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Abstract Wederive the compatibility equations of L2 displacement gradients on non-simply connected bodies.
These compatibility equations are useful for non-smooth strains such as those associated with deformations
of multi-phase materials. As an application of these compatibility equations, we study some configurations
of different phases around a hole and show that, in general, the classical Hadamard jump condition is not a
sufficient compatibility condition.

Keywords Compatibility equations ·Nonlinear elasticity ·Hadamard jump condition ·Non-simply connected
bodies

1 Introduction

If the displacement field of a deforming body is of H1-class, then the associated L2-strain is not continuous,
in general. For example, consider the following two important classes of problems:

• Non-convex bodies: It is well-known that the standard regularity theorem for solutions of elliptic boundary-
value problems holds on a strongly Lipschitz body if either its boundary is of C1,1-class or the body is
convex, for example see [1, Theorems 2.2.2.3 and 3.2.1.2]. Consequently, in the L2-setting, solutions of the
(linear) elasticity problem on non-convex Lipschitz bodies (such as bodies with reentrant corners, cracks,
or voids) are merely of H1-class, in general.

• Multi-phase materials: Strains associated with deformations of multi-phase bodies1 can be discontinuous
on interfaces between different phases. This means that these strains do not necessarily belong to the
H1-space.

For such L2-strains, the compatibility equations for smooth strains should be appropriately modified. In
[2, Sect. 3.1], we studied the effects of Dirichlet boundary conditions on the strain compatibility problem of
nonlinear elasticity.Wewrote the compatibility equations of smooth strains on domainswith smooth boundaries

1 By a phase in a body we mean a subdomain with a uniform deformation gradient. In this sense, we consider different variants
of martensite in a twinned crystal of martensite as different phases.
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1348 A. Angoshtari, A. Yavari

by using the L2-inner product. In this paper, we extend those compatibility equations to L2-strains on strongly
Lipschitz bodies. For deriving the compatibility equations in [2], we assumed that displacement boundary
conditions are imposed only on boundary-less compact subdomains of the boundary. Here, we also allow
boundary conditions to be imposed on compact subdomains of the boundary with non-empty boundaries.

The main results of this paper are derived in Sect. 2 (Theorems 2, 4) by using a Hodge-type orthogonal
decomposition for second-order tensors. As an application of these compatibility equations, we study some
configurations of different phases around holes in Sect. 3. These examples show that, generally speaking,
the classical Hadamard jump condition is not a sufficient compatibility condition in the presence of holes.
However, we will observe that in some symmetric cases, the Hadamard condition may be sufficient as well.

NotationThroughout this paper,B is an open subset ofR
n , n = 2, 3, which is connected, bounded, and strongly

Lipschitz, that is, the boundary ∂B of B is locally the graph of a Lipschitz continuous function, and B lies only
on one side of ∂B. The closure of B is denoted by B̄. We assume that ∂B = S̄1 ∪ S̄2, where the disjoint open
subsets S1,S2 ⊂ ∂B are admissible patches in the sense of [3, p. 2051]. Roughly speaking, this means that
∂S1 and ∂S2 are either empty or locally graphs of Lipschitz continuous functions with S1 and S2 being on the
opposite sides of the common boundaries. The Cartesian coordinates, the standard orthonormal basis, and the
standard inner product of R

n are denoted by {XI }, {EI }, and 〈〈, 〉〉, respectively. For any nonnegative integer s,
the Sobolev spaces of Hs

(
L2 := H0

)
vector and

(2
0

)
-tensors fields are denoted by Hs(TB) and Hs(⊗2TB),

respectively. Note that the Cartesian components of these Hs-fields belong to the standard Sobolev space
Hs(B). The partial derivative ∂ f/∂XI is denoted by f,I . For any U, Z ∈ L2(TB) and R, T ∈ L2(⊗2TB),
the L2 inner products are defined as 〈〈U, Z〉〉L2 := ∑

I 〈〈U I , Z I 〉〉L2 , and 〈〈R, T 〉〉L2 := ∑
I,J 〈〈RI J , T I J 〉〉L2 .

The summation convention is assumed on repeated indices.

2 The compatibility equations of L2 displacement gradients

Recall that the gradient of a vector field Y is a
(2
0

)
-tensor field given by (gradY)I J := Y I

,J . By interpreting
“, J” as a weak derivative, one can define the gradient of H1 vector fields. Now, consider the following
compatibility problem for L2 displacement gradients with prescribed boundary displacements on S1:

Given a
(2
0

)
-tensor field K ∈ L2(⊗2TB) and an arbitrary vector field U ∈ H1(TB), find a

displacement field U ∈ H1(TB) such that

gradU = K , on B,

U = U, on S1.
(2.1)

The special case S1 = ∅ is the classical compatibility problem for L2 displacement gradients. In order
to write the necessary and sufficient integrability conditions for the compatibility problem (2.1), we need
to briefly review some more notations and results. The divergence of a smooth

(2
0

)
-tensor field T is defined

as (div T )I := T I J
,J . In 3D, one can define the operator (curlTT )I J := εJ K LT I L

,K , where εI K L is the
standard permutation symbol. In 2D, we have the operators (�(T ))I := T I2

,1 − T I1
,2, and (s(Y))I J :=

δ1J Y I
,2 − δ2J Y I

,1, with δ I J being the Kronecker delta. Clearly, s can be defined for H1 vector fields as well.
The other operators can be extended in the distributional sense as follows: For T ∈ L2(⊗2TB), curlTT , �(T ),
and div T are defined such that

〈〈T , curlT Q〉〉L2 = 〈〈curlTT , Q〉〉L2 , ∀Q ∈ C∞
0 (⊗2TB),

〈〈T , s(W)〉〉L2 = 〈〈�(T ),W〉〉L2 , ∀W ∈ C∞
0 (TB),

〈〈T , gradW〉〉L2 = −〈〈div T ,W〉〉L2 , ∀W ∈ C∞
0 (TB),

where C∞
0 (TB) and C∞

0 (⊗2TB) are the spaces of C∞ vector and tensor fields with compact supports in
B. Next, consider the following subspaces of L2

(2
0

)
-tensor fields: H c(B) := {T ∈ L2 : curlTT ∈ L2},

H�(B) := {T ∈ L2 : �(T ) ∈ L2}, Hd(B) := {T ∈ L2 : div T ∈ L2}. Then, one can define the operators
curlT : H c(B) → Hd(B), � : H�(B) → L2(TB), div : Hd(B) → L2(TB), s : H1(TB) → Hd(B), and
grad : H1(TB) → V, where V is either H c(B) or H�(B). One can show that
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The weak compatibility equations of nonlinear elasticity 1349

curlT ◦ grad = 0, div ◦ curlT = 0,

� ◦ grad = 0, div ◦ s = 0.

As was discussed in [4,5], the above relations give rise to some Hilbert complexes, which are isomorphic to
the weak R

n-valued de Rham complex. This means that any result for L2 differential forms and the de Rham
complex has a counterpart for L2 vector and

(2
0

)
-tensor fields.

Let H1(TB,S1) be the space of H1 vector fields that vanish on S1 in the trace sense. The H c, H� , and
Hd spaces contain the H1 space, and therefore, the restriction of their elements to ∂B is not well-defined, in
general. Nonetheless, by using the notions of normal and tangent parts of differential forms discussed in [3,
Sect. 3], it is possible to define some boundary tractions for these spaces. More specifically, for a vector field
Z on ∂B, let T (Z) := T I J Z JEI , and let N be the unit outward normal vector field of ∂B, which is defined
almost everywhere on ∂B. Then, for any T ∈ Hd(B), the normal traction T (N) is well-defined. For any T in
H c and H� and Y‖∂B, the tangent traction T (Y) is well-defined.2 Let Hd(B,S1) be the space of Hd tensor
fields with zero tractions on S1. Similarly, let H c(B,S1) and H�(B,S1) be the space of H c and H� tensor
fields with zero tangent tractions on S1. Then, the weak de Rham complex for differential forms with zero
tangent parts on an admissible patch introduced in [6, Sect. 5.2] implies that grad

(
H1(TB,S1)

)
is a subset of

H c(B,S1) and H�(B,S1). Moreover, curlT
(
H c(B,S1)

)
and s

(
H1(TB,S1)

)
are subsets of Hd(B,S1). The

Green’s formula for differential forms derived in [3, Theorem 3.4] allows one to write the following Green’s
formulas: For arbitrary Y ∈ H1(TB), T ∈ Hd(B), R ∈ H�(B), and Q, S ∈ H c(B), we have

〈〈gradY , T 〉〉L2 = −〈〈Y ,div T 〉〉L2 +
∫

∂B
〈〈Y , T (N)〉〉dA, (2.2a)

〈〈�(R),Y 〉〉L2 = 〈〈R, s(Y)〉〉L2 +
∫

∂B
〈〈Y , R(t∂ )〉〉ds, (2.2b)

〈〈curlT Q, S〉〉L2 = 〈〈Q, curlTS〉〉L2 +
3∑

I=1

∫

∂B
〈〈−→QI × −→

S I , N〉〉dA, (2.2c)

where t∂ is the oriented unit vector field along ∂B, −→QI := QI JEJ is the vector field in the I th row of Q, and
× is the standard cross product of vector fields in R

3. Note that the boundary terms in the above formulas are
interpreted as duality parings in the sense of [3, Proposition 3.3].

By using the Hodge–Morrey decomposition for L2 differential forms on strongly Lipschitz domains (e.g.,
see [7, Theorem 6.3]), one can write the following L2-orthogonal decomposition for any L2

(2
0

)
-tensor field

on a 3D body:
T = gradYT + curlT QT + HT , (2.3a)

where YT ∈ H1(TB, ∂B), QT ∈ H c(B, ∂B), and HT ∈ H⊗(B) := ker div ∩ ker curlT. The 2D analogue of
the above decomposition reads

T = gradYT + s(WT ) + HT , (2.3b)

with YT ,WT ∈ H1(TB, ∂B) and HT ∈ H⊗(B) := ker div ∩ ker �. Corollary 5.4 of [6] suggests that the
infinite-dimensional harmonic space H⊗(B) admits the following finite-dimensional subspace:

H⊗(B,S1,S2) := H⊗(B) ∩ H c(B,S1) ∩ Hd(B,S2),
where H c(B,S1) is replaced with H�(B,S1) in 2D. We have

dimH⊗(B,S1,S2) := n b1(B̄,S1),
where the purely topological property b1(B̄,S1) is the first relative Betti number of the pair (B̄,S1). The 2D
and 3D tensor Laplacian for

(2
0

)
-tensor fields are, respectively, defined as

L (T ) := s ◦ �(T ) − grad ◦ div T ,

L (T ) := curlT ◦ curlT T − grad ◦ div T .

2 These normal and tangent tractions are defined as certain distributions such that one recovers Green’s formula, see [3,
Proposition 3.3 and Theorem 3.4].
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1350 A. Angoshtari, A. Yavari

Now, consider the following boundary-value problem for the tensor Laplacian.

Given Q ∈ L2(⊗2TB), find T ∈ L2(⊗2TB) such thatL (T ) = Q, and depending on dim B,
T satisfies one of the following boundary conditions:

T ∈ H�(B,S1), div T ∈ H1(TB,S1),
T ∈ Hd(B,S2), �(T ) ∈ H1(TB,S2),

}
2D B.C.

T ∈ H c(B,S1), div T ∈ H1(TB,S1),
T ∈ Hd(B,S2), curlTT ∈ H c(B,S2).

}
3D B.C.

(2.4)

Since H⊗(B,S1,S2) is finite-dimensional, it is a closed subspace of L2(⊗2TB) and one can write the
following decomposition

L2(⊗2TB) = H⊗(B,S1,S2) ⊕ H⊗(B,S1,S2)⊥,

where H⊗(B,S1,S2)⊥ is the orthogonal complement of H⊗(B,S1,S2). By using the integrability condition
of the Hodge Laplacian with mixed boundary conditions discussed in [6, Theorem 6.1], one concludes that the
problem (2.4) admits a solution if and only if Q ∈ H⊗(B,S1,S2)⊥. Moreover,H⊗(B,S1,S2) is the space of
solutions of (2.4) for Q = 0. Consequently, we can define the Green’s operator

G : H⊗(B,S1,S2)⊥ → H⊗(B,S1,S2)⊥,

where for any Q ∈ H⊗(B,S1,S2)⊥, G (Q) is defined to be the unique solution of (2.4) that belongs to
H⊗(B,S1,S2)⊥. The Green’s operator allows one to write a Friedrichs-type decomposition for the harmonic
space H⊗(B). More specifically, let

H⊗
g (B,S1) := H⊗(B) ∩ grad

(
H1(TB,S1)

)
,

H⊗
s (B,S2) := H⊗(B) ∩ s

(
H1(TB,S2)

)
,

H⊗
c (B,S2) := H⊗(B) ∩ curlT

(
H c(B,S2)

)
,

H⊗
0 (B,S2) := H⊗(B) ∩ Hd(B,S2).

Note thatH⊗
0 (B,S2) is the space of harmonic tensor fields with zero traction vector field on S2. One concludes

that:

Lemma 1 The harmonic space H⊗(B) admits the following L2-orthogonal decomposition

H⊗(B) = H⊗
0 (B,S2) ⊕ H⊗

g (B,S1). (2.5)

Furthermore,H⊗
0 (B,S2) can be orthogonally decomposed asH⊗(B,S1,S2)⊕W, where depending on dimB,

W is either H⊗
s (B,S2) or H⊗

c (B,S2).
Proof As the proof is similar to that of the Friedrichs-type decomposition for differential forms derived in
[2, Theorem 1], we only mention the main steps of the proof. The orthogonality of the components of the
above decompositions follows from Green’s formulas (2.2). Any H ∈ H⊗(B) can be uniquely decomposed
as H̄ + H⊥, where H̄ ∈ H⊗(B,S1,S2) and H⊥ belongs to the orthonormal complement of H⊗(B,S1,S2)
in H⊗(B). In 3D, H⊥ can be uniquely decomposed as

H⊥ = curlT ◦ curlTG (H⊥) − grad ◦ div G
(
H̃

)
, (2.6)

where H̃ := H⊥ − curlT ◦ curlTG (H⊥). Consequently, any H ∈ H⊗
0 (B,S2) can be decomposed as H̄ +

curlT ◦ curlTG (H⊥), which gives the decomposition for H⊗
0 (B,S2). The corresponding decomposition in

2D can be derived analogously. The decomposition (2.5) then follows from this decomposition together with
(2.6). ��

Now, we are in a position to write the necessary and sufficient integrability conditions for the compat-
ibility problem (2.1). Our main tools are the Hodge–Morrey decompositions (2.3) and the Friedrichs-type
decomposition (2.5).
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The weak compatibility equations of nonlinear elasticity 1351

Theorem 2 (The compatibility equations for L2 displacement gradients) The following conditions are both
necessary and sufficient for the existence of a solution to (2.1):

2D

{
�(K ) = 0, (2.7a)

〈〈K , H〉〉L2 = ∫
S1

〈〈U, H(N)〉〉ds, ∀H ∈ H⊗
0 (B,S2), (2.7b)

3D

{
curlTK = 0, (2.8a)

〈〈K , H〉〉L2 = ∫
S1

〈〈U, H(N)〉〉dA, ∀H ∈ H⊗
0 (B,S2). (2.8b)

Proof As the proofs in 2D and 3D are similar, we only prove the 3D case. The necessity of (2.8) simply
follows from the fact that curlT ◦ grad = 0, and Green’s formula (2.2a). Conversely, suppose the conditions
(2.8) hold. Then, the Hodge–Morrey decomposition (2.3a), the decomposition (2.5), and (2.8a) allow one to
write the decomposition K = gradY K + Ĥ K + grad ZK , with Y K ∈ H1(TB, ∂B), Ĥ K ∈ H⊗

0 (B,S2), and
ZK ∈ H⊗

g (B,S1). Similarly, R := gradU admits the decomposition R = gradY R + Ĥ R +grad ZR. Define

U := Y K + ZK + U − Y R − ZR. (2.9)

Then, U |S1 = U |S1 , and gradU = K + Ĥ R − Ĥ K . Note that Ĥ R − Ĥ K ∈ H⊗
0 (B,S2). On the other hand,

Ĥ R − Ĥ K is also normal to H⊗
0 (B,S2) since for any H ∈ H⊗

0 (B,S2), the condition (2.8b) implies that

〈〈Ĥ R − Ĥ K , H〉〉L2 =
∫

S1

〈〈U, H(N)〉〉dA − 〈〈K , H〉〉L2 = 0.

Therefore, Ĥ R − Ĥ K = 0, and U defined in (2.9) is a solution of (2.1). ��
Remark 3 Note that the condition (2.8a) implicitly implies that K must belong to H c(B). TheHelmholtz–Weyl
decompositions for differential forms on strongly Lipschitz domains derived in [7, Theorem 6.2] allow one to
write the following decomposition for 3D bodies:

L2(⊗2TB) = ker curlT ⊕ curlT(H c(B, ∂B)).

This suggests that (2.8a) is equivalent to 〈〈K , curlTT 〉〉L2 = 0,∀T ∈ H c(B, ∂B). Similarly, (2.7a) is equivalent
to 〈〈K , s(Z)〉〉L2 = 0, ∀Z ∈ H1(TB, ∂B).

Next, we write an alternative expression of the compatibility equations of Theorem 2, which is more
appropriate for some multi-phase bodies. Suppose B consists of finitely many disjoint, strongly Lipschitz,
open subsets {Bi } such that B̄ = ⋃

i B̄i , see Fig. 1.3 Let Ii, j be the (n − 1)-dimensional interface of two
different phases Bi and B j . It is straightforward to show that piecewise H1 fields with respect to {Bi } are
of H1-class on B if and only if their traces on all Ii, j ’s are single-valued. This means that a piecewise H1

displacement field with respect to {Bi } is of H1-class on B if and only if different phases do not slip relative
to each other along the interfaces. The compatibility equations on a multi-phase body B that guarantee the
existence of a displacement in H1(TB) can be stated as follows.

Theorem 4 Suppose B consists of the subdomains {Bi } and let K i := K |Bi . The compatibility equations (2.8)
are equivalent to:

curlTK i = 0, (2.10a)

K i (Z) = K j (Z), ∀Z‖Ii, j , (2.10b)

K (Z)|S1 = (gradU)(Z), ∀Z‖S1, (2.10c)
∑

i

〈〈K i , λi 〉〉L2 =
∫

S1

〈〈U, λ(N)〉〉dA, ∀λ ∈ H⊗(B,S1,S2). (2.10d)

In 2D, the condition (2.10a) is replaced with �(K i ) = 0.

3 This assumption is not appropriate for all multi-phase bodies, e.g., the finemixture of phases shown in [8, Fig. 6]. Nonetheless,
as we discuss in the next section, it is useful for studying some local arrangements of different phases.
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1352 A. Angoshtari, A. Yavari

Fig. 1 A body consisting of finitely many strongly Lipschitz subdomains

Proof First, we show that (2.8a) is equivalent to (2.10a) and (2.10b). If (2.8a) holds, then the weak definition
of curlT suggests that each K i is also curlT-free. Using Green’s formula (2.2c) and arguments similar to those
of [9, Lemma 5.1], one concludes that piecewise Hd tensors with respect to {Bi } belong to Hd(B) if and only if
their tangent tractions are single-valued along all the interfaces. These arguments prove the above equivalence.
The fact that 〈〈K , λ〉〉L2 = ∑

i 〈〈K i , λi 〉〉L2 implies that (2.10d) is a subcondition of (2.8b), and therefore, if
the latter holds so does the former. The condition (2.8b) also suggests that the projections of the curlT-free
tensors K and gradU on H⊗

0 (B,S2) are the same and since the tangent tractions of these tensors on S1 are
determined by these projections, one concludes that (2.8b) also implies (2.10c). Thus, (2.8) ⇒ (2.10). For
proving the converse, Lemma 1 tells us that it suffices to show that (2.10) results in

〈〈K , curlTS〉〉L2 =
∫

S1

〈〈U, (curlTS)(N)〉〉dA, ∀curlTS ∈ H⊗
c (B,S2).

By using (2.10c), one can write

〈〈K , curlTS〉〉L2 =
3∑

I=1

∫

S1

〈〈−→S I × −→
K I , N〉〉dA =

3∑

I=1

∫

S1

〈〈−→S I × −−−−−→
(gradU)I , N〉〉dA

= 〈〈gradU, curlTS〉〉L2 =
∫

S1

〈〈U, (curlTS)(N)〉〉dA.

Therefore, (2.10) ⇒ (2.8). The 2D case can be proved similarly. ��
Remark 5 The condition (2.10b) is the classical Hadamard jump condition, e.g., see [8]. This condition is
necessary and sufficient for piecewise H c tensor fields to belong to H c(B). The conditions (2.10a)–(2.10c)
are local in the sense that they depend on the values of displacement gradients on each phase Bi . On the other
hand, (2.10d) depends on the global topology of B and S1. Note that in practice, the compatibility equations
of Theorem 4 are more useful than those of Theorem 2 because unlike the conditions (2.7b) and (2.8b),
which are written in terms of the infinite-dimensional space H⊗

0 (B,S2), the condition (2.10d) involves the
finite-dimensional space H⊗(B,S1,S2).

3 The compatibility of multi-phase bodies in the presence of holes

As an application of the L2 compatibility equations that were derived earlier, we next study the compatibility of
some local 2D arrangements of different phases around a hole.We begin our discussion by considering circular
holes and later, we also consider holes with arbitrary shapes. Assume that B is an annulus such as the one
depicted in Fig. 2. In this case, it is straightforward to show that the space of harmonic tensorsH⊗(B, ∅, ∂B)
in the compatibility condition (2.10d) is two-dimensional with the basis {Q1, Q2}, where

Q1(X, Y ) =
[−h(X, Y ) f (X, Y )

0 0

]
, and Q2(X, Y ) =

[
0 0

−h(X, Y ) f (X, Y )

]
, (3.1)
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The weak compatibility equations of nonlinear elasticity 1353

Fig. 2 An annulus composed of three different phases A, B, and C

with

h(X, Y ) = Y

X2 + Y 2 , and f (X, Y ) = X

X2 + Y 2 .

Theorem 4 tells us that if S1 = ∅, the Hadamard jump condition is necessary and sufficient for the
compatibility of piecewise �-free tensor fields on simply connected bodies. However, as the following example
for a “Volterra-type” displacement gradient shows, in the presence of a hole the compatibility condition (2.10d)
must be verified as the harmonic space H⊗(B, ∅, ∂B) is not trivial anymore.

Example 6 Suppose that the annulus B consists of three subdomains BA, BB , and BC as shown in Fig. 2. We
want to study the compatibility of the L2 tensor field K defined as

K :=
⎧
⎨

⎩

Q1, on BA,
0, on BB,
Q2, on BC .

It is straightforward to show that K satisfies (2.10a). Let K A := K |BA . Vectors tangent to the interface
between A and B and tangent to the interface between A and C can be written as [a0], ∀a ∈ R, and those
tangent to the interface between B and C can be written as [0a], ∀a ∈ R. Note that

K A(X, 0) ·
[
a
0

]
=

[
0 1/X
0 0

]
·
[
a
0

]
=

[
0
0

]
,

KC (X, 0) ·
[
a
0

]
=

[
0 0
0 1/X

]
·
[
a
0

]
=

[
0
0

]
,

KC (0, Y ) ·
[
0
a

]
=

[
0 0

−1/Y 0

]
·
[
0
a

]
=

[
0
0

]
.

Therefore, one concludes that K A, K B , and KC satisfy the Hadamard jump condition (2.10b). The condition
(2.10c) is trivial for compatibility without boundary conditions as S1 = ∅. Since {Q1, Q2} is a basis for
H⊗(B, ∅, ∂B), the condition (2.10d) is equivalent to 〈〈K , Qi 〉〉L2 = 0, i = 1, 2. However, note that

〈〈K , Q1〉〉L2 = 〈〈K A, (Q1)|BA〉〉L2 = π ln

(
ro
ri

)
�= 0,

〈〈K , Q2〉〉L2 = 〈〈KC , (Q2)|BC 〉〉L2 = π

2
ln

(
ro
ri

)
�= 0,

where ri and ro are, respectively, the radii of the inner and outer boundary circles. Therefore, K does not satisfy
(2.10d) and is not compatible. In fact, the L2-orthogonal decomposition of �-free tensor fields discussed in
[4, Sect. 3.1] implies that K can be decomposed as

K = 1

2
Q1 + 1

4
Q2 + gradY .

The condition (2.10d) tells us that the harmonic component 1
2 Q1+ 1

4 Q2 is the obstruction to the compatibility
of K .
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(a) (b) (c)

Fig. 3 Some angular arrangements of the phases A, B, andC around a hole. If the displacement gradient of each phase is constant,
then the Hadamard jump condition is the necessary and sufficient compatibility condition for all these three arrangements

Solid–solid phase transformations such as martensitic transformations near transformation temperatures
can result in complicated arrangements of phases. Each phase in martensitic transformations has a constant
deformation gradient called the transformation strain [8]. In the following examples, we study the compatibility
of different arrangements of phases with constant displacement gradients around a hole. Phases are indicated
by capital letters A, B, etc., and the associated constant displacement gradients belong toR

2×2 and are denoted
by the corresponding bold letters A, B, etc.

Example 7 In this example, we study the angular arrangements of phases around a hole shown in Fig. 3 as
follows:

• Single-phase: Consider the single-phase annulus depicted in Fig. 3a.Clearly, the conditions (2.10a)–(2.10c)
are all trivial in this case. Let Ai j , i, j = 1, 2, denote the components of A. Using the basis {Q1, Q2} for
H⊗(B, ∅, ∂B) introduced in (3.1) and the fact that

∫
B h dA = ∫

B f dA = 0, one concludes that

〈〈A, Qi 〉〉L2 = −Ai1

∫

B
h dA + Ai2

∫

B
f dA = 0, i = 1, 2,

and therefore, (2.10d) holds as well and the single-phase case is always compatible.
• Two-phase: Next, consider the two-phase arrangement shown in Fig. 3b, with 0 ≤ α < π . The Hadamard

jump condition tells us that {
Ai1 = Bi1, i = 1, 2, if α = 0,
A = B, if 0 < α < π.

The condition (2.10d) is equivalent to
∑

ϒ=A,B

〈〈ϒ, Qi |Bϒ
〉〉L2 = (ro − ri )

{
(Ai1 − Bi1) (1 + cosα) + (Ai2 − Bi2) sin α

} = 0, i = 1, 2.

Therefore, if the Hadamard jump condition holds so does the condition (2.10d). Consequently, one con-
cludes that the two-phase case with A �= B is always incompatible if 0 < α < π , and if α = 0, it is
compatible if and only if Ai1 = Bi1, i = 1, 2.

• Three-phase: Finally, consider the three-phase arrangement depicted in Fig. 3c, with 0 ≤ α < π and
0 < β < π . The Hadamard jump condition implies that

Ai1 − Ci1 = 0,
(Ai1 − Bi1) cosβ − (Ai2 − Bi2) sin β = 0,
(Bi1 − Ci1) cosα + (Bi2 − Ci2) sin α = 0,

⎫
⎬

⎭
i = 1, 2. (3.2)

On the other hand, (2.10d) can be written as
∑

ϒ=A,B,C

〈〈ϒ, Qi |Bϒ
〉〉L2 = (ro − ri )

{
(Ai1 − Ci1) + (Ai1 − Bi1) cosβ − (Ai2 − Bi2) sin β

+ (Bi1 − Ci1) cosα + (Bi2 − Ci2) sin α
}

= 0, i = 1, 2.

Thus, if the Hadamard jump condition holds so does (2.10d). Therefore, the three-phase arrangement is
compatible if and only if the Hadamard jump conditions (3.2) hold.
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(a) (b)

(d)(c)

Fig. 4 Holes in a laminated arrangement of three phases A, B, and C . If the displacement gradient of each phase is constant, then
the Hadamard jump condition is the necessary and sufficient condition for the compatibility of the symmetric cases (a) and (c).
However, the Hadamard jump condition is not a sufficient compatibility condition for the asymmetric cases (b) and (d)

Note that for all the angular arrangements of Fig. 3, the condition (2.10d) does not give any additional
compatibility equations although it is non-trivial in the sense that dimH⊗(B, ∅, ∂B) �= 0.

Example 8 In the following,we study the local compatibility of holes in the three-phase laminated arrangement
of Fig. 4.

• Symmetric two-phase: For the symmetric two-phase arrangement of Fig. 4a with 0 ≤ δ, the Hadamard
jump condition states that Ai1 = Bi1, i = 1, 2. The symmetry of the phases with respect to the Y -axis
allows one to write the condition (2.10d) as

∑

ϒ=A,B

〈〈ϒ, Qi |Bϒ
〉〉L2 = (Ai1 − Bi1)

∫

BB

h dA = 0, i = 1, 2.

Therefore, the Hadamard jump condition is the necessary and sufficient condition for the compatibility of
the two-phase arrangement of Fig. 4a.

• Asymmetric two-phase: Next, consider the asymmetric two-phase arrangement of Fig. 4b, where 0 < δ ≤
ri . The Hadamard jump condition states that Ai1 = Bi1, i = 1, 2, and the condition (2.10d) reads

∑

ϒ=A,B

〈〈ϒ, Qi |Bϒ
〉〉L2 = (Ai1 − Bi1)

∫

BB

h dA − (Ai2 − Bi2)
∫

BB

f dA = 0, i = 1, 2,

where
∫
BB

h dA and
∫
BB

f dA are not zero. The above conditions suggest that the asymmetric two-phase
arrangement is not compatible if A �= B. Note that this conclusion is similar to that of the case in Fig.
3b. However, for the laminated arrangement, the condition (2.10d) and the Hadamard jump condition are
independent.

• Symmetric three-phase: For the symmetric three-phase arrangement of Fig. 4c, with 0 ≤ δA and 0 < δC ,
it is straightforward to show that the Hadamard jump condition

Ai1 = Bi1 = Ci1, i = 1, 2, (3.3)

is the necessary and sufficient compatibility condition.
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Fig. 5 Laminated arrangements of two and three phases around arbitrary holes

• Asymmetric three-phase: For the asymmetric three-phase arrangement shown in Fig. 4d with 0 ≤ δA ≤ ri
and 0 < δC ≤ ri , the Hadamard jump condition is similar to (3.3) and the condition (2.10d) can be written
as ∑

ϒ=A,B,C

〈〈ϒ, Qi |Bϒ
〉〉L2 = (Bi1 − Ai1)

∫

BA

h dA + (Bi1 − Ci1)

∫

BC

h dA

+
(
ln

ro
ri

){
(Ai2 − Bi2)δA − (Ci2 − Bi2)δC

}
= 0, i = 1, 2.

Therefore, the necessary and sufficient conditions for the compatibility of the three-phase configuration
of Fig. 4d are given by

Ai1 = Bi1 = Ci1,
(Ai2 − Bi2)δA = (Ci2 − Bi2)δC ,

}
i = 1, 2. (3.4)

Note that in this case, similar to the asymmetric case of Fig. 4b, the Hadamard jump condition and
the condition (2.10d) are independent. It is seen that the Hadamard jump condition is not sufficient for
compatibility.

Example 9 Consider an arbitrary domain containing a hole with an arbitrary shape such as the ones depicted in
Fig. 5. For such domains, the harmonic spaceH⊗(B, ∅, ∂B) is two-dimensional and admits a basis {H1, H2},
where

H1(X, Y ) =
[
p(X, Y ) q(X, Y )

0 0

]
, and H2(X, Y ) =

[
0 0

p(X, Y ) q(X, Y )

]
.

Of course, the explicit forms of the functions p and q depend on the specific shape of B. Nonetheless, one can
show that ∫

B
p dA =

∫

B
q dA = 0. (3.5)

Toprove this, letM1 = [
1 0
0 0

]
, andM2 = [

0 0
0 1

]
.Note thatM1 = grad

[
X
0

]
, andM2 = grad

[
0
Y

]
, and since the

image of grad is L2-orthogonal toH⊗(B, ∅, ∂B) (see [4, Sect. 3.1]), one canwrite 〈〈H i , M i 〉〉L2 = 0, i = 1, 2,
which is equivalent to (3.5). In the following, we use (3.5) to study the compatibility of the configurations of
Fig. 5.

• Two-phase: For the laminated two-phase arrangement of Fig. 5, the Hadamard jump condition states that
Ai1 = Bi1, i = 1, 2. By using (3.5) and the fact that

∫
B p dA = ∫

BA
p dA + ∫

BB
p dA, one can write the

condition (2.10d) as

(Ai1 − Bi1)
∫

BA

p dA + (Ai2 − Bi2)
∫

BA

q dA = 0, i = 1, 2.

Therefore, the compatibility equations are

Ai1 = Bi1,
(Ai2 − Bi2)

∫
BA
q dA = 0,

}
i = 1, 2. (3.6)

If
∫
BA

q dA = 0 such as the symmetric case of Fig. 4(a), then the Hadamard jump condition is the necessary
and sufficient compatibility equation. If

∫
BA

q dA �= 0 such as the asymmetric case of Fig. 4b, then the
compatibility equations imply that A = B.
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• Three-phase: For the laminated three-phase arrangement of Fig. 5, the Hadamard jump condition is similar
to (3.3) and the relation

∫
BA

p dA + ∫
BB

p dA + ∫
BC

p dA = 0 allows one to write (2.10d) as

(Bi1 − Ai1)

∫

BB

p dA + (Ci1 − Ai1)

∫

BC

p dA

+ (Bi2 − Ai2)

∫

BB

q dA + (Ci2 − Ai2)

∫

BC

q dA = 0, i = 1, 2.

Thus, the compatibility equations read

Ai1 = Bi1 = Ci1,

(Bi2 − Ai2)
∫
BB
q dA + (Ci2 − Ai2)

∫
BC
q dA = 0,

}
i = 1, 2. (3.7)

If
∫
BB

q dA = ∫
BC

q dA = 0 such as the symmetric arrangement of Fig. 4c, then the Hadamard jump
condition is the necessary and sufficient compatibility equation. If

∫
BB

q dA and
∫
BC

q dA do not vanish,
then one should also consider the second compatibility equation in (3.7). The explicit form of this equation
depends on the specific geometries of a domain and its different phases.

Note that the relations (3.6) and (3.7) hold for any two-phase and three-phase arrangements of phases
regardless of the geometries of phases. However, the Hadamard jump condition and consequently the resulting
compatibility equations depend on the specific arrangement of phases with respect to each other. Using argu-
ments similar to those of this example, it is possible to study the compatibility of any arrangement of phases
around a hole. However, to obtain the explicit form of the compatibility equations, one also needs the explicit
form of a basis of the space of harmonic tensors.

Remark 10 In the case of smooth deformation gradients in a bodyB, the necessary and sufficient compatibility
equations can be stated as

curlTF = 0,
∫

ci
F · dX = 0, i = 1, . . . , β1(B), (3.8)

where {c1, . . . , cβ1(B)} is a set of generators of the first homology group H1(B) [10]. By using arguments
similar to those of [11, Theorem 3], one can show that if F is of C1-class, then the conditions (3.8)2 and
(2.10d) (with S1 = ∅) are equivalent. However, (2.10d) is much more general than (3.8)2 in the sense that the
condition (3.8)2 is meaningless for arbitrary L2 deformation gradients, since the restriction of an L2 mapping
to a 1D curve is not well-defined, in general. One difficulty in using (2.10d) is the calculation of harmonic
tensors. This difficulty is not present when using (3.8)2. In this remark, without providing a rigorous proof,
we investigate the equivalence of (3.8)2 and (2.10d) for piecewise constant deformation gradients.

Suppose B contains a hole and also consists of n phases with constant deformation gradients F(i), i =
1, . . . , n. In this case, any curve γ enclosing the hole is a generator of the first homology group. One then
has

∫
γ
F · dX = ∑n

i=1

∫
γi
F(i) · dX, where γ = ⋃n

i=1 γi , and γi lies entirely in B̄i . It is straightforward to

see that each path integral makes sense when the Hadamard jump condition is satisfied and that
∫
γ
F · dX is

independent of γ up to homology classes. Therefore, the integral on the left side of (3.8)2 is well-defined for
piecewise constant deformation gradients. Note that the above discussion does not imply that (3.8) is sufficient
for the compatibility of piecewise constant deformation gradients. We conjuncture that (3.8) together with the
Hadamard jump condition are also sufficient for the compatibility of piecewise C1 deformation gradients.

For all the previous examples, it is straightforward to check that the compatibility equations resulting from
(2.10d) and (3.8)2 are identical. One advantage of (3.8)2 is that it is easier to use for holes with arbitrary shapes.
For example, we calculate (3.8)2 for triangular and square holes.

• The first example is a rhomboidal hole surrounded by four phases with deformation gradients A,B,C,
and D (see Fig. 6a). Denoting the unit vectors in the X and Y directions by E1 and E2, respectively, the
Hadamard condition implies that

(A − B) · E2 = (B − C) · E1 = (C − D) · E2 = (D − A) · E1 = 0. (3.9)

The condition (3.8)2 for the path shown in Fig. 6a implies that

A · (−E1 + E2) + B · (−E1 − E2) + C · (E1 − E2) + D · (E1 + E2) = 0. (3.10)
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(a) (b) (c)

Fig. 6 Some arrangements of the phases A, B, C , and D around square and triangular holes. The condition (3.8)2 suggests that
the Hadamard jump condition is the necessary and sufficient compatibility condition for (a) and (b), while it is only a necessary
compatibility condition for the case (c)

Note that (3.10) follows from (3.9), i.e., in this example, the condition (3.8)2 suggests that the Hadamard
condition is a sufficient compatibility condition.

• The second example is an equilateral triangular hole surrounded by three phaseswith deformation gradients
A,B, and C (see Fig. 6b). The Hadamard jump condition implies that

(A − B) · E2 = (B − C) ·
(√

3

2
E1 + 1

2
E2

)

= (C − A) ·
(√

3

2
E1 − 1

2
E2

)

= 0. (3.11)

The condition (3.8)2 for the path shown in Fig. 6b implies that

A ·
(

−1

2
E1 +

√
3

2
E2

)

+ B ·
(

−1

2
E1 −

√
3

2
E2

)

+ C · E1 = 0. (3.12)

Note that (3.12) follows from (3.11), i.e., in this example, the condition (3.8)2 suggests that the Hadamard
condition is a sufficient compatibility condition.

• In the third example, we generalize the first example in the following sense: Consider a square hole
surrounded by four phaseswith uniform deformation gradientsA,B,C, andD (see Fig. 6c). TheHadamard
condition implies that

(A − B) · (cosα1E1 + sin α1E2) = (D − A) · (cosα1E1 − sin α1E2) = 0,
(B − C) · (− cosα2E1 + sin α2E2) = (C − D) · (cosα2E1 + sin α2E2) = 0.

(3.13)

Let us assume that 0 < α1, α2 < π/2. The condition (3.8)2 for the path shown in Fig. 6c implies that


2 (D − B) · E1 + 
1 (A − C) · E2 = 0, (3.14)

where 
1 = |γ1| = |γ3| and 
2 = |γ2| = |γ4|. As the path integral in (3.8)2 is path independent after
enforcing theHadamard condition, one can shrink the path γ to the hole and in this limit 
1 = 
2. Therefore,

(D − B) · E1 + (A − C) · E2 = 0. (3.15)

Note that (3.15) is, in general, independent from (3.13). An exception is when α1 = α2 = π/4, which
was studied in the first example. In this case, Hadamard condition is the sufficient compatibility equation.
However, in general, even when α1 = α2, the condition (3.8)2 suggests that the Hadamard jump condition
is not sufficient for compatibility.

Thus, we observe that checking (3.8)2 can be easier than (2.10d). Here, we should emphasize again that
we have not proven that (3.8) is sufficient for the compatibility of piecewise constant deformation gradients.
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4 Discussion

We derived the weak compatibility equations for L2 displacement gradients (or equivalently, L2 deformation
gradients) on strongly Lipschitz bodies. In Theorem 4, we wrote an alternative expression for the weak
compatibility equations that aremore useful formulti-phase bodies. As an application of theweak compatibility
equations,we studied the compatibility of some 2Dconfigurations of different phases around a hole.We showed
that in the presence of holes, the classical Hadamard jump condition is no longer a sufficient compatibility
condition, in general; one needs to consider the condition (2.10d) as well. This condition depends on the
topology of bodies and is non-trivial for non-simply connected bodies.

For angular arrangements of phases with constant deformation gradients around a circular hole, we showed
that although the condition (2.10d) is not trivial, it follows from the Hadamard jump condition, and therefore,
the latter is still the necessary and sufficient compatibility condition even in the presence of a hole. However,
for asymmetric arrangements of phases around a hole such as some laminated arrangements around a circular
hole and a four-phase arrangement around a square hole, we showed that the condition (2.10d) results in
compatibility equations that are independent from the Hadamard condition. In particular, we derived the
compatibility equations (3.4) for asymmetric laminated arrangement of Fig. 4 and the compatibility equations
(3.13) and (3.15) for the four-phase arrangement of Fig. 6c. These equations provide a relation between the
geometry and the deformation gradients of compatible arrangements of phases.

Finally, we should mention that including boundary conditions in the compatibility equations of Theorem
4 can be useful for studying compatibility in the presence of rigid inclusions. For rigid inclusions, one can
assume that the displacement is zero onS1, whereS1 is the boundary of the inclusions. Note that ifS1 �= ∅, then
the condition (2.10c) is non-trivial. Also note that the condition (2.10d) depends on the topological properties
of both B and S1. For example, if B is an annulus, then dimH⊗(B, ∅, ∂B) = 2. If S1 is chosen to be the inner
circle of ∂B, then dimH⊗(B,S1,S2) = 0, and therefore, the condition (2.10d) is trivial although B is not
simply connected.
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