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Universal (controllable) deformations of an elastic
solid are those deformations that can be maintained
for all possible strain-energy density functions and
suitable boundary tractions. Universal deformations
have played a central role in nonlinear elasticity and
anelasticity. However, their classification has been
mostly established for homogeneous isotropic solids
following the seminal works of Ericksen. In this
article, we extend Ericksen’s analysis of universal
deformations to inhomogeneous compressible and
incompressible isotropic solids. We show that
a necessary condition for the known universal
deformations of homogeneous isotropic solids to
be universal for inhomogeneous solids is that
inhomogeneities respect the symmetries of the
deformations. Symmetries of a deformation are
encoded in the symmetries of its pulled-back metric
(the right Cauchy–Green strain). We show that this
necessary condition is sufficient as well for all the
known families of universal deformations except for
Family 5.

1. Introduction
For a given class of solids, it turns out that one
cannot deform an elastic body to an arbitrary shape
by only applying boundary tractions; most likely body
forces are needed to maintain the desired deformation.
Those deformations that can be maintained by only
applying boundary tractions are called universal or
controllable [1,2]. The set of universal deformations
explicitly depends on the class of materials. In the
case of (unconstrained) compressible isotropic elastic
solids, Ericksen [3] proved that the only universal
deformations are homogeneous deformations. In the

2021 The Author(s) Published by the Royal Society. All rights reserved.
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case of incompressible isotropic solids, motivated by the earlier works of Rivlin [4–6], Ericksen [7]
found four families of universal deformations. In his analysis, he conjectured that a deformation
whose principal invariants are constant must be homogeneous. This conjecture turned out to be
incorrect [8]. A fifth family of inhomogeneous universal deformations with constant principal
invariants was discovered independently by Singh & Pipkin [9] and Klingbeil & Shield [10]. The
six known families of universal deformations are as follows:

— Family 0: Homogeneous deformations.
— Family 1: Bending, stretching and shearing of a rectangular block.
— Family 2: Straightening, stretching and shearing of a sector of a cylindrical shell.
— Family 3: Inflation, bending, torsion, extension and shearing of a sector of an annular

wedge.
— Family 4: Inflation/inversion of a sector of a spherical shell.
— Family 5: Inflation, bending, extension and azimuthal shearing of an annular wedge.

For incompressible isotropic solids, Ericksen’s problem has not been completely solved to this
date; the case of deformations with constant principal invariants is still open. However, the
conjecture is that there is no other family of inhomogeneous isochoric universal deformations
with constant principal invariants other than Family 5.

Ericksen’s work has recently been generalized to anelasticity. In the case of compressible
anelastic solids, universal deformations are covariantly homogeneous [11]. In the case of
incompressible isotropic solids with finite eigenstrains, Goodbrake et al. [12] suggested that
universal eigenstrain distributions (that are modelled by a material Riemannian metric) should
follow the same symmetry as the deformations. In particular, they showed that all the six known
families of universal deformations are invariant under the action of certain Lie subgroups of the
special Euclidean group.

Yavari & Goriely [13] extended Ericksen’s analysis to compressible and incompressible
transversely isotropic, orthotropic and monoclinic solids. They showed that the universality
constraints of incompressible anisotropic solids include those of incompressible isotropic solids.
For each known family of universal deformations for isotropic solids they obtained the
corresponding universal material preferred directions. The analogue of universal deformations
in linear elasticity are universal displacements [14–16]. It turns out that universal displacements
explicitly depend on the symmetry class of the material. More specifically, the smaller the material
symmetry group, the smaller the corresponding space of universal displacements [16].

Golgoon & Yavari [17] observed that radial deformations of spherical shells are universal even
for radially inhomogeneous transversely isotropic spherical shells with radial material preferred
direction. This means that, in particular, Family 4 is universal for radially inhomogeneous
incompressible isotropic solids. To this date, the study of universal deformations has been
restricted to homogeneous solids. One may ask if Family 4 can admit other forms of
material inhomogeneity. The more general question is: What are the universal deformations
for inhomogeneous compressible and incompressible isotropic solids? And what forms of
inhomogeneity can accommodate universal deformations? These questions will be answered in
this article.

We will consider both inhomogeneous compressible and incompressible isotropic solids. We
find the universality constraints that are imposed by the equilibrium equations in the absence
of body forces and the arbitrariness of the inhomogeneous energy function. It will be seen that
the set of universality constraints for each material class includes those of the corresponding
homogenous solids. For compressible solids, the universality constraints force the universal
deformations to be homogeneous. The extra universality constraints force the energy function
to be homogeneous. This implies that inhomogeneous compressible isotropic solids do not admit
universal deformations. In the case of incompressible solids for each of the six known families of
universal deformations, we find the corresponding universal material inhomogeneity.
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This article is organized as follows. In §2, we briefly review nonlinear elasticity. In §3, we
consider inhomogeneous compressible isotropic solids. In §4, the universal deformations and
universal inhomogeneities of incompressible isotropic solids are analysed for each of the known
six families. Conclusions are given in §5.

2. Nonlinear elasticity

(a) Kinematics
In nonlinear elasticity, a body B is identified with a flat Riemannian manifold (B, G), which is a
submanifold of the Euclidean 3-space (S, g) [18]. G is the material metric, which is induced from
the ambient space metric g. A deformation is a mapping ϕ : B → S. The deformation gradient
is the tangent map (or derivative) of ϕ and is denoted by F = Tϕ. The deformation gradient at
each material point X ∈B is a linear map F(X) : TXB → Tϕ(X)S. With respect to local (curvilinear)
coordinates {xa} and {XA} on S and B, respectively, the deformation gradient has the following
components:

Fa
A(X) = ∂ϕa

∂XA (X). (2.1)

The transpose of deformation gradient is defined as follows:

FT : TxS → TXB, 〈〈FV, v〉〉g = 〈〈V, FTv〉〉G, ∀V ∈ TXB, v ∈ TxS, (2.2)

which in components reads

(FT(X))A
a = gab(x)Fb

B(X)GAB(X). (2.3)

Another measure of strain is the right Cauchy–Green deformation tensor (or strain), which is
defined as C(X) = F(X)TF(X) : TXB → TXB and has components CA

B = (FT)A
aFa

B. Note that CAB =
(gab ◦ ϕ)Fa

AFb
B, which implies that the right Cauchy–Green strain is the pulled-back metric,

i.e. C� = ϕ∗(g), where � is the flat operator induced by the metric g and is used for lowering
indices. The left Cauchy–Green strain is defined as B� = ϕ∗(g�) and has components BAB =
(F−1)A

a(F−1)B
bgab. The spatial analogues of C� and B� are denoted by c� and b�, respectively,

and are defined as follows:

c� = ϕ∗(G), cab = (F−1)A
a(F−1)B

bGAB

and b� = ϕ∗(G�), bab = Fa
AFb

BGAB.

⎫⎬
⎭ (2.4)

b� is called the Finger deformation tensor. The tensors C and b have the same principal invariants
I1, I2 and I3, which are defined as follows [18,19]:

I1 = tr b = ba
a = babgab,

I2 = 1
2

(I2
1 − tr b2) = 1

2
(I2

1 − ba
bbb

a) = 1
2

(I2
1 − babbcdgacgbd)

and I3 = det b.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.5)

(b) Balance of linear and angular momenta
The balance of linear and angular momenta in the absence of inertial effects in material form read

Div P + ρ0B = 0, PFT = FPT, (2.6)

where B is body force per unit undeformed volume, ρ0 is the material mass density and P is the
first Piola–Kirchhoff stress. P is related to the Cauchy stress σ as Jσ ab = PaAFb

A, where J is the
Jacobian of deformation that relates the material (dV) and spatial (dv) Riemannian volume forms
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as dv = JdV and is defined as follows

J =
√

det g
det G

det F. (2.7)

In terms of the Cauchy stress σ , the balance of linear and angular momenta read

div σ + ρb = 0, σ T = σ , (2.8)

where b = B ◦ ϕ−1
t , and ρ = J−1ρ0 is the spatial mass density. In components, balance of linear

momentum reads σ ab|b + ρba = 0, where

σ ab|b = σ ab
,b + γ a

bcσ
cb + γ b

bcσ
ac. (2.9)

γ c
ab are the Christoffel symbols of the ambient space metric g and are defined as follows:

γ a
bc = 1

2
gak(gkb,c + gkc,b − gbc,k). (2.10)

(c) Constitutive equations
In the case of an inhomogeneous isotropic hyperelastic solid, the energy function (per unit
undeformed volume) is written as W = Ŵ(X, C�, G). For an isotropic solid, the energy function
can be rewritten as W = W(X, I1, I2, I3), where I1, I2 and I3 are the principal invariants of the right
Cauchy–Green deformation tensor that are given in (2.5). The Cauchy stress has the following
representation [20]:

σ ab = 2√
I3

[W1bab + (I2W2 + I3W3)gab − I3W2cab], (2.11)

where

Wi = Wi(X, I1, I2, I3) = ∂W(X, I1, I2, I3)
∂Ii

, i = 1, 2, 3, (2.12)

and cab = (F−1)M
m(F−1)N

nGMNgamgbn. For incompressible isotropic solids (I3 = J2 = 1), the Cauchy
stress has the following representation [20]:

σ ab = −pgab + 2W1bab − 2W2cab, (2.13)

where p is a Lagrange multiplier associated with the incompressibility constraint J = √
I3 = 1.

3. Inhomogeneous compressible isotropic solids
For an inhomogeneous compressible isotropic solid, the Cauchy stress representation is given in
(2.11). The ambient space is Euclidean, and hence one can use a single Cartesian coordinate chart
{xa}, so that gab = δab. Thus,

σ ab = 2√
I3

[W1bab + (I2W2 + I3W3)δab − I3W2cab]. (3.1)

In the absence of body forces, the equilibrium equations in Cartesian coordinates read σ ab
,b = 0.

Note that

W1,b = (F−1)A
b

∂2W
∂XA∂I1

+ ∂2W

∂I2
1

I1,b + ∂2W
∂I1∂I2

I2,b + ∂2W
∂I1∂I3

I3,b,

W2,b = (F−1)A
b

∂2W
∂XA∂I2

+ ∂2W
∂I1∂I2

I1,b + ∂2W

∂I2
2

I2,b + ∂2W
∂I2∂I3

I3,b

and W3,b = (F−1)A
b

∂2W
∂XA∂I3

+ ∂2W
∂I1∂I3

I1,b + ∂2W
∂I2∂I3

I2,b + ∂2W

∂I2
3

I3,b.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)
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These can be written more compactly as follows

W1,b = (F−1)A
bW1,A + W11I1,b + W12I2,b + W13I3,b,

W2,b = (F−1)A
bW2,A + W12I1,b + W22I2,b + W23I3,b

and W3,b = (F−1)A
bW3,A + W13I1,b + W23I2,b + W33I3,b,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

where

Wi,A = ∂Wi

∂XA and Wij = ∂2W
∂Ii∂Ij

, i ≤ j. (3.4)

The first term on the right-hand side of each equation in (3.3) vanishes for homogeneous solids
[3,11]. Substituting (3.3) into the equilibrium equations, one obtains[

− I3,b

2I3
bab + bab

,b

]
W1 +

[
− I3,b

2I3
(I2δ

ab − I3cab) + I2,bδ
ab − I3,bcab − I3cab

,b

]
W2

+ 1
2

I3,bδ
abW3 + babI1,bW11 + I2,b(I2δ

ab − I3cab)W22 + I3I3,bδ
abW33

+ [I1,b(I2δ
ab − I3cab) + I2,bbab]W12 + (babI3,b + δabI1,bI3)W13

+ [I3,b(I2δ
ab − I3cab) + I3I2,bδ

ab]W23

+ (F−1)A
bbabW1,A + (F−1)A

b(I2δ
ab − I3cab)W2,A + (F−1)A

bI3δ
abW3,A = 0. (3.5)

The aforementioned identity must hold for any choice of W = W(X, I1, I2, I3). This means that the
partial derivatives of W can vary independently. Thus, in particular, the coefficients of the partial
derivatives W1, W2, W3, W11, W22, W33, W12, W23 and W31 must vanish independently, and hence,
one obtains Ericksen’s universality constraints for homogeneous compressible isotropic solids
[3,11]:

− I3,b

2I3
bab + bab

,b = 0, (3.6)

− I3,b

2I3
(I2δ

ab − I3cab) + I2,bδ
ab − I3,bcab − I3cab

,b = 0, (3.7)

I3,bδ
ab = 0, (3.8)

babI1,b = 0, (3.9)

I2,b (I2δ
ab − I3cab) = 0, (3.10)

I3I3,bδ
ab = 0, (3.11)

I1,b (I2δ
ab − I3cab) + I2,bbab = 0, (3.12)

babI3,b + δabI1,bI3 = 0 (3.13)

and I3,b (I2δ
ab − I3cab) + I3I2,bδ

ab = 0. (3.14)

In addition to the aforementioned constraints, for inhomogeneous solids from (3.5), one has the
following extra universality constraints

bab(F−1)A
bW1,A = 0,

(I2δ
ab − I3cab)(F−1)A

bW2,A = 0

and I3δ
ab(F−1)A

bW3,A = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

From the constraints (3.6)–(3.14), one obtains Erisksen’s conditions:

I1, I2, I3 are constants, and bab
,b = cab

,b = 0. (3.16)
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By using Ericksen’s conditions and the compatibility equations, one can show that the universal
deformations must be homogeneous [3]. Knowing that the tensors bab, I2δ

ab − I3cab and I3δ
ab are

invertible,1 from (3.15), one concludes that

(F−1)A
bW1,A = (F−1)A

bW2,A = (F−1)A
bW3,A = 0, (3.18)

which in turn implies that
W1,A = W2,A = W3,A = 0. (3.19)

Note that

W1,A = ∂

∂XA
∂W
∂I1

= ∂

∂I1

∂W
∂XA = 0. (3.20)

Similarly, using W2,A = W3,A = 0, one obtains

∂

∂I2

∂W
∂XA = ∂

∂I3

∂W
∂XA = 0. (3.21)

This means that
∂W
∂X1 = f1(X),

∂W
∂X2 = f2(X),

∂W
∂X3 = f3(X), (3.22)

for some scalar functions fA. In particular, note that ∂f1/∂X2 = ∂f2/∂X1, and ∂f1/∂X3 = ∂f3/∂X1.
From (3.22)1, one concludes that

W(X, I1, I2, I3) =
∫X1

X1
0

f1(X1, X2, X3) dX1 + h(X2, X3, I1, I2, I3), (3.23)

where h is some scalar function and X1
0 is some fixed value of X1. Taking the partial derivative

with respect to X2 of both sides, one obtains

∂W
∂X2 = ∂

∂X2

∫X1

X1
0

f1(X1, X2, X3) dX1 + ∂h(X2, X3, I1, I2, I3)
∂X2 ,

=
∫X1

X1
0

∂f1(X1, X2, X3)
∂X2 dX1 + ∂h(X2, X3, I1, I2, I3)

∂X2 ,

=
∫X1

X1
0

∂f2(X1, X2, X3)
∂X1 dX1 + ∂h(X2, X3, I1, I2, I3)

∂X2 ,

= f2(X1, X2, X3) − f2(X1
0, X2, X3) + ∂h(X2, X3, I1, I2, I3)

∂X2 . (3.24)

From (3.24) and (3.22)2, one concludes that

∂h(X2, X3, I1, I2, I3)
∂X2 = f2(X1

0, X2, X3). (3.25)

Thus, ∫X2

X2
0

∂h(X2, X3, I1, I2, I3)
∂X2 dX2 =

∫X2

X2
0

f2(X1
0, X2, X3) dX2, (3.26)

1When expressed in the principal directions of cab, one has

[I2δ
ab − I3cab] = (λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1)

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ − λ2

1λ
2
2λ

2
3

⎡
⎢⎢⎢⎣

1
λ2

1
0 0

0 1
λ2

2
0

0 0 1
λ2

3

⎤
⎥⎥⎥⎦

=
⎡
⎣λ2

1(λ2
2 + λ2

3) 0 0
0 λ2

2(λ2
1 + λ2

3) 0
0 0 λ2

3(λ2
1 + λ2

2)

⎤
⎦ , (3.17)

where λ2
1, λ2

2 and λ2
3 are the eigenvalues of b�. Clearly, [I2δ

ab − I3cab] is invertible.
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where X2
0 is some fixed value of X2. Hence,

h(X2, X3, I1, I2, I3) = h(X2
0, X3, I1, I2, I3) +

∫X2

X2
0

f2(X1
0, X2, X3) dX2. (3.27)

This implies that

h(X2, X3, I1, I2, I3) = H(X3, I1, I2, I3) + K(X2, X3). (3.28)

By using the aforementioned relation in (3.23), one has

W(X, I1, I2, I3) =
∫X1

X1
0

f1(X1, X2, X3) dX1 + H(X3, I1, I2, I3) + K(X2, X3). (3.29)

Taking the partial derivative with respect to X3 of the aforementioned relation, one can show that

H(X3, I1, I2, I3) = W̄(I1, I2, I3) + M(X3). (3.30)

The aforementioned relation and (3.29) imply that W(X, I1, I2, I3) = Ŵ(X) + W̄(I1, I2, I3). Note that
the inhomogeneous term Ŵ(X) is mechanically inconsequential. In summary, we have proved the
following result.

Proposition 3.1. Inhomogeneous compressible nonlinear isotropic solids do not admit universal
deformations.

4. Inhomogeneous incompressible isotropic solids
For an incompressible isotropic solid, the equilibrium equations in the absence of body forces
read

1
2

p,bgab = [W1bab − W2cab]|b or
1
2

p,a = gam[W1bmn − W2cmn]|n. (4.1)

Hence,
1
2

dp = 1
2

p,a dxa = gam[W1bmn − W2cmn]|n dxa, (4.2)

where d is the exterior derivative. This means that2

ξ = gam [W1bmn − W2cmn]|n dxa = [W1bn
a − W2cn

a ]|n dxa, (4.3)

is an exact 1-form. Note that dξ = 0, or equivalently ξa,b = ξb,a, is a necessary condition for ξ to be
an exact form [21]. However, from ξa|b = ξa,b − γ c

abξc, one concludes that ξa,b = ξb,a is equivalent
to ξa|b = ξb|a. The latter constraints are more convenient in curvilinear coordinates as the metric of
the ambient space is covariantly constant, i.e. gab|c = 0. One can simplify ξa as follows:

ξa = [W1bn
a − W2cn

a ]|n = W1|nbn
a − W2|ncn

a + W1bn
a |n − W2cn

a |n. (4.4)

Note that Wi = Wi(X, I1, I2), i = 1, 2, and hence,

W1|n = (F−1)A
nW1,A + W11I1,n + W12I2,n

and W2|n = (F−1)A
nW2,A + W12I1,n + W22I2,n.

⎫⎬
⎭ (4.5)

From (4.4), one can write

ξa|b = (W1|n)|bbn
a − (W2|n)|bcn

a + W1|nbn
a |b − W2|ncn

a |b
+ W1|bbn

a |n − W2|bcn
a |n + W1bn

a |nb − W2cn
a |nb. (4.6)

2Note that bn
a = bnmgma, and ba

n = gambmn, which are equal. Thus, we use the notation bn
a = bn

a = ba
n. Similarly, the same

notation is used for c.
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By using (4.5), we have

(W1|n)|b = W11I1|nb + W12I2|nb + W111I1,bI1,n

+ W112(I2,bI1,n + I1,bI2,n) + W122I2,bI2,n

+ [(F−1)B
b(F−1)A

n,B − γ m
nb(F−1)A

m]W1,A

+ [(F−1)A
nI1,b + (F−1)A

bI1,n]W11,A

+ [(F−1)A
nI2,b + (F−1)A

bI2,n]W12,A

+ [(F−1)A
n(F−1)B

b + (F−1)B
n(F−1)A

b]W1,AB, (4.7)

and

(W2|n)|b = W12I1|nb + W22I2|nb + W112I1,bI1,n

+ W122(I2,bI1,n + I1,bI2,n) + W222I2,bI2,n

+ [(F−1)B
b(F−1)A

n,B − γ m
nb(F−1)A

m]W2,A

+ [(F−1)A
nI2,b + (F−1)A

bI2,n]W22,A

+ [(F−1)A
nI1,b + (F−1)A

bI1,n]W12,A

+ [(F−1)A
n(F−1)B

b + (F−1)B
n(F−1)A

b]W2,AB. (4.8)

Therefore,

ξa|b = (bn
a |nb)W1 − (cn

a |nb)W2

+ [bn
a |nI1,b + (bn

a I1,n)|b]W11 − [cn
a |nI2,b + (cn

a I2,n)|b]W22

+ {bn
a |nI2,b + (bn

a I2,n)|b − [cn
a |nI1,b + (cn

a I1,n)|b]}W12

+ (bn
a I1,nI1,b)W111 − (cn

a I2,nI2,b)W222

+ [bn
a (I1,bI2,n + I1,nI2,b) − cn

a I1,nI1,b]W112

+ [bn
a I2,bI2,n − cn

a (I1,bI2,n + I1,nI2,b)]W122

+ {(F−1)A
nbn

a |b + (F−1)A
bbn

a |n + bn
a [(F−1)B

b(F−1)A
n,B − γ m

nb(F−1)A
m]}W1,A

− {(F−1)A
ncn

a |b + (F−1)A
bcn

a |n + cn
a [(F−1)B

b(F−1)A
n,B − γ m

nb(F−1)A
m]}W2,A

+ bn
a [(F−1)A

nI1,b + (F−1)A
bI1,n]W11,A − cn

a [(F−1)A
nI2,b + (F−1)A

bI2,n]W22,A

+ {bn
a [(F−1)A

nI2,b + (F−1)A
bI2,n] − cn

a [(F−1)A
nI1,b + (F−1)A

bI1,n]}W12,A

+ bn
a [(F−1)A

n(F−1)B
b + (F−1)B

n(F−1)A
b]W1,AB

− cn
a [(F−1)A

n(F−1)B
b + (F−1)B

n(F−1)A
b]W2,AB. (4.9)

The first nine terms appear for homogeneous solids as well. As W is an arbitrary function of its
arguments, for ξa|b = ξb|a to hold, it is necessary that the coefficients of Wκ , where κ is a multi-
index, κ ∈ {1, 2, 11, 22, 12, 111, 222, 112, 122}, be symmetric. Therefore, the following nine terms
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must be symmetric [7]:

A1
ab = bn

a |bn,

A2
ab = cn

a |bn,

A11
ab = bn

a |nI1,b + (bn
a I1,n)|b,

A22
ab = cn

a |nI2,b + (cn
a I2,n)|b,

A12
ab = (bn

a I2,n)|b + bn
a |nI2,b − [(cn

a I1,n)|b + cn
a |nI1,b],

A111
ab = bn

a I1,nI1,b,

A222
ab = cn

a I2,nI2,b,

A112
ab = bn

a (I1,bI2,n + I1,nI2,b) − cn
a I1,nI1,b

and A122
ab = bn

a I2,bI2,n − cn
a (I1,bI2,n + I1,nI2,b).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

It is known that symmetry of the aforementioned nine terms, in addition to homogenous
deformations, admit five classes of deformations [7,9,10].

For inhomogeneous solids, in addition to Ericksen’s symmetry conditions (4.10), from (4.9),
the following seven groups of terms (for A = 1, 2, 3, and B ≥ A) must be symmetric as well:

C1A
ab = (F−1)A

nbn
a |b + (F−1)A

bbn
a |n

+ bn
a [(F−1)B

b(F−1)A
n,B − γ m

nb(F−1)A
m],

C2A
ab = (F−1)A

ncn
a |b + (F−1)A

bcn
a |n

+ cn
a [(F−1)B

b(F−1)A
n,B − γ m

nb(F−1)A
m],

C11A
ab = bn

a [(F−1)A
nI1,b + (F−1)A

bI1,n],

C22A
ab = cn

a [(F−1)A
nI2,b + (F−1)A

bI2,n],

C12A
ab = bn

a [(F−1)A
nI2,b + (F−1)A

bI2,n] − cn
a [(F−1)A

nI1,b + (F−1)A
bI1,n],

C1AB
ab = bn

a [(F−1)A
n(F−1)B

b + (F−1)B
n(F−1)A

b]

and C2AB
ab = cn

a [(F−1)A
n(F−1)B

b + (F−1)B
n(F−1)A

b].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)

The aforementioned 27 symmetry constraints restrict the form of the inhomogeneity of the
elastic body. For a family of deformations consistent with (4.10), we call the corresponding
inhomogeneities that respect (4.11) the universal inhomogeneities. In the sequel, for each of
the six known families of universal deformations, we will find the corresponding universal
inhomogeneities. More specifically, for a given family, if a term in (4.11) cannot be symmetric,
then the corresponding derivative of W must vanish. This will then restrict the form of the
inhomogeneity, i.e. the explicit dependence of W on XA.

(a) Family 0: homogeneous deformations
For homogeneous deformations, the deformation mapping has the component form xa(X) =
Fa

AXA + ca, where [Fa
A] is a constant matrix and ca are components of a constant vector. The

incompressibility constraint in Cartesian coordinates reads det[Fa
A] = 1. The right Cauchy–Green

strain in Cartesian coordinates has components CAB = Fa
AFb

Bδab, which are constants. [bab] and
[cab] are constant matrices and I1 and I2 are constant as well. For isochoric homogeneous
deformations, the universality constraints (4.10) are trivially satisfied. The first five sets of
constraints in (4.11) are trivially satisfied as well, and only the last two need to be checked, i.e.
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C1AB
[ab] = C2AB

[ab] = 0, where we use the standard notation (.)[ab] = 1
2 [(.)ab − (.)ba]. Thus,

bn
[a[(F−1)A

n(F−1)B
b] + (F−1)B

n(F−1)A
b]] = 0

and cn
[a[(F−1)A

n(F−1)B
b] + (F−1)B

n(F−1)A
b]] = 0.

⎫⎬
⎭ (4.12)

[bab] and [cab] have the same principal directions. With respect to the principal directions of b�,
F−1 has the representation

F−1 =

⎡
⎢⎣f11 f12 f13
f21 f22 f23
f31 f32 f33

⎤
⎥⎦ , [bab] =

⎡
⎢⎣λ2

1 0 0
0 λ2

2 0
0 0 λ2

3

⎤
⎥⎦ , [cab] =

⎡
⎢⎢⎣

1
λ2

1
0 0

0 1
λ2

2
0

0 0 1
λ2

3

⎤
⎥⎥⎦ , (4.13)

where λ2
1λ

2
2λ

2
3 = 1 and det F−1 = 1. The constraints (4.12)1 for (A, B) = (1, 1) read

f11f12(λ2
1 − λ2

2) = 0, f12f13(λ2
2 − λ2

3) = 0, f11f13(λ2
3 − λ2

1) = 0. (4.14)

Clearly, one solution is λ2
1 = λ2

2 = λ2
3 = 1, which corresponds to the identity deformation, which

satisfies all the other constraints. We show that this is the only solution. If not, as all isochoric
homogeneous deformations satisfy the symmetry of all the terms in (4.10), we can assume that
the eigenvalues of b� are distinct. Thus,

f11f12 = f12f13 = f11f13 = 0. (4.15)

Similarly, the constraints (4.12)1 for (A, B) = (2, 2) and (A, B) = (3, 3) give

f21f22 = f22f23 = f21f23 = 0

and f31f32 = f32f33 = f31f33 = 0.

}
(4.16)

It is straightforward to show that (4.15) and (4.16), and the constraint det F−1 = 1 imply that f12 =
f21 = f13 = f31 = f23 = f32 = 0. The remaining constraints cannot be satisfied unless λ2

1 = λ2
2 = λ2

3 = 1.
Thus, we have proved the following result.

Proposition 4.1. Homogeneous deformations are not universal for inhomogeneous incompressible
nonlinear isotropic solids.

Remark 4.2. Note that symmetry of a family of deformations ϕ : B → ϕ(B) ⊂ S is encoded
in the symmetry of its pulled-back metric C� = ϕ∗g. Goodbrake et al. [12] observed that for
homogeneous deformations C� is invariant under the action of T(3) ⊂ SE(3)—the group of
translations. Proposition 4.1 tells us that the inhomogeneous energy function must respect the
same symmetry, i.e. W(X + a, I1, I2) = W(X, I1, I2), ∀ a ∈ R

3. In other words, the energy function
must be homogeneous.

(b) Family 1: bending, stretching and shearing of a rectangular block
This family of deformations, with respect to the Cartesian (X, Y, Z) and cylindrical (r, θ , z)
coordinates in the reference and current configurations, respectively, has the following
representation:

r(X, Y, Z) =
√

C1(2X + C4), θ (X, Y, Z) = C2(Y + C5),

z(X, Y, Z) = Z
C1C2

− C2C3Y + C6, (4.17)

where the Cartesian coordinate planes are parallel to the faces of the undeformed rectangular
block.3

3Note that any connected subset of a rectangular block can undergo these deformations as long as appropriate surface
tractions are applied. This is also the case for subsets of cylindrical shells, spherical shells and annular wedges for Families
2–5.
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C�, b� and c� have the following representations.

[CAB] =

⎡
⎢⎣

C1
2X+C4

0 0
0 C2

2[C1(2X + C4) + C2
3] − C3

C1

0 − C3
C1

1
C2

1C2
2

⎤
⎥⎦ , (4.18)

[bab] =

⎡
⎢⎣

C1
C4+2X 0 0

0 C2
2 −C2

2C3
0 −C2

2C3
1

C2
1C2

2
+ C2

2C2
3

⎤
⎥⎦ (4.19)

and

[cab] =

⎡
⎢⎣

C4+2X
C1

0 0
0 C2

1C2
2C2

3 + 1
C2

2
C2

1C2
2C3

0 C2
1C2

2C3 C2
1C2

2

⎤
⎥⎦ . (4.20)

Note that C� is independent of Y and Z, i.e. it is invariant under the action of T(2) ⊂ SE(3).
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 2) requires4 C2
1[1 + 3C2

2(C4 +
2X)] = 0, which is not possible. This implies that

∂W1

∂Y
= ∂

∂I1

∂W
∂Y

= 0. (4.21)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 2) requires C3

1C2C3[1 + C2
2(C4 + 2X)] = 0, which cannot be

satisfied. This implies that
∂W1

∂Z
= ∂

∂I1

∂W
∂Z

= 0. (4.22)

C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2) requires (C4

1C4
2C2

3 + C2
1 − C2

2)
√

C1(C4 + 2X) = 0, which is not
possible, and hence,

∂W2

∂Y
= ∂

∂I2

∂W
∂Y

= 0. (4.23)

C2A
[ab] = 0, for A = 3, and (a, b) = (1, 3) requires (C4

1C4
2C2

3 + C2
1 − 3C2

2)
√

C1(C4 + 2X) = 0, which does
not hold, and thus,

∂W2

∂Z
= ∂

∂I2

∂W
∂Z

= 0. (4.24)

Equations (4.21)–(4.24) imply that up to a mechanically inconsequential function of (X, Y, Z), the
energy function must have the form W = W(X, I1, I2). For this form of the energy function in (4.11),
only the symmetry of the terms with A = 1 and A = B = 1 needs to be checked. It turns out that
those terms are all symmetric.

Proposition 4.3. For inhomogeneous incompressible nonlinear isotropic solids, Family 1 deformations
are universal for any energy function of the form W = W(X, I1, I2).

Remark 4.4. Note that for Family 1 deformations, C� is independent of Y and Z, i.e. it is
invariant under the action of the transformations Y → Y + a2, and Z → Z + a3, ∀ a2, a3 ∈ R. We
have shown that for Family 1 deformations to be universal for inhomogeneous solids, the energy
function must be invariant under the same group of transformations.

(c) Family 2: straightening, stretching and shearing of a sector of a cylindrical shell
This family of deformations, with respect to the cylindrical (R, Θ , Z) and Cartesian (x, y, z)
coordinates in the reference and current configurations, respectively, have the following

4All the symbolic computations in this article were performed using Mathematica Version 12.3.0.0, Wolfram Research,
Champaign, IL.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 S

ep
te

m
be

r 
20

21
 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210547

..........................................................

representation

x(R, Θ , Z) = 1
2

C1C2
2R2 + C4, y(R, Θ , Z) = Θ

C1C2
+ C5,

z(R, Θ , Z) = C3

C1C2
Θ + 1

C2
Z + C6, (4.25)

where the Z-coordinate line is the axis of the cylindrical shell sector. Thus,

[CAB] =

⎡
⎢⎢⎢⎣

C2
1C4

2R2 0 0

0 C2
3+1

C2
1C2

2

C3
C1C2

2

0 C3
C1C2

2

1
C2

2

⎤
⎥⎥⎥⎦ , (4.26)

[bab] =

⎡
⎢⎢⎢⎣

C2
1C4

2R2 0 0

0 1
C2

1C2
2R2

C3
C2

1C2
2R2

0 C3
C2

1C2
2R2

1
C2

2
+ C2

3
C2

1C2
2R2

⎤
⎥⎥⎥⎦ (4.27)

and

[cab] =

⎡
⎢⎢⎣

1
C2

1C4
2R2 0 0

0 C2
1C2

2R2 + C2
2C2

3 −C2
2C3

0 −C2
2C3 C2

2

⎤
⎥⎥⎦ . (4.28)

Note that C� is independent of Θ and Z, i.e. it is invariant under the action of SO(2) × T(1) ⊂ SE(3).
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 3) requires C4
1C6

2 + (1/R4) = 0,
which cannot be satisfied. This implies that

∂W1

∂Θ
= ∂

∂I1

∂W
∂Θ

= 0. (4.29)

Similarly

C1A
[ab] = 0, for (A, a, b) = (3, 1, 2) ⇒ C1C3

2 = 0,

C2A
[ab] = 0, for (A, a, b) = (2, 1, 2) ⇒ C2

1C2 + 1

C2
1C5

2R4
= 0

and C2A
[ab] = 0, for (A, a, b) = (3, 1, 3) ⇒ 1

C3
1C5

2R4
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.30)

None of the aforementioned constraints can be satisfied, and hence,

∂W1

∂Z
= ∂

∂I1

∂W
∂Z

= 0,
∂W2

∂Θ
= ∂

∂I2

∂W
∂Θ

= 0,
∂W2

∂Z
= ∂

∂I2

∂W
∂Z

= 0. (4.31)

Equations (4.29) and (4.31) imply that up to a mechanically inconsequential function of (R, Θ , Z),
the energy function must have the form W = W(R, I1, I2). For this form of the energy in (4.11), only
the symmetry of the terms with A = 1, and A = B = 1 needs to be checked. One can check that all
those terms are symmetric.

Proposition 4.5. For inhomogeneous incompressible nonlinear isotropic solids, Family 2 deformations
are universal for any energy function of the form W = W(R, I1, I2).

Remark 4.6. Note that for Family 2 deformations, C� is independent of Θ and Z, i.e. it is
invariant under the action of the transformations Θ → Θ + Θ0 and Z → Z + Z0, ∀ Θ0, Z0 ∈ R. We
have shown that for Family 2 deformations to be universal for inhomogeneous solids, the energy
function must be invariant under the same group of transformations.
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(d) Family 3: inflation, bending, torsion, extension and shearing of a sector
of an annular wedge

With respect to the cylindrical coordinates (R, Θ , Z) and (r, θ , z) in the reference and current
configurations, respectively, this family of deformations has the following representation

r(R, Θ , Z) =
√

R2

C1C4 − C2C3
+ C5, θ (R, Θ , Z) = C1Θ + C2Z + C6,

z(R, Θ , Z) = C3Θ + C4Z + C7, (4.32)

where the Z-coordinate line is the axis of the annular wedge. Thus,

[CAB] =

⎡
⎢⎢⎢⎢⎣

R2

K(KC5+R2) 0 0

0 C2
3 + C2

1

[
R2

K + C5

]
C1C2

[
R2

K + C5

]
+ C3C4

0 C1C2

[
R2

K + C5

]
+ C3C4 C2

4 + C2
2

[
R2

K + C5

]

⎤
⎥⎥⎥⎥⎦ , (4.33)

[bab] =

⎡
⎢⎢⎢⎣

R2

K(C5K+R2) 0 0

0 C2
1

R2 + C2
2

C1C3
R2 + C2C4

0 C1C3
R2 + C2C4

C2
3

R2 + C2
4

⎤
⎥⎥⎥⎦ (4.34)

and

[cab] =

⎡
⎢⎢⎢⎣

C5K2

R2 + K 0 0

0 C2
3+C2

4R2

K2 − C1C3+C2C4R2

K2

0 − C1C3+C2C4R2

K2
C2

1+C2
2R2

K2

⎤
⎥⎥⎥⎦ , (4.35)

where K = C1C4 − C2C3. Note that C� only depends on R.
The universality constraint C1A

[ab] = 0, for A = 2, and (a, b) = (1, 2) requires that

C4R6(C2
1 + 2C2

2C5K − 1) + C5KR4[C4(C2
2C5K + 2) − 2C1C2C3]

+ C1C2
5K2R2(4C2C3 − 3C1C4) − 2C1C3

5K4 + C2
2C4R8 = 0, (4.36)

which is not possible, and hence,
∂W1

∂Θ
= ∂

∂I1

∂W
∂Θ

= 0. (4.37)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 3) requires

C1{C2
1(C5K + R2)2 + C5KR2[C2

2(C5K + 2R2) − 2] + C2
2R6 − R4} = 0, (4.38)

which cannot be satisfied. This implies that

∂W1

∂Z
= ∂

∂I1

∂W
∂Z

= 0. (4.39)

Similarly, C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2), and C2A

[ab] = 0, for A = 3, and (a, b) = (1, 3) cannot be
satisfied, and hence,

∂W2

∂Θ
= ∂

∂I2

∂W
∂Θ

= 0 and
∂W2

∂Z
= ∂

∂I2

∂W
∂Z

= 0. (4.40)

Therefore, up to a mechanically inconsequential function of (R, Θ , Z), the energy function must
have the form W = W(R, I1, I2). For this form of the energy in (4.11), only the symmetry of the
terms with A = 1 and A = B = 1 needs to be checked. All those terms are symmetric. In summary,
in proposition 4.5, ‘Family 2’ can be replaced by ‘Family 3’. Similar to Family 2, for Family 3
deformations to be universal, the energy function must respect the symmetry of C�.
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(e) Family 4: inflation/inversion of a sector of a spherical shell
With respect to the spherical coordinates (R, Θ , Φ) and (r, θ , φ) in the reference and current
configurations, respectively, this family of deformations has the following representation:

r(R, Θ , Φ) = (±R3 + C3
1)1/3, θ (R, Θ , Φ) = ±Θ , φ(R, Θ , Φ) = Φ, (4.41)

where the spherical coordinates are centred at the centre of the spherical shell sector. Thus,

[CAB] =

⎡
⎢⎢⎢⎣

R4

(C3
1±R3)4/3 0 0

0 (C3
1 ± R3)2/3 0

0 0 (C3
1 ± R3)2/3 sin2 Θ

⎤
⎥⎥⎥⎦ , (4.42)

[bab] =

⎡
⎢⎢⎢⎣

R4

(C3
1±R3)4/3 0 0

0 1
R2 0

0 0 1
R2 sin2 Θ

⎤
⎥⎥⎥⎦ and [cab] =

⎡
⎢⎣

(C3
1±R3)4/3

R4 0 0
0 R2 0
0 0 R2 sin2 Θ

⎤
⎥⎦ . (4.43)

C� can be written as follows [12]:

C�(X) = R4

(C3
1 ± R3)4/3

R̂ ⊗ R̂ + (C3
1 ± R3)2/3

R2 (1 − R̂ ⊗ R̂), (4.44)

where 1 is the identity tensor and R̂ = X/|X|. This means that at a point X, C� is invariant under
all those rotations that fix X.

The universality constraint C1A
[ab] = 0, for A = 2, and (a, b) = (1, 3) requires that 4C3

1R6 ± 3C6
1R3 +

2C9
1 = 0, which cannot be satisfied. This implies that

∂W1

∂Θ
= ∂

∂I1

∂W
∂Θ

= 0. (4.45)

C1A
[ab] = 0, for A = 3, and (a, b) = (1, 2) requires (C3

1 ± R3)2/3 cot Θ = 0, which is not possible, and
thus,

∂W1

∂Φ
= ∂

∂I1

∂W
∂Φ

= 0. (4.46)

C2A
[ab] = 0, for A = 2, and (a, b) = (1, 2) requires

(5R9 ± 2C3
1R6)(C3

1 ± R3)1/3 ∓ R6 + 3C3
1R3 ± 4C6

1 = 0, (4.47)

which is not possible. Thus,

∂W2

∂Θ
= ∂

∂I2

∂W
∂Θ

= 0. (4.48)

C2A
[ab] = 0, for A = 3, and (a, b) = (2, 3) requires R2(C3

1 ± R3)2/3 cos Θ sin3 Θ = 0, which is not
possible. This implies that

∂W2

∂Φ
= ∂

∂I2

∂W
∂Φ

= 0. (4.49)

Equations (4.45), (4.46), (4.48) and (4.49) imply that up to a mechanically inconsequential function
of (R, Θ , Φ), the energy function must have the form W = W(R, I1, I2). For this form of the energy
in (4.11), only the symmetry of the terms with A = 1 and A = B = 1 needs to be checked. One
can check that all those terms are symmetric. In summary, in proposition 4.5, ‘Family 2’ can be
replaced by ‘Family 4’. Similar to Families 2 and 3, for Family 4 deformations to be universal, the
energy function must respect the symmetry of C�.
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(f) Family 5: inflation, bending, extension and azimuthal shearing of an annular wedge
With respect to the cylindrical coordinates (R, Θ , Z) and (r, θ , z) in the reference and current
configurations, respectively, this family of deformations has the following representation:

r(R, Θ , Z) = C1R, θ (R, Θ , Z) = C2 log R + C3Θ + C4, z(R, Θ , Z) = 1

C2
1C3

Z + C5, (4.50)

where the Z-coordinate line is the axis of the annular wedge. Thus,

[CAB] =

⎡
⎢⎢⎣

C2
1(C2

2 + 1) C2
1C2C3R 0

C2
1C2C3R C2

1C2
3R2 0

0 0 1
C4

1C2
3

⎤
⎥⎥⎦ (4.51)

and

[bab] =

⎡
⎢⎢⎢⎣

C2
1

C1C2
R 0

C1C2
R

C2
2+C2

3
R2 0

0 0 1
C4

1C2
3

⎤
⎥⎥⎥⎦ , [cab] =

⎡
⎢⎢⎢⎢⎣

C2
2

C2
1C2

3
+ 1

C2
1

− C2R
C1C2

3
0

− C2R
C1C2

3

R2

C2
3

0

0 0 C4
1C2

3

⎤
⎥⎥⎥⎥⎦ . (4.52)

Note that C� only depends on R. For homogeneous incompressible isotropic solids, this is the only
known family of inhomogeneous universal deformations for which I1 and I2 are constant. Let us
consider the following universality constraints:

C1A
[ab] = 0, for (A, a, b) = (1, 1, 2) ⇒ C1C2 = 0,

C1A
[ab] = 0, for (A, a, b) = (2, 1, 2) ⇒ C1(1 + C2

2 − C2
3) = 0,

C1A
[ab] = 0, for (A, a, b) = (3, 2, 3) ⇒ C4

1C2C3 = 0,

C2A
[ab] = 0, for (A, a, b) = (1, 1, 2) ⇒ R2C2 = 0,

C2A
[ab] = 0, for (A, a, b) = (2, 1, 2) ⇒ C2

2(1 − 6C2
1R2) − 5C4

1R4 + C2
3 = 0

and C2A
[ab] = 0, for (A, a, b) = (3, 2, 3) ⇒ R2C2

1C2 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.53)

None of the above six universality constraints can be satisfied. This means that the energy function
must be homogeneous.

Proposition 4.7. For inhomogeneous incompressible nonlinear isotropic solids, Family 5 deformations
are not universal.

Remark 4.8. This family of deformations is peculiar in the sense that it is inhomogeneous yet
it does not accommodate universal inhomogeneity. This result is consistent with what Yavari &
Goriely [13] observed for transversely isotropic solids. For Family 1, one of the universal solutions
is a uniform distribution of fibres for fixed X. For Families 2 and 3 and Family 5, they showed that
the integral curves of the material preferred directions are circular helices. For Families 2 and
3, the helices can be R dependent but not for Family 5. Goodbrake et al. [12] observed another
peculiarity of this family: C� corresponding to other inhomogeneous families (i.e. Families 1–4)
has an eigenvector parallel to the inhomogeneity direction, but not for this family.

5. Concluding remarks
In this article, we extended Ericksen’s analysis of universal deformations in homogeneous
isotropic solids to inhomogeneous isotropic solids. The set of universality constraints of
inhomogeneous solids include those of the corresponding homogeneous solids. We showed
that inhomogeneous compressible isotropic solids do not admit universal deformations. For
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incompressible solids, we considered each of the six known families of universal deformations
for homogeneous isotropic solids and showed that:

— Family 0 is not universal for inhomogeneous solids.
— Family 1 is universal for inhomogeneous solids as long as the energy function respects

the symmetry of these deformations, i.e. when W = W(X, I1, I2) with respect to the natural
Cartesian coordinates (X, Y, Z) in the reference configuration of a rectangular block.

— Families 2, 3 and 4 are universal for those inhomogeneous solids for which W =
W(R, I1, I2) with respect to the natural referential cylindrical coordinates (R, Θ , Z) for
Families 2 and 3, and with respect to the natural referential spherical coordinates (R, Θ , Φ)
for Family 4.

— Family 5 is not universal for inhomogeneous solids.

Table 1 summarizes our results for inhomogeneous incompressible isotropic solids.
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