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a b s t r a c t 

In nonlinear elasticity, universal deformations are the deformations that exist for arbitrary 

energy functions and suitable tractions at the boundaries. Here, we discuss the equivalent 

problem for linear elasticity. We characterize the universal displacements of linear elas- 

ticity: those displacement fields that can be maintained by applying boundary tractions 

in the absence of body forces for any linear elastic solid in a given anisotropy class. We 

show that the universal displacements for compressible isotropic linear elastic solids are 

constant-divergence harmonic vector fields. We note that any divergence-free displacement 

field is a universal displacement for incompressible linear elastic solids. Further, we char- 

acterize the universal displacement fields for all the anisotropy classes, namely triclinic, 

monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic solids. As ex- 

pected, universal displacements explicitly depend on the anisotropy class: the smaller the 

symmetry group, the smaller the space of universal displacements. In the extreme case of 

triclinic material where the symmetry group only contains the identity and minus identity, 

the only possible universal displacements are linear homogeneous functions. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

A universal deformation in elasticity is one which is possible in every member of a class of materials in the absence of

body forces ( Saccomandi, 2001 ). In other words, given a class of materials, a universal deformation of a body made of any

material in the class is possible by applying only surface tractions. 

In the case of (unconstrained) compressible isotropic elastic solids, Ericksen (1955) showed that the only universal de-

formations are homogeneous deformations. 1 In Yavari and Goriely (2016) , we showed that Ericksen’s result can be extended

to compressible solids with finite eigenstrains that in the absence of eigenstrains are isotropic. In this case, universal defor-

mations in such solids must be covariantly homogeneous. This implies that the material manifold must be flat (assuming a

simply-connected body). In other words, universal eigenstrains in compressible isotropic solids are impotent, i.e., are zero-

stress. 

In the case of incompressible isotropic solids, in addition to homogeneous deformations, Ericksen (1954) , Fosdick (1966) ,

Singh and Pipkin (1965) and Klingbeil and Shield (1966) identified the following five families of universal deformations (see
∗ Corresponding author. 

E-mail address: arash.yavari@ce.gatech.edu (A. Yavari). 
1 One should note that Ericksen’s 1954 and 1955 papers on universal deformations were largely motivated by the earlier works of Rivlin between 1948 

and 1954 ( Rivlin, 1948; 1949a; 1949b ) (see also Truesdell (1952) ). 
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Truesdell and Noll (2004) , Tadmor et al. (2012, p.265) , and Goriely (2017 , p.305) for a visualization and discussion): (1)

Bending, stretching, and shearing of a rectangular block; (2) Straightening, stretching, and shearing of a sector of a cylin-

drical shell; (3) Inflation, bending, torsion, extension, and shearing of a sector of an annular wedge; (4) Inflation/inversion

of a sector of a spherical shell; (5) Inflation, bending, extension, and azimuthal shearing of an annular wedge. The possi-

ble existence of other families is an open problem in elasticity. These families are limited due to the condition that the

deformations must exist for arbitrary isotropic constitutive relationships. 

In linear elasticity of simple bodies, the situation is slightly different. For homogeneous solids the constitutive rela-

tionships between the stresses and the linear strains is linear with constant coefficients. Hence, we must characterize the

displacements that exist for arbitrary values of the constant elastic moduli rather than for arbitrary functions. Therefore,

we expect a much larger family of solutions and the problem is not to enumerate different possible families of solutions

but to characterize fully the set of possible displacements. The question is then: In the absence of body forces, what are the

possible universal displacement fields for a homogeneous linear elastic solid? The answer to this question strongly depends on

the symmetry group of the material. For instance, we show that for isotropic linear elastic solids any constant-divergence

harmonic vector field is a universal displacement field. When the condition of isotropy is relaxed and one considers mate-

rials with smaller symmetry groups, we show that the space of universal displacements is further restricted depending on

the anisotropy class. We start with a full discussion of the isotropic case and then consider systematically, all the symmetry

classes. 

2. Universal displacements in isotropic linear elasticity 

The static equilibrium configuration of a homogeneous and isotropic linear elastic simple body in the absence of body

forces is governed by Navier’s equation for the displacement vector u ∈ R 

3 : 

(λ + μ) grad ◦ div u + μ�u = 0 , (2.1) 

where λ and μ are the Lamé constants, and �u = div ◦ grad u is the Laplacian operator. A deformation or displacement

field is universal if it can be maintained for all isotropic linear elastic solids by applying only boundary tractions. Navier’s

equations (2.1) in the absence of body forces can be written as 

(1 − 2 ν)�u + grad ◦ div u = 0 , (2.2) 

where ν is Poisson’s ratio. Note that 0 < 1 − 2 ν < 3 for compressible solids. Noting that �u = grad ◦ div u − curl ◦ curl u ,

Eq. (2.2) can be rewritten as 

2(1 − ν) grad ◦ div u − (1 − 2 ν) curl ◦ curl u = 0 . (2.3) 

Using (2.2) and (2.3) , it follows that ��u = 0 , i.e., u is a biharmonic vector field. 

From (2.2) u is a universal displacement field if (2.2) holds for any ν ∈ (−1 , 1 2 ) . As ν is a continuous variable, taking the

derivative with respect to ν of both sides of (2.2) one concludes that −2 grad ◦ div u = 0 . Therefore 2 

grad ◦ div u = 0 , and �u = 0 . (2.4) 

The first relation implies that div u = c, where c is a constant, while the second relation shows that u is a harmonic vector

field. Hence, this means that any universal displacement field is a constant-divergence harmonic vector field. Of course, not

all (smooth) displacement fields are universal. 

On R 

3 any constant-divergence vector field has the following representation ( McLachlan and Quispel, 2002 ) 

u a (x ) = S ab,b (x ) + 

c 

3 

x a + k a , (2.5) 

where S ab (x ) = −S ba (x ) , and k a are constants. In Cartesian coordinates ( x, y, z ) 

S (x, y, z) = 

[ 

0 α(x, y, z) β(x, y, z) 
−α(x, y, z) 0 γ (x, y, z) 
−β(x, y, z) −γ (x, y, z) 0 

] 

, (2.6) 

where α, β , and γ are arbitrary functions. Hence 

div S (x, y, z) = 

[ 

α,y + β,z 

−α,x + γ,z 

−β,x − γ,y 

] 

. (2.7) 

Thus 

�u = 

[ 

�α,y + �β,z 

�γ,z − �α,x 

−�β,x − �γ,y 

] 

, (2.8) 
2 These PDEs were derived in Truesdell (1966) . See also Gurtin (1972) . 
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where �α,y = α,yxx + α,yyy + α,yzz , and similarly for other terms. Therefore, for a universal displacement field the functions

α, β , and γ must satisfy the following system of PDEs { 

�α,y + �β,z = 0 , 

�γ,z − �α,x = 0 , 

�β,x + �γ,y = 0 . 

(2.9)

Finding the universal displacements amounts to solving for the functions α, β , γ . Note that �α,y = (�α) ,y , etc. Let f = �α,

g = �β, and h = �γ . Therefore, we have the following system of linear PDEs for the three functions f , g , and h : { 

f ,y + g ,z = 0 , 

f ,x − h ,z = 0 , 

g ,x + h ,y = 0 . 

(2.10)

This system of PDEs is degenerate. Note that ( f ,x − h ,z ) ,y + (g ,x + h ,y ) ,z = ( f ,y + g ,z ) ,x . Obviously, f = g = h = 0 is a solution.

In this case, α, β , and γ are arbitrary harmonic functions. However, there are many more solutions. Choosing an arbitrary

C 1 function h ( x, y, z ), from (2.10) 2 and (2.10) 3 , f and g are calculated as 

f (x, y, z) = 

∫ 
h ,z (x, y, z) dx + ξ (y, z) , 

g(x, y, z) = 

∫ −h ,y (x, y, z) dx + η(y, z) , 
ξ,y (y, z) + η,z (y, z) = 0 , 

(2.11)

where ξ and η are arbitrary C 1 functions of y and z that satisfy the constraint (2.11) 3 . Therefore, in the representation of the

universal displacements the functions ( α, β , γ ) are the solutions of Poisson’s equations (�α, �β, �γ ) = ( f, g, h ) , where h

is an arbitrary C 1 function of ( x, y, z ), and ξ , and η are C 1 functions of ( y, z ) satisfying the constraint (2.11) 3 . Defining the

stream function ψ( y, z ), and taking ξ = 

∂ψ 

∂z 
and η = − ∂ψ 

∂y 
, (2.11) 3 is satisfied, and one obtains 

f (x, y, z) = 

∫ 
h ,z (x, y, z) dx + 

∂ψ ( y,z ) 
∂z 

, 

g(x, y, z) = 

∫ −h ,y (x, y, z) dx − ∂ψ ( y,z ) 
∂y 

. 
(2.12)

Proposition 2.1. For isotropic linear elastic solids all universal displacement fields can be expressed as the superposition of a ho-

mogeneous displacement field and a non-homogeneous one, which is the divergence of an anti-symmetric matrix with components

that are the solution of Poisson’s equation. 

Remark 2.2. There have been studies in the literature on the independence of the displacement field in isotropic linear

elasticity of either the Poisson’s ratio ( Carlson, 1971 ), or the shear modulus ( Carlson, 1972 ). Universal displacements are

different in the sense that they can be maintained in any isotropic linear elastic body in the absence of body forces. However,

they may depend on both Poisson’s ratio and the shear modulus. In other words, given a universal displacement field in two

bodies of the same shape but made of two different isotropic linear elastic solids the boundary tractions needed to maintain

the displacement field are different, in general. 

Remark 2.3. In the near-incompressible limit, λ is a large number, or equivalently ν = 

1 
2 . Hence, from (2.2) Navier’s equation

for incompressible elasticity reads 

grad ◦ div u = 0 . (2.13)

This implies that div u = c, where c is a constant. Linearization of J = 1 is div u = 0 , and hence c = 0 . It is observed that any

divergence-free displacement field is a universal displacement field. In other words, all displacement fields that preserve the

volume form to the first-order are universal. 

3. Universal displacements in anisotropic linear elasticity 

Next, we consider the eight anisotropy classes (seven classes other than the isotropic class) and find their corresponding

universal displacements. In linear elasticity the relation between the Cauchy stress and the linearized strain reads σab =
c abcd εcd , where c abcd are the coefficients of the elasticity tensor with major c abcd = c cdab , and minor symmetries c abcd = c bacd

(with Roman indices running from 1 to 3, and summation assumed on repeated indices). 

Using the bijection (11, 22, 33, 23, 31, 12) → (1, 2, 3, 4, 5, 6) the constitutive equations in Voigt notation are written

as σα = c αβεβ (with Greek indices running from 1 to 6), where the elasticity tensor is represented by a symmetric 6 × 6

stiffness matrix c : 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 c 14 c 15 c 16 

c 12 c 22 c 23 c 24 c 25 c 26 

c 13 c 23 c 33 c 34 c 35 c 36 

c 14 c 24 c 34 c 44 c 45 c 46 

c 15 c 25 c 35 c 45 c 55 c 56 

c 16 c 26 c 36 c 46 c 56 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.1)
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Fig. 1. The eight material symmetries of linear elasticity. The lower symmetry is the triclinic case and the greater symmetry is the isotropic case. Interme- 

diary cases depend on the number of symmetry planes. With permission from Chadwick et al. (2001) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can further constrain the material class by assuming that the material has some symmetry. These constraints range from

the most drastic case of isotropy (with only 2 free constants), to the triclinic case where there is no constraint (with 21 free

constants). A useful classification of all possible symmetry group spans these two extreme cases by defining eight sym-

metry classes depending on the number of symmetry planes, namely: triclinic, monoclinic, tetragonal, trigonal, orthotropic,

transversely isotropic, cubic, and isotropic ( Chadwick et al., 2001; Cowin and Doty, 2007; Cowin and Mehrabadi, 1995; Ting,

2003 ), see Fig. 1 . 

3.1. Universal displacements in triclinic linear elastic solids 

For triclinic solids the identity and minus identity are the only symmetry transformations. For such solids there are no

restrictions (other than positive-definiteness) on the elastic constants in (3.1) , i.e., there are twenty one independent elastic

constants. For a body made of a homogeneous anisotropic linear elastic solid, the balance of linear momentum in Cartesian

coordinates ( x 1 , x 2 , x 3 ) is written as σab,b = (c abcd εcd ) ,b = c abcd εcd,b = 0 . Using the matrix representation (3.1) this can be

rewritten as 

⎡ 

⎣ 

∂ 
∂x 1 

0 0 0 

∂ 
∂x 3 

∂ 
∂x 2 

0 

∂ 
∂x 2 

0 

∂ 
∂x 3 

0 

∂ 
∂x 1 

0 0 

∂ 
∂x 3 

∂ 
∂x 2 

∂ 
∂x 1 

0 

⎤ 

⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 c 14 c 15 c 16 

c 12 c 22 c 23 c 24 c 25 c 26 

c 13 c 23 c 33 c 34 c 35 c 36 

c 14 c 24 c 34 c 44 c 45 c 46 

c 15 c 25 c 35 c 45 c 55 c 56 

c 16 c 26 c 36 c 46 c 56 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂u 1 
∂x 1 
∂u 2 
∂x 2 
∂u 3 
∂x 3 

∂u 2 
∂x 3 

+ 

∂u 3 
∂x 2 

∂u 1 
∂x 3 

+ 

∂u 3 
∂x 1 

∂u 1 
∂x 2 

+ 

∂u 2 
∂x 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[ 

0 

0 

0 

] 

. (3.2) 

We note that if we expand these equations explicitly, only fifteen out of twenty one elastic constants enter the equi-

librium conditions. The remaining elastic constants enter the tractions. The same issue appears in other symmetry classes.

Nevertheless, the above three equilibrium equations in the absence of body forces should hold for arbitrary values of the

independent elastic constants that appear explicitly. This means that in each equilibrium equation the coefficient of each

elastic constant should vanish. This gives a set of fifteen PDEs for the displacement field. The first set of PDEs is 

∂ 2 u 1 

∂x 2 
1 

= 

∂ 2 u 1 

∂ x 1 ∂ x 2 
= 

∂ 2 u 1 

∂ x 1 ∂ x 3 
= 0 , 

∂ 2 u 2 

∂x 2 
2 

= 

∂ 2 u 2 

∂ x 2 ∂ x 1 
= 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 , 

∂ 2 u 3 

∂x 2 
3 

= 

∂ 2 u 3 

∂ x 3 ∂ x 1 
= 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 0 . (3.3) 

From these equations, one concludes that 

u 1 (x 1 , x 2 , x 3 ) = c 1 x 1 + 

ˆ u 1 (x 2 , x 3 ) , 
u 2 (x 1 , x 2 , x 3 ) = c 2 x 2 + 

ˆ u 2 (x 1 , x 3 ) , 
u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) . 
(3.4) 
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The next set of PDEs is 

∂ 2 u a 

∂x 2 
b 

= 0 , a � = b, a, b ∈ { 1 , 2 , 3 } . (3.5)

The last three PDEs are 

∂ 2 u 1 

∂ x 2 ∂ x 3 
= 0 , 

∂ 2 u 2 

∂ x 1 ∂ x 3 
= 0 , 

∂ 2 u 3 

∂ x 1 ∂ x 2 
= 0 . (3.6)

Substituting (3.4) into the above PDEs, one obtains 

ˆ u 1 (x 2 , x 3 ) = f 1 (x 2 ) + g 1 (x 3 ) , 
ˆ u 2 (x 1 , x 3 ) = f 2 (x 1 ) + g 2 (x 3 ) , 
ˆ u 3 (x 1 , x 2 ) = f 3 (x 1 ) + g 3 (x 2 ) . 

(3.7)

Substituting the above representations into (3.5) one obtains f ′′ a = 0 and g ′′ a = 0 , a = 1 , 2 , 3 , and hence, the displacement

field must be homogeneous. 

Proposition 3.1. The only universal displacements in triclinic linear elastic solids are homogeneous displacement fields. 

3.2. Universal displacements in monoclinic linear elastic solids 

In a monoclinic solid there is one plane of material symmetry (a reflection symmetry). Without loss of generality, let us

assume that e 3 is normal to the plane of material symmetry. A monoclinic solid has thirteen independent elastic constants,

and in the Cartesian coordinates ( x 1 , x 2 , x 3 ) the elasticity matrix has the following form: 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 0 0 c 16 

c 12 c 22 c 23 0 0 c 26 

c 13 c 23 c 33 0 0 c 36 

0 0 0 c 44 c 45 0 

0 0 0 c 45 c 55 0 

c 16 c 26 c 36 0 0 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.8)

The first set of PDEs governing the displacements is identical to (3.3) , and hence, the universal displacements have the form

(3.4) . The second set of PDEs in terms of ˆ u a reads 

∂ 2 ˆ u 1 

∂x 2 
2 

= 

∂ 2 ˆ u 1 

∂x 2 
3 

= 0 , (3.9)

∂ 2 ˆ u 2 

∂x 2 
1 

= 

∂ 2 ˆ u 2 

∂x 2 
3 

= 0 , (3.10)

∂ 2 ˆ u 3 

∂x 2 
1 

= 

∂ 2 ˆ u 3 

∂x 2 
2 

= 0 . (3.11)

The last set of PDEs in terms of ˆ u a reads 

∂ 2 ˆ u 1 

∂ x 2 ∂ x 3 
+ 

∂ 2 ˆ u 2 

∂ x 1 ∂ x 3 
= 0 , (3.12)

∂ 2 ˆ u 3 

∂ x 1 ∂ x 2 
= 0 . (3.13)

From (3.13) one concludes that 

ˆ u 3 (x 1 , x 2 ) = F 3 (x 1 ) + G 3 (x 2 ) , (3.14)

and from (3.11) we have F ′′ 
3 

(x 1 ) = G 

′′ 
3 
(x 2 ) = 0 . This means that u 3 is a homogeneous displacement component. From

(3.9) and (3.10) one obtains u 1 (x 1 , x 2 , x 3 ) = u 1 (x 1 , x 2 , x 3 ) 
hom + a 1 x 2 x 3 , and u 2 (x 1 , x 2 , x 3 ) = u 2 (x 1 , x 2 , x 3 ) 

hom + a 2 x 1 x 3 . Finally,

(3.12) dictates that a 1 + a 2 = 0 . Thus, we have the following characterization of the universal displacements. 

Proposition 3.2. The universal displacements in a monoclinic linear elastic solid with planes of symmetry parallel to the

x 1 x 2 -plane are the superposition of homogeneous displacement fields and the one-parameter inhomogeneous displacement field
(cx 2 x 3 , −cx 1 x 3 , 0) . 
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3.3. Universal displacements in tetragonal linear elastic solids 

A tetragonal solid has five planes of symmetry, normals of four of which are coplanar while the fifth one is normal to

the other four. Without loss of generality, we assume that in the Cartesian coordinate system ( x 1 , x 2 , x 3 ) the fifth normal is

along the x 3 axis (with its corresponding plane of symmetry parallel to the x 1 x 2 -plane). The first two planes of symmetry

are parallel to the x 1 x 3 and x 2 x 3 -planes. The other two planes of symmetry are related to the ones parallel to the x 1 x 3 -plane

by π /4 and 3 π /4 rotations about the x 3 axis. A tetragonal solid has six independent elastic constants, and in the Cartesian

coordinates ( x 1 , x 2 , x 3 ) the symmetric elasticity matrix has the following form: 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 0 0 0 

c 12 c 11 c 13 0 0 0 

c 13 c 13 c 33 0 0 0 

0 0 0 c 44 0 0 

0 0 0 0 c 44 0 

0 0 0 0 0 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.15) 

Using this representation in the Navier’s equations and assuming the arbitrariness of the six elastic constants result in the

following PDEs for the universal displacements. 

∂ 2 u 1 

∂x 2 
1 

= 

∂ 2 u 1 

∂ x 1 ∂ x 2 
= 

∂ 2 u 1 

∂x 2 
2 

= 

∂ 2 u 1 

∂x 2 
3 

= 0 , (3.16) 

∂ 2 u 2 

∂ x 1 ∂ x 2 
= 

∂ 2 u 2 

∂x 2 
2 

= 

∂ 2 u 2 

∂x 2 
1 

= 

∂ 2 u 2 

∂x 2 
3 

= 0 , (3.17) 

∂ 2 u 1 

∂ x 1 ∂ x 3 
+ 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 , (3.18) 

∂ 2 u 3 

∂ x 1 ∂ x 3 
= 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 

∂ 2 u 3 

∂x 2 
3 

= 0 , (3.19) 

∂ 2 u 3 

∂x 2 
1 

+ 

∂ 2 u 3 

∂x 2 
2 

= 0 . (3.20) 

We note that since general homogeneous displacements exist for the triclinic case, they exist for all linear elastic solids.

Hence, we focus on finding the inhomogeneous solutions. From (3.19) and (3.20) one concludes that 

u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) , ∇ 

2 ˆ u 3 = 

∂ 2 ˆ u 3 

∂x 2 
1 

+ 

∂ 2 ˆ u 3 

∂x 2 
2 

= 0 . (3.21)

From (3.16) –(3.18) one concludes that the inhomogeneous part of u 1 is of the form c 1 x 2 x 3 + c 2 x 1 x 3 , and that of u 2 is of the

form −c 2 x 2 x 3 + c 3 x 1 x 3 . Therefore, we have the following characterization of universal displacements. 

Proposition 3.3. The universal displacements in a tetragonal linear elastic solid with the tetragonal axes parallel to the x 3 -

axis in a Cartesian coordinate system ( x 1 , x 2 , x 3 ) are the superposition of homogeneous displacement fields and the following

inhomogeneous displacement field: 

u 

inh 
1 (x 1 , x 2 , x 3 ) = c 1 x 2 x 3 + c 2 x 1 x 3 , 

u 

inh 
2 (x 1 , x 2 , x 3 ) = −c 2 x 1 x 3 + c 3 x 1 x 3 , 

u 

inh 
3 (x 1 , x 2 , x 3 ) = g(x 1 , x 2 ) , 

(3.22) 

where c 1 and c 2 are constants, and g = g(x 1 , x 2 ) is a harmonic function. 

3.4. Universal displacements in trigonal linear elastic solids 

A trigonal solid has three planes of symmetry with normals that lie in the same plane and are related by π /3 rotations.

In other words, two of the planes of symmetry are related to the third one by rotations about a fixed axis by π /3 and

−π/ 3 . In a Cartesian coordinate system ( x 1 , x 2 , x 3 ) let us assume that the trigonal axis is the x 3 -axis. A trigonal solid

has six independent elastic constants, and in the Cartesian coordinates ( x 1 , x 2 , x 3 ) its elasticity matrix has the following

representation: 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 0 c 15 0 

c 12 c 11 c 13 0 −c 15 0 

c 13 c 13 c 33 0 0 0 

0 0 0 c 44 0 −c 15 

c 15 −c 15 0 0 c 44 0 

0 0 0 −c 15 0 

1 (c 11 − c 12 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.23) 
2 
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Again, Navier’s equations and the arbitrariness of the six elastic constants give the following PDEs for the universal displace-

ments. 

∂ 2 u 3 

∂ x 1 ∂ x 3 
= 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 

∂ 2 u 3 

∂x 2 
3 

= 0 , (3.24)

∂ 2 u 1 

∂x 2 
1 

+ 

∂ 2 u 1 

∂x 2 
2 

= 

∂ 2 u 2 

∂x 2 
1 

+ 

∂ 2 u 2 

∂x 2 
2 

= 

∂ 2 u 3 

∂x 2 
1 

+ 

∂ 2 u 3 

∂x 2 
2 

= 0 , (3.25)

∂ 2 u 1 

∂x 2 
3 

= 

∂ 2 u 2 

∂x 2 
3 

= 0 , (3.26)

∂ 2 u 1 

∂ x 1 ∂ x 2 
= 

∂ 2 u 2 

∂x 2 
1 

, 
∂ 2 u 2 

∂ x 1 ∂ x 2 
= 

∂ 2 u 1 

∂x 2 
2 

, (3.27)

2 

∂ 2 u 1 

∂ x 1 ∂ x 3 
− 2 

∂ 2 u 2 

∂ x 2 ∂ x 3 
+ 

∂ 2 u 3 

∂x 2 
1 

− ∂ 2 u 3 

∂x 2 
2 

= 0 , (3.28)

∂ 2 u 1 

∂ x 2 ∂ x 3 
+ 

∂ 2 u 2 

∂ x 1 ∂ x 3 
+ 

∂ 2 u 3 

∂ x 1 ∂ x 2 
= 0 , (3.29)

∂ 2 u 1 

∂ x 1 ∂ x 3 
+ 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 , (3.30)

∂ 2 u 1 

∂x 2 
1 

= 3 

∂ 2 u 1 

∂x 2 
2 

. (3.31)

From (3.24) and (3.25) 3 one concludes that 

u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) , ∇ 

2 ˆ u 3 = 

∂ 2 ˆ u 3 

∂x 2 
1 

+ 

∂ 2 ˆ u 3 

∂x 2 
2 

= 0 . (3.32)

From (3.31) and (3.25) 1 we have 

∂ 2 u 1 

∂x 2 
1 

= 

∂ 2 u 1 

∂x 2 
2 

= 0 . (3.33)

From (3.33) and (3.26) 1 one concludes that 

u 1 (x 1 , x 2 , x 3 ) = a 123 x 1 x 2 x 3 + a 12 x 1 x 2 + a 13 x 1 x 3 + a 23 x 2 x 3 + a 1 x 1 + a 2 x 2 + a 3 x 3 + a 0 . (3.34)

From (3.26) 2 one concludes that u 2 (x 1 , x 2 , x 3 ) = x 3 f (x 1 , x 2 ) + g(x 1 , x 2 ) . Using (3.33) and (3.27) 2 we have 
∂ 2 u 2 

∂ x 1 ∂ x 2 
= 0 ,

and hence, ∂ 2 f 
∂ x 1 ∂ x 2 

= 

∂ 2 g 
∂ x 1 ∂ x 2 

= 0 . Thus, u 2 (x 1 , x 2 , x 3 ) = x 3 [ f 1 (x 1 ) + f 2 (x 2 )] + g 1 (x 1 ) + g 2 (x 2 ) . From (3.25) 2 , f ′′ 
1 
(x 1 ) + f ′′ 

2 
(x 2 ) =

g ′′ 
1 
(x 1 ) + g ′′ 

2 
(x 2 ) = 0 . Thus, f ′′ 

1 
(x 1 ) = − f ′′ 

2 
(x 2 ) = a, and g ′′ 

1 
(x 1 ) = −g ′′ 

2 
(x 2 ) = ā . Therefore 

u 2 (x 1 , x 2 , x 3 ) = 

1 

2 

( ̄a + ax 3 )(x 2 1 − x 2 2 ) + b 13 x 1 x 3 + b 23 x 2 x 3 + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 0 . (3.35)

Substituting (3.34) and (3.35) into (3.30) : a 13 + b 23 + (a 123 − a ) x 2 = 0 , which gives a = a 123 , and b 23 = −a 13 . Also, from

(3.27) 1 , ā = a 12 . Thus 

u 2 (x 1 , x 2 , x 3 ) = 

1 

2 

(a 12 + a 123 x 3 )(x 2 1 − x 2 2 ) + b 13 x 1 x 3 − a 13 x 2 x 3 + b 1 x 1 + b 2 x 2 + b 3 x 3 + b 0 . (3.36)

From (3.29) : 
∂ 2 ˆ u 3 

∂ x 1 ∂ x 2 
= −2 a 123 x 1 − (a 23 + b 13 ) , and hence, ˆ u 3 (x 1 , x 2 ) = −a 123 x 

2 
1 
x 2 − (a 23 + b 13 ) x 1 x 2 + f (x 1 ) + g(x 2 ) . From

(3.32) 2 , one obtains f ′′ (x 1 ) + g ′′ (x 2 ) = 2 a 123 x 2 . Thus 

u 3 (x 1 , x 2 , x 3 ) = −a 123 x 
2 
1 x 2 − (a 23 + b 13 ) x 1 x 2 + 

1 

3 

a 123 x 
3 
2 + 

1 

2 

c(x 2 1 − x 2 2 ) + c 1 x 1 + c 2 x 2 + c 3 x 3 + c 0 . (3.37)

Finally, substituting (3.34), (3.36) , and (3.37) into (3.28) , one gets c = −2 a 13 . Therefore, we have the following characteriza-

tion of the universal displacements. 

Proposition 3.4. The universal displacements in a trigonal linear elastic solid are the superposition of homogeneous displacements

and the following inhomogeneous displacement fields: 

u 

inh 
1 (x 1 , x 2 , x 3 ) = a 123 x 1 x 2 x 3 + a 12 x 1 x 2 + a 13 x 1 x 3 + a 23 x 2 x 3 , 

u 

inh 
2 (x 1 , x 2 , x 3 ) = 

1 
2 
(a 12 + a 123 x 3 )(x 2 1 − x 2 2 ) + b 13 x 1 x 3 − a 13 x 2 x 3 , 

inh 2 1 3 2 2 

(3.38)
u 3 (x 1 , x 2 , x 3 ) = −a 123 x 1 x 2 − (a 23 + b 13 ) x 1 x 2 + 

3 
a 123 x 2 − a 13 (x 1 − x 2 ) . 
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3.5. Universal displacements in orthotropic linear elastic solids 

An orthotropic solid has three mutually orthogonal symmetry planes. Let us assume that these are the coordinate planes

in the Cartesian coordinates ( x 1 , x 2 , x 3 ). An orthotropic solid has nine independent elastic constants, and in the Cartesian

coordinates ( x 1 , x 2 , x 3 ) its elasticity matrix has the following representation: 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 0 0 0 

c 12 c 22 c 23 0 0 0 

c 13 c 23 c 33 0 0 0 

0 0 0 c 44 0 0 

0 0 0 0 c 55 0 

0 0 0 0 0 c 66 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.39) 

Navier’s equations and arbitrariness of the nine elastic constants result in the following PDEs for the universal displacements.

∂ 2 u 1 

∂x 2 
1 

= 

∂ 2 u 1 

∂ x 1 ∂ x 2 
= 

∂ 2 u 1 

∂ x 1 ∂ x 3 
= 0 , (3.40) 

∂ 2 u 2 

∂x 2 
2 

= 

∂ 2 u 2 

∂ x 2 ∂ x 1 
= 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 , (3.41) 

∂ 2 u 3 

∂x 2 
3 

= 

∂ 2 u 3 

∂ x 3 ∂ x 1 
= 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 0 , (3.42) 

∂ 2 u 1 

∂x 2 
2 

= 

∂ 2 u 1 

∂x 2 
3 

= 0 , (3.43) 

∂ 2 u 2 

∂x 2 
1 

= 

∂ 2 u 2 

∂x 2 
3 

= 0 , (3.44) 

∂ 2 u 3 

∂x 2 
1 

= 

∂ 2 u 3 

∂x 2 
2 

= 0 . (3.45) 

From (3.40) –(3.42) one concludes that 

u 1 (x 1 , x 2 , x 3 ) = c 1 x 1 + 

ˆ u 1 (x 2 , x 3 ) , (3.46)

u 2 (x 1 , x 2 , x 3 ) = c 2 x 2 + 

ˆ u 2 (x 1 , x 3 ) , (3.47)

u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) . (3.48)

Substituting (3.46) into (3.43) 1 , one obtains ˆ u 1 = x 2 f (x 3 ) + g(x 3 ) . Substituting this into (3.43) 2 , one gets x 2 f 
′′ (x 3 ) + g ′′ (x 3 ) =

0 , which implies that f ′′ (x 3 ) = g ′′ (x 3 ) = 0 . This means that u 1 is the superposition of a homogeneous displacement field and

the 1-parameter family of inhomogeneous displacements a 1 x 2 x 3 . One finds similar expressions for the other two displace-

ment components using (3.44) and (3.45) . Therefore, we have the following characterization of the universal displacements.

Proposition 3.5. The universal displacements in an orthotropic linear elastic solid with planes of symmetry normal to the coordi-

nate axes in a Cartesian coordinate system ( x 1 , x 2 , x 3 ) are the superposition of homogeneous displacement fields and the following

3-parameter inhomogeneous displacement field: ( a 1 x 2 x 3 , a 2 x 1 x 3 , a 3 x 1 x 2 ) . 

3.6. Universal displacements in transversely isotropic linear elastic solids 

A transversely isotropic solid has an axis of symmetry such that planes normal to it are isotropy planes. Let us assume

that the axis of transverse isotropy is the x 3 -axis in the Cartesian coordinates ( x 1 , x 2 , x 3 ). A transversely isotropic solid

has five independent elastic constants, and in the Cartesian coordinates ( x 1 , x 2 , x 3 ) the elasticity matrix has the following

representation: 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 13 0 0 0 

c 12 c 11 c 13 0 0 0 

c 13 c 13 c 33 0 0 0 

0 0 0 c 44 0 0 

0 0 0 0 c 44 0 

0 0 0 0 0 

1 (c 11 − c 12 ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.49) 
2 
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Navier’s equations and arbitrariness of the five elastic constants result in the following PDEs for the universal displacements.

∂ 2 u 3 

∂ x 1 ∂ x 3 
= 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 

∂ 2 u 3 

∂x 2 
3 

= 0 , (3.50)

∂ 2 u 3 

∂x 2 
1 

+ 

∂ 2 u 3 

∂x 2 
2 

= 0 , (3.51)

∂ 2 u 1 

∂x 2 
3 

= 

∂ 2 u 2 

∂x 2 
3 

= 0 , (3.52)

∂ 2 u 1 

∂x 2 
1 

+ 

∂ 2 u 1 

∂x 2 
2 

= 

∂ 2 u 2 

∂x 2 
1 

+ 

∂ 2 u 2 

∂x 2 
2 

= 0 , (3.53)

∂ 2 u 1 

∂x 2 
2 

= 

∂ 2 u 2 

∂ x 1 ∂ x 2 
, (3.54)

∂ 2 u 2 

∂x 2 
1 

= 

∂ 2 u 1 

∂ x 1 ∂ x 2 
, (3.55)

∂ 2 u 1 

∂ x 1 ∂ x 3 
+ 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 . (3.56)

Note that the system of PDEs governing u 3 are decoupled from those governing u 1 and u 2 . From (3.50) and (3.51) one

concludes that 

u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) , ∇ 

2 ˆ u 3 = 

∂ 2 ˆ u 3 

∂x 2 
1 

+ 

∂ 2 ˆ u 3 

∂x 2 
2 

= 0 . (3.57)

From (3.52) one obtains 

u 1 (x 1 , x 2 , x 3 ) = x 3 f 1 (x 1 , x 2 ) + g 1 (x 1 , x 2 ) , u 2 (x 1 , x 2 , x 3 ) = x 3 f 2 (x 1 , x 2 ) + g 2 (x 1 , x 2 ) . (3.58)

(3.53) implies that 

∇ 

2 f 1 = ∇ 

2 f 2 = ∇ 

2 g 1 = ∇ 

2 g 2 = 0 . (3.59)

From (3.54) –(3.56) we have 

∂ 2 f 1 
∂x 2 

2 

= 

∂ 2 f 2 
∂ x 1 ∂ x 2 

, 
∂ 2 f 2 
∂x 2 

1 

= 

∂ 2 f 1 
∂ x 1 ∂ x 2 

, (3.60)

∂ 2 g 1 
∂x 2 

2 

= 

∂ 2 g 2 
∂ x 1 ∂ x 2 

, 
∂ 2 g 2 
∂x 2 

1 

= 

∂ 2 g 1 
∂ x 1 ∂ x 2 

, (3.61)

∂ f 1 
∂x 1 

+ 

∂ f 2 
∂x 2 

= 0 . (3.62)

Note that (3.60) can be rewritten as ∂ 
∂x 2 

( 
∂ f 2 
∂x 1 

− ∂ f 1 
∂x 2 

) = 

∂ 
∂x 1 

( 
∂ f 2 
∂x 1 

− ∂ f 1 
∂x 2 

) = 0 , and hence, we have the following system of linear

PDEs for f 1 and f 2 : 

∂ f 1 
∂x 1 

+ 

∂ f 2 
∂x 2 

= 0 , 
∂ f 1 
∂x 2 

− ∂ f 2 
∂x 1 

= c 1 . 
(3.63)

The above are inhomogeneous Cauchy-Riemann equations, and hence, f 1 (x 1 , x 2 ) = 

1 
2 c 1 x 2 + h 1 (x 1 , x 2 ) , f 2 (x 1 , x 2 ) = − 1 

2 c 1 x 1 +
h 2 (x 1 , x 2 ) , where ξ (x 2 + ix 1 ) = h 1 (x 1 , x 2 ) + ih 2 (x 1 , x 2 ) is holomorphic. This implies that (3.59) 1 and (3.59) 2 are satisfied.

From (3.61) , we get 
∂g 1 
∂x 2 

− ∂g 2 
∂x 1 

= c 2 , and from (3.59) 3 and (3.59) 4 , we find 

∂g 1 
∂x 1 

+ 

∂g 2 
∂x 2 

= c 3 . Therefore, g 1 (x 1 , x 2 ) = 

1 
2 c 3 x 1 +

1 
2 c 2 x 2 + k 1 ( x 1 , x 2 ) , g 2 ( x 1 , x 2 ) = − 1 

2 c 2 x 1 + 

1 
2 c 3 x 2 + k 2 (x 1 , x 2 ) , where η( x 2 + ix 1 ) = k 1 (x 1 , x 2 ) + ik 2 (x 1 , x 2 ) is holomorphic. Re-

naming the constants above we have the following characterization for the universal displacements. 

Proposition 3.6. The universal displacements in a transversely isotropic linear elastic solid with the isotropy plane parallel to the

x 1 x 2 -plane have the following form: 

u 1 (x 1 , x 2 , x 3 ) = c 1 x 1 + c 2 x 2 + cx 2 x 3 + x 3 h 1 (x 1 , x 2 ) + k 1 (x 1 , x 2 ) , 
u 2 (x 1 , x 2 , x 3 ) = −c 2 x 1 + c 1 x 2 − cx 1 x 3 + x 3 h 2 (x 1 , x 2 ) + k 2 (x 1 , x 2 ) , 
u 3 (x 1 , x 2 , x 3 ) = c 3 x 3 + 

ˆ u 3 (x 1 , x 2 ) , 
(3.64)

where ξ (x 2 + ix 1 ) = h 1 (x 1 , x 2 ) + ih 2 (x 1 , x 2 ) and η( x 2 + ix 1 ) = k 1 (x 1 , x 2 ) + ik 2 (x 1 , x 2 ) are holomorphic, and ˆ u 3 (x 1 , x 2 ) is har-
monic. 
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3.7. Universal displacements in cubic linear elastic solids 

In a cubic solid at any point there are nine planes of symmetry with normals parallel to the edges and face diagonals

of a cube. Consider a Cartesian coordinate system ( x 1 , x 2 , x 3 ) with coordinate lines parallel to the edges of the cube. In this

coordinate system the matrix of elastic constants reads 

c = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 c 12 c 12 0 0 0 

c 12 c 11 c 12 0 0 0 

c 12 c 12 c 11 0 0 0 

0 0 0 c 44 0 0 

0 0 0 0 c 44 0 

0 0 0 0 0 c 44 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (3.65) 

Navier’s equations and arbitrariness of the three elastic constants result in the following PDEs for the universal displace-

ments. 

∂ 2 u 1 

∂x 2 
1 

= 

∂ 2 u 2 

∂x 2 
2 

= 

∂ 2 u 3 

∂x 2 
3 

= 0 , (3.66) 

∂ 2 u 1 

∂x 2 
2 

+ 

∂ 2 u 1 

∂x 2 
3 

= 0 , (3.67) 

∂ 2 u 2 

∂x 2 
1 

+ 

∂ 2 u 2 

∂x 2 
3 

= 0 , (3.68) 

∂ 2 u 3 

∂x 2 
1 

+ 

∂ 2 u 3 

∂x 2 
2 

= 0 , (3.69) 

∂ 2 u 1 

∂ x 1 ∂ x 3 
+ 

∂ 2 u 2 

∂ x 2 ∂ x 3 
= 0 , (3.70) 

∂ 2 u 2 

∂ x 1 ∂ x 2 
+ 

∂ 2 u 3 

∂ x 1 ∂ x 3 
= 0 , (3.71) 

∂ 2 u 1 

∂ x 1 ∂ x 2 
+ 

∂ 2 u 3 

∂ x 2 ∂ x 3 
= 0 . (3.72) 

From (3.66) we have 

u 1 (x 1 , x 2 , x 3 ) = x 1 f 1 (x 2 , x 3 ) + g 1 (x 2 , x 3 ) , 
u 2 (x 1 , x 2 , x 3 ) = x 2 f 2 (x 1 , x 3 ) + g 2 (x 1 , x 3 ) , 
u 3 (x 1 , x 2 , x 3 ) = x 3 f 3 (x 1 , x 2 ) + g 3 (x 1 , x 2 ) . 

(3.73) 

(3.67) –(3.69) imply that ∇ 

2 f a = ∇ 

2 g a = 0 , a = 1 , 2 , 3 . From (3.67) –(3.69) one obtains 

∂ f 1 
∂x 3 

(x 2 , x 3 ) + 

∂ f 2 
∂x 3 

(x 1 , x 3 ) = 0 , (3.74)

∂ f 2 
∂x 1 

(x 1 , x 3 ) + 

∂ f 3 
∂x 1 

(x 1 , x 2 ) = 0 , (3.75)

∂ f 1 
∂x 2 

(x 2 , x 3 ) + 

∂ f 3 
∂x 2 

(x 1 , x 2 ) = 0 . (3.76)

From (3.74) one concludes that 
∂ f 1 
∂x 3 

and 

∂ f 2 
∂x 3 

are only functions of x 3 , and hence 

f 1 (x 2 , x 3 ) = F 1 (x 2 ) + G 1 (x 3 ) , f 2 (x 1 , x 3 ) = F 2 (x 1 ) − G 1 (x 3 ) . (3.77)

Substituting this into (3.75) , we have 

f 3 (x 1 , x 2 ) = −F 2 (x 1 ) + G 3 (x 2 ) . (3.78)

Finally, substituting into (3.76) we get F ′ 
1 
(x 2 ) + G 

′ 
3 
(x 2 ) = 0 , and hence, G 3 (x 2 ) = −F 1 (x 2 ) + c. In summary 

f 1 (x 2 , x 3 ) = β(x 2 ) + γ (x 3 ) , 
f 2 (x 1 , x 3 ) = α(x 1 ) − γ (x 3 ) , 
f 3 (x 1 , x 2 ) = −α(x 1 ) − β(x 2 ) + c. 

(3.79) 
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Knowing that ∇ 

2 f 1 = ∇ 

2 f 2 = ∇ 

2 f 3 = 0 , one concludes that α′′ (x 1 ) = −β ′′ (x 2 ) = γ ′′ (x 3 ) = a . Hence 

f 1 (x 2 , x 3 ) = 

a 
2 
(x 2 3 − x 2 2 ) + c 1 x 3 + b 1 x 2 + d 1 , 

f 2 (x 1 , x 3 ) = 

a 
2 
(x 2 1 − x 2 3 ) + a 1 x 1 − c 1 x 3 + d 2 , 

f 3 (x 1 , x 2 ) = 

a 
2 
(x 2 2 − x 2 1 ) − a 1 x 1 − b 1 x 2 + d 3 . 

(3.80)

Therefore, the universal displacements have the representation (3.73) with f a given above and g a being harmonic functions.

Proposition 3.7. The universal displacements in a cubic linear elastic solid have the following form: 

u 1 (x 1 , x 2 , x 3 ) = 

a 
2 

x 1 (x 2 3 − x 2 2 ) + c 1 x 1 x 3 + b 1 x 1 x 2 + d 1 x 1 + g 1 (x 2 , x 3 ) , 
u 2 (x 1 , x 2 , x 3 ) = 

a 
2 

x 2 (x 2 1 − x 2 3 ) + a 1 x 1 x 2 − c 1 x 2 x 3 + d 2 x 2 + g 2 (x 1 , x 3 ) , 
u 3 (x 1 , x 2 , x 3 ) = 

a 
2 

x 3 (x 2 2 − x 2 1 ) − a 1 x 1 x 3 − b 1 x 2 x 3 + d 3 x 3 + g 3 (x 1 , x 2 ) , 
(3.81)

where g 1 , g 2 , and g 3 are arbitrary harmonic functions. 

4. Conclusion 

We have obtained all the universal displacements in unconstrained linear elastic solids by requiring that the solutions of

the Navier equations do not depend on the particular values of the elastic moduli. While our construction does not preclude

the existence of other solutions, these solutions are the only solutions that can be maintained while varying the material

parameters continuously. For instance, in the triclinic case, homogeneous solutions are the only possible solutions that can

be achieved for various values of the elastic parameters as they are perturbed within an open set in the parameter space.

It does not preclude the existence of other solutions, merely that any other solution cannot be maintained by changing

the boundary tractions if the material parameters are perturbed. For instance, for triclinic solids nonhomogeneous solutions

exist as soon as the tractions deviate from the homogeneous case, but their details depends on the material parameters, i.e.,

if we take two different triclinic solids and impose the same displacements at the boundaries, the internal displacements

will differ unless the resultant solution is homogeneous. 

In the present work, we have assumed a given symmetry class for the elastic material in order to find the correspond-

ing universal solutions. We have also assumed that the directions of anisotropy are known and a particular basis to ex-

press the stiffness matrix is chosen. However, we note that in practice determining the symmetry class and these direc-

tions may be difficult. Similarly, determining whether two stiffness matrices define the same elastic material is problematic

( Desmorat et al., 2019 ). We have also limited our study of anisotropic linear elastic systems to the compressible case but, a

similar analysis can be done, in principle, for the incompressible anisotropic case and should yield interesting results. 

The relationship between the material symmetry group and the class of solutions is expected but nevertheless is quite

interesting. Indeed, we show that a general elastic triclinic material with no particular symmetry has no solution aside from

the obvious homogeneous solution. As we expand the symmetry group, the space of solutions also expands accordingly. In

the limiting case, isotropic elastic materials have a large space of solutions characterized by all constant-divergence harmonic

displacement vector fields that explains the common use of isotropic linear elastic solids as models for materials. The small

number of constants together with the zoo of associated solutions can be used to model a variety of possible configurations

and to obtain elastic parameters that characterize particular materials. 

Finally, it is interesting to note that in the geometric reduction of elasticity theory to rods, plates, and shells, it is com-

mon to obtain reduced problems that satisfy linear elasticity with a given geometry. For instance, in the reduction from

three-dimensional elasticity to one-dimensional rod theory, the resolution of the stresses in the cross section of the rod

requires the solution of a linear elasticity problem with orthotropic symmetry ( Mora and Müller, 2003 ). Not surprisingly,

the solutions of this problem are exactly the ones that we obtain for that particular anisotropy class. Hence, we see that

the universal displacements found for particular anisotropy classes are directly relevant to various problems of dimensional

reductions in elasticity. 
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