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Introduction 

In this article, the bending of unbonded multilayered beams and plates are studied. It is shown that under 
specific loading and various boundary conditions adjacent layers remain fully in contact. Here, an unbonded 
multilayered beam (plate) is composed of Euler-Bemoulli beams (Kirehhoff-type plates) loosely placed on 
each other. The analysis is performed using a semi-inverse method. 

Unbonded Multilayered Beams 

Consider a system composed of  n Euler-Bemoulli beams loosely placed on each other with the 
following hypotheses: 
Hi. The length o f  all beams are equal. 
H2. The beams may have different flexural stiffiaesses. 
H 3. At each of  the two boundary points, the boundary conditions are the same for all beam layers. 
Such a system is called an Unbonded Multilayered Beam with n layers (UMBn). For a UMB n there 
are six possible boundary conditions (FIG. 1). For the sake o f  simplicity, at first a UMB 2 with C-F 
boundary condition is considered. A downward force is applied at point x = xo (FIG. 2). At the outset 
the contact force distribution, F(x), is unknown. The total potential energy o f  the system must be 
minimized with the following inequality constraint 

Wl(X)>W2(X ) V x  ~[0,e] (1) 

Here, instead o f  solving a variational inequality problem, a semi-inverse method [1-2] is used. We 
assume that the contact force distribution is nonzero only for x = x0, i.e., 

F(x) = FoS(X - Xo) (2) 
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Figure 1. Six possible boundary conditions for a UMB ° 

It should be noted that, implicitly we have assumed that w1(x0) = w2(x0); because 

F(x*);~ 0 ~ wl (x* )  = w2(x* ) (3) 
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Figure 2. UMB 2 with C-F boundary condition under a concentrated force 

where x* is an arbitrary point in the interval (0,0]. However, there is no restriction for wl and w2 at 
other points as long as they satisfy the constraint (1). If F(x*) = 0, we cannot conclude that 
wj(x')*w2(x*); this means that it is possible for the two beams to be in contact in a point without any 
contact force at that point. By this assumption on contact force distribution, equilibrium equations 
can be written as 

FAl w l  w )  = ( Fo - t'),~( x - xo  ) 

EI2w~ n" ) : _FOr( x _ Xo ) (4) 

and with the following boundary conditions 

Wl(0 ) = w[(0)  = w2(0 ) = w~(0) = 0 (5 .a)  

Wl(X0) = w2(x0) ,  w~ ' ( ( )=  w~ ' (e )=  0 (5.b)  

Ellw~"(g)+ El2w~"(e)= 0, w]U ' )=  w2(t' ) o r  w~"((')= w~"(g) = 0 (5 .c)  

The end condition (5.c) means that ifwl(0) = w2(0) we have VI(0)+V2 (0) = 0, otherwise V](O)= V2(0) 
= 0. Solving the uncoupled system of  differential equations (4) and applying boundary conditions 
(5), yields 

Wl(x  ) = W2(X ) VX ~ [O,~f] (6) 
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which satisfies the constraint (1). Therefore, the assumption (2) is correct. This means that the two 
beams deform simultaneously, i.e., the contact between the two beams is full. Also from (4) and (6) 
we have 

Fo El2 
E11 + EI 2 (7) 

Therefore, the distribution o f  contact stresses can be written as 

{rC(x, y) = El2 
Eh + E ~ ~  ,s(x - x0) (8) 

where b is the width of  the beam layers. This is also true for all the other boundary conditions. 
A general downward load is defined as a general distributed force per unit length, q(x) for 

which 

q(x)<_ 0 Vx ~ [0,t] (9) 

Now consider a UMB 2 with C-F boundary condition under a general downward load q(x) (FIG. 3). 
In the interval [x, x+Ax], this loading condition is equivalem to a concentrated force AP = q(x)Ax. 
Under this concentrated force, contact is full; therefore by using the principle o f  superposition it can 
be concluded that under a general downward load q(x) contact is full, too. The distribution o f  contact 
stresses can be written as 

o.C(x, y) EI 2 q(x) 
EI 1 + El 2 b (10) 

It should be noted that a UMW is a nonlinear system but under a general downward load it acts like 
a linear system and the principle o f  superposition can be used. This result is also true for all the other 
boundary conditions and it can be easily generalized for a UMB ° with general boundary conditions. 

q(x) ~ : - T ~ ]  

; I D,X 

Figure 3. UMB 2 with C-F boundary condition under a general downward load 

For a LIMB" under a general downward load q(x), the contact stress distribution can be written as 

criC(x,y) = Riq(x), i = 1,2,3 ..... n - 1 
n 

Z EIj (11) 
Ri j = i+1 

n 

b Z EIj 
J = l  
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where ~iC(x,y) is the contact stress between ith and (i+l)th beams. Beams are numbered from top to 
bottom (FIG. 4). 

Figure 4. Numbering of  the layers ofa  UMB" or UMP" 

Unbonded Muitilayered Plates 

Consider a system of  n Kirchhoff-type plates loosely placed on each other with the following 
hypotheses: 
H~. All the plate layers are identical in shape. 
H2. The plates may have different flexural stiffnesses. 
H 3. Friction between any two successive plates is neglected. 
H 4. At any point on the boundary, the boundary conditions are the same for all the plate layers. 
Such a system is called an Unbonded Multilayered Plate with n layers (UMP"). For the sake of  
simplicity, at first a UMW is considered (FIG. 5). 

i 
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Figure 5. UMP 2 with arbitrary shape and general boundary conditions 
under a downward concentrated force 

Suppose that this system is under the action of  a concentrated downward force P at point M(x0,Y0). 
Again, at the outset, the contact stress distribution is unknown. We have also the following 
inequality constraint 

W l ( X , y ) > _ w 2 ( x , y )  V ( x , y )  e l2  (12) 

Using a semi-inverse method, the following assumption is made on the contact force distribution: 

F ( x , y )  = F o r ( X  - x ( i , y  - .Vo ) 
(13) 

where 8(x-xo,y-yo) is the Dirac delta function. We have also, implicitly, assumed that w~(xo,Yo) = 
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w2(xo,Y0). With this assumption, equilibrium equations can be written as 

V2v2Wl (x, y) = - P  + F° 6(x - x o, y - Yo ) 
Dl 

2 2 - r °  - , -Y0) V V w2(x ,y )= D---~,~(x x 0 y 

(14) 

where D~ and D 2 are flexural stiffnesses, w~ and w2 are expressed by 

x0, - 

(15) 

w2(x ,y )=  ~ G ( x , y ; 4 , r l ) ~ 8 ( 4 -  xo , r l -  Yo)d~lrl 

The function G(x,y;~J1) is Green's function which satisfies 

L* G(x,y;~,  rl) = 6(x - ~,y - rl) (16) 

where L = v2v 2, and L* is the adjoint operator o f  L but in this case L = L* (self-adjoint) [3]. The 
Green's function, G(x,y;~,~l) must satisfy the homogeneous boundary conditions. It should be noted 
that, since boundary conditions are the same for the two plates, only one Green's function, G(x,y;~,l]) 
has been used. From (15), we obtain 

Wl(X,y ) = _ P - F 0 G(x,y;xo,Yo)  
D1 

(17) 
w2(x ,y  ) = - F--~-° G(x,y;xo,Yo)  

1 : 2  

Applying the condition wl(x0,Y0) = w2(x0,Y0), yields 

P - F  o F o 

Dl  D2 

Therefore, 

Wl(X,y ) = w2(x ,y  ) V(x,y) e ~  

(18) 

(19) 

which satisties the constraint (12); therefore the assumption (13 ) is correct. Thus the two plate layers 
deform simultaneously; i.e., contact remains full. Also 

FO= D2 p 
D l+ D 2 (20) 

This is also true for a UMP n. 
Now consider a UMP n under a general downward load q(x,y), i.e., 

q(x , y )<  0 V(x,y) ef~ (21) 

Since the load q(x,y) can be considered as a combination o f  differential concentrated forces 
q(x,y)dxdy, all plate layers deform simultaneously, i.e., contact between any two successive plates 
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is full. Also the contact stress distribution can be written as 

o'~'(x,y)= Riq(x,y) ,i= 1,2 ..... n - 1 

~ " D j  (22) 
R t  _ j = t + l  

n 

)=I 

The plates are numbered from top to bottom (FIG. 4). 
For deflection analysis of  a UMB" or UMP" under a general downward load q, one can 

consider only the upper beam or plate under the general downward load ql which is defined as 

sl 
q l  = -  n 

Z Si (23) 
i=1 

where $1 and S~ are the flexural stiffnesses of  the upper and the ith beams or plates, respectively. The 
deflection o f  this system is the solution. 

Conclusions 

It was shown that, under a general downward load, the n layers of  an unbonded multilayered beam 
or plate deform simultaneously. Also the contact stress distribution was found. From the contact 
mechanics point o f  view, this is a frictionless stationary contact problem [4-6]. 

In loose terms, what has been shown is that under the given conditions the individual 
elements of  the beam (or plate) remain in contact, each carrying a load proportional to its own 
stiffness. While this may be intuitively accepted as true on physical grounds, the necessary precise 
statement and proof have here been provided. 
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