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ARTICLE INFO ABSTRACT
Keywords: Universal deformations of an elastic solid are deformations that can be achieved for all possible
Universal deformations strain—energy density functions and suitable boundary conditions. They play a central role in

Nonlinear elasticity

nonlinear elasticity and their classification has been mostly accomplished for isotropic solids
Anisotropic elasticity

following Ericksen’s seminal work. Here, we address the same problem for transversely isotropic,
orthotropic, and monoclinic solids. In this case, there are no general solutions unless universal
material preferred directions are also specified. First, we show that for compressible transversely
isotropic, orthotropic, and monoclinic solids universal deformations are homogeneous and that
the material preferred directions are uniform as well. Second, for incompressible transversely
isotropic, orthotropic, and monoclinic solids we derive the corresponding universality constraints.
These are constraints that are imposed by equilibrium equations and the arbitrariness of the
energy function. We show that these constraints include those of incompressible isotropic solids.
Hence, we consider the known universal deformations for each of the six known families
of universal deformations for isotropic solids and find the corresponding universal material
preferred directions for transversely isotropic, orthotropic, and monoclinic solids. This work
provides a systematic way to study fiber-reinforced elastic solids analytically.

1. Introduction

Universal (controllable) deformations for a given class of materials are those deformations that can be maintained in the absence
of body forces by applying only boundary tractions for all strain—energy functions in that class. In the case of (unconstrained)
compressible isotropic elastic solids, Ericksen (1955) proved that the only universal deformations are homogeneous deformations.
The constrained case is more involved (Saccomandi, 2001). For instance, in the case of incompressible isotropic solids, Ericksen
(1954), motivated by the earlier works of Rivlin (1948, 1949a,b), found four families of universal deformations. He conjectured
that a deformation with constant principal strain invariants must be homogeneous. Fosdick (1966) found a counter-example, and
this led to the discovery of a fifth family of universal deformations independently by Singh and Pipkin (1965) and Klingbeil and
Shield (1966). The six known families of universal deformations are:

+ Family 0: Homogeneous deformations

+ Family 1: Bending, stretching, and shearing of a rectangular block

+ Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

+ Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge

+ Family 4: Inflation/inversion of a sector of a spherical shell
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» Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge
Carroll (1967) and Fosdick (1968) showed that these families are universal dynamically as well for those motions whose acceleration
is curl-free, i.e., is gradient of a potential function. Ericksen’s problem in the case of incompressible isotropic solids has not been
completely solved to this date as the case of deformations with constant principal invariants is still open but the conjecture is
that there is no other possible family. In the setting of linear elasticity, Yavari et al. (2020) showed that universal displacements
explicitly depend on the material symmetry class; the smaller the symmetry group is the smaller the corresponding space of universal
displacements is. Yavari and Goriely (2016) showed that in compressible anelasticity universal deformations are covariantly
homogeneous. For the generalization of Ericksen’s work to incompressible anelasticity, Goodbrake et al. (2020) showed that a key
feature of the analysis is that the extra fields entering the analysis should follow the same symmetry as the deformation.

There has not been any systematic study of universal deformations in anisotropic solids. Ericksen and Rivlin (1954) analyzed a
subset of Family 1 for two cases of homogeneous anisotropy. They also analyzed Family 3 for an example of homogeneous anisotropy.
See also (Adkins, 1955a,b). Yet, we know plenty of examples of anisotropic fiber-reinforced systems (Spencer, 1982; Qiu and Pence,
1997) with one (i.e. transversely isotropic) or two (i.e. orthotropic) specified material preferred directions that sustain universal
deformations either in rectangular (Melnik and Goriely, 2013) or helical geometry (Holzapfel et al., 2000; Demirkoparan and Pence,
2007; Goriely and Tabor, 2013; Demirkoparan and Pence, 2015; Goriely, 2017). The question is then to find all such systems. Here,
we do not specify the material preferred directions a priori; we find conditions for the existence of universal deformations and then
find the universal material preferred directions that satisfy these constraints.

We consider the following six classes of anisotropic materials: (i) compressible transversely isotropic, (ii) compressible or-
thotropic, (iii) compressible monoclinic, (iv) incompressible transversely isotropic, (v) incompressible orthotropic, and (vi) incom-
pressible monoclinic solids. Using the representation of Cauchy stress for each class we find the universality constraints imposed by
both the equilibrium equations in the absence of body forces, and the arbitrariness of the energy function. Perhaps unsurprisingly,
our analysis shows that the set of universality constraints for each class includes those of isotropic solids. In the case of compressible
solids it implies that universal deformations must be homogeneous and we show that the extra universality constraints force the
universal material preferred directions to be uniform for non-isochoric deformations. In the case of incompressible solids we find,
for each of the six known families of universal deformations, the corresponding universal material preferred directions assuming
that they respect the symmetry of the universal deformations encoded in the right Cauchy-Green tensor.

This paper is organized as follows. In Section 2 we briefly review nonlinear anisotropic elasticity. In Section 3, we consider
compressible transversely isotropic, orthotropic, and monoclinic solids. The universal deformations and universal material preferred
directions of incompressible transversely isotropic solids are analyzed for each of the known six families in Section 4. In Sections 5
and 6 similar analyses are presented for incompressible orthotropic and incompressible monoclinic solids. Conclusions are given in
Section 7.

2. Nonlinear anisotropic elasticity

Kinematics. In nonlinear anelasticity a body @ is identified with a Riemannian manifold (8, G), where G is the material metric that
characterizes the natural distances in the body. In nonlinear elasticity, which is the focus of this paper (8, G) is a submanifold of the
Euclidean 3-space. A deformation of the body is a mapping ¢ : B — §, where (8, g) is another Riemannian manifold — the ambient
space, which is assumed to be the Euclidean 3-space. The material velocity V, : 8 - T, (p,(X)S is defined as V,(X) = VX, 1) = %’f").
The spatial velocity is defined as v = Vog; . The primary object to study deformations in nonlinear elasticity is the deformation
gradient, which is the tangent map (or derivative) of ¢ and is denoted by F = T¢. At each material point X € @, deformation
gradient is a linear map F(X) : TxB — T,,x,S. With respect to local coordinate charts {x“} and {X A} on & and B, respectively, the
deformation gradient has components

a a
F?,(X) = ()XLA(X). @1

The transpose of deformation gradient is defined as

FT:T,8 5> TxB, (FV,v), =(V.F'v)g. VVETRB, vETS, (2.2)
and has components

(FTX)", = g F 5(XGP(X). (2.3)

The right Cauchy-Green deformation tensor is defined as C(X) = F(X)TF(X) : Tx® — Tx® and has components C4, = (FT)4 Fp.
Note that C, 5 = (g,,09)F 4 F” 5, which means that C* = ¢*(g), where b is the flat operator induced by the metric g. The left Cauchy—
Green deformation tensor is defined as B* = @*(g¥), which has components BA8 = (F~1)4 (F~1)B, g%. The spatial analogues of C’
and B? are ¢” and b, respectively, and are defined as

cb = W*(G)’ Cap = (Fil)Aa(Fil)Bb GAB’

(2.4)
b =, (GF), b= F,FP,GB.



A. Yavari and A. Goriely Journal of the Mechanics and Physics of Solids 156 (2021) 104598

b? is called the Finger deformation tensor. The tensors C and b have the same principal invariants I,, I,, and I; (Ogden, 1984),

which are defined as
I, =trb=p% =b"g,,
1 1 1
=ty = o) = Lo g, ). @5)
Iy = deth.

Balance laws. Conservation of mass and the balance of linear and angular momenta in material form read

)

o _, (2.6)
ot

DivP + pyB = pyA, 2.7)

PF' =FP", (2.8)

where p, is the material mass density, B is body force per unit undeformed volume, A is the material acceleration, and P is the first
Piola—Kirchhoff stress. The relation between P and the Cauchy stress ¢ is Jo?® = P4 F?,, where J is the Jacobian of deformation
that relates the material (dV') and spatial (dv) Riemannian volume forms as dv = JdV, and is defined as

detg
J=4/ Tl detF. (2.9)

The balance equations in terms of the spatial mass density p and the Cauchy stress ¢ read

L,p =0, (2.10)
divo + pb = pa, (2.11)
' =o, (2.12)

where b = Bog[ !, a is the spatial acceleration, and L,p is the Lie derivative of the spatial mass density with respect to the spatial
velocity.

Constitutive equations. For an anisotropic hyperelastic solid the energy function (per unit undeformed volume) is written as
W =W(C".G. gy, ....L,). (2.13)

where ¢;,i = 1, ..., n are the structural tensors that characterize the material symmetry group of the solid. Structural tensors make the
energy function an isotropic function of its arguments. Hilbert’s theorem tells us that for any finite number of tensors there is a finite
number of isotropic invariants that form an integrity basis for the space of isotropic invariants of the collection of tensors. Therefore,
if I;,j = 1,...,m, form an integrity basis for the set of tensors in (2.13), one has W = W(X, I}, ..., I,,). Using the Doyle-Ericksen
formula (Doyle and Ericksen, 1956; Marsden and Hughes, 1994; Yavari et al., 2006), one obtains the following representation for
the second Piola—Kirchhoff stress tensor

A m
oW 91, oW
S=2—" =Y ow,—, W, ===, j=1,..,m. (2.14)
ac Z{ Toch 7 oI
Note that S48 = (F~1)4, P8 = J(F~)A (F~1)B, 6.

Isotropic solids. For an isotropic solid, the energy function has the form W = W (I, I,, I5), where I, I,, and I; are the principal
invariants of the right Cauchy-Green deformation tensor given in (2.5). From (2.14) we have

S =2W,G* +2W, (L,C™! - ,C2) + 2w; 1,C 71 (2.15)
Similarly, the Cauchy stress has the representation

5% = L[ [W1b% + (LW, + Wy)g® — LW, ¢ (2.16)
3

where ¢ = (F-H)M (F~)N G, ng™ g". For incompressible isotropic solids I; = 1, and one writes
S =—pC~' +2W,G* —2W,C2, (2.17)
where p is the Lagrange multiplier associated with the incompressibility constraint J = \/1_3 = 1. The Cauchy stress similarly reads
0% = —pg® + 2W b — 2W, ¢ (2.18)

Transversely isotropic solids. A transversely isotropic solid has a single material preferred direction at every point that is normal to
the plane of isotropy at that point. Let us assume that the unit vector N(X) identifies the material preferred direction at a point
X € B. The energy function has the form W = W (G, C’,A), where A = N ® N is a structural tensor (Doyle and Ericksen, 1956;
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Spencer, 1982; Lu and Papadopoulos, 2000). The energy function W depends on the following five independent invariants
I,=trC, ILy=detCtrC™', Iy=detC, I,=N-C-N, I;=N-C2-N. (2.19)
In components
I,=C",, I,=det(C'p)CHP), I;=det(C'p), I,=NANEC,p, I5=NANBCy,CM,. (2.20)

The second Piola-Kirchhoff stress tensor is written as

5

oW
w, =22 j=1,...5, 2.21
Zl J 6Cb J oI, J ( )
where
or or oI oI ol
—L-¢', Z2=nc'-nc?, =Z=pnc!, Z=X=N@®N, =N®(C-N)+(C-N)®N. (2.22)
aCP ach ; ocb aCh ach

From (2.22), the second Piola-Kirchhoff stress tensor has the following representation
S =2W,G¥ +2W, (L,C™! = ,C72) + 205 ,C™ + 2W, (N® N) + 2W5 [N® (C-N) + (C-N) ® N] . (2.23)
The Cauchy stress tensor has the following component representation (Ericksen and Rivlin, 1954; Golgoon and Yavari, 2018a,b)
6% = —Z Wb + (L, Wy + LWy)g® — LW, ¢ + Wy nnb + Wy £9] | (2.24)
I
where n? = F9, N4, and ¢ = n°b* n, + n®6° n,. For an incompressible transversely isotropic solid (I3 = 1), W = W (I}, 15,1, I5).
Thus

S = —pC~1 +2W,GF + 20, (IL,C™' = C72) +2W, (N®N) + 2W5 [N® (C-N) + (C-N) ® N] . (2.25)

The Cauchy stress tensor is represented in components as (Ericksen and Rivlin, 1954; Spencer, 1986; Golgoon and Yavari, 2018a,b)

6% = —pg® + 2W, b — 2W, ¢ + 2W, n®n® + 2Ws(nb*nl gy + nPb%nlg,,). (2.26)

Orthotropic solids. Orthotropic solids at every point have reflection symmetry with respect to three mutually perpendicular planes.
Suppose that three G-orthonormal vectors N, (X), N,(X), and N;(X) specify the orthotropic axes in the reference configuration at
a point X. One choice of structural tensors is A; = N; ® N;, A, = N, ® N,, and A; = N; ® N;. However, only two of them are
independent as A + A, + A; = L. Thus, the energy function has the functional form W = W(G,C’,A,,A,) (Doyle and Ericksen,
1956; Spencer, 1982; Lu and Papadopoulos, 2000) and is represented in terms of the following seven independent invariants

I, =trC, I,=detCtr C', I;=detC, I,=N,;-C-N;, Is;=N;-C*-N;, I;=N,-C-N,, I=N,-C?-N,. (2.27)

Thus
: 91, oW
S=Yow,—, W =5, j=1...7. (2.28)

J J
o e o1,

The second Piola—Kirchhoff stress tensor has the following representation

S =2W,G* +2W, (L,C™! = ,C72) + 205 ,C7" + 20, (N; ® N;) +2Ws [N; ® (C-Np) +(C-N) @ Ny]

(2.29)
+2W5 (N ®N) +2W; [N, ® (C-Np) +(C-Np)) @ Ny .

The Cauchy stress tensor is represented in component form as (Smith and Rivlin, 1958; Spencer, 1986; Golgoon and Yavari, 2018a,b)

= LI [ Wb + (I, Wy + ILW3)g® — LW, ¢® + Wy ninb + Ws (n8b"nlg g + nlb*nig.,)
Vi3 (2.30)

+ VVGn;ng + W (n ( apben dgcd + nbbac dgcd) ]

a _ pa A a _ pa A
where n{ = F*,N{*, and nj = F*, N,
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For incompressible orthotropic solids (I3 = 1), W = W (I 1s 12,14,15,16,17). Therefore, using (2.29), one obtains the following
representation

S = —pC~! +2W,G* +2W, (L,C™' = C72) +2W, (N; ® N ) +2W5 [N; ® (C- N + (C-N) ® N |

(2.31)
+2W5 (N, ®N,) + 205 [N, @ (C-Np) +(C-Np)) @ Ny .
Similarly, the Cauchy stress tensor is given as
0% = —pg®™ + 2W b — 2W, ¢ + 2W, 0§ b + 2Ws £ + 2Wg n§ nh + 2W5 £5° (2.32)

ab _ pa pbe ,d b pac ,d ab _ a pbe ,d b pac ,d
where 2% = n{ b* n{ g.q +n| b% n{ g.4, and £5° = nj b* nj g4 + n3 b ng g,

Monoclinic solids. An example of a transversely isotropic solid is a composite that is made of an isotropic matrix reinforced by a
single family of aligned fibers (Spencer, 1986). At the macroscopic scale fibers are the integral curves of the vector field N. Similarly,
an orthotropic solid can be visualized as an isotropic matrix reinforced by two orthogonal families of fibers. For a monoclinic solid
N, N, # 0 but Nj is still normal to the plane of N; and N, (Merodio and Ogden, 2020). For such solids, the energy function depends
on nine invariants (Spencer, 1986). Seven of them are identical to the orthotropic invariants (2.27). The two extra invariants are

Iy=gN,-C-N,, Iy=g*, (2.33)

where g = N, -N,. The term g is included in the expression of I5 to ensure that Iy is invariant under both transformations N; —» —N,
and N, —» —N,. Note that

g g oy _

=S (N®N, +N, ®N,), — (2.34)
o~ NN+ NN .
From W =W, 1,,13,1,,Is, I, I, I3, I), one obtains
S =2W,G* +2W, (IL,C™! = ,C2) + 205 ,C7" + 20, (N; @ N;) +2W5 [N; ® (C-N)) +(C-N) ®N|] (2.35)

+ 2W (N; ® Ny ) +2W5 [N; ® (C-Np) + (C-Np) @ Ny| + gW (N, @ N, + N, ® N )

The Cauchy stress has the component representation

2
o =—= [ W™ + (I Ws + W3)E™ — I3W, ¢ + Wynin) + W (nf b nf g4 + 1} 6% n{ g,4)

N (2.36)

+ W ngnd + Wy (nS b5 nd gq +nb b% nd g.4) + gWy (n nd + nb nl) ] .

For incompressible monoclinic solids (I; = 1), W = W (I 1D Iy, Is, I, 15, Ig, Ig). Therefore, using (2.29), one obtains the following
representation

S = —pC~! +2W,G* +2W, (L,C™' = C72) +2W, (N; ® N ) +2W5 [N; ® (C- N + (C-N)) ® N |

(2.37)
+2Ws (N, @ N) + 207 [N, ® (C-Np) + (C-Np) @ Ny + gWy (N; @ N, + N, @ N )
Similarly, the Cauchy stress tensor is given as
0% = —pg + 2W b — 23 Wy ¢ + 2W, nd nl + 2Ws £90 + 2W n ) + 2W5 €50 + Wy 24P (2.38)

ab _ a b b a
where ¢5" = g(n] ny +nj n)).

Remark 2.1. In many references (Merodio and Ogden, 2006; Vergori et al., 2013) the dependence of the energy function on I, is
ignored since from (2.34), it does not enter the expression of stress. However, in finding the universality constraints one cannot
ignore this dependence as we will see in Section 6.

3. Compressible anisotropic solids

Transversely isotropic solids. Let us consider a body made of a compressible transversely isotropic solid. At this point we do not
specify the material preferred direction N. In the absence of body forces, the equilibrium equations are div o = 0, and in components
6%y = 6%, +7%.0% + y?y.6% = 0, where y%,, = %g“k (8kbe + Ekes — 8pe) are the Christoffel symbols of the Levi-Civita connection

5
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associated with the metric g. It is convenient to use Cartesian coordinates in the ambient space, and hence, 6*® , = 0. The Cauchy
stress has the representation (2.24). Substituting (2.24) into the equilibrium equations one obtains

_3
=1, 2 Iy [Whb% + (L W5 + IW5)6% — W, ¢ + Wynn® + Wit
1
+2I° [ (L yWa + LWy + I3, W5 + LW; )6 + Wby + Wy b — I3 W) ¢ — LW, ¢ — LW, ey B.1)

+ Wypnnh + Won® ynb + Wynnb , + Ws, £ + Ws £, ]: 0.

This should hold for an arbitrary energy function. As W is an arbitrary function of its arguments, the coefficient of W, W,, W3,
W,, and W5 must vanish separately. Therefore

W b, =0,
Wy 1,,6% - Le*, =0,

Wit I3, =0, (3.2)
W, : (n°n?), =0,
Ws: ¢%,=0.

Hence, (3.1) is simplified to read

bYW,y + (16 — I3 YWy, + 136 Wy + 0 n Wy, + £ Wi, = 0. (3.3)
Note that (I3, = 0)

Wip=Wilipy+ Wil y + Wiglyy + Wisls,,

Wop =Wl y+ Wily y+ Woulyy+ Woslsy,

Wiy =Wislipy+ Waslyy + Wiglyy + Wisls, B4

Wip =Wl + Woly p + Wil y + Wisls,

Wsp=Wislipy+ Woshyp + Wislyy + Wssls,,

where W;; = ;12—;‘;. Substituting the above relations into (3.3) the coefficients of W,; and W,; read
191

Wizt LI ,6% =0, 3.5)
Wy @ I3, =0.

Thus, I, , = I,, = 0. Substituting these into (3.4) and using (3.3) the coefficients of W3, and W;; read
Wit I31,6% =0, (3.6)
Wis @ I3ls,8% =0.

Therefore, I, = Is, = 0. In summary, we have the following universality constraints
I,, I,, and I; are constant, 3.7)
babJJ — CabA,b — 07 (38)
1,, and I are constant, (3.9)
(nn?), =¢%,=0. (3.10)

Note that (3.7) and (3.8) are the universality constraints for isotropic solids (Ericksen, 1955; Yavari and Goriely, 2016) and imply
that F4, , =0, i.e., homogeneous deformations. Note that I, , = I, 4(F~')*, = 0, and hence I, , = 0. Similarly, I5 4 = 0.

Suppose C’ has eigenvalues A% > )é > ﬂg. Let us consider a homogeneous deformation for which the eigenvalues are distinct,
ie., Af > Ag > /Ig, and choose a Cartesian coordinate system {X4} for the reference configuration whose axes are the principal
directions of C”. With respect to this coordinate system N has components N4. Knowing that N is a unit vector we have

(N')"+ (V)" + (V)" = 1. 3.11)
The constraint I, = a® reads

BN+ 2 (N2)° + 22 (M) = a2, (3.12)
Similarly, the constraint I5 = * reads

BN 4 (N + 2 (N = 2, (3.13)
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where «a and § are constants. These three constraints can be written as a system of linear equations for d N4:
N'dN' + N2dN?+ N3dN3 =0,
MBNYN! + SN2dN? + 2N3dN3 =0, (3.14)
MNYN! + A3N2dN? + J3N3dN3 =0.
The determinant of this linear system is N' N>N3(4% — 12)(43 - A%)(}% — ). If N'N?N? #0, then dN = 0, and hence N is a constant
unit vector. Suppose N3 =0 (N'! =0 or N? = 0 would be similar). Thus
N'dN'!'+ N2dN? =0,
MBN'N'+ 3N2dN? =0, (3.15)
MN'AN' + 13N2%dN? =0.
Using the first equation, the second and third equations are simplified to read (/ﬁ - A%)N IgNt = 0, and (/1‘1‘ - A‘z‘)N LgNt =0,
respectively. Thus, N!dN! = 0. If N! =0, then (N 2)2 =1, and hence N is a constant unit vector. If dN! = 0, then N2dN? = 0. If
N2 =0, then (N!)? = 1, and hence N is a constant unit vector. If /N2 = 0, then N is a constant unit vector. Therefore, we conclude

that N is a constant unit vector.
There are two more universality constraints (3.10) that need to be checked. Note that

(n'n)y = (FIAFP gNANE) (FTHC,, (3.16)
which trivially vanishes for homogeneous deformations and constant N. Similarly

£y =% (FTHM,, (3.17)
and

¢% = NANPCp6BC(FO ,FP 5 + FP , FOp). (3.18)

For homogeneous deformations and constant N, #%° ;, = 0, and hence £, = 0 is trivially satisfied. In summary, we have proved
the following proposition.

Proposition 3.1. For compressible nonlinear transversely isotropic solids the only universal deformations are homogeneous deformations,
and the anisotropy must be homogeneous, i.e., the material preferred direction is everywhere the same constant unit vector N.

Orthotropic solids. Using a similar argument, the universality constraints coming from the equilibrium equations for arbitrary
compressible orthotropic solids are

I,, I,, and I5 are constant, (3.19)
bab,b — Cab,b — 07 (320)
1, and I are constant, (3.21)
(n§n}), =, =0, (3.22)
Iy, and I, are constant, (3.23)
(nyn)p =25 =0. (3.24)

The first two universality constraints imply that universal deformations must be homogeneous and the remaining universality
constraints force the material preferred directions to be uniform.

Proposition 3.2. For compressible nonlinear orthotropic solids the only universal deformations are homogeneous deformations, and the
anisotropy must be homogeneous, i.e., the material preferred directions are everywhere the same three mutually orthogonal constant unit
vectors N|,N,, and N;.

Monoclinic solids. In deriving the constraints (3.19)—(3.24) orthogonality of the material preferred directions was not used. This
means that the same universality constraints must hold for monoclinic solids as well. In addition to (3.19)—(3.24), one has the
following extra universality constraints:

I, and I, are constant, (3.25)
(g n3)=¢5",=0. (3.26)

Therefore, universal deformations are homogeneous and N, N,, and N; are constant unit vectors. This in turn implies that I3 and I,
are constant, and (3.25), (3.26) are trivially satisfied. Hence, equilibrium equations hold for arbitrary monoclinic energy functions.
Therefore, in Proposition 3.2 “orthotropic” can be replaced by “monoclinic”.
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4. Incompressible transversely isotropic elastic solids

In the absence of body forces, and using (2.26), the equilibrium equations read

%P,bgab= [I/Vlb”b—%c”b+Mn”nb+Vst”b]|b . 4.1)
Or

1

7Pa = Ean [VV,b’""—szc'""+Mn”’n”+VV5f"’”]|n . 4.2)
Thus

%dp = %p’udx“ = g (Wi = Wy ™ + Wyn"n" + W5 £™] dx®, (4.3)

where d is the exterior derivative. In other words, & = g, [W;b™ — W, ¢ + W, n"n" + Wy £™] , dx? is an exact I-form. A necessary
condition for & to be an exact form is that d& = 0 (Yavari, 2013). This is equivalent to ¢, , = &, ,. But note that &,, = &, , — 74 &,
Therefore, &, = ¢,, is equivalent to &, = &,,, which is more convenient to use in curvilinear coordinates as the metric of the
ambient space is covariantly constant, i.e., g, = 0. Thus, the universality constraints read

Bam W10 = Wo ™ + Wyn"n" + W5 &™) = gy [Wi0"™" = Wo ™ + Wyn™n" + W5 ™). 4.9
One can write
‘):a\b = 8am ( Wl bmnlnb - I/VZ Cmn\nb + I/V4 (nmn")lnb + I/VS Z’omnlnb + I/Vl,nbmnlb - VVZ,n Cmnlb + VV4,n ("m"n)lb + I/VS,rz fmnlb (4 5)
+ I/Vl,bbmnlﬂ - I/V2,lz Cmnln + I/V4,l; ("mnn)|n + I/VS,b fmnln + I/Vl\nbbmn - I/V2|nb ™+ I/V4\nb n"n" + I/V5|n17 e ) .
Note that W, = W;(I|, I, I, I5), i = 1,2,4,5, and hence
Wi =Wl + Wil p + Wiglyy + Wisls,,
Wap = Wil p + Warlyy + Woylyy + Wisls,, “4.6)
Wip =Wl + Woulnp + Wiulyy + Wisls
Wsp=Wisliy+Washyp + Wislyp + Wsslsy .
Note also that
Wien = Witdyon + Windojpn + Wigdyjpn + Wisdspy + Wil g+ Wigudoy + Wigulay + Wisulsy 4.7)
3
Denoting the independent third order derivatives of the energy function by W}, = %, (i <j < k), we have
0101y
Wit =Wl + Winnlyy + Wiy + Wigsls .,
Wion =Winnly, + Winly y + Wingdy + Winsls, 4.8

Wisn = Witadin+ Winalyy + Wigadyy + Wigs s,
Wisn =Wiislin+ Wiashyy + Wiasly, + Wiss s, -
Therefore,
Wien = Witdijpn + Winlojpn + Wigdypn + Wisdspp,
+ Windipdyp + WinnUp Ly + 1y y 1o ) + Wing Uy y Ly + 1y 4 )
+ WiisUs Ly + 1 s p) + Wina Ly y 1oy + Wing Ly y Iy + 1415 ) (4.9
+ WiasUsylop + I ds p) + Wiagly ylap + WiasUs y Ly + Is 1y )
+ Wisslsylsy -
Similarly,
Waisn = Windyjpn + Waa lojpn + Waalujpy + Was s p
+ Wiy, 0y + Wi 0y + 11y 1o p) + Wanp I, 1
+ Wosadypdyp + WassIs ylsp + WinaUg Iy p + 1ap 1y ) (4.10)
+ WiasUsu Iy p + 1y A5 ) + Wang Uy 1o p + 1415 )
+ Waas(Us y Do p + Is pdo ) + Waas(Is p Ly + 15 p 1 ) »

Wiaion = Wiadypn + Woa oy + Wagdyypy + Was s,
+ Wiady w1y p + Wonady y Iy + Wasgdy y 1y p + WossIs , Is
+ Wina(n oIy + 1y pdo ) + WiagUg Ty + I p 1y ) (4.11)
+ WaaaUy Doy + Iy 1y ) + WiasUs 1y + Is p 1y )
+ WausUs y 1oy + Iy s ) + Wiss(Is 1y + 15 414 ,)
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and

Wsion = Wisdijpn + Was Doy + Waslyjp, + Wss sy,
+ Wislywdyp +Waosy y Iy + Wagsly ylap + Wiss s, Is
+ Wins(o oIy + 1y pdop) + WiasUg 11y + ipla ) (4.12)
+ WissUs Iy + 1y pds ) + WaasUg 1oy + 1y pls )
+ WassUs Iy + 1y X5 ) + Wass(s Iy + Is 1y ) -

For &,, = &, to hold the coefficient of each partial derivative must be symmetric. We define A} as the matrix of coefficient
of W,, where « is a multi-index. For isotropic solids there are 9 terms: k € Kj,, = {1,2,11,22,12,111,222,112,122}. In the case of

transversely isotropic solids there are 25 extra terms:
K ={4,5,44,55,14,15,24,25,45,444,555,114, 115, 124, 125, 144, 145, 155, 224,225,244, 245,255, 445,455} . (4.13)

Each matrix provides 3 conditions so that there are, in total, 102 equations for the 8 unknowns given by the 6 components of the
Finger tensor b? and the 2 independent components of the unit vector N. A deformation ¢ is universal with universal material
preferred direction N if and only if A}, is symmetric for all x € K U Kig,.

The analysis of this problem is greatly simplified by first considering the coefficients of the 9 terms that appear in the isotropic

case as well, which are (Ericksen, 1954):

1

Al = b
2

Ay = =Calbn»

Agy = bludyp + (11 ,)

aln b

Agy = —Cainlap = (CZIZ,W)U) ’

ﬂ;; = (bzlz,n)u; + bty = [(Cgll,n)u; + CZlnll,b] ’ (4.14)
Agy' =Vl ulip

N Gral Rl O

AN =00 (Tl + 1y hy) =il 0y,

A =0, = (Ll + 1y, 1p)

where b = b""g,,, and ¢! = ¢""g,,,." Symmetry of the nine terms in Egs. (4.14), in addition to homogeneous deformations, admit
five classes of deformations (Ericksen, 1954; Singh and Pipkin, 1965; Klingbeil and Shield, 1966). In the sequel, we will find the
universal preferred material directions for these six families of deformations. The case of constant 7, and I, is still an open problem,
for which we will not be able to say anything about the universal preferred material directions other than those of the Family 5

deformations.

For transversely isotropic solids, in addition to symmetry of these 9 terms, the following 25 terms must be symmetric as well.
The coefficients of the first-order and second-order derivatives of the energy function are:

4

ﬂab = (nann)|nb ’
5 _ pn

ﬂab - fa|"b ’
44

Ay = ngnulyy + (an" Ly )y »

T = C0aTsp+ (0I5 )y s

aln
/7;2 =00 dap + Of 1y ) + (g™ Ly + (ngn™ 1)y (4.15)
Ay = aialsp+ G5 )+ ol + Coly )y

24

Ay = (ngn") Iy + (" D)y = [ehindas + (Chlan)pp] »
25

Ty =l + Coly ) = [Chindsy + (cils ] »

a

AL = (") Is gy + ngn"Is i + €Ly + (1)1 -

1 Note that b", = b"™g,,,, and b," = g,,b™, which are equal. Thus, we use the notation b =b", = b,". Similarly, the same notation is used for c.



A. Yavari and A. Goriely Journal of the Mechanics and Physics of Solids 156 (2021) 104598

The coefficients of the third-order derivatives of the energy function are:
ﬂjﬁ“ =ngn"Iy, Iy,
AR =0l sy
At =00 (L Ty + Iy ) +ngn" I,
Ay =0 (s 0y + Isp 1) + €00 T
At =0 (LD + Iyl ) = e (L Ty + Liply ) + g (D0 + Dyl ,)
AN =00 (sl + Isply ) =l (Is Iy + Isp 1y ) + 20 (L + Dol )
Ayt = Ly Iy +nan” (I 01y + Lyl )
Ay =) (Isylyp + Isply,) +non” (IsTyp + Isply,) + €0 (L Ty + Liply ) s
Ay = 00Is 0y + €0 (s, Ty + Tsply,) s
At =ngn" Lyl = et (LD + Iiphy,) s
A =l =) (Isloy + Isyhhy) -
At = =iy +nan" (Lulop + Liyly) s
TZ =" (Is Ly + Isp o) + €0 (L lop + Lplo,) = ¢ (Ts,dypy+ Tsply ) s
AL =0 (Isylop + syl ) = cils, Isy,
TR =" (Is Ly + Is 1y ) + €00y 0y
A =I5 Is y + €0 (Is Ly + Isyly ) -

(4.16)

Goodbrake et al. (2020) showed that all the known universal deformations are symmetric with respect to Lie subgroups of
the special Euclidean group. In order to find universal eigenstrains corresponding to each family, they assumed that the material
metric has the same symmetry as the classical universal deformations do. Note that the symmetry of a universal deformation
@ B - @(®B) C S is encoded in the symmetry of C* = p*g. Here, we use the same strategy and assume that the material preferred
direction vector N has the same symmetries. This symmetry reduction will make the above systems of nonlinear PDEs tractable.

4.1. Family 0: Homogeneous deformations

Homogeneous deformations have the form x%(X) = F?, X4 + ¢4, where [F%,] is a constant matrix and c? are constants. The
incompressibility constraint in Cartesian coordinates is written as det[F?,] = 1. In Cartesian coordinates the right Cauchy-Green
tensor has components C, = F¢, F4, §,,, which are constants. This means that C” is invariant under the action of T(3) ¢ SE(3) —
the group of translations. We assume that N4(X) are invariant under 7'(3) as well, or in other words N is a constant vector. In this
case all the universality constraints are satisfied. Therefore, for isochoric homogeneous deformations uniform material preferred
directions are universal.

4.2. Family 1: Bending, stretching, and shearing of a rectangular block

With respect to the Cartesian (X,Y, Z) and cylindrical (r, 6, z) coordinates in the reference and current configurations, respec-
tively, this family of deformations have the following representation

FX.Y.Z) = \/C,eX + Cp). O0X.Y.Z)=CyY +Cs), z(X.Y,Z)= % GG 4 C. 4.17)
1%2
Thus
Ci

2X+Cy 0 Oc
Cul=| 0 CGlaex+cp+c] -2, (4.18)

0 -4 L

C] CZCZ

which is independent of Y and Z, i.e., C’ is invariant under the action of T(2) C SE(3). We assume that N has the same symmetry,
ie.,

N'(X)
N(X,Y,Z)=|N2(X)|, (4.19)
N3(X)
such that (N1(X)) + (N2(X))* + (N3(X))* = 1.

10
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Symmetry of the coefficients of W,,, for (a,b) = (1,2) and (a,b) = (1,3) gives’

C [1+C2CiC? - 2, +2x7°

N (X)N,(X) =0, 4.20
CIICi(Cy +2X)P2 1OM0 20
VT (G, +2X) [1 +C2CHC2 - (¢, +2X )]
1(C+ 200 [1+ CRGC3 — (G + 207 Ny(X) C1C22C3N2(X)—\/1—NI(X)z—Nz(X)z =0. (4.21)
ClCI(Cy+2X)*

From (4.20) either N{(X) =0, or N,(X) = 0. If N,(X) =0, from (4.21), either N;(X) =0 (N3(X) = 1), or N (X) = +1 (N3(X) = 0).
If N,(X) =0, both equations are satisfied. Therefore, we have the following two possibilities:

[+1 0
N= , N= f(X) , for any f(X) such that f2(X) < 1. (4.22)

L 0] [+V/1 - f2(X)

Or equivalently

[+1 0
N= , N=| cosy(X) |, (4.23)
| 0 | | £ siny(X)

for some function y(X). These two vector fields satisfy all the other universally constraints. If either I, or I5 (or both) are constant,
still symmetry of the coefficients of W,,, for (a,b) = (1,2) and (a, b) = (1,3) gives (4.20) and (4.21). This means that still (4.23) are
solutions. However, for neither solution I, or I5 is constant. Therefore, the only solutions for N that respect the symmetry of the
Family 1 deformations are (4.23).

Remark 4.1. Ericksen and Rivlin (1954) analyzed a special subset of this family (C; = 0) and assumed the following two cases

1 0
N=[0|, N=|cos¢]|, (4.24)
0 sin ¢

where ¢ is a constant. Clearly, these are special cases of (4.23).
Remark 4.2. An example of a transversely isotropic solid is a unidirectional fiber composite. One can think of the material preferred
direction unit vector N(X!, X2, X3) as the tangent vector to the fiber at the point (X', X2, X?) in an isotropic matrix. The solution

(4.23), corresponds to a uniform distribution of fibers parallel to the X-axis. In the solution (4.23), for fixed X fibers are distributed
uniformly in the Y Z-plane and make an angle y(X) with the Y-axis.

4.3. Family 2: Straightening, stretching, and shearing of a sector of a cylindrical shell

With respect to the cylindrical (R, ©, Z) and Cartesian (x, y, z) coordinates in the reference and current configurations, respec-
tively, this family of deformations have the following representation

1 2 2 e C3 1
R,0,Z)==-C|C5R"+C,, R,0,Z)= —— +C;s, R,0,7)= O+ —Z+Cq. 4.25
x( ) F -1+ 4 W ) c,C, 5 z( ) c,C, c, 6 ( )
Thus
CICyR? 0 0
C%+l [
[Cupl = 0 C%cg q 622 s (4.26)
0 = 4
¢ c? c?

which is independent of @, and Z. We assume that N has the same symmetry, i.e.,

NY(R)
N(R,0,Z)=|N*(R)|, (4.27)
N3(R)
such that (NI(R))2 + R? (NZ(R))2 + (N3(R))2 = 1. Symmetry of the coefficients of Wy, for (a,b) = (1,2) and (a, b) = (1,3) gives
(cicgr - 1)
——oriar NiRN(R) =0, (4.28)
CI C2 R

2 Symbolic computations were done with Mathematica Version 12.3.0.0, Wolfram Research, Champaign, IL.

11
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(a) (b) (c) (d)

Fig. 1. (a) Universal material preferred directions (4.32), for Family 2. (b-d) Universal material preferred directions (4.32), for Family 2: (b) cosy(R) # 0,1,
(c) cosy(R) =0, and (d) cosy(R) = 1.

(C+oR* — 1) ——

C—fCZIIR7 Ni(R) [Cl\/l — N{(R)? = RZN,(R)* + C3N»(R)| =0. (4.29)
From (4.28) either N (R) =0, or N,(R) = 0. If N,(R) = 0, from (4.29) either N;(R) =0 (N3(R) = £1), or N{(R) = =1 (N3(R) =0). If
N, (R) =0, both equations are satisfied. Therefore, we have the following two possibilities:

+1 0
N=|0]|, N=| f(®/R |, forany f(R) such that f2(R) <1, (4.30)
0 +v1 = f2(R)

or equivalently

+1 0
N=[0], N=|=Xcosz(R|, (4.31)
0 +sin y(R)

for some function y(R). Replacing the components of N with the corresponding physical components and denoting the resulting
array by N the two solutions are

+1 0
N=|[o0|, N=]| cos xR |. (4.32)
0 +sin y(R)

These two vector fields satisfy all the other universality constraints. If either I, or I5 (or both) are constant, then symmetry of the
coefficients of W,,, for (a,b) = (1,2) and (a,b) = (1,3) gives (4.28) and (4.29), and (4.32) are still solutions. However, for neither
solution I, or I5 is constant. Therefore, the only solutions for N that respect the symmetry of the Family 2 deformations are (4.32).
In the solution (4.32), fibers are distributed radially. The material preferred direction in the solution (4.32) are sketched in Fig. 1.

Remark 4.3. Assuming that the cylindrical shell is made of a unidirectional fiber composite, the solution (4.32), corresponds to
a uniform radial distribution of fibers. In the solution (4.32), for fixed R fibers are arranged helically when y(R) # %, nez
(Fig. 1(b)). When cosw(R) = 0, fibers are distributed uniformly parallel to the axis of the cylindrical shell (Fig. 1(c)). When
siny(R) = 0, fibers are concentric circles parallel to the (R, ©) plane (Fig. 1(d)). Examples of fiber-reinforced composite with one or
two families of helical fibers can be found in biological systems (Goriely and Tabor, 2011), in gels (Demirkoparan and Pence, 2007,
2008, 2015), and in the McKibben actuators (Daerden and Lefeber, 2002; Liu and Rahn, 2003) as described in (Goriely, 2017). Note
that, in this universal solution, helical fibers can change orientation as a function of R. However, in the limit of R — 0, one must
have y(R) — r/2 or the vector direction becomes ill-defined.

12
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4.4. Family 3: Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge

With respect to the cylindrical coordinates (R, ©, Z) and (r, 6, z) in the reference and current configurations, respectively, this
family of deformations have the following representation

2
HRO.Z)= | —R 4 Cy, ORO.Z)=C0+C,Z+Cy. 2RO.Z)=Cs0+CiZ+C,. (4.33)
CiCy - CyCy ;

Thus
R2
K(KCs+R?) 0 , i 0
[Capl=| O c+ci|E+c]  aq|Eic]raal. (4.34)
0 Clcz[%z +C5] + GG c2+(? [R?Z+C5]

where K = C,C, — C,C;. Note that C” only depends on R. We assume that N has the same symmetry, i.e.,

N'(R)
N(R,©,Z)=|N*(R)|, (4.35)
N(R)

such that (NI(R))2 + R? (NZ(R))2 + (N3(R))2 = 1. Symmetry of the coefficients of W,,, for (a,b) = (1,2) gives

N, (R) <C1N2(R) + cz\/ 1- N, (R? - R2N2(R)2> =0. (4.36)

This implies that either N;(R) = 0, or C; N(R) + C;1/1 — N(R)2 — RZN,(R)? = 0. If N|(R) = 0, then

0
NR,0,Z)=| f(R/R |, forany f(R) such that f2(R) <1, (4.37)
[£V1 - f2(R)

or equivalently
0

N(R, 0, Z) = % cosw(R) |, (4.38)
| +siny(R)

for some function w(R). One can check that (4.38) satisfies all the other universality constraints. Suppose C;N,(R) + C,
V1I=N[(R? - R2N,(R}> = 0, or C;N,(R) + C,N;(R) = 0. Symmetry of the coefficients of W, for (a,b) = (1,3) gives
C3N,(R) + C4N3(R) = 0. Therefore, we have the following system of equations for N,(R) and N;(R):

C;N,(R)+ C,N;(R) =0,
1 N2(R) + Gy N3(R) (4.39)
C3N,(R) + C,N3(R) = 0.
The determinant of the coefficient matrix is C,C; — C,C5 # 0 (see (4.33)). Thus, N,(R) = N3(R) =0, and hence
+1
N(R,0,Z)=| 0 |, (4.40)
0

which satisfies all the other universality constraints. In summary, (4.38) and (4.40) are those universal material preferred directions
that respect the symmetry of the universal deformations (4.33). The universal material preferred directions of Families 2 and 3 are
identical, see Remark 4.3.

Remark 4.4. Ericksen and Rivlin (1954) analyzed this family assuming the solution (4.37) for the special choice of f(R) = 0.

4.5. Family 4: Inflation/inversion of a sector of a spherical shell

With respect to the spherical coordinates (R, ©,®) and (r,0, ¢) in the reference and current configurations, respectively, this
family of deformations have the following representation

1
"(R,0,0)= (xR +C)3, O(R.0,0)=+0, $RO,0)=0. (4.41)
Thus
R4
CET '
[Cppl = 0 (Clj«; + R3)2/3 0 . (4.42)
0 0 (€= R sin’ 0

13
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Fig. 2. Radial universal material preferred directions for Family 4.

C can be written as (Goodbrake et al., 2020)

R (c3 xR}

CX)=—ROR+ (1-R®R), (4.43)
(= &) B
where 1 is the identity tensor, and R = % This means that at a point X, C” is invariant under all those rotations that fix X. We

assume that N(X) has the same symmetry, i.e., it is invariant under all those rotations that fix X. This implies that N(X) must be
parallel to X, and because it is a unit vector we conclude that

NX) = iIXYl - 4R, (4.44)

Thus, in spherical coordinates

+1
NX)=| 0 |. (4.45)
0

These two vector fields satisfy all the other universality constraints, see Fig. 2.

Remark 4.5. Golgoon and Yavari (2021) had observed that radial deformations are universal for transversely isotropic spherical
shells with radial material preferred direction.

4.6. Family 5: Inflation, bending, extension, and azimuthal shearing of an annular wedge

With respect to the cylindrical coordinates (R, 0, Z) and (r, 6, z) in the reference and current configurations, respectively, this
family of deformations have the following representation

HR,0,Z)=C/R, 6(R,0,Z)=CylogR+C;0+C,, zR,0,Z)= ZIC Z+Cs. (4.46)
1°3
Thus
2 (2 2
C; 2(02 +1) C12C22C3f 0
[Capl =| TSGR GGR 0, (4.47)
0 0 bezrert
Cl C3
which only depends on R. We assume that N has the same symmetry, i.e.,
N'(R)
N(R,0,Z)=|N*(R)|, (4.48)
N3(R)

such that (N 1(R))2 +(N 2(R))2 + (N 3(R))2 = 1. Symmetry of the coefficients of Wy, for (a,b) = (1,2) gives
NY(RIC,N'(R) + C3RN?*(R)]

4.49
X diR {=[N'(R)? + (RN (R)*| + CO°CZ [N'(R)* + (C,N'(R) + C3RN*(R))*|} = 0. (4.49)

If N'(R) = 0, symmetry of the coefficients of Wiss for (a,b) = (1,2) gives
N*(R)[N*(R) + ﬁ(RNZ(Rm =0. (4.50)

14
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This implies that

2py = K
N?(R) = IE (4.51)

If R; < R < Ry, we must have k? < R%. All the other symmetry constraints are satisfied and thus one solution is®

0
N(R, O, Z) = £ , (4.52)
+V1-—k2
or equivalently
[0
N(R,0,Z7) = % cosq |, (4.53)
| +singy

for some constant 5. In (4.49) if C, N!(R) + C;RN?(R) = 0, arbitrariness of C,, and C; implies that N!(R) = N2(R) = 0, which is
already included in the solution (4.53). If

d 62 d

R [N'(R)? + (RN?*(R))?] + Cf cgﬁ [N'(R? + (C;N'(R) + C;RN*(R)’| =0, (4.54)

because C; and C; are arbitrary one concludes that
[N'(R? + (RN2(R)?] =0,

' (4.55)
[N'(R)* + (C;N'(R) + C;RN?*(R))*| = 0.

The first equation implies that N3(R) is constant. For N3(R) = constant, symmetry of the coefficients of W, for (a,b) = (1,2) gives

d

d iyl _
dRN (R)— N'(R) 0. (4.56)

2
N3 de—Nl(R)+R
dR?
Thus, either N3 = 0, or N'(R) = kR + %. If N3 = 0, symmetry of the coefficients of W,ss for (a,b) = (1,2) implies that N!(R) is
constant. The unit vectors

a
N(R.0.Z)=|+1VI-a?|. (4.57)
0
or equivalently
cosé
N(R, 0, Z) = i%sin‘f , (4.58)
0

for some constant £, satisfy all the other universality constraints and, hence, are universal material preferred directions. If N!(R) =
k R+ %, symmetry of the coefficients of Wj for (a, b) = (1,3) implies that

N3 [(N? = 1] [(N?)? = 1 + 4k k,| = 0. (4.59)

Therefore, either (N3)2 = 1, which is already included in the solution (4.53) when k = 1, or (N3)2 = 1 —dkk,. If (N3)2 = 1—dk k,,
one has

2
(N + (N =1+ <k1R— k—Rz> <l. (4.60)

Therefore, kR — % = 0, which implies that k; = k, =0, or N'(R) = 0.
If either I, or I5 (or both) is constant, symmetry of the coefficient of W, for (a, b) = (1,2) results in the following second-order
ODE:

R{N'(R) [2C;N'(R) +2C;RN*(R) +5C;N*(R)| + C3RN*(R)N'(R)""}

1 1 2 2 1 2 (4'61)
+ N' (R {R[2C,N'(R)" + 5C;N*(R) + C3RN*(R)"| + 6C,N'(R) +3C;N*(R)} = 0.
If N1(R) # 0, this gives N,(R) in terms of N;(R) as:
k k C,N|(R
Ny(R) = —— e 2R (4.62)

+ p—
RN, (R)  RN;(R)  GR

3 If we restrict ourselves to the C, = 0 subset of Family 5, the larger class of material preferred directions (4.38) is a solution.
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Table 1
Universal deformations and universal material preferred directions for incompressible transversely isotropic solids for the six known families of universal
deformations. Note that for Family 3, K = C,C, — C,C;.

Family  Universal deformations c Universal material preferred
directions
0 x4(X)=F X"+ Cyp = F4F,6, Any constant unit vector N
r ¢
"X,Y,Z)=+/C,2X +C,) EraTey 0 OC M+1] r o
1 0X.Y. Z) = C(Y +C5) Cl=| 0 Glaex+cp+cy] -2 N=[0|. N=|cosy(X)
C: 1 .
z2(X,Y,Z)= ——C7C3Y+C<, | 0 —?: za | 0 | | £siny(X)
x(R,0,Z) = lc CIR* +C, [c2cirRz 0 0 o]
C2+1 C. N - N
2 YR.6.Z)= 7 +Cs [Cipl=| O oo oa N=[o|, N= cos,{(R):|
G
2(R,0,7) = cx SO+ EZ+G, | 0 o L 0] |+ sin 7(R)
I —— [ & 0 0
r(R,0,Z)= Foromraradis Cs K(KC;+R?) ral]
e 2 (R 2 R . - .
3 O(R.0,Z)=C,0+C,Z +C, [Capl = 0 01(7+CS)+C3 Cﬂz(? +c5)+c3c4 N=|o|., N= cos,y(R)
0 R
z2(R,0,Z2)=C,0+C,Z +C, | o Clcz(%+C_;)+C3C4 CZZ(R?Z+C5)+C42 1 0 | | +sin (R)
roR
r(R.6,®) = (xR +C}) T 0 re1]
4 O(R,0,®) = +0 [Cugl = 0 (CftR3)2/3 0 N=|0
H(R.6.0) =D . o 0 (3£ R sin’ 0 L O]
(R.0.Z)=CR [c2(c2+1) ca,or 0 T oo cosé
5 0(R,0,Z)=C,log R+ C;0 +C, [Cipl =| CICC3R CICIR? (]) N=| cosn N=|+sine
2(R,6,Z) = —Z +Cs 0 0 aa | +singy 0

which is clearly not a universal solution as N should not depend on the parameters of the universal deformations. Therefore,
N!(R) = 0. Symmetries of the coefficients of W, for (a, b) = (1,2), and W5 for (a, b) = (1,3), imply that

0

N(R,0,Z) = % , (4.63)

0
which is already included in (4.53). Therefore, (4.53) and (4.58) are the only solutions.

Remark 4.6. Assuming that the annular wedge is made of a unidirectional fiber composite, in the solution (4.53) fibers are arranged
helically when cosn # 0 (Fig. 1(b)). When cosn = 0, fibers are distributed uniformly parallel to the axis of the wedge (Fig. 1(c)).
When sin#n = 0, fibers are concentric circles parallel to the (R, ©) plane (Fig. 1(d)). For the solution (4.58) fibers are parallel to the
(R, ©) plane and are distributed uniformly in some fixed direction. Table 1 summarizes our results for incompressible transversely
isotropic solids.

5. Incompressible orthotropic elastic solids

For orthotropic solids there are seven invariants. Note that I, and I have identical forms, and similarly, I5 and I; have identical
forms, see (2.27). This means that the forms of the universality constraints associated with the pair (I, I;) are identical to those
associated with (1, I'5). Since most of the analysis relies on the previous case, we only explain briefly the underlying computations
and give the main results. In the case of orthotropic solids

&y = B [WID™" = Wa ™ + Wyn'nl + W5 €7 + We niinly + W7 €57 n - (5.1)

For &,, = &, to hold for arbitrary energy functions the coefficient of each partial derivative of W must be symmetric. There are
four groups of terms:

(i) Nine terms that must be symmetric for isotropic solids as well:
Kio = {1,2,11,22,12,111,222, 112,122} . (5.2)
(i) 25 terms corresponding to N;:
K, ={4,5,44,55,14,15,24,25,45,444,555,114, 115, 124,125, 144, 145, 155,224,225, 244,245, 255,445,455} . (5.3)
(iii) 25 terms corresponding to N,:

K =1{6,7,66,77,16,17,26,27,67,666,777,116,117,126, 127,166, 167, 177,226,227, 266, 267,277,667,677} . (5.4

16



A. Yavari and A. Goriely Journal of the Mechanics and Physics of Solids 156 (2021) 104598
(iv) 24 terms corresponding to coupling of N, and N,:

Kiii = {46,47,56,57,146, 147,156, 157,246, 247,256,257, 446, 447,456,457, 556,557,466,467, 566, 567,477,577} . (5.5)

The universality constraints corresponding to the sets K; and ; are identical in form to those corresponding to the extra symmetry
constraints of transversely isotopic solids (4.13). This means that if there are three mutually orthogonal universal material preferred
directions (N;,N,,Nj3) for transversely isotropic solids, they are universal for orthotropic solids as well if the three pairs (N;,N,),
(N,,N3), and (N3, N)) satisfy the universality conditions corresponding to the set ;.

In order to write the constraint equations more compactly, let us denote the pair of vectors (n,m) = (n;,n,). Also, (? = =7] b and

£ = fg”. The coefficients of the four second-order derivatives of the energy function corresponding to the set X;;; are:

‘Zjl? =[n, Ilg, 12"]“, + Igyln, 12”]|” +[m, 1y, m"]“, + Iy plm, m”]|n )
T = [0y I7 0™y + Iy plig "] + BP0 + A Ly

ﬂjﬁ = (l I )i + [a|n16,b + (nzalsynnz")‘b + (nzanz”)wlsﬁ ) (5.6)
TO) =0T )+ (T + (BETs )y + AL s
The coefficients of the twenty third-order derivatives of the energy function corresponding to the set X;;; read:
A =00 (Luplon + Tiulep) -
Ay =0 (Luplyn+ Tunlrs)
Ay =0 (Isplon + Isules) -
ﬂj,? =0 (Isply, +1s,074) »
A% = el (Laplon + Linleyp) -
Aoy = b (LpTy + Lulyp)
A0 =l (Isplon+ Ispley) -
A = h (Isply+ Isulrp) »
At = ngn" (LipIo, + Tyulep) -
AN = 00" (Lyy Iy + Iy pl7) .7

)

( )
T = ngn" (Is plo o+ Is 1o p) + 00 (Taplep + Lanss) -
A =gt (Isp Iy + Is 1) + 03 (Tup 7 + Tyulng)
ﬂ;fﬁ =m,m (14,,,16’,, + 14,,,16,,,) s
TN = mgm" (Iyy Iy + Iy ) + A (Iupls, + Iaydsp) -
AL = R (Ll + 1y )
T =0 (Tsp T, + Is 1) »
A =00 (Isply+ Is ulry)
ﬂsfﬁ =m,m" (IS,hIﬁ,n + IS,nIé,b) R
T = mm" (Is Ty + Is yT7p) + B2 (Is p I+ Is o) »
A = Ry (Isplyp+ Is ul7) -

Family 0. We saw that for transversely isotropic solids any constant unit vector is a universal material preferred direction. For any
pair of constant unit vectors, all the terms in (5.6) and (5.7) are trivially symmetric. This means that any three constant unit vectors
(N;.N,,Nj;) that are mutually orthogonal are universal material preferred directions for isochoric homogeneous deformations.

Family 1. Let us consider two solutions in the family of solutions (4.23), namely

0 0
N, = S(X) , Ny= g(X) . (5.8)

V1= 720 =v/1- (X

N, and N; are orthogonal if and only if f2(X) + g2(X) = 1. Thus, f(X) = cosw(X), and g(X) = siny(X), for an arbitrary function
yw(X). Therefore, we have the following set of mutually orthogonal universal material preferred directions for transversely isotropic
solids.

+1 0 0
N,=[0], Ny=|cosy(X) |, Ny=| sinpX) |. (5.9)
0 + siny (X) Fcosy(X)
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One can check that for any pair of mutually orthogonal vectors in the above set all the terms in (5.6) and (5.7) are symmetric.
Therefore, (5.9) is a family of universal material preferred directions for orthotropic solids.

Families 2 and 3. The solutions for material preferred directions for transversely isotropic solids for Families 2 and 3 are very similar

to those of Family 1. Therefore, we have the following family of universal material preferred directions

+1 0 0
Ni={ 0], Ny=| 2B | Nj=| S (5.10)
0 +sin y(R) Fcos y(R)

for an arbitrary function y(R). One can check that for any pair of mutually orthogonal vectors in the above set all the terms in (5.6)
and (5.7) are symmetric. Therefore, these are universal material preferred directions.

Family 4. In the case of transversely isotropic solids, there are only two solutions for the material preferred directions (4.45) that
are parallel. This means that in the case of orthotropic solids Family 4 is not universal.

Family 5. Let us consider arbitrary members of the two families of solutions (4.53) and (4.58)

0 a
N=| & | N=|elvica|. (5.11)
+V1—k? 0

Note that N, - N, = +kV1 — a2 = 0 implies that k = 0 or « = +1. Therefore, we have the following two classes of universal material
preferred directions:

707 [ cosé sin &
N, =[0], Ny= i%sinf , N3= 1%0055 ,
+1 0 0
- ] (5.12)
[+1] [ o 0
Ni=|l0]|, N,= %cosr] , Ny= %sinn
0 +siny Fcosy

One can check that for any pair of mutually orthogonal vectors in each row in the above set all the terms in (5.6) and (5.7) are
symmetric. Table 2 summarizes our results for incompressible orthotropic solids.

6. Incompressible monoclinic elastic solids

For monoclinic solids
&= am [W,b’""—ch"’"+Mn'l"n;'+W5f;""+W6n’2"n;+W7f£"”+ %stg"”]l . (6.1)
n

For &, = &, to hold for arbitrary monoclinic energy functions the coefficient of each partial derivative of W must be symmetric.
In addition to the terms corresponding to the sets Kj,, K;, K;;, K;;;> there are an extra 78 terms corresponding to the following set:

K, = {8,18,19,28,29, 48,49, 58,59, 68,69, 78,79, 88, 89,
118,119, 128,129, 148, 149, 158, 159, 168, 169, 178, 179, 188, 189, 199, 228, 229,
248,249, 258,259,268,269,278,279,288, 289,299, 448, 449, 458, 459, 468, 469, (6.2)
478,479, 488,489,499, 558, 559, 568, 569, 578,579, 588, 589, 599, 668, 669,
678,679, 688, 689,699, 778,779, 788,789,799, 888, 889,999} .

Similar to the analysis for orthotropic solids, in order to write the constraint equations more compactly, we denote the pair of
vectors (n,m) = (n;,n,). Also, (% = L’f”, Kb = L’g”, and g% = fg”’. The coefficients of the first and second-order derivatives of the
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energy function corresponding to the set X, are:

ﬂSS —

59
ﬂab
68
ﬂab
69
‘Zab

8
=qun Loy + @) L)y —

_.n
_qa|nb’

=qundip+ @ Lo + G0 ds ) + b ls,

=0y, + bY1ulop

— n n
=—(cglo )i = ainloy

Coloip + Loinloy s

(cpdg )iy —

n
coinlsp

8 - q:|n 14,17 + (qZ I4,n)|b + (”annI&n)\b + (nann)|n18,b ’
b (nannI9,n)|h + (”ann)\nIQ,b >
Tan Lsp + (g s Do + T )i + (1 lg -

= q2|n Ié,b + (C]: I6,n)|b + (mamnIS,n)Ib + (mamn)lnl&b ’
(mamnl9,n)|b + (mamn)|n19,b >

= Qi d70+ @ I + oI i + A1l

=(hylo,)p +Egnloyp .
=g lsp + @y Is s
=g Loy +(a; Lo -
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(6.3)

The coefficients of the third-order derivatives of the energy function corresponding to the set X, read:

and

A=
s
e
a
e
AL =
Al =
L=
2l
s
s
=
e
e
a

279
ﬂab

Iyplgp+ 1y plsp)
Iy plop + 1y plop)
Lpls, + 1,15
Lyly, + 1,19,

e (Iiplsn+ Tinlsy) >
e (Iiplop+ T ulop) »

TypTg,+ 1y, g p) +ngn" (I pTg, + 11, 05)

Is,Ig, +Is 15,
Is 1o, + I, 1g

O (TpTgp+ T uTgp) s
O (TipTon + 11 ,uT0p) »

Iy, + g, Ig ) + mam" (1 1g, + 11 ,1g,)

Toply, + 1o ,lo ) +my, m" (Il,bIQ,n +Il,n19,b) s

by ( )
by ( )
by ( ) -
by ( ) -
by ( )
B (Typdo, + T4 ,dop) + g0 (I pIo, + 11y 1o )
by ( )+
By ( )+
LA )
LA )
by ( )

Dyl + Iy dgp) + Kl (I plg, + 1y lsy)

) (I plon + I7,dop) + R (L plo, + 11 4 10p)

) (Isplon + I3 ulop) + ) (I plo, + I1uloy)

0" (Dl + Ioalsy) s
2" (Il + I ulop)
(12b]8n+12n18b)
o (Lploy + Dyloy)

=" (s pdsn + I psp) + mem™ (Iyylg, + I, Igy)
=" (Ispdoy + I plop) + mem™ (Iyylo, + 1oy 1o )
—c! (InpIy, + I7 03 ) + B2 (Lo plg, + o g y)

By s lsn + 95 (Dplsn+ Iialss) »
=by 1oy,
=~y (Iplgy + Iulsy) »
CZ(IZbI9n+IZnI9b)v
=~y (Iplgp+ Lunlsy)
=~y (Iplon + Iunloy)
=—c) (Isplg, + Isuls )
CZ (Isplop+ Is,lop) +(
o )
A )
o ( )
—

(TpTon +I7,00) + B2 (Il + 1o, dgp)

AgE = =) Ig I3+ ) (LpTsn + oalsy) »

289 _
ﬂab -

=l (Igplo, + Is o)+ (Ioplo, + 1oy lop) s

6.4
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Table 2
Universal deformations and universal material preferred directions for incompressible orthotropic solids for the six known families of universal deformations.
Note that for Family 3, K = C,C, — C,C;. For orthotropic solids Family 4 is not universal.

Family  Universal deformations c Universal material preferred
directions
0 X(X)=F XA+ Cyp=F'4F,6, Any three mutually orthogo-

ﬂal constant unit vec-
tors (N,,N,,N;)

C,
H(X,Y,Z)=/C,2X + C}) T 0 0 o o
1 6(X,Y,Z) = Cy(Y +Cs) [Cigl=| O c2lcex +c4>+c2] _g: K=o, &= coswxy |,
4 1 o
z()(,)/,Z)=m—CZC3}’+C6 0 C. za :0 +siny(X)
0
N, =| siny(X)
| Fcosw(X)
X(R,6,Z)= 1C,CIR* +C, [C2ciR? 0 0 - 0
2 ci+l C. . =+ N
2 y(R,@,Z):%+C5 [Cyl=| O il K=o, 8 =|coszm |
_ G i G 1 0 +sin y(R
zZ(R,0,Z) = C]‘C29+CZZ+C6 | 0 ca o i 2(R)
0
N3 = sin y(R)
Fcos y(R)
> R 0 0
HR,0,Z) =/ —5— +Cs K(KC,+RD) el 0
cemes 0 (Erc )+ G (B+c)+ac| 2| N
3 0(R,0,Z)=C,0+C,Z + Cg [Capl = 1(?+ 5)+ 3 1 2<*+ ﬁ)+ G N=| o], Ny=| cosx(R) |,
> ) 0 +sin (R
AR,0,2)=C;0+C,Z+C; o Clcz(“?Jrcs)+c3c4 G(E+c)+e 2 sin 7(R)
N, =] siny(R)
| ¥ cos y(R)
[ 0 cosé
N=|o|, N +siné
E3 0
[ siné
Nz =|Fcosé&
r(R,0,Z)=C/R CI(C2+1) CIC,GR 0 0
5 OR.0.Z)=CologR+C0+C,  [Cyyl=| CIGGR - CICGR 0 -
1
Z(R,0,2) = 0 0 e e ) 0
‘ Ny=[0], Ny=] cosn |,
| 0 +sinny
[ o
N; =| sinn
Fcosny

299 __ n
Ay == Lol

jljgg = ngn" (14,1718,;« + I4,n18,b) > (6.5)
449
Ay = ngn" (Lyplo, + Iyulop)
and
458
Agy® = ngn" (Isply + Is ulgp) + 0 (Lplgn + Lanlgs) -

( )+
A = ngn" (Isplo, + Isop) + Cn (Liploy + Loulop) s
A = ngn" (TopTsn + Ionls ) +mm" (Lipls, + Loalss) »
( )
( )

e
A’
AL = nn" (I plo, + Iy uloy) + R (Lplo, + Luylop)
T = nn" gyl + 0 (Tapls, + La,lsy) -

A = ngn" (Igply, + Ig o) + 9" (Iplo, + Iy doy) -
ﬂ;‘fg =n,n" Igply, .

TP =00 (Ts I, + Is 05 )

ngn" (I ply, + Ig u1g ) + mgm" (]4’1,[9!,, + ]4,n19,b) s
gt (I pds + Trds ) + £ (Lypls, + LIaulsy)
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A5 =00 (Tsploy+ Ts, o) »

A =00 (TopTsn + Tonls) +mem" (Is Iy + Is s )

T =17 (I y g, + I o) + mam (IsyIg, + 15,1 ) (6.6)
A =0 (I7b18n+I7nISb)+ﬁn (Isplsn+Isulsy) -

A =00 (Inplo + Ty udop) + R (Isplo, + Is, o)

and

A 2yt 440 Tyl T5a0rs)

A0 =00 (Isplo + Iguloy) + ) (Isplon + Isulop) -

TP =0 1oy, ,

j[668 =mm" (Igpls, + I6lss) »
A% = m,m" (TopTon+ Isulop) »
ACTS = mm" (I Ig  + I 15 ) + " (Igp T + Tonlss) -
ALY = mgm" (I 1o+ Ty u 1o ) + K2 (T6pTo + Toulos) -

ﬂfbgs =mgm" Iy, Ig , +q (Iﬁ’bl&,, + 16’"18’b) s
A8 = mm" (Ig I, + Iy u o) + 4" (Zspdon + Lo uloy) » ©7)
ﬂfl’[?g =mgm" Ig Iy, , ’
AL =R (I, + T ls ) 5
AL =R (LT, + T ,0o ) 5
AR =Ry IspTs 0 + a5 (T pTs + T7Ts ) s
AL = K (Isplo + Isulop) + a5 (I plon + Iralop) »
AT =K1yl
AN =l Tyl
A5 =) (Igplon + Igulop) »
/72,?9 =q, 1915, -
Family 1. Let us consider two arbitrary but distinct members of the set (4.23),, namely
. 0 . 0
N; =] cosy;(X) |, Np=| cosyr(X) |. (6.8)
+siny; (X) + siny, (X)

These two vectors satisfy all the universality symmetry conditions for arbitrary w,(X) and y,(X), w;(X) # w,(X). This means that
(6.8) are universal material preferred directions for Family 1.

Families 2 and 3. For Families 2 and 3, let us consider two arbitrary but distinct members of the set (4.32),, namely

0 0
Ny =| cos /;(R) |. Ny =| cos pp(R) |. (6.9)
+5sin y;(R) +5sin 1, (R)

The above two vectors satisfy all the universality conditions for arbitrary y,(R) and y,(R), x;(R) # x,(R), i.e., (6.9) are universal
material preferred directions for Families 2 & 3.

Family 5. 1In the case of orthotropic solids, Family 5 has two classes of universal material preferred directions (5.12). Let us consider
two arbitrary but distinct members in Class 1 of universal solutions, namely

cos &; cos &,
Ny =|zsing |, N, =|+sing,|. (6.10)
0 0

These vectors satisfy all the universality symmetry conditions for arbitrary &, and &, & # &, i.e., (6.10) are universal material
preferred directions for Family 5.
Next we consider two arbitrary but distinct members in Class 2 of the transversely isotropic universal solutions, namely

0 0
N, = cosp |, Ny=| cosn, |. (6.11)
+sinn, +sinn,
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It turns out that the above two vectors satisfy all the universality constraints other than ﬂfh =A Ea, which gives the following
universality condition:

C,sinnycosny =0. (6.12)

If C, =0, (6.11) are universal material preferred directions for arbitrary », and #, as long as n, # #n,. This is similar to what was
observed in footnote 3 for transversely isotropic solids. Considering the full set of universal deformations (4.46), the universality
conditions are: sin#; cosn, = 0. The cases sinn, =0, and cos#n, = 0 were discussed in Remark 4.6. Therefore, we have the following
two classes of universal material preferred directions

0 0
N, =|=x1], N2 =| cosy |, singp#0, (6.13)
| 0] | £siny |
and
0 C o
N, =101, N2 =| cosy |, cosp#0. (6.14)
| £1] | +sin7 |

In summary, we have the following three classes of universal material preferred directions for Family 5:

[ cosé, cos &,

Class () : Ny =|xsing |, Ny=|xsin&|, & #6&, (6.15)
| o 0
[0 0

Class (i) : N;=|+1], Ny=| cosy [, sing#0, (6.16)
| 0 +siny
[0 0

Class (iii) : Ny =[ 0|, RNy=|cosy |, cosy#0. (6.17)
+1 +siny

Class (i) corresponds to two families of fibers that are parallel to the (R, ©) plane and are distributed uniformly in two distinct fixed
directions. In Class (ii) one family of fibers are concentric circles parallel to the (R, ©) plane, and the second family of fibers are
arranged helically, i.e., a combination of fibers in Figs. 1(b) and (d). Note that the two families of fibers are not mechanically
equivalent, in general. In Class (iii) one family of fibers are distributed uniformly parallel to the axis of the wedge, and the
second family of fibers are arranged helically, i.e., a combination of fibers in Figs. 1(b) and (c). Table 3 summarizes our results
for incompressible monoclinic solids.

Remark 6.1. For Families 1, 2, and 3, the monoclinic universal material preferred directions are reduced to those of orthotropic
solids when N, -N, = 0. For Family 5, the same thing happens for Class (i) solutions. However, for Class (ii) solutions the monoclinic
universality constraints force one family of fibers to be either parallel lines or concentric circles. When N, - N, = 0, this recovers
only a subset of the corresponding orthotropic solutions.

7. Concluding remarks

We have shown that the universal deformations for compressible transversely isotropic, orthotropic, and monoclinic solids are
homogeneous and the universal material preferred directions are uniform. In the case of incompressible transversely isotropic,
orthotropic, and monoclinic solids, in addition to the nine universality constraints for isotropic solids that were derived by Ericksen
(1954), there are extra 25, 74, and 152, respectively, extra universality constraints that need to be satisfied. For each of the six
known families of universal deformations for isotropic solids we obtained the corresponding universal material preferred directions
assuming that the material preferred directions share the symmetries of the right Cauchy—Green strain. Tables 1, 2, and 3 summarize
our results for incompressible transversely isotropic, orthotropic, and monoclinic solids. This classification of universal solutions
provides a collection of solutions that can be used for applications and restrict the possible choice of new solutions to material
preferred directions that do not preserve the underlying symmetry of the deformations. We believe that these solutions are unlikely
to exist and we conjecture that this classification, like the cases of isotropic incompressible solids, and isotropic anelastic solids is
complete.
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Table 3
Universal deformations and universal material preferred directions for incompressible monoclinic solids for the six known families of universal deformations.
Note that for Family 3, K = C,C, — C,C;. For monoclinic solids Family 4 is not universal. Also, note that N; is normal to the plane of N, and K,.

Family  Universal deformations c Universal material preferred
directions
0 x4(X)=F X"+ Cyp=F'4F 46, Any two non-parallel constant

unit vectors N, and N,

HX,Y,Z)=\/C,2X + Cp) T 0 0 SN
1 0(X,Y,Z) = Cy(Y +Cs) [Capl=| O Cclcex +Cy+c3 —% N, =| cosy,(X) |,
C: 1 3
2X,Y,Z) = % —G,GY +Cg 0 - za :tsmg/]m
N, =] cosy,(X)
| £ siny,(X)
X(R,0,2)= ;C,CIR* + C, CICIR* 0 0 S
C241 C. N
2 WR.0.2)= 5 +C; [Copl=| O e e N, =| cos pi(R) |,
_ G 1 G 4 +sin y, (R
2(RO.Z)= =0+ L Z+C 0 e @ L ;n )]
N, =] cos o(R) |,
L£sin y(R)]
1 (R) # x,(R)
: R - 0 0
HR,0,Z) =/ —2— +C;s K(KCs+R?) T o0 ]
ciemas 0 cz("1+c)+c2 cc(“’+c)+cc Q
3 O(R,0,Z)=C,0+C,Z +Cq [Chpl = (k™% 3 192 k% T%s 3t Ny =| cos (R |,
2 +5i R
2(R.0.2)=C,0+C,Z+C, 0 clcz(% +C5>+C3C4 czz("? +cs)+c} :—““é"( )]
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