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Abstract

In this article some applications of the distribution theory of Schwarz to the analysis of beam}columns
with various jump discontinuities are o!ered. The governing di!erential equation of an Euler}Bernoulli
beam}column with jump discontinuities in #exural sti!ness, displacement, and rotation, and under an axial
force at the point of discontinuities, is obtained in the space of generalized functions. The auxiliary
beam}column method is introduced. Using this method, instead of solving the di!erential equation of the
beam}column in the space of generalized functions, another di!erential equation can be solved in the space
of classical functions. Some examples of beam}columns and columns with various jump discontinuities are
solved. De#ections of beam}columns and buckling loads for columns with jump discontinuities are cal-
culated using the Laplace transform method in the space of generalized functions. � 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In practical applications, sometimes one has to analyze beam}columnswith jump discontinuities
in slope, de#ection, or #exural sti!ness and in some instances the beam}columns are under
discontinuous loading conditions. The classical method for solving these problems is to partition
the beam}column into beam}column segments between any two successive discontinuity points.

*Corresponding author. Tel.: 001-202-994-9825; fax: 001-202-994-0092.
E-mail address: sarkani@seas.gwu.edu (S. Sarkani).

0020-7403/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 2 0 - 7 4 0 3 ( 0 0 ) 0 0 0 4 1 - 2



Nomenclature

A, B constants of integration
EI #exural sti!ness of an Euler}Bernoulli beam}column
EI

�
, EI

�
#exural sti!nesses of beam}column segments

K
�

sti!ness of a rotational spring
K
�

sti!ness of a translational spring
L length of a beam}column
M

�
, M

�
bending moments

M
�

bending moment at a discontinuity point
P, P

�
, P� concentrated forces

V
�

shear force at a discontinuity point
V
�
, V

�
shear forces

X
�
, X

�
functions of x

k� P/EI
q a distributed force
s a variable for the Laplace transform
x longitudinal axis of a beam}column
x
�

position of a discontinuity point
x�
�

x
�
!� for a very small �

x�
�

x
�
#� for a very small �

w de#ection of an Euler}Bernoulli beam}column
wN de#ection of the auxiliary beam}column of an Euler}Bernoulli beam}column
� strength of a jump discontinuity in de#ection of an Euler}Bernoulli beam}column
� strength of a jump discontinuity in rotation of an Euler}Bernoulli beam}column
�� rotation at x�

�
� ratio of #exural sti!nesses of two beam}column segments
� ratio of axial forces applied at the end points of a beam}column
� a parameter

Mathematical symbols
D space of test functions
D� space of distributions
D�

�
space of right-sided distributions

H(x!x
�
) Heaviside's unit step function

P space of all polynomials
W(s) Laplace transform of w
f, g distributions
	(x}x

�
) Dirac delta function

	���(x}x
�
) nth distributional derivative of delta function

� a test function
* convolution symbol
(' distribution symbol
L Laplace transform operator
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Solving the di!erential equation of each beam}column segment and enforcing boundary and
continuity conditions then yields the beam}column de#ection equation. Clebsch [1] was the "rst
to simplify these problems in beam bending by writing a single expression for the bending
moment. Later, Macaulay [2] introduced the so-called Macaulay's bracket, also referred to in the
literature as the singularity function method. The advantage of this method is that it reduces an
uncoupled system of ordinary second-order di!erential equations to a single ordinary second-
order equation.
The singularity function method was later generalized to two-dimensional problems by Wittrick

[3],Mahing [4], Conway [5], and Selek and Conway [6]. Wittrick [3] analyzed beams with lateral
loads and circular plates with axisymmetric lateral loads. Mahing [4] used the method for
rectangular plates whose opposite sides are simply supported under a point load and for circular
plates with axisymmetric loading. Conway [5] and Selek and Conway [6] generalized the
singularity function method to two-dimensional problems governed by partial di!erential equa-
tions.
The singularity functionmethod was generalized by Arbabi [7] for a beamwith an internal hinge

and for a beam with jump discontinuities in #exural sti!ness. He did not solve these beam
de#ection problems as boundary-value problems; instead, he started the analysis from the bending
moment expression. Lowe [8] introduced the `discontinuity methoda for analyzing beams and
columns with jump discontinuities. Lowe's idea is to "nd particular solutions that satisfy the
discontinuities of the problem. The discontinuity method is e$cient for practical problems and
usually needs to satisfy fewer continuity conditions than the singularity function method does.
Lowe uses the classical beam and column governing di!erential equations. Here, we "nd the
boundary-value problem describing an Euler}Bernoulli beam}columnwith jump discontinuities in
the space of generalized functions.
Schwarz's distribution theory [9] provides a rigorous justi"cation for a number of very common

formal mathematical manipulations published in the engineering literature. Certain types of
distributions, in particular the Dirac delta function and its derivatives, were used in engineering
problems years before the development of distribution theory. Reference to the delta function dates
back to the 19�� century and the works of Hermite, Cauchy, Poisson, Kirchho!, Helmholtz, Lord
Kelvin, and Heaviside [10, pp. 62}66]. In 1930 Dirac [11] introduced this function in quantum
mechanics and since then the function has been known as the Dirac delta function.
Yavari et al. [12], studied the applications of the distribution theory of Schwarz in beam bending

problems. They found the equivalent distributed force for a general class of singular loading
conditions. Finding the equivalent distributed force for a distributed moment, they o!ered
a mathematical explanation for the corner condition in classical plate theory. They also obtained
the governing di!erential equation of an Euler}Bernoulli beam with jump discontinuities in slope,
de#ection, and #exural sti!ness. They introduced the auxiliary beam method and used it to solve,
not the governing di!erential equation of the beam in the space of generalized functions, but
another di!erential equation in the space of classical functions. They investigated the same
problem for Timoshenko beams and showed that the governing di!erential equations of the beam
can always be written in terms of a transverse de#ection and a rotation function.
In this paper we investigate Euler}Bernoulli beam}columns with jump discontinuities in slope,

de#ection, and #exural sti!ness under an axial force at the point of discontinuity. Schwarz
distribution theory is used to "nd the governing di!erential equation of a beam}column with jump
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discontinuities in the space of generalized functions. It is shown that the governing di!erential
equation of an Euler}Bernoulli beam}column with jump discontinuities can be written in terms of
a single transverse de#ection function in two cases. In the "rst case there is no jump discontinuity in
de#ection and in the second case there is a special relation between the relative #exural sti!nesses
and the ratio of the internal and external axial forces. Then the auxiliary beam}column method is
introduced. Using this method, instead of solving the fourth-order governing di!erential equation
of the beam}column in the space of generalized functions another fourth-order di!erential
equation can be solved in the space of classical functions. However, it is pointed out that for
beam}columns this method is not e$cient, and it is more convenient to solve the governing
equations directly without reference to the auxiliary beam}column. Some examples of "nding the
de#ection of beam}columns and buckling loads for columns with jump discontinuities are solved
using the Laplace transform method in the space of generalized functions.
This article is organized as follows. In Section 2, the governing di!erential equation of an

Euler}Bernoulli beam}column with various jump discontinuities is obtained in the space of
generalized functions. The auxiliary beam}column method is presented in Section 3. In Section 4,
three examples are solved to show the capabilities of generalized functions to simplify the analysis
of beam}columns with jump discontinuities. Conclusions are given in Section 5. In the Appendix
basic de"nitions and some theorems of the distribution theory of Schwarz are presented.

2. Euler}Bernoulli beam}columns with jump discontinuities in slope, de6ection, and 6exural sti4ness

In this section the governing di!erential equation of an Euler}Bernoulli beam}column with
various jump discontinuities is obtained in the space of generalized functions. Basic de"nitions and
some theorems of the distribution theory of Schwarz are given in the Appendix.
The classical method for analyzing beam}columns with jump discontinuities in slope, de#ection,

and #exural sti!ness with point axial forces applied at internal points is to partition the
beam}column into several sub-beam}columns in such a way that each sub-beam}column is free of
any jump discontinuity. Then by analyzing each sub-beam}column and enforcing the continuity
conditions the whole system is analyzed [13]. For beam bending problemsMacaulay's bracket has
been used for years to simplify the analysis. As we will see in the sequel, for some instances using
generalized functions makes the analysis of beam}columns with jump discontinuities easier,
especially when calculating buckling loads.
Consider the beam}column shown in Fig. 1. This beam}column has jump discontinuities at

point B. For the sake of simplicity only one point of jump discontinuity is considered. Generaliz-
ation to the case of several points of discontinuity is straightforward. An arbitrary distributed
transverse force q(x) is applied and a point force P

�
is applied at B. In the most general case,

a translational spring and a rotational spring are considered at the point of discontinuity. At point
B displacement and rotation have jump discontinuities:

w(x�
�
)!w(x�

�
)"�, (1a)

dw(x�
�
)

dx
!

dw(x�
�
)

dx
"�. (1b)
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Fig. 1. A beam}column with jump discontinuities in slope, de#ection, and #exural sti!ness with arbitrary boundary
conditions under a distributed transverse force and a concentrated axial force at the point of jump discontinuities.

The governing di!erential equation of an Euler}Bernoulli beam column without any jump
discontinuity may be written as [13}15]

d�

dx��EI
d�w
dx��#P

d�w
dx�

"q(x). (2)

For the special case of a beam}column with a uniform cross-section and constant Young's
modulus, the governing di!erential equation has the following form:

d�w
dx�

#

P
EI

d�w
dx�

"

q(x)
EI

. (3)

The beam AC of Fig. 1 is composed of two beam}column segments, AB and BC. Hence, using
Heaviside's function

w(x)"w
�
(x)# [w

�
(x)!w

�
(x)]H(x!x

�
), (4)

where w is the de#ection of the beam}column and w
�

and w
�

are the de#ections of the
beam}column segments, AB and BC, respectively. The governing di!erential equations of
beam}column segments may be written as

d�w
�

dx�
#

P
EI

�

d�w
�

dx�
"

q(x)
EI

�

, 0)x(x
�
, (5a)

d�w
�

dx�
#

P�
EI

�

d�w
�

dx�
"

q(x)
EI

�

, x
�
(x)¸. (5b)
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Di!erentiating both sides of Eq. (4), we obtain

d� w
dx

"

dw
�

dx
#�

dw
�

dx
!

dw
�

dx � H(x!x
�
)#(w

�
!w

�
)	(x!x

�
)

"

dw
�

dx
#�

dw
�

dx
!

dw
�

dx � H(x!x
�
)#(w

�
!w

�
)
�	��

	(x!x
�
)

"

dw
�

dx
#�

dw
�

dx
!

dw
�

dx � H(x!x
�
)#�	(x!x

�
) (6)

and

d� �w
dx�

"

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)#�

dw
�

dx
!

dw
�

dx �
�	��

	(x!x
�
)#�	���(x!x

�
)

"

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)#�	(x!x

�
)#�	���(x!x

�
), (7)

where a bar over the di!erentiation symbol means distributional di!erentiation. We know that

M
�
(x

�
)"�EI

�

d�w
�

dx� �
�	��

, M
�
(x

�
)"�EI

�

d�w
�

dx� �
�	��

. (8)

Therefore

d�w
�
(x

�
)

dx�
"

M
�
(x

�
)

EI
�

,
d�w

�
(x

�
)

dx�
"

M
�
(x

�
)

EI
�

. (9)

Assuming I
�
"I, I

�
"�I, and also considering M

�
(x

�
)"M

�
(x

�
)"K

�
�, we have

d�w
�

dx�
"

K
�
�

EI
,

d�w
�

dx�
"

K
�
�

�EI
. (10)

Therefore, di!erentiating both sides of Eq. (7) yields

d� 
w
dx


"

d
w
�

dx

#�

d
w
�

dx

!

d
w
�

dx
 �H(x!x
�
)#�

d�w
�

dx�
!

d�w
�

dx� �
�	��

	(x!x
�
)

#�	���(x!x
�
)#�	���(x!x

�
)

"

d
w
�

dx

#�

d
w
�

dx

!

d
w
�

dx
 �H(x!x
�
)#

K
�
�

EI �
1
�

!1�	(x!x
�
)

#�	���(x!x
�
)#�	���(x!x

�
). (11)
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We also know that

�EI
�

d
w
�

dx

#P

dw
�

dx �
�	��

"�EI
�

d
w
�

dx

#P�

dw
�

dx �
�	��

"<(x
�
)"K

�
�. (12)

Now let P�"P#P
�
"�P. From Eqs. (1b) and (12), we obtain

�
d
w

�
dx


!

d
w
�

dx
 �
�	��

"

(1!�)K
�
�!�P�

� EI
#

P
EI �1!

�
��

dw
�
(x

�
)

dx
. (13)

Now di!erentiating both sides of Eq. (11), we obtain

d� �w
dx�

"

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)#�

d
w
�

dx

!

d
w
�

dx
 �
�	��

	(x!x
�
)

#

K
�
�

EI �
1
�

!1�	���(x!x
�
) #�	���(x!x

�
)#�	�
�(x!x

�
). (14)

Hence

d� �w
dx�

"

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)

#�
(1!�)K

�
�!� P�

� EI
#

P
EI �1!

�
��

dw
�
(x

�
)

dx �	(x!x
�
)

#

K
�
�

EI �
1
�

!1�	���(x!x
�
) #�	���(x!x

�
)#�	�
�(x!x

�
). (15)

Now let

dw
�
(x

�
)

dx
"

d� w(x�
�
)

dx
"�� . (16)

From Eqs. (5a) and (5b) we have

d�w
�

dx�
#

P
EI

d�w
�

dx�
"

q(x)
EI

, 0)x(x
�
, (17a)

d�w
�

dx�
#

�
�

P
EI

d�w
�

dx�
"

1
�

q(x)
EI

, x
�
(x)¸. (17b)

From Eqs. (17a) and (17b) we can write

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)#

P
EI�

d�w
�

dx�
#�

d�w
�

dx�
!

d�w
�

dx� �H(x!x
�
)�

#�
�
�

!1�
P
EI

d�w
�

dx�
H(x!x

�
)"

q(x)
EI �1#�

1
�

!1� H(x!x
�
)�. (18)
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Substituting Eqs. (7) and (15) into Eq. (18) we obtain

d� �w
dx�

#

P
EI

d� �w
dx�

#�
�
�

!1�
P
EI

d�w
�

dx�
H(x!x

�
)"

q(x)
EI �1#�

1
�

!1�H(x!x
�
)�

#�
(1!�)K

�
�

� EI
#

P
EI �1!

�
���M � 	(x!x

�
)

#

K
�
�(1/�!1)#P�

EI
	���(x!x

�
)#�	���(x!x

�
)#�	�
�(x!x

�
). (19)

Multiplying both sides of Eq. (7) by H(x!x
�
) yields

d� �w
dx�

H(x!x
�
)"

d�w
�

dx�
H(x!x

�
)#�	(x!x

�
)H(x!x

�
)#�	(x!x

�
)H(x!x

�
)

"

d�w
�

dx�
H(x!x

�
)#

�
2

	(x!x
�
)#�	(x!x

�
)H(x!x

�
). (20)

It is known that the product of 	��� and H is not de"ned. Suppose that �"0. Hence

d� �w
�

dx�
H(x!x

�
)"

d�w
�

dx�
H(x!x

�
)!

�
2

	(x!x
�
). (21)

Inserting Eq. (21) into Eq. (19) and considering�"0, we obtain the governing di!erential equation
of the beam}column in terms of a single displacement function w as

d� �w
dx�

#

P
EI�1#�

�
�

!1�H(x!x
�
)�
d� �w
dx�

"

q(x)
EI �1#�

1
�

!1� H(x!x
�
)�

#�
(1!�)<

�
� EI

#

P
EI�1!

�
�� �M � 	 (x!x

�
)#

K
�
�(1/�!1)

EI
	���(x!x

�
)#�	���(x!x

�
),

(22)

where <
�
"EId
w(x�

�
)/dx
#Pdw(x�

�
)/dx. As can be seen in this case, the operator of the

di!erential equation is di!erent from that of the classical one (3). If �O0, the governing di!erential
equation can be written in terms of a single displacement function w if and only if �"�. In this
case, from Eq. (19), the governing di!erential equation may be expressed as

d� �w
dx�

#

P
EI

d� �w
dx�

"

q(x)
EI �1#�

1
�

!1� H(x!x
�
)�#

(1!�)K
�
�

� EI
	(x!x

�
)

#

K
�
� (1/�!1)#P�

EI
	���(x!x

�
)#�	���(x!x

�
)#�	�
�(x!x

�
). (23)

It may be seen that in this case, the operator of the governing di!erential equation is the same as
that of the classical one (3)* only the force term is changed. Equation (22) or (23) is the governing
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di!erential equation of an Euler}Bernoulli beam}column with one point of jump discontinuity in
the space of generalized functions. The continuity conditions can be expressed as

EI
d�w(x�

�
)

dx�
"K

�
�, EI

d
w(x�
�
)

dx

#P

dw(x�
�
)

dx
"K

�
� "<

�
,

d� w(x�
�
)

dx
"�� . (24)

Applying the four boundary conditions at x"0 and L, and the continuity conditions (24), gives
us the beam}column de#ection w. Therefore, instead of solving two di!erential equations and
applying eight boundary and continuity conditions, only one di!erential equation with "ve or six
boundary and continuity conditions need to be solved (when �"0 there are only two continuity
conditions). In practical problems usually only one of the jump discontinuities exists at a point. In
this case using generalized functions makes the analysis even more e$cient because there will be
fewer continuity conditions.
In summary, in two cases the governing equilibrium equation of an Euler}Bernoulli

beam}column can be written in terms of a single displacement function w: (i) when �"0, and (ii)
when �"�. For the special case of a column the governing di!erential equations may be expressed
in case (i) by

d� �w
dx�

#

P
EI�1#�

�
�

!1�H(x!x
�
)�

d� �w
dx�

"�
(1!�)<

�
� EI

#

P
EI �1!

�
�� 
M � 	(x!x

�
)

#

K
�
�(1/�!1)

EI
	���(x!x

�
)#�	���(x!x

�
)

(25)

and in case (ii) by

d� �w
dx�

#

P
EI

d� �w
dx�

"

(1!�)K
�
�

� EI
	(x!x

�
)#

K
�
� (1/�!1)#P�

EI
	���(x!x

�
)

#�	���(x!x
�
)#�	�
�(x!x

�
). (26)

In subsequent sections we show that the above equations may be used to calculate the buckling
load of columns with jump discontinuities.
It should be noted that in Eqs. (22) and (25) the Heaviside function appears as a coe$cient of the

di!erential operator d�/dx�. For solving the di!erential equation in this case, we should "rst
assume that w(x)"X

�
(x)#X

�
(x)H(x!x

�
) and then substitute it in the di!erential equation and

then "nd the functions X
�
and X

�
. Clearly, using the classical method for this case is more e$cient.

Therefore, although theoretically we can express the governing di!erential equation in terms of
a single displacement function w, practically classical method is preferable for this case. Hence here
we consider only case (ii) in subsequent sections.
A common method of solving di!erential equations in the space of generalized functions

is the Laplace transform method [16]. But before solving Eq. (26), we try to "nd an
equivalent boundary-value problem in the space of classical functions by de"ning an auxiliary
beam}column.
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3. The auxiliary beam}column method

The auxiliary beam method was introduced in Ref. [12] for beams with jump discontinuities. In
this section, we generalize the idea for beam}columns with jump discontinuities.
Here only case (ii), Eq. (23), is considered; for case (i) it is not possible to de"ne an equivalent

boundary-value problem in the space of classical functions. As was mentioned, for case (i) it is easier
to use the classical method to analyze the beam}column. Suppose that w is the de#ection of an
Euler}Bernoulli beam}column with jump discontinuities in slope, de#ection, and #exural sti!ness
at a point x"x

�
and under a point axial force at this point. The de#ection of the auxiliary

beam}column is de"ned as follows:

w� (x)"w(x)!�H(x!x
�
)!�(x!x

�
)H(x!x

�
)!

K
�
�

2EI �
1
�

!1�(x!x
�
)�H(x!x

�
)

!�
(1!�)K

�
�!� P�

6� EI �(x!x
�
)
H(x!x

�
). (27)

Therefore

d�w�
dx�

"

d� �w
dx�

!�	���(x!x
�
)!�	(x!x

�
)!

K
�
�

EI �
1
�

!1�H(x!x
�
)

!�
(1!�)K

�
�!� P�

� EI � (x!x
�
)H(x!x

�
), (28a)

d�w�
dx�

"

d� �w
dx�

!�	�
�(x!x
�
)!�	���(x!x

�
)!

K
�
�

EI �
1
�

!1�	���(x!x
�
)

!�
(1!�)K

�
�!� P�

� EI � 	(x!x
�
). (28b)

Clearly, w(x) is a classical function. Substituting Eqs. (28a) and (28b) into Eq. (23) yields

d�w� (x)
dx�

#

P
EI

d�w� (x)
dx�

"

q(x)
EI �1#�

1
�

!1� H(x!x
�
)�

#

P
EI�

K
�
�

EI �
1
�

!1�#�
(1!�)K

�
�!� P�

� EI � (x!x
�
)� H(x!x

�
).

(29)

Also, from Eq. (27) we have

w� (0)"w(0), w� (¸)"w(¸)!�!�(¸!x
�
)!

K
�
�

2EI �
1
�

!1� (¸!x
�
)�

!�
(1!�)K

�
�!� P�

6� EI � (¸!x
�
)
, (30a)
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dw� (0)
dx

"

dw(0)
dx

,
dw� (¸)
dx

"

dw(¸)
dx

!�!

K
�
�

EI �
1
�

!1� (¸!x
�
)

!�
(1!�)K

�
�!� P�

2� EI �(¸!x
�
)�, (30b)

d�w� (0)
dx�

"

d�w(0)
dx�

,
d�w� (¸)
dx�

"

d�w(¸)
dx�

!

K
�
�

EI �
1
�

!1�
!�

(1!�)K
�
�!� P�

� EI � (¸!x
�
). (30c)

The continuity conditions for the auxiliary beam are

d�w� (x
�
)

dx�
"

d�w(x�
�
)

dx�
"

K
�
�

EI
, EI

d
w� (x
�
)

dx

#P

dw� (x
�
)

dx
"EI

d
w(x�
�
)

dx

#P

dw(x�
�
)

dx
"K

�
�.

(31)

Therefore, instead of solving two di!erential equations for the two beam segments and applying
eight boundary and continuity conditions, we solve only one di!erential equation with six
boundary and continuity conditions. As can be seen from Eq. (29), Heaviside's function appears in
the di!erential equation, and because we have both second- and fourth-order derivatives of the
dependent variable in the di!erential equation, direct integration is not possible. It follows that for
beam}columns, in contrast to beam bending problems, using the auxiliary beam}column does not
make the analysis easier. Therefore, the governing di!erential equation (23) is directly solved in the
space of generalized functions using the Laplace transform method. To clarify the method, some
examples are solved in the next section.

4. Examples

In this section three examples are solved. In the "rst two examples buckling loads of columns
with jump discontinuities are calculated and in the last example the de#ection of a beam}column
with jump discontinuities is calculated. For all three examples the governing di!erential equation is
solved in the space of generalized functions using the Laplace transform method.

Example 1. Consider the simply supported column shown in Fig. 2a. The column has an internal
hinge with a rotational spring at x"L/2. The cross section of the column is uniform; i.e., �"1.
There is no internal axial force; i.e., P

�
"0, hence �"1. The governing di!erential equation of the

column is found by substituting �"�"1 and �"0 in Eq. (26):

d� �w
dx�

#

P
EI

d� �w
dx�

"�	����x!

¸

2�. (32)
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Fig. 2. (a) A simply supported column with an internal hinge and rotational spring. (b) A clamped}clamped column with
two internal hinges. (c) A clamped}clamped beam}column with an internal shear}free connection under a uniform
distributed force.

Now let k�"P/EI and L�w
"=(s), where L is the Laplace transform operator. Taking the
Laplace transform from both sides of Eq. (32) and considering the boundary conditions
w(0)"w�(0)"0, we obtain

=(s)"
A

s�#k�
#

B#Ak�

s�(s�#k�)
#�

e!(¸/2)s
s�#k�

, (33)
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where A"w�(0) and B"w��(0). After some manipulations and taking inverse Laplace transforms
from both sides of Eq. (33) we "nd

w(x)"�
B
k�

#A� x!

B
k


sin kx#

�
k
sin k �x!

¸

2 � H�x!

¸

2 � (34)

Applying the boundary conditions w(¸)"w�(¸)"0 and the continuity condition w�(¸�/2)"
K

�
/EI yields

¸A#

¸!sin k¸/k
k�

B#

sin k¸/2
k

�"0, (35a)

sin k¸

k
B#k sin

k¸

2
�"0, (35b)

sin k¸/2
k

B!

K
�

EI
�"0. (35c)

For the system of linear equations (35) to have nontrivial solutions, the determinant of the
coe$cient matrix must be zero; hence

�
¸

1
k��¸!

sin k¸

k �
sin k¸/2

k

0
sin k¸

k
ksin

k¸

2

0
sin k¸/2

k
!

K
�

EI
�"0. (36)

Therefore

sin k¸#

kEI
K

�
�sin

k¸

2 �
�
"0. (37)

From Eq. (37) the buckling load P
��
can be calculated by trial and error. For the special case when

K
�
is very large (K

�
PR), from Eq. (37) we obtain sin kL"0, which gives the buckling load of

a simply supported column with length L:

P
��

"

n���EI
¸�

, n"1, 2, 3, 2 . (38)

as we expected.

Example 2. A clamped}clamped column with two internal hinges at x"L and 2L is shown in Fig.
2b. The column has a uniform cross-section. The governing di!erential equation of the columnmay
be written as

d� �w
dx�

#

P
EI

d� �w
dx�

"#�
�
	���(x!¸)#�

�
	���(x!2¸), (39)
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where

�
�
"

dw(¸�)
dx

!

dw(¸�)
dx

, �
�
"

dw(2¸�)
dx

!

dw(2¸�)
dx

. (40)

Again, let k�"P/EI and L�w
"=(s). Taking the Laplace transform from both sides of Eq. (39)
and considering the boundary conditions at x"0 yields

=(s)"
A

s(s�#k�)
#

B
s�(s�#k�)

#�
�

e�	


s�#k�
#�

�

e��	


s�#k�
, (41)

whereA"w�(0) and B"w��(0). After some manipulations and taking the inverse Laplace trans-
form from both sides of Eq. (41) we obtain

w(x)"
A
k�

(1!cos kx)#
B
k� �x!

1
k
sin kx�#�

�

1
k
sin k(x!¸) H(x!¸)

#�
�

1
k
sin k(x!2¸) H(x!2¸). (42)

Enforcing boundary conditions w(3¸)"w�(3¸)"0 and continuity conditions w�(¸�)"
w�(2¸�)"0 yields

1!cos 3k¸

k�
A#

3¸!sin 3k¸/k
k�

B#

sin 2k¸

k
�

�
#

sin k¸

k
�

�
"0, (43a)

sin 3k¸

k
A#

1!cos 3k¸

k�
B#(cos 2k¸)�

�
#(cos k¸)�

�
"0, (43b)

cos k¸ A#

sin k¸

k
B"0, (43c)

cos 2k¸ A#

sin 2k¸

k
B!k sin k¸�

�
"0. (43d)

The buckling load can be calculated from the following equation:

�
1!cos 3k¸

k�

3¸!sin 3k¸/k
k�

sin 2k¸

k
sin k¸

k

sin 3k¸

k
1!cos 3k¸

k�
cos 2k¸ cos k¸

cos k¸

sin k¸

k
0 0

cos 2k¸

sin 2k¸

k
!ksin k¸ 0

�"0 (44a)
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Fig. 3. The graph of f (kL) for Example 2. It is seen that f (kL) has roots in [0.5, 1.5] and [1.5, 2.5].

or

f (k¸)"2 sin� k¸(2 cos� k¸!cos k¸)#sin 2k¸(3k¸ cos k¸!sin k¸!sin 2k¸)"0. (44b)

A plot of f (kL) is shown in Fig. 3 for 0)k¸)4. By trial and error the "rst two roots of Eq. (44b)
are k¸"0.967408, 1.57079 or P

��
"0.3793 ��EI/4¸�, ��EI/4¸�.

It is observed that in this example, instead of 12 boundary and continuity conditions of the
classical method, only six boundary and continuity conditions needed to be enforced.

Example 3. In this example a clamped}clamped beam}column with an internal shear-free connec-
tion under a uniformly distributed force is considered (Fig. 2c). The beam}column has a uniform
cross-section (�"�"1). From Eq. (23), the governing di!erential equation of the beam}column
can be written as

d� �w
dx�

#

P
EI

d� �w
dx�

"!

q
�

EI
#

P
EI

�	���(x!�¸)#�	�
�(x!�¸). (45)

As was done in the previous examples, the Laplace transform of w,L�w
"W(s), is found; here, it is

=(s)"
A

s(s�#k�)
#

B
s�(s�#k�)

!

q
�

EI
1

s
(s�#k�)
#

k��
s(s�#k�)

e��
	#�
s

s�#k�
e��
	 (46)

where A"w�(0) and B"w��(0). Taking the inverse Laplace transform from both sides of Eq. (46)
yields

w(x)"
A
k�

(1!cos kx)#
B
k��x!

1
k
sin kx�!

q
�

EIk�
(k�x!1#cos kx)#�H(x!� ¸). (47)
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Applying the boundary conditions w(¸)"w�(¸)"0 and the continuity condition EIw��(�¸�)!
Pw�(�¸�)"0 yields

1!cos k¸

k�
A#

¸!(1/k) sin k¸

k�
B#�"

q
�

EIk�
(k�¸!1#cos k¸), (48a)

sin k¸

k
A#

1!cos k¸

k�
B"

q
�

EIk

(k!sin k¸), (48b)

2 k sin k�¸ A#(1!2 cos k� ¸)B"

q
�

EI
(1!2 sin k�¸). (48c)

When q
�
"0, the buckling load can be calculated from the following equation:

2 sin k(�!1)¸#sin k¸!2 sin k� ¸"0. (49)

When �"1, the buckling load is

sin k¸"0 N P
��

"

��EI
¸�

(50)

which is the correct answer [13].

5. Conclusions

In this article the distribution theory of Schwarz is used to obtain the governing di!erential
equation of Euler}Bernoulli beam}columns with various jump discontinuities. It is demonstrated
that the governing equilibrium equation of beam}columns with jump discontinuities in slope,
de#ection, and #exural sti!ness, and with a point load applied at the point of discontinuity, can be
written in terms of a single displacement function in two cases: (i) when there is no jump
discontinuity in de#ection (�"0), and (ii) when �"�. In the "rst case the operator of the
di!erential equation is di!erent from that of the classical equation, but in the second case the
operator remains unchanged.
It is observed that distributional derivatives of the Dirac delta function appear in the governing

di!erential equations. The auxiliary beam}columnmethod is de"ned for case (ii). The displacement
function of the auxiliary beam}column is always a classical function. It is found that, in contrast to
the case of beam bending problems, the auxiliary beam}columnmethod has no superiority; indeed,
it is more convenient to solve the governing di!erential equation of the beam}column in the space
of generalized functions. A good way to solve these di!erential equations is the Laplace transform
method. This method is applied in two examples to calculate buckling loads for columns with jump
discontinuities, and in a third example to calculate the de#ection of a beam}column. This method is
applicable only to case (ii); for case (i) the classical method should be used to analyze the
beam}column.
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This investigation shows that distribution theory improves one's understanding of discontinuous
problems, and in some cases o!ers e$cient methods for analyzing these problems.
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Appendix: Schwarz's distribution theory

This appendix gives some de"nitions and operations in the Schwarz theory of distributions that
are used in this paper. We restrict our discussion to distributions with a one-dimensional
independent real variable. For more details, the reader may refer to Zemanian [16], Kanwal [17],
Stakgold [18] and Lighthill [19].

De5nition 1. The Heaviside function H(x!x
�
) is de"ned as

H(x!x
�
)"�

0, x(x
�
,

1, x'x
�
.

(A.1)

It has a jump discontinuity at x"x
�
. Its value at x"x

�
is usually taken to be 1/2 Clearly,

H(x
�
!x)"1!H(x!x

�
). (A.2)

The Heaviside function is very useful in the study of functions with jump discontinuities. For
example, let F(x) be a function that is continuous everywhere except at the point x"x

�
, where it

has a jump discontinuity

F(x)"�
F
�
(x), x(x

�
,

F
�
(x), x'x

�
.

(A.3)

Then the function can be written as

F(x)"F
�
(x)H(x

�
!x)#F

�
(x)H(x!x

�
)

"F
�
(x)#[F

�
(x)!F

�
(x)]H(x!x

�
). (A.4)

De5nition 2. Test functions are real-valued functions �(x) with the following two properties: (1) � is
in"nitely smooth; (2) � is zero outside a "nite interval; i.e., � has compact support. The space of the
test functions is denoted by D.

De5nition 3. A distribution is a continuous linear functional on the space D of test functions. The
space of all distributions is denoted by D�; D� is itself a linear space and is called the dual space of D,
but is a larger space than D. The space D� forms a generalization of the class of locally integrable
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functions because it contains functions that are not locally integrable. Here the terms `distributiona
and `generalized functiona are used interchangeably.
A locally integrable function is integrable in the Lebesgue sense over every "nite interval. Every

locally integrable function f (x) generates a distribution by means of the formula

� f, ��"�
��

��

f (x) �(x) dx. (A.5)

This is called a regular distribution. All other distributions are called singular distributions.
Two distributions in D�, f and g are said to be equal if

� f, ��"�g, �� (A.6)

for every test function �(x) in D.

De5nition 4. The Dirac delta function is a singular generalized function de"ned as

�	(x!x
�
), �(x)�"�(x

�
). (A.7)

De5nition 5. The nth derivative f ���(x) of any generalized function f (x) is given by

� f ���(x), �(x)�"� f (x), (!1)�����(x)�, �3D. (A.8)

The nth distributional derivative of the delta function is therefore de"ned as

�	���(x!x
�
), �(x)�"�	(x!x

�
), (!1)�����(x)�"(!1)��(x

�
). (A.9)

Corollary.

�H���(x!x
�
), �(x)�"�H(x!x

�
),!����(x)�"!�

��

��

����(x) dx

"�(x
�
)"�	(x!x

�
), �(x)�. (A.10)

Hence

d�
dx

H(x!x
�
)"	(x!x

�
). (A.11)

Theorem 1. If f(x) is a classical function and

f (x)#a
�
	(x!x

�
)#2#a

�
	���(x!x

�
)"0 (A.12)

on the whole axis, !R(x(#!R, then f (x)"0 and a
�
"2"a

�
"0.

Theorem 2. Let a function f (x) be n times continuously diwerentiable; then

f (x) 	���(x!x
�
)"(!1)�f ���(x

�
) 	(x!x

�
)#(!1)��� nf �����(x

�
) 	���(x!x

�
)

#(!1)���
n(n!1)

2!
f ����� (x

�
) 	���(x!x

�
)#2#f (x

�
) 	���(x!x

�
).

(A.13)
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Corollary.

[ f (x)H(x!x
�
)]���"f ���(x)H(x!x

�
)#f ����� (x

�
)	(x!x

�
)

#f ����� (x
�
) 	���(x!x

�
)#2#f (x

�
) 	�����(x!x

�
). (A.14)

De5nition 6. The space of distributions D�
�
having their supports bounded on the left is called the

space of right-sided distributions, D�
�

LD� (proper subspace).

De5nition 7. The convolution of two right-sided distributions f and g, f*g is de"ned as

�h, ��"�f*g, ��"� f (x), �g(�), �(x#�)��

"�g*f, ��. (A.15)

Theorem 3. The convolution of the nth derivative of the delta function with any distribution yields the
nth derivative of that distribution, i.e.,

	���*f"f ���. (A.16)

Proof.

�	���*f, ��"�f*	���, ��"� f (x), �	���(�), �(x#�)��

"� f (x), (!1)�����(x)�"� f ���(x), �(x)�.

De5nition 8. The Laplace transform of a distribution f whose support is bounded on the left is
de"ned as

F(s)"¸ f (x)"� f (x), e�	��. (A.17)

The Laplace transform of the Heaviside function, the delta function and its distributional
derivatives, can be computed directly from the de"nition.

¸�H(x!x
�
)
"

1
s
e�	�� , (A.18a)

¸�	(x!x
�
)
"e�	�� , (A.18b)

¸�	���(x!x
�
)
"s�e�	�� . (A.18c)

Theorem 4. If f ���(x) exists and is continuous for all x, then

¸� f ���(x)
"s�F(s)!f(0�)s���!f ���(0�)s���!2!f �����(0�). (A.19)
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