

⎢

⎢

⎣

𝛼
± 1
𝑅

√

1 − 𝛼2

0

⎤

⎥

⎥

⎥

⎦

. (5.11)

ote that 𝐍1 ⋅𝐍2 = ±𝑘
√

1 − 𝛼2 = 0 implies that 𝑘 = 0 or 𝛼 = ±1. Therefore, we have the following two classes of universal material
referred directions:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐍1 =

⎡

⎢

⎢

⎢

⎣

0
0
±1

⎤

⎥

⎥

⎥

⎦

, 𝐍2 =

⎡

⎢

⎢

⎢

⎣

cos 𝜉
± 1
𝑅 sin 𝜉
0

⎤

⎥

⎥

⎥

⎦

, 𝐍3 =

⎡

⎢

⎢

⎢

⎣

sin 𝜉
∓ 1
𝑅 cos 𝜉
0

⎤

⎥

⎥

⎥

⎦

,

𝐍1 =

⎡

⎢

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎥

⎦

, 𝐍2 =

⎡

⎢

⎢

⎢

⎣

0
1
𝑅 cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎥

⎦

, 𝐍3 =

⎡

⎢

⎢

⎢

⎣

0
1
𝑅 sin 𝜂
∓cos 𝜂

⎤

⎥

⎥

⎥

⎦

.

(5.12)

ne can check that for any pair of mutually orthogonal vectors in each row in the above set all the terms in (5.6) and (5.7) are
ymmetric. Table 2 summarizes our results for incompressible orthotropic solids.

. Incompressible monoclinic elastic solids

For monoclinic solids

𝜉𝑎 = 𝑔𝑎𝑚
[

𝑊1𝑏
𝑚𝑛 −𝑊2 𝑐

𝑚𝑛 +𝑊4 𝑛
𝑚
1 𝑛

𝑛
1 +𝑊5 𝓁

𝑚𝑛
1 +𝑊6 𝑛

𝑚
2 𝑛

𝑛
2 +𝑊7 𝓁

𝑚𝑛
2 + 1

2
𝑊8 𝓁

𝑚𝑛
3

]

|𝑛
. (6.1)

or 𝜉𝑎|𝑏 = 𝜉𝑏|𝑎 to hold for arbitrary monoclinic energy functions the coefficient of each partial derivative of 𝑊 must be symmetric.
n addition to the terms corresponding to the sets Kiso, K𝑖, K𝑖𝑖, K𝑖𝑖𝑖, there are an extra 78 terms corresponding to the following set:

K𝑖𝑣 = {8, 18, 19, 28, 29, 48, 49, 58, 59, 68, 69, 78, 79, 88, 89,

118, 119, 128, 129, 148, 149, 158, 159, 168, 169, 178, 179, 188, 189, 199, 228, 229,

248, 249, 258, 259, 268, 269, 278, 279, 288, 289, 299, 448, 449, 458, 459, 468, 469,

478, 479, 488, 489, 499, 558, 559, 568, 569, 578, 579, 588, 589, 599, 668, 669,

678, 679, 688, 689, 699, 778, 779, 788, 789, 799, 888, 889, 999} .

(6.2)

imilar to the analysis for orthotropic solids, in order to write the constraint equations more compactly, we denote the pair of
ectors (n,m) = (𝐧 ,𝐧 ). Also, l𝑎𝑏 = 𝓁𝑎𝑏, k𝑎𝑏 = 𝓁𝑎𝑏, and q𝑎𝑏 = 𝓁𝑎𝑏. The coefficients of the first and second-order derivatives of the
18
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energy function corresponding to the set K𝑖𝑣 are:

A8
𝑎𝑏 = q𝑛𝑎 |𝑛𝑏 ,

A18
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼1,𝑏 + (q𝑛𝑎 𝐼1,𝑛)|𝑏 + (𝑏𝑛𝑎𝐼8,𝑛)|𝑏 + 𝑏

𝑛
𝑎|𝑛𝐼8,𝑏 ,

A19
𝑎𝑏 = (𝑏𝑛𝑎𝐼9,𝑛)|𝑏 + 𝑏

𝑛
𝑎|𝑛𝐼9,𝑏 ,

A28
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼2,𝑏 + (q𝑛𝑎 𝐼2,𝑛)|𝑏 − (𝑐𝑛𝑎𝐼8,𝑛)|𝑏 − 𝑐

𝑛
𝑎 |𝑛𝐼8,𝑏 ,

A29
𝑎𝑏 = −(𝑐𝑛𝑎𝐼9,𝑛)|𝑏 − 𝑐

𝑛
𝑎 |𝑛𝐼9,𝑏 ,

A48
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼4,𝑏 + (q𝑛𝑎 𝐼4,𝑛)|𝑏 + (𝑛𝑎𝑛𝑛𝐼8,𝑛)|𝑏 + (𝑛𝑎𝑛𝑛)|𝑛𝐼8,𝑏 ,

A49
𝑎𝑏 = (𝑛𝑎𝑛𝑛𝐼9,𝑛)|𝑏 + (𝑛𝑎𝑛𝑛)|𝑛𝐼9,𝑏 ,

A58
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼5,𝑏 + (q𝑛𝑎 𝐼5,𝑛)|𝑏 + (l𝑛𝑎𝐼8,𝑛)|𝑏 + l𝑛𝑎 |𝑛𝐼8,𝑏 ,

A59
𝑎𝑏 = (l𝑛𝑎𝐼9,𝑛)|𝑏 + l𝑛𝑎 |𝑛𝐼9,𝑏 ,

A68
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼6,𝑏 + (q𝑛𝑎 𝐼6,𝑛)|𝑏 + (𝑚𝑎𝑚𝑛𝐼8,𝑛)|𝑏 + (𝑚𝑎𝑚𝑛)|𝑛𝐼8,𝑏 ,

A69
𝑎𝑏 = (𝑚𝑎𝑚𝑛𝐼9,𝑛)|𝑏 + (𝑚𝑎𝑚𝑛)|𝑛𝐼9,𝑏 ,

A78
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼7,𝑏 + (q𝑛𝑎 𝐼7,𝑛)|𝑏 + (k𝑛𝑎𝐼8,𝑛)|𝑏 + k𝑛𝑎 |𝑛𝐼8,𝑏 ,

A79
𝑎𝑏 = (k𝑛𝑎𝐼9,𝑛)|𝑏 + k𝑛𝑎 |𝑛𝐼9,𝑏 ,

A88
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼8,𝑏 + (q𝑛𝑎 𝐼8,𝑛)|𝑏 ,

A89
𝑎𝑏 = q𝑛𝑎 |𝑛 𝐼9,𝑏 + (q𝑛𝑎 𝐼9,𝑛)|𝑏 .

(6.3)

he coefficients of the third-order derivatives of the energy function corresponding to the set K𝑖𝑣 read:

A118
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏
)

,

A119
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏
)

,

A128
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏
)

− 𝑐𝑛𝑎
(

𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏
)

,

A129
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏
)

− 𝑐𝑛𝑎
(

𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏
)

,

A148
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

+ n𝑎n
𝑛 (𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏

)

,

A149
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

+ n𝑎n
𝑛 (𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏

)

,

A158
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

+ l𝑛𝑎
(

𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏
)

,

A159
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

+ l𝑛𝑎
(

𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏
)

,

A168
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

+ m𝑎m
𝑛 (𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏

)

,

A169
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

+ m𝑎m
𝑛 (𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏

)

,

A178
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

+ k𝑛𝑎
(

𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏
)

,

A179
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

+ k𝑛𝑎
(

𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏
)

,

A188
𝑎𝑏 = 𝑏𝑛𝑎 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎

(

𝐼1,𝑏𝐼8,𝑛 + 𝐼1,𝑛𝐼8,𝑏
)

,

A189
𝑎𝑏 = 𝑏𝑛𝑎

(

𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼1,𝑏𝐼9,𝑛 + 𝐼1,𝑛𝐼9,𝑏
)

,

A199
𝑎𝑏 = 𝑏𝑛𝑎 𝐼9,𝑏𝐼9,𝑛 ,

(6.4)

nd

A228
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏
)

,

A229
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏
)

,

A248
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

+ n𝑎n
𝑛 (𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏

)

,

A249
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

+ n𝑎n
𝑛 (𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9𝑏

)

,

A258
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

+ l𝑛𝑎
(

𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏
)

,

A259
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

+ l𝑛𝑎
(

𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏
)

,

A268
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

+ m𝑎m
𝑛 (𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏

)

,

A269
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

+ m𝑎m
𝑛 (𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏

)

,

A278
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

+ k𝑛𝑎
(

𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏
)

,

A279
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

+ k𝑛𝑎
(

𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏
)

,

A288
𝑎𝑏 = −𝑐𝑛𝑎 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎

(

𝐼2,𝑏𝐼8,𝑛 + 𝐼2,𝑛𝐼8,𝑏
)

,

A289
𝑎𝑏 = −𝑐𝑛𝑎

(

𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼2,𝑏𝐼9,𝑛 + 𝐼2,𝑛𝐼9,𝑏
)

,
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Table 2
Universal deformations and universal material preferred directions for incompressible orthotropic solids for the six known families of universal deformations.
Note that for Family 3, 𝐾 = 𝐶1𝐶4 − 𝐶2𝐶3. For orthotropic solids Family 4 is not universal.

Family Universal deformations 𝐂♭ Universal material preferred
directions

0 𝑥𝑎(𝑋) = 𝐹 𝑎
𝐴𝑋𝐴 + 𝑐𝑎 𝐶𝐴𝐵 = 𝐹 𝑎

𝐴𝐹 𝑎
𝐴𝛿𝑎𝑏 Any three mutually orthogo-

nal constant unit vec-
tors (�̂�1 , �̂�2 , �̂�3)

1
⎧

⎪

⎨

⎪

⎩

𝑟(𝑋, 𝑌 ,𝑍) =
√

𝐶1(2𝑋 + 𝐶4)
𝜃(𝑋, 𝑌 ,𝑍) = 𝐶2(𝑌 + 𝐶5)
𝑧(𝑋, 𝑌 ,𝑍) = 𝑍

𝐶1𝐶2
− 𝐶2𝐶3𝑌 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶1

2𝑋+𝐶4
0 0

0 𝐶2
2

[

𝐶1(2𝑋 + 𝐶4) + 𝐶2
3

]

− 𝐶3

𝐶1

0 − 𝐶3

𝐶1

1
𝐶2
1𝐶

2
2

⎤

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜓(𝑋)
± sin𝜓(𝑋)

⎤

⎥

⎥

⎦

,

�̂�3 =
⎡

⎢

⎢

⎣

0
sin𝜓(𝑋)

∓ cos𝜓(𝑋)

⎤

⎥

⎥

⎦

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥(𝑅,𝛩,𝑍) = 1
2
𝐶1𝐶2

2𝑅
2 + 𝐶4

𝑦(𝑅,𝛩,𝑍) = 𝛩
𝐶1𝐶2

+ 𝐶5

𝑧(𝑅,𝛩,𝑍) = 𝐶3

𝐶1𝐶2
𝛩 + 1

𝐶2
𝑍 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1𝐶

4
2𝑅

2 0 0
0 𝐶2

3+1
𝐶2
1𝐶

2
2

𝐶3

𝐶1𝐶2
2

0 𝐶3

𝐶1𝐶2
2

1
𝐶2
2

⎤

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

,

�̂�3 =
⎡

⎢

⎢

⎣

0
sin𝜒(𝑅)

∓ cos𝜒(𝑅)

⎤

⎥

⎥

⎦

3
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) =
√

𝑅2

𝐶1𝐶4−𝐶2𝐶3
+ 𝐶5

𝜃(𝑅,𝛩,𝑍) = 𝐶1𝛩 + 𝐶2𝑍 + 𝐶6

𝑧(𝑅,𝛩,𝑍) = 𝐶3𝛩 + 𝐶4𝑍 + 𝐶7

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅2

𝐾(𝐾𝐶5+𝑅2 )
0 0

0 𝐶2
1

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
3 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4

0 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4 𝐶2
2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
4

⎤

⎥

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜒(𝑅)
± sin𝜒(𝑅)

⎤

⎥

⎥

⎦

,

�̂�3 =
⎡

⎢

⎢

⎣

0
sin𝜒(𝑅)

∓ cos𝜒(𝑅)

⎤

⎥

⎥

⎦

5
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) = 𝐶1𝑅
𝜃(𝑅,𝛩,𝑍) = 𝐶2 log𝑅 + 𝐶3𝛩 + 𝐶4

𝑧(𝑅,𝛩,𝑍) = 1
𝐶2
1𝐶3

𝑍 + 𝐶5

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1

(

𝐶2
2 + 1

)

𝐶2
1𝐶2𝐶3𝑅 0

𝐶2
1𝐶2𝐶3𝑅 𝐶2

1𝐶
2
3𝑅

2 0
0 0 1

𝐶4
1𝐶

2
3

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̂�1 =

⎡

⎢

⎢

⎢

⎣

0
0
±1

⎤

⎥

⎥

⎥

⎦

, �̂�2 =

⎡

⎢

⎢

⎢

⎣

cos 𝜉
± sin 𝜉

0

⎤

⎥

⎥

⎥

⎦

,

�̂�3 =

⎡

⎢

⎢

⎢

⎣

sin 𝜉
∓cos 𝜉

0

⎤

⎥

⎥

⎥

⎦

�̂�1 =

⎡

⎢

⎢

⎢

⎣

±1
0
0

⎤

⎥

⎥

⎥

⎦

, �̂�2 =

⎡

⎢

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎥

⎦

,

�̂�3 =

⎡

⎢

⎢

⎢

⎣

0
sin 𝜂

∓cos 𝜂

⎤

⎥

⎥

⎥

⎦

A299
𝑎𝑏 = −𝑐𝑛𝑎 𝐼9,𝑏𝐼9,𝑛,

A448
𝑎𝑏 = n𝑎n

𝑛 (𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

,

A449
𝑎𝑏 = n𝑎n

𝑛 (𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

,

(6.5)

nd

A458
𝑎𝑏 = n𝑎n

𝑛 (𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

+ l𝑛𝑎
(

𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

,

A459
𝑎𝑏 = n𝑎n

𝑛 (𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

+ l𝑛𝑎
(

𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

,

A468
𝑎𝑏 = n𝑎n

𝑛 (𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

+ m𝑎m
𝑛 (𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏

)

,

A469
𝑎𝑏 = n𝑎n

𝑛 (𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

+ m𝑎m
𝑛 (𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏

)

,

A478
𝑎𝑏 = n𝑎n

𝑛 (𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

+ k𝑛𝑎
(

𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

,

A479
𝑎𝑏 = n𝑎n

𝑛 (𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

+ k𝑛𝑎
(

𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

,

A488
𝑎𝑏 = n𝑎n

𝑛 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎
(

𝐼4,𝑏𝐼8,𝑛 + 𝐼4,𝑛𝐼8,𝑏
)

,

A489
𝑎𝑏 = n𝑎n

𝑛 (𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼4,𝑏𝐼9,𝑛 + 𝐼4,𝑛𝐼9,𝑏
)

,

A499
𝑎𝑏 = n𝑎n

𝑛 𝐼9,𝑏𝐼9,𝑛 ,

A558 = l𝑛
(

𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

,
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A559
𝑎𝑏 = l𝑛𝑎

(

𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

,

A568
𝑎𝑏 = l𝑛𝑎

(

𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

+ m𝑎m
𝑛 (𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏

)

,

A569
𝑎𝑏 = l𝑛𝑎

(

𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

+ m𝑎m
𝑛 (𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏

)

,

A578
𝑎𝑏 = l𝑛𝑎

(

𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

+ k𝑛𝑎
(

𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

,

A579
𝑎𝑏 = l𝑛𝑎

(

𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

+ k𝑛𝑎
(

𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

,

(6.6)

and

A588
𝑎𝑏 = l𝑛𝑎 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎

(

𝐼5,𝑏𝐼8,𝑛 + 𝐼5,𝑛𝐼8,𝑏
)

,

A589
𝑎𝑏 = l𝑛𝑎

(

𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼5,𝑏𝐼9,𝑛 + 𝐼5,𝑛𝐼9,𝑏
)

,

A599
𝑎𝑏 = l𝑛𝑎 𝐼9,𝑏𝐼9,𝑛 ,

A668
𝑎𝑏 = m𝑎m

𝑛 (𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

,

A669
𝑎𝑏 = m𝑎m

𝑛 (𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

,

A678
𝑎𝑏 = m𝑎m

𝑛 (𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

+ k𝑛𝑎
(

𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

,

A679
𝑎𝑏 = m𝑎m

𝑛 (𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

+ k𝑛𝑎
(

𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

,

A688
𝑎𝑏 = m𝑎m

𝑛 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎
(

𝐼6,𝑏𝐼8,𝑛 + 𝐼6,𝑛𝐼8,𝑏
)

,

A689
𝑎𝑏 = m𝑎m

𝑛 (𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼6,𝑏𝐼9,𝑛 + 𝐼6,𝑛𝐼9,𝑏
)

,

A699
𝑎𝑏 = m𝑎m

𝑛 𝐼9,𝑏𝐼9,𝑛 ,

A778
𝑎𝑏 = k𝑛𝑎

(

𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

,

A779
𝑎𝑏 = k𝑛𝑎

(

𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

,

A788
𝑎𝑏 = k𝑛𝑎 𝐼8,𝑏𝐼8,𝑛 + q𝑛𝑎

(

𝐼7,𝑏𝐼8,𝑛 + 𝐼7,𝑛𝐼8,𝑏
)

,

A789
𝑎𝑏 = k𝑛𝑎

(

𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

+ q𝑛𝑎
(

𝐼7,𝑏𝐼9,𝑛 + 𝐼7,𝑛𝐼9,𝑏
)

,

A799
𝑎𝑏 = k𝑛𝑎 𝐼9,𝑏𝐼9,𝑛 ,

A888
𝑎𝑏 = q𝑛𝑎 𝐼8,𝑏𝐼8,𝑛 ,

A889
𝑎𝑏 = q𝑛𝑎

(

𝐼8,𝑏𝐼9,𝑛 + 𝐼8,𝑛𝐼9,𝑏
)

,

A999
𝑎𝑏 = q𝑛𝑎 𝐼9,𝑏𝐼9,𝑛 .

(6.7)

amily 1. Let us consider two arbitrary but distinct members of the set (4.23)2, namely

�̂�1 =
⎡

⎢

⎢

⎣

0
cos𝜓1(𝑋)
± sin𝜓1(𝑋)

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜓2(𝑋)
± sin𝜓2(𝑋)

⎤

⎥

⎥

⎦

. (6.8)

hese two vectors satisfy all the universality symmetry conditions for arbitrary 𝜓1(𝑋) and 𝜓2(𝑋), 𝜓1(𝑋) ≠ 𝜓2(𝑋). This means that
6.8) are universal material preferred directions for Family 1.

amilies 2 and 3. For Families 2 and 3, let us consider two arbitrary but distinct members of the set (4.32)2, namely

�̂�1 =
⎡

⎢

⎢

⎣

0
cos𝜒1(𝑅)
± sin𝜒1(𝑅)

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜒2(𝑅)
± sin𝜒2(𝑅)

⎤

⎥

⎥

⎦

. (6.9)

he above two vectors satisfy all the universality conditions for arbitrary 𝜒1(𝑅) and 𝜒2(𝑅), 𝜒1(𝑅) ≠ 𝜒2(𝑅), i.e., (6.9) are universal
aterial preferred directions for Families 2 & 3.

amily 5. In the case of orthotropic solids, Family 5 has two classes of universal material preferred directions (5.12). Let us consider
wo arbitrary but distinct members in Class 1 of universal solutions, namely

�̂�1 =
⎡

⎢

⎢

⎣

cos 𝜉1
± sin 𝜉1

0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

cos 𝜉2
± sin 𝜉2

0

⎤

⎥

⎥

⎦

. (6.10)

hese vectors satisfy all the universality symmetry conditions for arbitrary 𝜉1 and 𝜉2, 𝜉1 ≠ 𝜉2, i.e., (6.10) are universal material
referred directions for Family 5.

Next we consider two arbitrary but distinct members in Class 2 of the transversely isotropic universal solutions, namely

�̂�1 =
⎡

⎢

⎢

0
cos 𝜂1

⎤

⎥

⎥

, �̂�2 =
⎡

⎢

⎢

0
cos 𝜂2

⎤

⎥

⎥

. (6.11)
21
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It turns out that the above two vectors satisfy all the universality constraints other than A8
𝑎𝑏 = A8

𝑏𝑎, which gives the following
universality condition:

𝐶2 sin 𝜂1 cos 𝜂2 = 0 . (6.12)

f 𝐶2 = 0, (6.11) are universal material preferred directions for arbitrary 𝜂1 and 𝜂2 as long as 𝜂1 ≠ 𝜂2. This is similar to what was
bserved in footnote 3 for transversely isotropic solids. Considering the full set of universal deformations (4.46), the universality
onditions are: sin 𝜂1 cos 𝜂2 = 0. The cases sin 𝜂1 = 0, and cos 𝜂2 = 0 were discussed in Remark 4.6. Therefore, we have the following
wo classes of universal material preferred directions

�̂�1 =
⎡

⎢

⎢

⎣

0
±1
0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, sin 𝜂 ≠ 0 , (6.13)

nd

�̂�1 =
⎡

⎢

⎢

⎣

0
0
±1

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, cos 𝜂 ≠ 0 . (6.14)

n summary, we have the following three classes of universal material preferred directions for Family 5:

Class (i) ∶ �̂�1 =
⎡

⎢

⎢

⎣

cos 𝜉1
± sin 𝜉1

0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

cos 𝜉2
± sin 𝜉2

0

⎤

⎥

⎥

⎦

, 𝜉1 ≠ 𝜉2 , (6.15)

Class (ii) ∶ �̂�1 =
⎡

⎢

⎢

⎣

0
±1
0

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, sin 𝜂 ≠ 0 , (6.16)

Class (iii) ∶ �̂�1 =
⎡

⎢

⎢

⎣

0
0
±1

⎤

⎥

⎥

⎦

, �̂�2 =
⎡

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎦

, cos 𝜂 ≠ 0 . (6.17)

lass (i) corresponds to two families of fibers that are parallel to the (𝑅,𝛩) plane and are distributed uniformly in two distinct fixed
irections. In Class (ii) one family of fibers are concentric circles parallel to the (𝑅,𝛩) plane, and the second family of fibers are
rranged helically, i.e., a combination of fibers in Figs. 1(b) and (d). Note that the two families of fibers are not mechanically
quivalent, in general. In Class (iii) one family of fibers are distributed uniformly parallel to the axis of the wedge, and the
econd family of fibers are arranged helically, i.e., a combination of fibers in Figs. 1(b) and (c). Table 3 summarizes our results
or incompressible monoclinic solids.

emark 6.1. For Families 1, 2, and 3, the monoclinic universal material preferred directions are reduced to those of orthotropic
olids when 𝐍1 ⋅𝐍2 = 0. For Family 5, the same thing happens for Class (i) solutions. However, for Class (ii) solutions the monoclinic
niversality constraints force one family of fibers to be either parallel lines or concentric circles. When 𝐍1 ⋅ 𝐍2 = 0, this recovers
nly a subset of the corresponding orthotropic solutions.

. Concluding remarks

We have shown that the universal deformations for compressible transversely isotropic, orthotropic, and monoclinic solids are
omogeneous and the universal material preferred directions are uniform. In the case of incompressible transversely isotropic,
rthotropic, and monoclinic solids, in addition to the nine universality constraints for isotropic solids that were derived by Ericksen
1954), there are extra 25, 74, and 152, respectively, extra universality constraints that need to be satisfied. For each of the six
nown families of universal deformations for isotropic solids we obtained the corresponding universal material preferred directions
ssuming that the material preferred directions share the symmetries of the right Cauchy–Green strain. Tables 1, 2, and 3 summarize
ur results for incompressible transversely isotropic, orthotropic, and monoclinic solids. This classification of universal solutions
rovides a collection of solutions that can be used for applications and restrict the possible choice of new solutions to material
referred directions that do not preserve the underlying symmetry of the deformations. We believe that these solutions are unlikely
o exist and we conjecture that this classification, like the cases of isotropic incompressible solids, and isotropic anelastic solids is
omplete.
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D
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D
E
E
E
F
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G
G
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Table 3
Universal deformations and universal material preferred directions for incompressible monoclinic solids for the six known families of universal deformations.
Note that for Family 3, 𝐾 = 𝐶1𝐶4 − 𝐶2𝐶3. For monoclinic solids Family 4 is not universal. Also, note that �̂�3 is normal to the plane of �̂�1 and �̂�2.

Family Universal deformations 𝐂♭ Universal material preferred
directions

0 𝑥𝑎(𝑋) = 𝐹 𝑎
𝐴𝑋𝐴 + 𝑐𝑎 𝐶𝐴𝐵 = 𝐹 𝑎

𝐴𝐹 𝑎
𝐴𝛿𝑎𝑏 Any two non-parallel constant

unit vectors �̂�1, and �̂�2

1
⎧

⎪

⎨

⎪

⎩

𝑟(𝑋, 𝑌 ,𝑍) =
√

𝐶1(2𝑋 + 𝐶4)
𝜃(𝑋, 𝑌 ,𝑍) = 𝐶2(𝑌 + 𝐶5)
𝑧(𝑋, 𝑌 ,𝑍) = 𝑍

𝐶1𝐶2
− 𝐶2𝐶3𝑌 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶1

2𝑋+𝐶4
0 0

0 𝐶2
2

[

𝐶1(2𝑋 + 𝐶4) + 𝐶2
3

]

− 𝐶3

𝐶1

0 − 𝐶3

𝐶1

1
𝐶2
1𝐶

2
2

⎤

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

0
cos𝜓1(𝑋)
± sin𝜓1(𝑋)

⎤

⎥

⎥

⎦

,

�̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜓2(𝑋)
± sin𝜓2(𝑋)

⎤

⎥

⎥

⎦

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥(𝑅,𝛩,𝑍) = 1
2
𝐶1𝐶2

2𝑅
2 + 𝐶4

𝑦(𝑅,𝛩,𝑍) = 𝛩
𝐶1𝐶2

+ 𝐶5

𝑧(𝑅,𝛩,𝑍) = 𝐶3

𝐶1𝐶2
𝛩 + 1

𝐶2
𝑍 + 𝐶6

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1𝐶

4
2𝑅

2 0 0
0 𝐶2

3+1
𝐶2
1𝐶

2
2

𝐶3

𝐶1𝐶2
2

0 𝐶3

𝐶1𝐶2
2

1
𝐶2
2

⎤

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

0
cos𝜒1(𝑅)
± sin𝜒1(𝑅)

⎤

⎥

⎥

⎦

,

�̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜒2(𝑅)
± sin𝜒2(𝑅)

⎤

⎥

⎥

⎦

,

𝜒1(𝑅) ≠ 𝜒2(𝑅)

3
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) =
√

𝑅2

𝐶1𝐶4−𝐶2𝐶3
+ 𝐶5

𝜃(𝑅,𝛩,𝑍) = 𝐶1𝛩 + 𝐶2𝑍 + 𝐶6

𝑧(𝑅,𝛩,𝑍) = 𝐶3𝛩 + 𝐶4𝑍 + 𝐶7

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎢

⎣

𝑅2

𝐾(𝐾𝐶5+𝑅2 )
0 0

0 𝐶2
1

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
3 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4

0 𝐶1𝐶2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶3𝐶4 𝐶2
2

(

𝑅2

𝐾
+ 𝐶5

)

+ 𝐶2
4

⎤

⎥

⎥

⎥

⎥

⎦

�̂�1 =
⎡

⎢

⎢

⎣

0
cos𝜒1(𝑅)
± sin𝜒1(𝑅)

⎤

⎥

⎥

⎦

,

�̂�2 =
⎡

⎢

⎢

⎣

0
cos𝜒2(𝑅)
± sin𝜒2(𝑅)

⎤

⎥

⎥

⎦

,

𝜒1(𝑅) ≠ 𝜒2(𝑅)

5
⎧

⎪

⎨

⎪

⎩

𝑟(𝑅,𝛩,𝑍) = 𝐶1𝑅
𝜃(𝑅,𝛩,𝑍) = 𝐶2 log𝑅 + 𝐶3𝛩 + 𝐶4

𝑧(𝑅,𝛩,𝑍) = 1
𝐶2
1𝐶3

𝑍 + 𝐶5

[𝐶𝐴𝐵 ] =

⎡

⎢

⎢

⎢

⎣

𝐶2
1

(

𝐶2
2 + 1

)

𝐶2
1𝐶2𝐶3𝑅 0

𝐶2
1𝐶2𝐶3𝑅 𝐶2

1𝐶
2
3𝑅

2 0
0 0 1

𝐶4
1𝐶

2
3

⎤

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̂�1 =

⎡

⎢

⎢

⎢

⎣

cos 𝜉1
± sin 𝜉1

0

⎤

⎥

⎥

⎥

⎦

,

�̂�2 =

⎡

⎢

⎢

⎢

⎣

cos 𝜉2
± sin 𝜉2

0

⎤

⎥

⎥

⎥

⎦

, 𝜉1 ≠ 𝜉2 ,

�̂�1 =

⎡

⎢

⎢

⎢

⎣

0
±1
0

⎤

⎥

⎥

⎥

⎦

, �̂�2 =

⎡

⎢

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎥

⎦

,

sin 𝜂 ≠ 0 ,

�̂�1 =

⎡

⎢

⎢

⎢

⎣

0
0
±1

⎤

⎥

⎥

⎥

⎦

, �̂�2 =

⎡

⎢

⎢

⎢

⎣

0
cos 𝜂
± sin 𝜂

⎤

⎥

⎥

⎥

⎦

,

cos 𝜂 ≠ 0 .
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