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On the compatibility equations of nonlinear and linear elasticity in the presence
of boundary conditions

Arzhang Angoshtari and Arash Yavari

Abstract. We use Hodge-type orthogonal decompositions for studying the compatibility equations of the displacement
gradient and the linear strain with prescribed boundary displacements. We show that the displacement gradient is compatible
if and only if for any equilibrated virtual first Piola–Kirchhoff stress tensor field, the virtual work done by the displacement
gradient is equal to the virtual work done by the prescribed boundary displacements. This condition is very similar to the
classical compatibility equations for the linear strain. Since these compatibility equations for linear and nonlinear strains
involve infinite-dimensional spaces and consequently are not easy to use in practice, we derive alternative compatibility
equations, which are written in terms of some finite-dimensional spaces and are more useful in practice. Using these new
compatibility equations, we present some non-trivial examples that show that compatible strains may become incompatible
in the presence of prescribed boundary displacements.
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1. Introduction

The classical compatibility problems of nonlinear and linear elasticity seek to determine the necessary
and sufficient conditions that guarantee the existence of a displacement field that generates a given strain
field. These compatibility problems have been the subject of various studies during the past two centuries,
for example see [1] and references therein. The above statement of the compatibility problem ignores the
fact that the values of the displacement are usually prescribed on the whole or parts of the boundary.
Therefore, it is more realistic to consider the following compatibility problem:

Given a strain field and prescribed displacement values on (a part of) the boundary, deter-
mine the necessary and sufficient conditions for the existence of a displacement field that
generates the given strain and satisfies the given boundary conditions.

Dorn and Schild [2] and Rostamian [3] showed that a linear strain with a prescribed boundary displace-
ment is compatible if and only if for any equilibrated virtual stress, the virtual work of the linear strain is
the same as the virtual work of the prescribed boundary displacement.1 Note that regardless of the topo-
logical properties of bodies, the space of equilibrated Cauchy stresses is infinite-dimensional.2 Therefore,
it is not clear how to use the above condition in practice, as one would need to check this condition for
an infinite number of virtual stresses.

Main results In this paper, we show that a compatibility condition similar to the above condition for
the linear strain also determines the compatibility of displacement gradients with prescribed boundary

1Dorn and Schild [2] derived this condition for simply connected bodies. Later, Rostamian [3] showed that the same
condition works for non-simply connected bodies as well.

2The space of harmonic fields is a subspace of the space of divergence-free fields. It is well known that on compact
domains with boundary, the former space is infinite-dimensional, e.g., see [4, Theorem 3.4.2].
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displacements (Remark 9).3 We show that for both displacement gradients and linear strains, it is possible
to write the compatibility equations in terms of only a finite-dimensional subspace of equilibrated stresses
(Theorems 7 and 15). These new compatibility conditions are more practical as one only needs to verify
them for a finite number of virtual stresses. This finite number is determined by the topological properties
of domains and the regions on which boundary displacements are imposed. As an application of these
compatibility equations, we present some non-trivial compatible strains that are incompatible in the
presence of boundary conditions (Examples 10, 12, and 18).

Contents of the paper The compatibility problem for the displacement gradient can be stated in terms
of a boundary-value problem for differential forms. In Sect. 2, we study this boundary-value problem
by using orthogonal decompositions. Since we may want to impose boundary conditions only on a part
of the boundary and not necessarily on the whole boundary, we need to appropriately extend some
standard results. In particular, we extend the classical Friedrichs decompositions in Theorem 1. This
allows us to extend the Hodge–Morrey–Friedrichs decomposition of differential forms as well. Using this
decomposition, we derive two sets of equivalent integrability conditions for the boundary-value problem
(Theorems 3 and 4). In Sect. 3, we derive the compatibility equations for nonlinear and linear strains. First,
we directly use the results of Sect. 2 to write the compatibility equations for the displacement gradient.
Then, we exploit some Hodge-type decompositions for symmetric tensors and arguments similar to those
of Sect. 2 to obtain the compatibility equations for the linear strain. Finally, in Sect. 4, we show that the
results of Sect. 2 can be used to derive the necessary and sufficient conditions for the existence of a (first
Piola–Kirchhoff or Cauchy) stress tensor that is in equilibrium with a given body force field and takes
prescribed values of boundary tractions.

Notation We assume a body B ⊂ R
n, n = 2, 3, is an open subset, which is bounded and connected

and has a smooth boundary ∂B. We also assume that ∂B = S1 ∪ S2, where the disjoint subsets S1 and
S2 are either empty or (n − 1)-dimensional surfaces without boundary.4 The closure of B is denoted
by B̄. The Cartesian coordinates, the standard orthonormal basis, and the standard inner product of
R

n are denoted by {XI}, {EI}, and 〈〈, 〉〉, respectively. For any nonnegative integer s, the spaces of
vector fields,

(
2
0

)
-tensors, and symmetric

(
2
0

)
-tensors of Sobolev class Hs (L2 := H0) are denoted by

Hs(TB), Hs(⊗2TB), and Hs(S2TB) (the Cartesian components of Hs-fields belong to the standard
Sobolev space Hs(B)). The partial derivative ∂f/∂XI is denoted by f,I . The subspace Hs

0 is the space
of Hs-tensors with all partial derivatives of their components of order < s vanishing on ∂B. For any
U ,Z ∈ L2(TB) and R,T ∈ L2(⊗2TB), we have the inner products 〈〈U ,Z〉〉L2 :=

∑
I 〈〈U I , ZI〉〉L2 , and

〈〈R,T 〉〉L2 :=
∑

I,J 〈〈RIJ , T IJ 〉〉L2 . The summation convention is assumed on repeated indices.

2. A boundary-value problem for differential forms

The compatibility problem for the displacement gradient can be stated in terms of a boundary-value
problem for differential forms. In this section, we derive some necessary and sufficient conditions for the
existence of a solution to this problem. Let L2(ΛkT ∗B) and Hs(ΛkT ∗B) denote the standard Sobolev
spaces of k-forms of class L2 and Hs, which are equipped with the inner products 〈〈, 〉〉L2 and 〈〈, 〉〉Hs .5

3We have F = I + K, where F and K are the deformation gradient and the displacement gradient of a motion,
respectively. Therefore, by replacing K with F − I in the compatibility equations of K, one obtains the compatibility

equations of F .
4These assumptions are used to avoid some technical difficulties. We believe that by considering some modifications

regarding the smoothness of solutions, the results of this paper are still valid under less restrictive assumptions that B has
a locally Lipschitz boundary and that S1 and S2 are admissible patches in the sense of [5, page 377], which allows S1 and
S2 to have non-empty boundaries.

5We refer the reader to Morrey [6] and Schwarz [4] for the definition of these spaces and also for more discussions on
notions that we use throughout this section.
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At the boundary ∂B, any α ∈ Hs+1(ΛkT ∗B) can be uniquely decomposed as α|∂B = tα + nα, where
tα (nα) is called the tangent (normal) component of α at ∂B. One can show that tα and nα belong
to the fractional Sobolev space Hs+ 1

2 (ΛkT ∗B|∂B) [4, Theorem 1.3.7]. The exterior derivative d and the
codifferential operator δ can be extended to the continuous mappings d : Hs+1(ΛkT ∗B) → Hs(Λk+1T ∗B)
and δ : Hs+1(ΛkT ∗B) → Hs(Λk−1T ∗B). We will study the following boundary-value problem:

Given γ ∈ H1(Λk+1T ∗B) and η ∈ H
3
2 (ΛkT ∗B|S1), find α ∈ H2(ΛkT ∗B) such that

dα = γ, on B,

tα = tη, on S1.
(2.1)

Our main tool is the Hodge–Morrey decomposition, which states that any α ∈ H1(ΛkT ∗B) admits
the following L2-orthogonal decomposition:

α = dφα + δψα + λα, (2.2)

where dφα, δψα,λα ∈ H1(ΛkT ∗B), with

φα ∈ H1
n(Λk−1T ∗B, ∂B) :=

{
β ∈ H1(Λk−1T ∗B) : tβ|∂B = 0

}
,

ψα ∈ H1
t (Λk+1T ∗B, ∂B) :=

{
β ∈ H1(Λk+1T ∗B) : nβ|∂B = 0

}
,

λα ∈ Hk(B̄) :=
{
λ ∈ H1(ΛkT ∗B) : dλ = 0 and δλ = 0

}
.

We also use decompositions of harmonic fields Hk(B̄), which can be derived using Dirichlet–Neumann
(DN) potentials. These potentials are certain solutions of the following boundary-value problem for the
Laplacian Δ := d ◦ δ + δ ◦ d:

Given γ ∈ L2(ΛkT ∗B), find a k-form μ such that
Δμ = γ, on B,

tμ = 0, t(δμ) = 0, on S1,

nμ = 0, n(dμ) = 0, on S2.

(2.3)

The problem (2.3) is an elliptic boundary-value problem [7, page 330]. Let Hk(B̄,S1,S2) be the
space of solutions of (2.3) for γ = 0. Standard results for elliptic boundary-value problems suggest
that Hk(B̄,S1,S2) is finite-dimensional and contains only C∞ forms. In particular, one can show that

dim Hk(B̄,S1,S2) = bk(B̄,S1),

where bk(B̄,S1) is the k-th relative Betti number of the pair (B̄,S1) [5, Theorems 5.3 and 6.1]. Green’s
formula for differential forms states that for any α ∈ H1(ΛkT ∗B) and β ∈ H1(Λk+1T ∗B), we have (e.g.,
see [4, page 60])

〈〈dα,β〉〉L2 = 〈〈α, δβ〉〉L2 +
∫

∂B
tα ∧ (∗nβ).

Using Green’s formula, it is straightforward to show that

Hk(B̄,S1,S2) = Hk(B̄) ∩ H1
n(ΛkT ∗B,S1) ∩ H1

t (ΛkT ∗B,S2). (2.4)

Since Hk(B̄,S1,S2) is finite-dimensional, it is a closed subspace of L2-forms and hence one can write the
following orthogonal decomposition

L2(ΛkT ∗B) = Hk(B̄,S1,S2) ⊕ Hk(B̄,S1,S2)⊥,

where Hk(B̄,S1,S2)⊥ is the orthogonal complement of Hk(B̄,S1,S2) in L2(ΛkT ∗B). The necessary and
sufficient condition for the existence of a solution to (2.3) is γ ∈ Hk(B̄,S1,S2)⊥ [5, Theorem 6.1]. The
DN potential of any γ ∈ Hk(B̄,S1,S2)⊥ is defined to be the unique solution μγ ∈ Hk(B̄,S1,S2)⊥ of (2.3)
associated with γ. Next, we derive some orthogonal decompositions for Hk(B̄).

Author's personal copy
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Theorem 1. The following L2-orthogonal decompositions hold:

Hk(B̄) = Hk(B̄,S1,S2) ⊕ Hk
δ (B̄,S2) ⊕ Hk

d(B̄,S1), (2.5a)

Hk(B̄) = Hk
t (B̄,S2) ⊕ Hk

d(B̄,S1), (2.5b)

Hk(B̄) = Hk
n(B̄,S1) ⊕ Hk

δ (B̄,S2), (2.5c)

where
Hk

δ (B̄,S2) :=
{
λ ∈ Hk(B̄) : λ = δζ, nζ|S2 = 0

}
,

Hk
d(B̄,S1) :=

{
λ ∈ Hk(B̄) : λ = dω, tω|S1 = 0

}
,

Hk
t (B̄,S2) :=

{
λ ∈ Hk(B̄) : nλ|S2 = 0

}
,

Hk
n(B̄,S1) :=

{
λ ∈ Hk(B̄) : tλ|S1 = 0

}
.

Proof. We first prove the decomposition (2.5a). For any ξ ∈ Hk(B̄,S1,S2), δζ ∈ Hk
δ (B̄,S2), and dω ∈

Hk
d(B̄,S1), one can use Green’s formula to write

〈〈ξ, δζ〉〉L2 = 〈〈dξ, ζ〉〉L2 −
∫

S1

tξ ∧ ∗nζ −
∫

S2

tξ ∧ ∗nζ = 0,

〈〈ξ, dω〉〉L2 = 〈〈δξ,ω〉〉L2 +
∫

S1

tω ∧ ∗nξ +
∫

S2

tω ∧ ∗nξ = 0,

〈〈dω, δζ〉〉L2 = 〈〈ω, δδζ〉〉L2 +
∫

S1

tω ∧ ∗n(δζ) +
∫

S2

tω ∧ ∗n(δζ) = 0,

where in the last relation, we used the fact that n(δζ) = δ(nζ) = 0, on S2. This means that the com-
ponents of (2.5a) are mutually L2-orthogonal. Since Hk(B̄,S1,S2) is finite-dimensional, we have the
L2-orthogonal decomposition Hk(B̄) = Hk(B̄,S1,S2) ⊕ D, where Hk(B̄) is the L2-closure of Hk(B̄), and
D := Hk(B̄,S1,S2)⊥ ∩ Hk(B̄). Since Hk(B̄,S1,S2) contains only smooth forms, one can also write the
L2-orthogonal decomposition

Hk(B̄) = Hk(B̄,S1,S2) ⊕ D̃, (2.6)

with

D̃ := D ∩ H1(ΛkT ∗B) = Hk(B̄,S1,S2)⊥ ∩ Hk(B̄).

Let ν ∈ D̃ and suppose μν ∈ Hk(B̄,S1,S2)⊥ is the DN potential of ν. We define ζν := dμν . The
boundary conditions of μν imply that nζν |S2 = n(dμν)|S2 = 0. Moreover, for any ξ ∈ Hk(B̄,S1,S2), we
have

〈〈ν − δζν , ξ〉〉L2 = −〈〈ζν , dξ〉〉L2 +
∫

S1

tξ ∧ ∗nζν +
∫

S2

tξ ∧ ∗nζν = 0,

and hence ν − δζν ∈ Hk(B̄,S1,S2)⊥. We also have ν − δζν ∈ Hk(B̄), since

d (ν − δζν) = d ◦ d ◦ δμν = 0,

δ (ν − δζν) = δν − δ ◦ δζν = 0.

Note that ν − δζν satisfies the following boundary conditions:

t (ν − δζν) = t (d ◦ δμν) = d (t(δμν)) = 0, on S1,

n (ν − δζν) = nν, on S2.
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Let μν̂ be the DN potential of ν̂ := ν − δζν , and let ων := δμν̂ . Then tων |S1 = 0, and

〈〈ν̂ − dων , ξ〉〉L2 = −
∫

S1

tων ∧ ∗nξ −
∫

S2

tων ∧ ∗nξ = 0, ∀ξ ∈ Hk(B̄,S1,S2),

d (ν̂ − dων) = 0,

δ (ν̂ − dων) = δ ◦ δ ◦ dμν̂ = 0,

and therefore, ν̂−dων ∈ D̃. However, (2.4) tells us that ν̂−dων ∈ Hk(B̄) satisfies the following boundary
conditions

t (ν̂ − dων) = tν̂ − d (tων) = 0, on S1,

n (ν̂ − dων) = n (δ ◦ dμν̂) = δ (n(dμν̂)) = 0, on S2.

We also have ν̂ −dων ∈ Hk(B̄,S1,S2), and thus, the decomposition (2.6) implies that ν −δζν −dων = 0.
The decomposition (2.5a) then follows from the decomposition (2.6) and the L2-orthogonal decomposition
of D̃ that we just established. For deriving (2.5b), we note that if λ ∈ Hk(B̄,S1,S2) ⊕ Hk

δ (B̄,S2), then
λ ∈ Hk

t (B̄,S2). Conversely, if λ ∈ Hk
t (B̄,S2), then

〈〈λ, dω〉〉L2 = 0, ∀dω ∈ Hk
d(B̄,S1),

and, therefore, the decomposition (2.5a) suggests that λ ∈ Hk(B̄,S1,S2)⊕Hk
δ (B̄,S2). Thus, Hk

t (B̄,S2) =
Hk(B̄,S1,S2) ⊕ Hk

δ (B̄,S2), and (2.5b) directly follows from (2.5a). Similarly, (2.5c) follows from (2.5a)
and the fact that Hk

n(B̄,S1) = Hk(B̄,S1,S2) ⊕ Hk
d(B̄,S1). �

Remark 2. Theorem 1 extends the classical Friedrichs decompositions introduced by Friedrichs [8] and
Duff [9] in the sense that (2.5b) with S1 = ∅, and S2 = ∂B, and (2.5c) with S1 = ∂B, and S2 = ∅,
are the Friedrichs decompositions of harmonic fields on B̄. Note that Hk

d(B̄, ∂B) = Hk
δ (B̄, ∂B) = {0}. If

λ = ξλ + δζλ + dωλ is the decomposition (2.5a) for λ ∈ Hk(B̄), then the construction introduced in the
proof of Theorem 1 allows one to select ζλ and ωλ to be of the Sobolev class H2.

We are now ready to state the necessary and sufficient conditions for the existence of a solution to
(2.1). The upshot is the following theorem.

Theorem 3. The following conditions are necessary and sufficient for the existence of a solution α to the
boundary-value problem (2.1):

〈〈γ, δψ〉〉L2 = 0, ∀ψ ∈ H1
t (Λk+2T ∗B, ∂B), (2.7a)

〈〈γ,κ〉〉L2 =
∫

S1

tη ∧ ∗nκ, ∀κ ∈ Hk+1
t (B̄,S2). (2.7b)

A solution α can be chosen such that δα = 0. Moreover, it is also possible to choose α such that the
linear mapping (γ, tη) �→ α becomes a continuous mapping, that is, there exists a real constant c > 0
such that

‖α‖H2 ≤ c (‖γ‖H1 + ‖tη‖H3/2) . (2.8)

Proof. Using Green’s formula, it is straightforward to show the necessity of (2.7). To show the sufficiency
of (2.7), note that using the Hodge–Morrey decomposition (2.2) and the decomposition (2.5b), one can
decompose γ as

γ = dφγ + δψγ + κγ + dωγ . (2.9)

The condition (2.7a) then implies that δψγ = 0. Let η0 ∈ H
3
2 (ΛkT ∗B|∂B) be the zero extension of tη

to ∂B, i.e., η0|S1 = tη, and η0|S2 = 0. The trace theorem for sections of vector bundles (e.g., see [4,
Theorem 1.3.7]) tells us that there is a k-form η̃ ∈ H2(ΛkT ∗B) such that η̃|∂B = η0. Similar to (2.9), we
can write η̃ = dφη̃ +δψη̃ +κη̃ +dωη̃. Let θ = dη̂, where η̂ := δψη̃ +κη̃ +dωη̃. Note that tη̂ = tη̃ = tη0,
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and since θ is exact, the analogue of the decomposition (2.9) for θ reads θ = dφθ + κθ + dωθ. Now, we
define

α := φγ + ωγ + η̂ − φθ − ωθ ∈ H2(ΛkT ∗B). (2.10)

We have dα = γ + κθ − κγ , and tα = tη, on S1. From (2.5b), we know that κθ − κγ ∈ Hk+1
t (B̄,S2). On

the other hand, for any κ ∈ Hk+1
t (B̄,S2), one can write

〈〈κθ − κγ ,κ〉〉L2 =
∫

S1

tη ∧ ∗nκ − 〈〈γ,κ〉〉L2 = 0, ∀κ ∈ Hk+1
t (B̄,S2),

where the last equality follows from (2.7b). This means that κθ − κγ is also normal to Hk+1
t (B̄,S2), and

consequently, κθ − κγ = 0. Therefore, α is a solution of (2.1). This proves the sufficiency of (2.7). The
component dφ in the Hodge–Morrey decomposition (2.2) can be chosen such that δφ = 0, e.g., see [4,
Lemma 2.4.7]. Moreover, the proof of Theorem 1 shows that the component dω in the decomposition
(2.5b) can be chosen such that δω = 0. Since δη̂ = 0, the solution α given in (2.10) can be chosen such
that δα = 0. The trace theorem, Lemma 2.4.11 of [4], and the proof of Theorem 1 suggest that η̂, φγ ,
φθ, ωγ , and ωθ can be chosen to be of H2-class with

‖η̂‖H2 ≤ c1‖tη‖H3/2 ,

‖φγ + ωγ‖H2 ≤ c2‖γ‖H1 ,

‖φθ + ωθ‖H2 ≤ c̄3‖θ‖H1 = c̄3‖dη̂‖H1 ≤ c3‖η̂‖H2 .

The Sobolev estimate (2.8) then follows from (2.10) and the above inequalities. �

Alternatively, one can write the following necessary and sufficient integrability conditions for (2.1).

Theorem 4. The integrability conditions (2.7) are equivalent to the following conditions:

dγ = 0, (2.11a)

tγ|S1 = t(dη), (2.11b)

〈〈γ, ξ〉〉L2 =
∫

S1

tη ∧ ∗nξ, ∀ξ ∈ Hk+1(B̄,S1,S2). (2.11c)

Proof. First, we show that (2.7) ⇒ (2.11). Suppose (2.7a) holds. Then, for any ψ ∈ H1
t (Λk+2T ∗B, ∂B),

we have

〈〈dγ,ψ〉〉L2 = 〈〈γ, δψ〉〉L2 +
∫

∂B
tγ ∧ ∗nψ = 0,

and since H1
t (Λk+2T ∗B, ∂B) is dense in L2(Λk+2T ∗B), we conclude that dγ = 0. Let η̃ ∈ H2(ΛkT ∗B) be

any extension of η to B. The condition (2.7b) allows one to write

〈〈γ,κ〉〉L2 =
∫

∂B
tη̃ ∧ ∗nκ + 〈〈η̃, δκ〉〉L2 = 〈〈dη̃,κ〉〉L2 , ∀κ ∈ Hk+1

t (B̄,S2). (2.12)

Since γ and dη̃ are closed, using the Hodge–Morrey decomposition and the decomposition (2.5b), one
can write γ = dφγ + κγ + dωγ , and dη̃ = dφdη̃ + κdη̃ + dωdη̃. Then, (2.12) suggests that κγ = κdη̃, and
therefore

tγ|S1 = tκγ |S1 = tκdη̃|S1 = t(dη̃)|S1 = t(dη). (2.13)

Moreover, if (2.7b) holds, then so does (2.11c). Hence, (2.7)⇒ (2.11). Conversely, suppose (2.11) holds.
Then, (2.11a) implies (2.7a). The proof of Theorem 1 tells us that any κ ∈ Hk+1

t (B̄,S2) can be decomposed

Author's personal copy
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as κ = ξκ + δζκ, with ξκ ∈ Hk+1(B̄,S1,S2) and δζκ ∈ Hk+1
δ (B̄,S2). Thus, (2.7b) is equivalent to the

following conditions:

〈〈γ, ξ〉〉L2 =
∫

S1

tη ∧ ∗nξ, ∀ξ ∈ Hk+1(B̄,S1,S2), (2.14a)

〈〈γ, δζ〉〉L2 =
∫

S1

tη ∧ ∗n(δζ), ∀δζ ∈ Hk+1
δ (B̄,S2). (2.14b)

The condition (2.14a) is the same as (2.11c). Using (2.11b) and an arbitrary extension η̃ of η, one can
write

〈〈γ, δζ〉〉L2 = −
∫

S1

tγ ∧ ∗nζ = −
∫

∂B
t(dη̃) ∧ ∗nζ = 〈〈dη̃, δζ〉〉L2 =

∫

S1

tη ∧ ∗n(δζ).

Therefore, (2.14b) holds and we conclude that (2.11)⇒ (2.7). �

Remark 5. By using the Hodge–Morrey decomposition for L2-forms and slightly modifying the proof of
Theorem 3, one can show that the integrability conditions (2.7) are still necessary and sufficient conditions
for a weaker statement of the boundary-value problem (2.1) with γ ∈ L2(Λk+1T ∗B), η ∈ H

1
2 (ΛkT ∗B|S1),

and α ∈ H1(ΛkT ∗B). However, (2.11a) and (2.11b) do not make sense for this weaker statement of
(2.1), in general.6 On the other hand, the conditions (2.11) are more useful in practice, since unlike the
infinite-dimensional space Hk+1

t (B̄,S2), the space Hk+1(B̄,S1,S2) is finite-dimensional, and hence, one
needs to verify (2.11c) only for a finite number of harmonic fields ξ ∈ Hk+1(B̄,S1,S2).

Remark 6. The integrability conditions (2.7) and (2.11) extend the integrability conditions given in
Lemmas 3.1.2 and 3.2.1 of [4], which state the integrability conditions for (2.1) with S1 = ∅, ∂B. In
particular, note that in the proof of Theorem 3, if S1 = ∅, then (2.10) becomes α := φγ + ωγ , where
ωγ ∈ Hk

d(B̄, ∅).

3. Boundary displacements and the compatibility of strains

In this section, we will use the results and the arguments of the previous section to derive the compatibility
equations for the displacement gradient and the linear strain in the presence of displacement boundary
conditions. Note that for 3D bodies, one can define the following operators

grad : Hs+1(TB) → Hs(⊗2TB), (gradY )IJ = Y I
,J ,

curlT : Hs+1(⊗2TB) → Hs(⊗2TB), (curlTT )IJ = εJKLT IL
,K ,

div : Hs+1(⊗2TB) → Hs(TB), (divT )I = T IJ
,J ,

where εJKL is the standard permutation symbol. For symmetric tensors, we also have the operators
grads : Hs+1(TB) → Hs(S2TB) and curl ◦ curl : Hs+2(S2TB) → Hs(S2TB), where

(gradsU)IJ=
1
2

(
U I

,J + UJ
,I

)
, (curl ◦ curlT )IJ=εIKLεJMNTLN

,KM .

6This statement should be interpreted only in the framework of standard Sobolev spaces and their traces. By using
partly Sobolev spaces induced by d and δ, it is still possible to use (2.11a) and (2.11b) for L2 differential forms. In this case,
the tangent part of an L2-form is defined by using Green’s formula and is considered to be a distribution, see [10, §3]. The
boundary-value problem (2.1) for L2-forms is useful for studying the strain compatibility on non-convex Lipschitz bodies
and multi-phase bodies, where the displacement is merely of H1-class, in general.
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For 2D bodies, instead of curlT, we have the following operators

with IJ being the Kronecker delta. Moreover, instead of curl ◦ curl, we have the operators Dc :
Hs+2(S2TB) → Hs(B) and Ds : Hs+2(B) → Hs(S2TB) defined as

Dc(T ) := T 11
,22 − 2T 12

,12 + T 22
,11, Ds(f) :=

[
f,22 −f,12

−f,12 f,11

]
.

3.1. Nonlinear elasticity

Let ϕ : B → R
n be a motion of B and let U(X) := ϕ(X) − X be the associated displacement field. One

can assume that U is a vector field on B. Moreover, the gradient of U , which is a two-point tensor, can
be identified with gradU . Now, consider the following boundary-value problem for the compatibility of
the displacement gradient.

Given a
(
2
0

)
-tensor field K ∈ H1(⊗2TB) and an arbitrary vector field Y ∈ H2(TB), find

a displacement field U ∈ H2(TB) such that
gradU = K, on B,

U = Y , on S1.

(3.1)

We want to determine the necessary and sufficient conditions for the existence of a displacement U in
the above problem. Note that if S1 = ∅, (3.1) is the classical compatibility problem. Before stating the
main result, we introduce some subspaces of H1(⊗2TB). In the Cartesian coordinates {XI}, the traction
of any

(
2
0

)
-tensor T on a plane normal to a vector Z ∈ R

n at X ∈ B̄ is given by T (Z) := T IJZJEI .7

Following [11], we say that T ∈ H1(⊗2TB) is normal to an open subset U ⊂ ∂B and write T ⊥ U
if T (Y ) = 0, on U , for any vector field Y ‖U . We say that T ∈ H1(⊗2TB) is parallel to U and write
T ‖U if T (N) = 0, on U , where N is the unit outward normal vector field of ∂B. The space H1

n(TB,S1)(
H1

t (TB,S1)
)

is the space of H1 vector fields normal (parallel) to S1. The spaces H1
n(⊗2TB,S1) and

H1
t (⊗2TB,S1) are defined analogously. We also define the following spaces:

H⊗(B̄) :=
{

H ∈ H1(⊗2TB) : curlTH = 0 and divH = 0
}

,

H⊗
t (B̄,S2) := H⊗(B̄) ∩ H1

t (⊗2TB,S2),

H⊗(B̄,S1,S2) := H⊗(B̄) ∩ H1
n(⊗2TB,S1) ∩ H1

t (⊗2TB,S2).

For 2D bodies, one should replace curlT with in the definition of H⊗(B̄). One can show that
H⊗(B̄,S1,S2) is finite-dimensional with dimH⊗(B̄,S1,S2) = n b1(B̄,S1) [11]. Now, we can state the
main result regarding the compatibility of the displacement gradient as follows.

Theorem 7. The following sets of conditions are equivalent, and each set is both necessary and sufficient
for the existence of a solution to (3.1):

i) The weak compatibility equations:

〈〈K, curlTT 〉〉L2 = 0, ∀T ∈ H1
n(⊗2TB, ∂B), (3.2a)

〈〈K,H〉〉L2 =
∫

S1

〈〈Y ,H(N)〉〉dA, ∀H ∈ H⊗
t (B̄,S2). (3.2b)

7Clearly, T (Z) is not a physical traction unless T is a stress tensor and Z is the unit normal vector of an infinitesimal
surface.
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For 2D bodies, the condition (3.2a) is replaced by the following condition.

〈〈K, s(Z)〉〉L2 = 0, ∀Z ∈ H1
0 (TB).

ii) The strong compatibility equations:

curlTK = 0, (3.3a)

K(Z)|S1 = (gradY )(Z), ∀Z ∈ H1
t (TB,S1), (3.3b)

〈〈K,Q〉〉L2 =
∫

S1

〈〈Y ,Q(N)〉〉dA, ∀Q ∈ H⊗(B̄,S1,S2). (3.3c)

For 2D bodies, the condition (3.3a) is replaced with (K) = 0.

Proof. We only prove the 3D case as the proof for 2D bodies is similar. For any
(
2
0

)
-tensor T , let

−→
TEI

:=
T IJEJ , I = 1, . . . , n, and consider the following isometric isomorphisms

ı1 : Hs(TB) → Hs(Λ1T ∗B), ı1(Z) = Z�,

ı2 : Hs(TB) → Hs(Λ2T ∗B), ı2(Z) = ∗(Z�),

where � : Hs(TB) → Hs(Λ1T ∗B) and ∗ : Hs(ΛkT ∗B) → Hs(Λn−kT ∗B) are the flat and the Hodge-star
operators, respectively. Then, one can define the following isometric isomorphisms [11, §3.1]:

ı0 : Hs(TB) → ⊕n
i=1H

s(Λ0T ∗B), ı0(U) = (U1, . . . , Un),

ıj : Hs(⊗2TB) → ⊕n
i=1H

s(ΛjT ∗B), ıj(T ) =
(
ıj(

−→
TE1), . . . , ıj(

−→
TEn

)
)
, j = 1, 2.

It is straightforward to show that ı1 ◦ grad(U) = (dU1, . . . , dUn). By using the fact that for a 0-form f ,
we have tf = f |∂B, one concludes that the following problem is equivalent to (3.1):

Given
−→
K�

EI
∈ H1(Λ1T ∗B) and Y I ∈ H

3
2 (Λ0T ∗B|S1), I = 1, . . . , n, find U I ∈ H2(Λ0T ∗B)

such that
dU I =

−→
K�

EI
, on B,

tU I = tY I , on S1.

The isomorphism ı2 induces an isomorphism between H1
t (Λ2T ∗B, ∂B) and H1

n(TB, ∂B). Hence, the
condition (2.7a) can be written as

0 = 〈〈−→K�
EI

, δψ〉〉L2 = 〈〈ı1(−→KEI
), δ ◦ ı2(Z)〉〉L2

= 〈〈ı1(−→KEI
), ı1 ◦ curl(Z)〉〉L2

= 〈〈−→KEI
, curl Z〉〉L2 , ∀Z := ı−1

2 (ψ) ∈ H1
n(TB, ∂B), (3.4)

where curl is the standard curl operator of vector analysis. Using the relation

〈〈K, curlTT 〉〉L2 =
n∑

I=1

〈〈−→KEI
, curl

−→
TEI

〉〉L2 ,

it is straightforward to show that (3.4) is equivalent to (3.2a). On the other hand, ı1 induces an isomor-
phism between H⊗

t (B̄,S2) and ⊕n
i=1H1

t (B̄,S2) and the condition (2.7b) allows one to write

〈〈K,H〉〉L2 =
n∑

I=1

〈〈−→K�
EI

,
−→
H�

EI
〉〉L2

=
n∑

I=1

∫

S1

Y I
( ∗ n(

−→
H�

EI
)
)

=
n∑

I=1

∫

S1

Y I〈〈−→HEI
,N〉〉dA =

∫

S1

〈〈Y ,H(N)〉〉dA, ∀H ∈ H⊗
t (B̄,S2).
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Therefore, the condition (3.2b) follows from (2.7b). Similarly, one can also show that the integrability
conditions (3.3) follow from the integrability conditions (2.11). �

Remark 8. The special case of the strong conditions (3.3) for zero displacement Y = 0, on S1, was derived
in [11]. The discussion of Remark 5 also applies to the integrability conditions (3.2) and (3.3), that is,
the weak conditions (3.2) are still meaningful for less-smooth data K ∈ L2(⊗2TB) and Y ∈ H1(TB).
Theorem 3 implies that one can choose solutions of (3.1) such that the linear mapping (K,Y |S1) �→ U is
continuous. Similar to the discussions of [12, Remark 15], note that Theorem 7 does not guarantee that U
corresponds to a motion of B, that is, the mapping ϕ : B → R

n associated with U is not an embedding,
in general. Also note that one only needs values of Y on S1 to calculate the right-hand side of (3.3b).

Remark 9. Let D(⊗2TB,S2) be the space of divergence-free
(
2
0

)
-tensors with zero traction on S2. Using the

isomorphisms introduced in the proof of Theorem 7, one can show that any D ∈ D(⊗2TB,S2) admits the
L2-orthogonal decomposition D = curlTT D +HD, where T D ∈ H1

n(⊗2TB, ∂B), and HD ∈ H⊗
t (B̄,S2).

Then, the fact that curlTT D has zero traction on ∂B suggests that the weak condition (3.2) is equivalent
to

〈〈K,D〉〉L2 =
∫

S1

〈〈Y ,D(N)〉〉dA, ∀D ∈ D(⊗2TB,S2). (3.5)

The above condition simply tells us that for any equilibrated virtual stress D ∈ D(⊗2TB,S2), the virtual
work done by K and Y must be equal. The integrability condition (3.5) is similar to the compatibility
condition for linear strains, see [3, Corollary 3.1]. In practice, the strong integrability conditions (3.3) are
more useful than (3.2) and (3.5) because unlike H⊗

t (B̄,S2) and D(⊗2TB,S2), the space H⊗(B̄,S1,S2) is
finite-dimensional.

Example 10. Let B̄ be the annulus shown in Fig. 1, with ∂B = Ci ∪Co, where Ci and Co are the inner and
the outer circles of ∂B, respectively. Suppose

K(X,Y ) =
[

c1 f(X,Y ) c1 h(X,Y )
c2 f(X,Y ) c2 h(X,Y )

]
, (3.6)

where ci ∈ R, i = 1, 2, and

f(X,Y ) =
X

X2 + Y 2
, h(X,Y ) =

Y

X2 + Y 2
.

Note that if {er, eθ} is the orthonormal basis corresponding to the polar coordinates (r, θ), then K(eθ) =
0, and the traction vector of er only depends on r. We have (K) = 0. Assume that Y is an arbitrary
translation, that is, Y = ĉ1E1 + ĉ2E2, with ĉi ∈ R, i = 1, 2. Now, we study the following cases:

γ1

γ2

γ3

γ4

γ5

Fig. 1. The boundary of an annulus is the union of the inner circle Ci and the outer circle Co. The dimension of H⊗(B̄, S1, S2)
is: (i) 2, if S1 = ∅, (ii) 0, if either S1 = Ci or S1 = Co, and (iii) 2, if S1 = Ci ∪ Co
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i) S1 = ∅: In this case, the condition (3.3b) is trivial and the condition (3.3c) simply implies that K
must be normal to H⊗(B̄, ∅, ∂B). To verify the latter, note that dimH⊗(B̄, ∅, ∂B) = 2b1(B̄) = 2,
and that {Q1,Q2} with

Q1 =
[−h f

0 0

]
, and Q2 =

[
0 0

−h f

]
,

is a basis for H⊗(B̄, ∅, ∂B). Then, it is straightforward to show that 〈〈K,Qi〉〉L2 = 0, i = 1, 2, and
one concludes that (3.3c) holds. Therefore, the problem (3.1) is integrable in this case.

ii) S1 = Ci: Since gradY = 0, and K(eθ) = 0, we conclude that K and Y satisfy (3.3b). Moreover,
since dim H⊗(B̄, Ci, Co) = 2b1(B̄, Ci) = 0, the condition (3.3c) is trivial, and hence, the problem (3.1)
is integrable.

iii) S1 = ∂B: One can show that K and Y satisfy (3.3b). We also have dim H⊗(B̄, ∂B, ∅) = 2b1(B̄, ∂B) =
2, and {T 1,T 2} with

T 1 =
[

f h
0 0

]
, and T 2 =

[
0 0
f h

]
,

is a basis for H⊗(B̄, ∂B, ∅). Let ri and ro be the radii of Ci and Co, respectively. Then, one can write

〈〈K,T j〉〉L2 = 2π cj ln
(

ro

ri

)
,

∫

∂B
〈〈Y ,T j(N)〉〉ds = 4π ĉj ,

⎫
⎪⎬

⎪⎭
j = 1, 2.

Therefore, (3.3c) holds if and only if ĉj = cj ln
√

ro/ri, j = 1, 2. In particular, note that if ∂B is
fixed (i.e., ĉ1 = ĉ2 = 0) and K �= 0, then the problem (3.1) does not admit any solution.

Note that the dimension of H⊗(B̄,S1,S2) depends on the topological properties of both B̄ and S1. In
general, unlike this example, it is not easy to explicitly obtain elements of H⊗(B̄,S1,S2) and they need
to be calculated numerically.

Remark 11. Let us give a more intuitive discussion on the compatibility equations of the previous example.
A simple approach to formulate compatibility equations of deformation gradient F was discussed in [1].
Let us assume that one knows that a material point X0 in the reference configuration after deformation
occupies the position x0 in the current configuration. Now compatibility of F is equivalent to being able to
find the position of any other material point X in the current configuration. Assuming that the material
manifold is path-connected, consider a path γ that connects X0 to X in the reference configuration. The
position of the material point X can be calculated as

x = x0 +
∫

γ

Fds.

The deformation gradient F is compatible if and only if the right-hand side of the above equation is
independent of the path γ. When the body is simply connected, this is equivalent to

∫
γ

Fds = 0, for any

closed path γ. One can show that this is equivalent to the condition curlTF = curlTK = 0 (the bulk
compatibility equations).8 For the sake of simplicity, let us assume that the prescribed displacements are
zero, i.e., part of the boundary or the whole boundary is fixed. When a component of the boundary is
fixed, we must have X = X0 +

∫
γ

Fds, or equivalently
∫

γ
Kds = 0, where γ is a curve joining X0 and

X, which are located on the fixed portion of the boundary. Now let us consider the three cases separately.

8This condition guarantees that
∫
γ F ds = 0, for any null-homotopic (contractible) path, e.g., γ1 in Fig. 1.
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i) S1 = ∅: This case was discussed in [1]. In addition to the bulk compatibility equations, one needs
the following condition9

∫

γ2

Fds =
∫

γ2

Kds = 0, (3.7)

where γ2 is the generator of the first de Rham cohomology group (see Fig. 1). Note that (3.7) is
equivalent to (3.3c). For a proof see [4, Theorem 3.2.3].

ii) S1 = Ci (or S1 = Co): In this case, we have
∫

Ci
Kds = 0. Since γ2 can be continuously shrunk to

Ci, the bulk compatibility equations tell us that
∫

γ2
Kds =

∫
Ci

Kds = 0. Note that this condition
is also trivially satisfied on any path that starts on Ci and ends on Ci, e.g., γ3 in Fig. 1.

iii) S1 = ∂B: In this case, we have
∫

C0
Kds =

∫
Ci

Kds = 0. Similar to the previous case,
∫

γ2
Kds = 0,

is trivial. Assuming that the bulk compatibility equations are satisfied, integral of K over curves
that start on a boundary component and end on the same boundary component (e.g., paths γ3 and
γ4 in Fig. 1) trivially vanishes. What cannot be concluded from the bulk compatibility equations is
vanishing of this integral over a path that starts from a boundary component and ends on the other
boundary component, e.g., the path γ5 in Fig. 1, which is a generator of the first relative de Rham
cohomology group of the pair (B̄, ∂B). The simplest choice for the calculation of

∫
γ5

Kds is the line
segment that connects the points with coordinates (ri, 0) and (ro, 0), for which we have

∫

γ5

Kds = ln
(

ro

ri

) [
c1
c2

]
.

Thus, the compatibility simply implies that K = 0.
Note that for sufficiently smooth displacement gradients and boundary displacements and for the special
cases S1 = ∅, ∂B, the equivalence of the approach of this remark and that of Theorem 7 is a consequence
of Theorem 3.2.3 of Schwarz [4] and Theorem 6 of Duff [13]. In particular, Duff [13, Theorem 6] shows
that the condition (3.3c) with S1 = ∂B is equivalent to

∫

Ci

Kds =
∫

∂Ci

Y = Y (Xi
2) − Y (Xi

1), i = 1, . . . , b1(B̄, ∂B),

where Cis are the generators of the first relative singular homology group H1(B̄, ∂B; R). Note that each
∂Ci = [Xi

1,X
i
2] is an oriented pair of points (Xi

1,X
i
2) such that Xi

1 and Xi
2 lie on ∂B.

Example 12. Our conclusion in the part (iii) of the previous example can be extended in the following
sense: Let B̄ be a 2D non-simply connected body containing a finite number of holes, see Fig. 2a. We
have

dim H⊗(B̄, ∂B, ∅) = dim H⊗(B̄, ∅, ∂B) = 2b1(B̄) = 2(# of holes).

Let K �= 0 be an element of H⊗(B̄, ∂B, ∅). Since H⊗(B̄, ∂B, ∅) and H⊗(B̄, ∅, ∂B) are L2-orthogonal, one
concludes that K satisfies the integrability conditions (3.3) with S1 = ∅, and therefore, K is compatible.
However, if we impose zero displacement on ∂B, then it is impossible to satisfy (3.3c), which states that K
must be orthogonal to H⊗(B̄, ∂B, ∅). This means that K is not compatible if we fix the whole boundary.
For 3D bodies, we have (e.g., see [14, page 410])

dim H⊗(B̄, ∅, ∂B) = 3b1(B̄) = 3(genus of ∂B),

dim H⊗(B̄, ∂B, ∅) = 3b2(B̄) = 3
(
(# of components of ∂B) − 1

)
.

9Note that in the nonlinear elasticity literature, the integrand of the first integral is usually written as F dX. Here,

we think of F as a
(2
0

)
-tensor and ds as a 1-form, and hence, F ds is a vector-valued 1-form, which can be integrated in a

Euclidean ambient space.
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(b)(a)

Fig. 2. a A non-simply connected 2D body that has four holes for which dim H⊗(B̄, ∂B, ∅) = 8. b A simply connected 3D
body (a ball with two spherical holes) for which dim H⊗(B̄, ∂B, ∅) = 6

The above discussion for nonzero K ∈ H⊗(B̄, ∂B, ∅) also holds for 3D bodies with b2(B̄) �= 0. Note that
in 2D, the dimension of H⊗(B̄, ∂B, ∅) is nonzero if and only if B̄ is non-simply connected. However, in
3D, this dimension is determined by b2(B̄), which is not related to simply connectedness, see Fig. 2b.

3.2. Linear elasticity

The effects of boundary conditions on the compatibility of the linear strain can be studied using arguments
similar to those of Sect. 2 together with the Hodge–Morrey–Friedrichs-type L2-orthogonal decompositions
introduced in [15]. More specifically, consider the following spaces for 3D bodies:

HS(B̄) := {H ∈ H2(S2TB) : H ∈ ker curl ◦ curl ∩ kerdiv},

HS
c (B̄) := {H ∈ HS(B̄) : H(N) = 0, on ∂B},

HS
g (B̄) := {H ∈ HS(B̄) : H = gradsZ, Z|∂B ∈ RIG},

where RIG := kergrads, is the space of infinitesimal rigid body motions. The spaces HS
c (B̄) and HS

g (B̄)
are finite-dimensional with

dim HS
c (B̄) = 6b1(B̄), and dimHS

g (B̄) = 6b1(B̄, ∂B) = 6b2(B̄).

For any S ∈ H2(S2TB), one can write the following L2-orthogonal decompositions:

S = curl ◦ curlCS + gradsV S + QS + curl ◦ curlAS , (3.8a)

S = curl ◦ curlCS + gradsV S + RS + gradsZS , (3.8b)

where CS ∈ H2
0 (S2TB), V S ∈ H1

0 (TB), QS ∈ HS
g (B̄), curl ◦ curlAS ∈ HS(B̄), RS ∈ HS

c (B̄), and
gradsZS ∈ HS(B̄). By suitably replacing curl◦curl with Dc or Ds, one can write similar decompositions
for 2D bodies. In particular, we have HS(B̄) = H2(S2TB) ∩ ker Dc ∩ kerdiv, and

dim HS
c (B̄) = dim HS

g (B̄) = 3b1(B̄) = 3b1(B̄, ∂B).

The 2D analogues of the decompositions (3.8) read

S = Ds(fS) + gradsV S + QS + Ds(hS), (3.9a)

S = Ds(fS) + gradsV S + RS + gradsZS , (3.9b)

with fS ∈ H2
0 (B) and Ds(hS) ∈ HS(B̄). The following Green’s formula holds for any Y ∈ H1(TB) and

S ∈ H1(S2TB):

〈〈gradsY ,S〉〉L2 = −〈〈Y ,divS〉〉L2 +
∫

∂B
〈〈Y ,S(N)〉〉dA. (3.10)
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One can also write Green’s formula for curl ◦ curl as follows [11]: For any S,T ∈ H2(S2TB), we have

〈〈curl ◦ curlT ,S〉〉L2 = 〈〈T , curl ◦ curlS〉〉L2

+
3∑

I=1

∫

∂B
〈〈N ,

−−−−→
curlTEI

× −→
S EI

+
−→
T EI

× −−−−→
curlSEI

〉〉dA,
(3.11)

where × is the standard cross-product of vectors and (curlT )IJ = (curlTT )JI . The 2D counterpart of
(3.11) reads as follows: Let u∂ be the (oriented) unit vector field along ∂B. Then, for any T ∈ H2(S2TB)
and f ∈ H2(B), one can write

(3.12)

The classical compatibility problem for the linear strain can be stated as follows.

Given ε ∈ H2(S2TB), find a displacement field U ∈ H1(TB) such that ε = gradsU . (3.13)

The decompositions (3.8b) and (3.9b) allow one to easily prove the following theorem.

Theorem 13. The compatibility problem (3.13) admits a solution if and only if

curl ◦ curl ε = 0 (or Dc(ε) = 0, if n = 2), (3.14a)

〈〈ε,R〉〉L2 = 0, ∀R ∈ HS
c (B̄). (3.14b)

Proof. The necessity of these conditions simply follows from the relation curl ◦ curl ◦ grads = 0, and
Green’s formula (3.10). On the other hand, if ε ∈ ker curl ◦ curl, then (3.8b) and (3.11) imply that ε
can be decomposed as ε = gradsV ε + Rε + gradsZε. Then, (3.14b) suggests that Rε = 0, and therefore
ε = grads(V ε + Zε). Similar arguments hold for 2D bodies as well. �

Remark 14. Ting [16] obtained a weak formulation for the compatibility of the linear strain by using
a Helmholtz-type decomposition for symmetric tensors. He wrote a condition similar to (3.14b) with
R belonging to the infinite-dimensional space of divergence-free symmetric tensors with zero boundary
tractions. Georgescu [17, Theorem 5.3] derived conditions equivalent to (3.14). In his formulation, instead
of the harmonic space HS

c (B̄), he used the tensor product of infinitesimal rigid body motions and some
specific harmonic vector fields. It is straightforward to show that HS

c (B̄) is equal to that tensor product.

Next, we study the compatibility of the linear strain with prescribed values for the displacement on
∂B. More specifically, we consider the following boundary-value problem:

Given ε ∈ H2(S2TB) and a vector field Y ∈ H3(TB), find a displacement U ∈ H3(TB)
such that

gradsU = ε, on B,

U = Y , on ∂B.

(3.15)

Theorem 15. The following sets of conditions are equivalent, and each set is both necessary and sufficient
for the existence of a solution to (3.15):

i) The weak compatibility equations:

〈〈ε, curl ◦ curlC〉〉L2 = 0, ∀C ∈ H2
0 (S2TB), (3.16a)

〈〈ε,H〉〉L2 =
∫

∂B
〈〈Y ,H(N)〉〉dA, ∀H ∈ HS(B̄). (3.16b)

In 2D, the condition (3.16a) is replaced with

〈〈ε,Ds(f)〉〉L2 = 0, ∀f ∈ H2
0 (B).
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ii) The strong compatibility equations:

curl ◦ curl ε = 0, (3.17a)
∫

∂B

3∑

I=1

{
〈〈N ,

−−−−→
curlAEI

× −−−−−−−−−→
(ε − gradsY )EI

〉〉

+ 〈〈N ,
−→
AEI

× −−−−−−−−−−−−−−−→(
curl(ε − gradsY )

)
EI

〉〉
}
dA = 0, ∀curl ◦ curlA ∈ HS(B̄), (3.17b)

〈〈ε,Q〉〉L2 =
∫

∂B
〈〈Y ,Q(N)〉〉dA, ∀Q ∈ HS

g (B̄). (3.17c)

For 2D bodies, the condition (3.17a) is replaced with Dc(ε) = 0 and (3.17b) is replaced with
∫

∂B
〈〈u∂ , h c(ε − gradsY ) + h,2

−−−−−−−−−→
(ε − gradsY )E1 − h,1

−−−−−−−−−→
(ε − gradsY )E2〉〉ds = 0,

∀Ds(h) ∈ HS(B̄).

Proof. Suppose B̄ is 3D. By using (3.10) and (3.11), it is straightforward to show that the integrability
conditions (3.16) are necessary. For proving the sufficiency of (3.16), note that (3.8a) and (3.16a) suggest
that ε can be decomposed as ε = gradsV ε +Qε +curl ◦curlAε. One can also write the Helmholtz-type
decomposition Y = divT Y + W Y , where T Y has zero traction on ∂B and gradsW Y = 0. Next, we
define D := gradsY . Using (3.8a) and the relation curl ◦ curlD = 0, one can write the decomposition
D = gradsV D + QD + curl ◦ curlAD. Let U := V ε − V D + Y . Then, we have U |∂B = Y , and
gradsU = ε + H̃, where

H̃ := curl ◦ curl(AD − Aε) + QD − Qε ∈ HS(B̄).

On the other hand, (3.10) and the condition (3.16b) allow one to write

〈〈H̃,H〉〉L2 =
∫

∂B
〈〈Y ,H(N)〉〉dA − 〈〈ε,H〉〉L2 = 0, ∀H ∈ HS(B̄),

which means that H̃ is also orthogonal to HS(B̄). Hence, H̃ = 0 and U is a solution of (3.15). This
shows that the integrability conditions (3.16) are also sufficient.

Next, we show that (3.16) and (3.17) are equivalent. The fact that H2
0 (S2TB) is dense in L2(S2TB)

and Green’s formula (3.10) suggest that (3.16a) is equivalent to (3.17a). The decomposition (3.8a) implies
that (3.16b) is equivalent to (3.17c) together with

〈〈ε, curl ◦ curlA〉〉L2 =
∫

∂B
〈〈Y , (curl ◦ curlA)(N)〉〉dA, ∀curl ◦ curlA ∈ HS(B̄). (3.18)

Using (3.11) and (3.17a), the left-hand side of (3.18) can be written as

〈〈ε, curl ◦ curlA〉〉L2 =
3∑

I=1

∫

∂B
〈〈N ,

−−−−→
curlAEI

× −→ε EI
+

−→
AEI

× −−−→
curl εEI

〉〉dA. (3.19)

On the other hand, (3.10) and (3.11) allow one to write the right-hand side of (3.18) as
∫

∂B
〈〈Y , (curl ◦ curlA)(N)〉〉dA = 〈〈gradsY , curl ◦ curlA〉〉L2

=
3∑

I=1

∫

∂B
〈〈N ,

−−−−→
curlAEI

× −−−−−→
gradsY EI

+
−→
AEI

× −−−−−−−−−−→
curl(gradsY )EI

〉〉dA.

(3.20)
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Substituting (3.19) and (3.20) into (3.18) gives the condition (3.17b), and therefore, (3.16) and (3.17)
are equivalent. Note that (3.20) tells us that similar to (3.3b), the condition (3.17b) only depends on
the values of Y on ∂B. We do not know how to further simplify (3.17b) to more clearly reflect this fact.
Similar arguments together with (3.12) allow one to prove the 2D case as well. �

Remark 16. The integrability conditions (3.17) imply that a linear strain ε with prescribed boundary-
value Y is compatible if and only if curl ◦ curl ε = 0 (or Dc(ε) = 0), ε and Y satisfy (3.17b) on ∂B, and
for any equilibrated virtual stress H in the finite-dimensional space HS

g (B̄), the work done by ε must be
the same as the work done by Y . Rostamian [3, Corollary 3.1] showed that the compatibility problem
(3.15) admits a solution if and only if

〈〈ε,σ〉〉L2 =
∫

∂B
〈〈Y ,σ(N)〉〉dA, ∀σ ∈ D(S2TB), (3.21)

where D(S2TB) is the space of symmetric divergence-free tensors. The decompositions (3.8) tell us that
any σ ∈ D(S2TB) can be decomposed as σ = curl ◦ curlCσ + Hσ, where Cσ ∈ H2

0 (S2TB), and
Hσ ∈ HS(B̄). Thus, the condition (3.21) is equivalent to (3.16b) together with

〈〈ε, curl ◦ curlC〉〉L2 =
∫

∂B
〈〈Y , (curl ◦ curlC)(N)〉〉dA, ∀C ∈ H2

0 (S2TB). (3.22)

By using (3.10), the right-hand side of the above equation can be written as
∫

∂B
〈〈Y , (curl ◦ curlC)(N)〉〉dA = 〈〈gradsY , curl ◦ curlC〉〉L2 = 0,

where the last equality follows from the fact that the images of grads and curl ◦ curl(H2
0 (S2TB))

are normal to each other. Therefore, the integrability condition (3.21) is equivalent to the integrability
conditions in Theorem 15. Note that in practice, it is much easier to use (3.17) instead of (3.21), because
unlike HS

g (B̄), the space D(S2TB) is infinite-dimensional.

Remark 17. By considering equilibrated virtual stresses with zero traction on S2, the integrability con-
dition (3.21) also expresses the compatibility condition for linear strains with prescribed displacements
on S1 ⊂ ∂B (this extension of the result of Dorn and Schild [2] was first proved by Gurtin [18, page
188] for simply connected bodies and then by Rostamian [3, Corollary 3.1] for arbitrary bodies). The
compatibility problem (3.15) was discussed only for the case S1 = ∂B as the decompositions (3.8a) and
(3.9a) are written by imposing boundary conditions on ∂B. If one can find a decomposition for symmetric
harmonic tensors with appropriate boundary conditions on S1 and S2 (similar to those of Theorem 1),
then the arguments in the proof of Theorem 15 can be used to extend the strong integrability conditions
(3.17) to the compatibility problem with prescribed displacements on S1 �= ∂B.

Example 18. The conclusions of Example 12 hold for linear strains as well. More specifically, suppose
ε �= 0 belongs to HS

g (B̄). This means that B̄ is non-simply connected in 2D or b2(B̄) �= 0 in 3D. Since
HS

g (B̄) and HS
c (B̄) are orthogonal to each other, ε satisfies the conditions (3.14), and therefore, it is

compatible. On the other hand, if we impose zero displacement on ∂B, then it is impossible to satisfy
(3.17c), and hence, ε is not compatible if we fix ∂B.

4. Stress tensors and body forces

For the sake of completeness, we show that the results of Sect. 2 are also useful for studying the existence of
a tensor field that is in equilibrium with a given body force field and takes a prescribed boundary traction.
Note that the linear structure of R

n allows one to consider body forces and first Piola–Kirchhoff stress
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tensors as vector fields and
(
2
0

)
-tensor fields on B, respectively. We consider the following boundary-value

problem.

Given a body force B ∈ H1(TB) and an arbitrary traction vector field t of class H
3
2 on

S1, find a first Piola–Kirchhoff stress tensor P ∈ H2(⊗2TB) such that
divP + B = 0, on B,

P (N) = t, on S1.

(4.1)

Theorem 19. If S1 �= ∂B, the boundary-value problem (4.1) always admits a solution. If S1 = ∂B, (4.1)
admits a solution if and only if the body B is in force equilibrium, that is

∫

B
BdV +

∫

∂B
tdA = 0. (4.2)

Proof. The Hodge-star operator allows one to rewrite the boundary-value problem (4.1) as follows:

Given BIdV ∈ H1(ΛnT ∗B) and ∗(tIN)� ∈ H
3
2 (Λn−1T ∗B|S1), I = 1, . . . , n, find ∗−→P �

EI
∈

H2(Λn−1T ∗B) such that
d(∗−→

P �
EI

) = −BIdV, on B,

t(∗−→
P �
EI

) = ∗(tIN)�, on S1.

The above problem automatically satisfies the integrability condition (2.7a). On the other hand, the
condition (2.7b) can be written as

〈〈BI , f〉〉L2 = 〈〈 ∗ BI , ∗f〉〉L2 = −
∫

S1

t(∗tIN)� ∧ ∗n(∗f)

= −
∫

S1

f tIdA, ∀f ∈ G(B,S2) := {g ∈ H1(B) : grad g = 0 and g|S2 = 0}.

If S2 �= ∅, then G(B,S2) only contains the zero function and (2.7b) holds for any BI and tI . If S2 = ∅,
then G(B,S2) contains constant functions, and (2.7b) simply reads

∫
B BIdV +

∫
∂B tIdA = 0, I = 1, . . . , n,

which is equivalent to (4.2). �

Remark 20. Consider the boundary-value problem (4.1) for the Cauchy stress tensor, that is, instead of
P consider a symmetric tensor σ. This problem is always integrable if S1 �= ∂B, and if S1 = ∂B, it is
integrable if and only if

〈〈B,Z〉〉L2 +
∫

∂B
〈〈t,Z〉〉dA = 0, ∀Z ∈ RIG,

where RIG is the space of infinitesimal rigid body motions, e.g., see [3, Theorem 2.2]. This result can be
proved using the Helmholtz-type decomposition mentioned in the proof of Theorem 15. The fact that any
element of RIG is determined by a constant vector and a constant skew-symmetric matrix implies that
the above condition is equivalent to

∫

B
BdV +

∫

∂B
tdA = 0, and

∫

B
X × BdV +

∫

∂B
X × tdA = 0,

where X × B and X × t denote the moments of B and t with respect to the origin. Therefore, the
boundary-value problem (4.1) for symmetric tensors with S1 = ∂B is integrable if and only if the body
B is in both force and moment equilibrium.
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