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Abstract

In this paper we introduce a correspondence principle between fractal cracks and notches. This correspondence prin-
ciple defines an equivalent smooth blunt crack for a fractal crack. Once this transformation is accomplished, the laws of
linear elastic fracture mechanics apply. Since the root radius of the equivalent crack is finite, the crack may be further
reduced to a notch visualized as an elongated elliptical void. Therefore, the laws of the LEFM and those of Neuber�s
�notch mechanics� coincide, and they can be used interchangeably. In other words, we have shown that the three mathe-
matical representations of discontinuities in the displacement field, a notch, a classic Griffith crack and a fractal crack,
are related, and the pertinent relationships are determined by the proposed correspondence principle. We also give an
estimation of the size of the plastic region ahead of a self-similar (or self-affine) fractal crack tip.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In fracture mechanics a crack is assumed to be a smooth surface free of stress with discontinuity in dis-
placement field. In most materials this is a highly idealized picture for a crack. For a single crack in reality
the crack surfaces are highly irregular. In some cases a crack is an idealization of a concentrated distribu-
tion of material damage. In such cases a blunt crack would be a more realistic model. One artifact of
assuming a sharp crack is the singularity in the stress field at the crack tip. Even with this unrealistic char-
acteristic the sharp crack stress solutions are useful if there is a very small plastic region around the crack
tip embedded in the elastic stress filed (small-scale yielding). Assuming that cracks are sharp makes fracture
0013-7944/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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mechanics problems mathematically tractable and this is the main reason for this assumption in most of the
literature of fracture mechanics.

There have been extensive experimental studies on the possibility of modelling cracks by fractals. It has
been experimentally established that for many materials crack surfaces are fractals in a finite range of
scales. This means that one could use a fractal as a model for cracks. There are mechanical consequences
if a crack is a fractal of dimension D (or roughness H in the case of self-affine cracks) [25,26]. The depen-
dence of the order of stress singularity at the tip of a fractal crack on its fractal dimension was first realized
by Mosolov [17] for self-similar fractal cracks. Using a different approach, Goldshte�in and Mosolov [11,12]
obtained the same expression for the order of singularity, e.g., a ¼ D�2

2
. Balankin [1] studied the same prob-

lem for self-affine fractal cracks. Other interesting theoretical studies can be seen in the works of Borodich
[2,3], Cherepanov et al. [6], Xie [23], Xie and Sanderson [24], and references therein. Many researchers have
tried to relate the fractal dimension of a crack to its mechanical characteristics, e.g., material toughness.
Universal relations do not seem to exist, though there are still some debates on this in the literature (see
[4] and references therein). It is worth mentioning that in fractal fracture mechanics almost all the conclu-
sions are at most qualitative as the boundary value problem of a fractal crack is not even well-posed.

One way of using the fractal properties of a crack may be to define an equivalent smooth defect and then
carry out the analysis for the equivalent smooth defect. One choice for such a smooth defect would be a
(smooth) blunt crack. In this paper we present a correspondence principle that defines an equivalent blunt
crack for a given self-similar or self-affine crack. All the information about the irregularity of fracture sur-
faces goes into the radius of curvature of the blunt crack tip.

Significant variations from the classic solutions for crack generated stress and strain fields are demon-
strated as the singularity exponent a entering in the near-tip stress field, r�a, sweeps the range 0; 1

2

� �
. This

exponent is related to the fractal dimension of a crack D (or roughness H )1 by a simple formula a ¼ 2�D
2

for
self-similar cracks and a ¼ 2H�1

2H for self-affine cracks. In this paper, a mathematical analysis is presented,
which aims at establishing a finite crack root radius derived from a fractal crack model using some results
from Wnuk and Yavari [22], see Fig. 1. This radius qa turns out to depend on the (nominal) crack length
and the fractal singularity exponent a. Thus, the two limiting values of qa are predicted correctly, namely a

p
for a ! 0 (D ! 2 or H ! 1

2
) and zero for a ¼ 1

2
(D = 1 or H = 1), which describes the classic limit of a

smooth sharp crack. For any known qa a fractal crack can be replaced by an equivalent smooth crack with
a blunt tip. This leads to a finite stress at the leading edge of the equivalent crack, rmax. The maximum
stress evaluated at the edge of the blunt crack turns out to be exactly equal to the values obtained by
use of the Inglis formula
1 It s
more d
rmax ¼ r 1þ 2
a
b

� �
’ 2r

ffiffiffi
a
q

r
q � a; ð1:1Þ
in which for q one substitutes the value predicted by our model qa. Here, a and b designate the semi-axes of
an elongated elliptical void, and r denotes the far-field applied stress. This match brings the present con-
siderations back to the starting point in the classic analysis of Griffith.

The essential results can be stated in form of a �correspondence principle�, as follows: For any given frac-
tal dimension D (or roughness H) a fractal crack may be reduced to an equivalent smooth crack equipped
with a finite root radius dependent on D (or roughness H). Once this transformation is accomplished, the
laws of linear elastic fracture mechanics apply. Since the root radius of the equivalent crack is finite, the
crack may be further reduced to a notch visualized as an elongated elliptical void. Therefore, the laws of
the LEFM and those of Neuber�s [18] �notch mechanics� coincide, and they can be used interchangeably.
hould be mentioned that here D(H) is the local fractal dimension (roughness exponent) at the crack tip. See Appendix A for
etails.



Fig. 1. A fractal crack and its equivalent smooth blunt crack.
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In other words, we have shown that the three mathematical representations of the discontinuities in the dis-
placement field, a notch, a classic Griffith crack and a fractal crack, are related, and the pertinent relation-
ships are determined by the proposed correspondence principle.
2. Stresses generated around classic and fractal cracks. A comparison

In what follows we shall focus our attention on the equations describing the opening stress in front of a
fractal crack of dimension D (or roughness H) and ahead of the smooth (but blunt) classical crack. For a
fractal crack endowed with dimension D (or roughness H), or the singularity exponent a ¼ 2�D

2
ða ¼ 2H�1

2H Þ,
the opening stress for Mode I fracture can be evaluated using the Wnuk and Yavari�s [22] Eq. (A.6) as
rf
yyðr; h; aÞ ¼

K f
I

ð2prÞa cosðahÞ þ a sin h sin½ða þ 1Þh
f g. ð2:1Þ
Within the crack plane h = 0, the opening stress reads
rf
yyðr; 0; aÞ ¼

K f
I

ð2prÞa . ð2:2Þ
Here, the stress intensity factor K f
I generalized for the case of a fractal crack is a function of the applied

stress r, the nominal crack length a, and the singularity exponent, namely
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K f
I ¼

raa�1

p2a�1
2

Z a

0

ða� xÞ2a þ ðaþ xÞ2a

ða2 � x2Þa dx. ð2:3Þ
An alternative form of this expression reads [26]
K f
I ¼ vðaÞr

ffiffiffiffiffiffiffiffiffi
pa2a

p
. ð2:4Þ
Here, a non-dimensional function incorporates the integral in (2.4) with a non-dimensional variable s ¼ x
a

replacing the dimensional coordinate yielding
vðaÞ ¼ 1

p2a

Z 1

0

ð1� sÞ2a þ ð1þ sÞ2a

ð1� s2Þa ds. ð2:5Þ
This is a function continuously varying with a (D or H) from v = 1 at a ¼ 1
2
to v = 2 at a = 0, leading to the

following limiting values of the K-factor
K f
I ¼

r
ffiffiffiffiffiffi
pa

p
for a ¼ 1

2
;

2
ffiffiffi
p

p
r for a ¼ 0.

�
ð2:6Þ
The result for the smooth crack limit a ¼ 1
2

	 

coincides with the LEFM value of KI. The other limit, though,

is dimensionally different from the classic solution. As can be seen K f
I at a = 0 (D = 2 or H ¼ 1

2
) acquires the

physical meaning of Neuber�s [18] stress magnification factor valid for a stress concentrator equivalent to a
void equipped with a finite root radius. For such a void the stress magnification factor, C ¼ 2

ffiffi
a
q

q
,

cf. Griffith [13], enters into the equation predicting the maximum stress at the void edge, namely
rmax ¼ 2

ffiffiffi
a
q

r
r. ð2:7Þ
From (2.6) we have C ¼ 2
ffiffiffi
p

p
’ 3.54, which may be compared with the value of C = 3 expected for a spher-

ical void. Obviously, the discrepancy shown by these two numbers can be tolerated in the context of our
simplified model of the fractal crack, which becomes less accurate when D approaches 2 (or H ! 1

2
) when

the fractal crack degenerates to a plane-filling curve.
The problem consists in determination of the root radius of the hypothetical void visualized as an elon-

gated ellipse or a blunt crack. In order to accomplish this task we shall employ the stress field around a
blunt crack, known in the linear elastic fracture mechanics. According to Creager and Paris [7], the opening
stress ahead of such a crack is asymptotically (as r ! 0) given as
ryy ¼
KIffiffiffiffiffiffiffi
2pr

p q
2r

cos
3h
2

� 
þ KIffiffiffiffiffiffiffi

2pr
p cos

h
2

� 
1þ sin

h
2
sin

3h
2

� �
þ � � � ; ð2:8Þ
where the origin is in the middle between the center of the circular notch and the tip. At h = 0 it reduces to
ryy ¼
KIffiffiffiffiffiffiffi
2pr

p 1þ q
2r

� �
. ð2:9Þ
For a Mode I crack of length 2a in an infinite solid KI ¼ r
ffiffiffiffiffiffi
pa

p
, and the variable r is never less than q

2
.

The early research of Creager and Paris [7] has been consequently expanded by a number of investiga-
tors. Kuang [15] developed two-term expressions for the near-tip expansions representing the components
of the stress field for mixed Mode I/Mode II case. These expressions were then used to predict the crack
trajectory. The founding confirmed the results of the earlier investigation by Francis and Ko [10]. Both
stresses and strains in the vicinity of a blunt crack were investigated for a finite plate subject to tension
by Cui et al. [8]. These authors compared the results of their theoretical studies, involving the complex stress
function adjusted for finite dimensions by a weighted residues technique, with their measurements of strains
via Moire method and electrical resistance gauges.
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It is an established experimental fact that most cracks are highly irregular. Fractal and smooth cracks are
both idealistic models of real cracks. A blunt crack is more realistic than a sharp crack. One may ask the
following question. Suppose one knows from experiments that a crack is a fractal with fractal dimension D

(or roughness exponentH) in some range of scales. Would it be possible to somehow use this information in
the analysis of the irregular crack? The direct use of fractality is difficult as the elasticity problem of a fractal
crack is not even well-posed [26]. We can think of fractal dimension as a microscopic information and one
may be interested in using this information in the continuum treatment of the fractal crack. One way of
using fractal information is to somehow find an equivalent blunt crack for a given fractal crack. At first
glance, it may appear that this equivalent blunt crack cannot be well-defined and there are many choices.
As we will show in the sequel, using stress as a measure of equivalence and postulating a property for the
radius of curvature of the equivalent blunt crack, the correspondence is well-defined.

Let us now equate the stress at the front of the blunt crack, as given by Eq. (2.9) when r is replaced by
half of the root radius, to the stress generated ahead of the fractal crack, see Eq. (2.2). It follows then
2 On
know
is to re
to a bl
crack
corres
as wel
2KIffiffiffiffiffiffiffiffi
pqa

p ¼ K f
I

ð2prÞa
����
r¼r�

; ð2:10Þ
where r* is a matching point. Now we need to make a decision on what value should be substituted for r in
the right hand side of Eq. (2.10). We note that at r = 0 the stress associated with a fractal crack is singular
with exception of the limiting case corresponding to a = 0. To avoid the singularity we propose to adapt a
certain finite distance from the crack tip. We expect the distance r* to be a certain fraction of the root radius
qa. Note that we have attached an index a to the radius q in order to emphasize that the root radius for the
equivalent blunt crack depends on the singularity exponent a. Thus,
r� ¼ nqa; ð2:11Þ

where qa is the radius of curvature of the equivalent blunt crack and the coefficient n is to be determined by
a parametric study, which follows. For a ¼ 1

2
, qa = 0 and we expect qa to increase monotonically when a

decreases from 1
2
to 0. As we will see, this property can be used to find a physically reasonable value for

n. We should emphasize that the following hypothesis will be used to find a physically reasonable value
for the non-dimensional variable n.

Hypothesis. The radius of curvature of the equivalent blunt crack increases monotonically from 0 at a ¼ 1
2
to

a finite value at a = 0.2

Substituting r* = nqa in Eq. (2.10) for r, we arrive at the following relation:
2r
ffiffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffiffi
pqa

p ¼ vðaÞr
ffiffiffiffiffiffiffiffiffi
pa2a

p

ð2pnqaÞ
a . ð2:12Þ
This yields
qaða; nÞ ¼
a
p

vðaÞ
2aþ1na

� � 2
2a�1

. ð2:13Þ
e can justify (or motivate) this hypothesis as follows. Fractal dimension is a measure of irregularity of a fracture surface. We
that a more irregular crack has a weaker stress singularity, i.e., aðDÞ ¼ 2�D

2 is a monotonically decreasing function of D. The idea
place a fractal crack by a blunt crack with a finite radius of curvature. We expect the most irregular crack (D = 2) to correspond
unt crack with a positive radius of curvature. We know that the least irregular crack, i.e., a smooth crack corresponds to a blunt
with radius of curvature q = 0. So, in some sense the radius of curvature should represent the stress singularity of the
ponding fractal crack (or equivalently its irregularity). Thus this new measure of irregularity should be a monotone function of D
l. Therefore, considering two fractal cracks with fractal dimensions D1 < D2 it is reasonable to assume that qD1

< qD2
.



Fig. 2. Normalized radius of curvature plotted versus the fractal singularity exponent for four different values of the size parameter n.
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The plots of the function qa(a,n) are shown in Fig. 2. Four curves illustrate the behavior of qa for chosen
values of the variable n, namely 0.03, 0.05, 0.07 and 0.13. Only one of these curves, depicted by the third
curve from the top, satisfies the condition of zero slope at a = 0 (for larger values of n there is at least one
point in the curve with negative slope). This statement is reinforced by an examination of Fig. 3, in which
for different values of n the derivative of qa with respect to a is shown as a function of a. The first two curves
from the top exhibit two sub-intervals, for which negative and positive values of the function occur. This is
not a desirable feature, as one would expect the root radius to decrease monotonically with a, rather than
increase and then decrease as indicated by the top two curves. It is seen that lowering the value for n reduces
the derivative to negative range, as required (see the bottom curve). The transition from a two-value (neg-
ative and positive) to a single sign (negative) value for the slope occurs near the point n = 0.05. The exact
value of n for which this transition takes place is determined by the root of the equation
oqaða; nÞ
oa

����
a¼0

¼ 0. ð2:14Þ
Fig. 3. Rates of change of the functions depicted in Fig. 2.
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The root is ntrans ’ 0.05066, and we shall round it up to 0.05. Both these numbers are somewhat below the
critical value of n, at which the derivative of qa with respect to n blows up at a approaching the limit 1

2
. The

critical value of n can be found numerically for a ! 1
2
as the root of the following equation:
oq1
2
ð1
2
; nÞ

on
¼ 0. ð2:15Þ
We obtain ncr ’ 0.0525. Somewhat smaller value of n is determined as the transition point from double sign
slope, shown in Fig. 2, to a single sign slope (see the curves drawn in Figs. 2 and 3 for n = 0.05). The ob-
tained sequence of these specific values for n reads as follows: 0.05 < ntrans < ncr. Therefore, we conclude
that if the cut-off value for n is established at the level of 0.05, then all the conditions posed here will be
satisfied. It turns out that the physical meaning of this cut-off value is that of an upper bound for n. Above
the value ncr (which we shall approximate by 0.05), the rate and the function itself become unbounded, and
thus they provide no physically meaningful solution for the root radius. This cut-off threshold of n is labeled
as � and referred to as the upper bound. Substituting � for n in Eq. (2.13) yields the final form for the finite
root radius of the equivalent classical crack
qa ¼
a
p

2aþ1�a

vðaÞ

� � 2
1�2a

. ð2:16Þ
The equation predicts two limiting values of the root radius. For D = 2 (H ¼ 1
2
or a = 0) we recover the

limit predicted earlier, cf. Wnuk and Yavari [22], which is qa ¼ a
p and this corresponds to the stress magni-

fication factor of 3.54. For the smooth crack limit, a ¼ 1
2
one obtains a zero root radius, as would be ex-

pected. The root radius qa is plotted as a function of the fractal dimension D and roughness H in
Fig. 4. Once the radius of the crack tip is established, we can proceed to evaluate the opening stress occur-
ring at the front of the blunt crack. Employing the formula (2.7) we have
rmax ¼ 2
ffiffiffi
p

p
r

vðaÞ
2aþ1�a

� � 1
1�2a

. ð2:17Þ
This expression yields rmax ¼ 2
ffiffiffi
p

p
r for the limiting case of a plane filling fractal crack (D ! 2 or H ! 1

2
),

while for the Griffith crack it becomes singular in agreement with Eq. (2.7). For all the intermediate values
of D (or H), the maximum stress turns out to be a certain multiple of the applied stress, as depicted in
Fig. 5.
3. Size of plastic zone for a fractal crack

In this section using Wnuk and Yavari�s [22] estimation of fractal Mode I stress intensity factor, we gen-
eralize Irwin�s [14,16] method for calculating the size of the plastic zone ahead of the crack tip for fractal
cracks. Assuming that the nominal crack is along the x1-axis, we know that
r22ðr; h ¼ 0Þ ¼ K f
I

ð2prÞa . ð3:1Þ
Stress is equal to the yield stress at the distance rfy ¼ 1
2p

Kf
I

ry

� �1
a

from the crack tip. The size of the plastic zone
(radius of the disk) rfp is calculated as follows
Z rfy

0

K f
I

ð2prÞa dr � rfyry ¼ ðrfp � rfyÞry . ð3:2Þ



(a)

(b)

(c)

Fig. 4. (a) Variation of the fractal equivalent radius of curvature with the fractal singularity exponent a, (b) the same quantity as a
function of D and (c) the same quantity as a function of H.
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Thus
rfp ¼
rfy

1� a
. ð3:3Þ
For a Mode I fractal crack of nominal length 2a in an infinite solid we know that
K f
I ¼ vðDÞr

ffiffiffiffiffiffiffiffiffiffiffiffi
pa2�D

p
; ð3:4Þ
for a self-similar crack and
K f
I ¼ wðHÞr

ffiffiffiffiffiffiffiffiffiffiffiffi
pa

2H�1
H

p
; ð3:5Þ



Fig. 5. (a) Maximum stress evaluated at the edge of the equivalent blunt crack as a function of the fractal singularity exponent a, (b)
maximum stress as a function of D and (c) maximum stress as a function of H.
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for a self-affine fractal crack, where
vðDÞ ¼ 1

p2�D

Z 1

0

ð1þ sÞ2�D þ ð1� sÞ2�D

ð1� s2Þ
2�D
2

ds; ð3:6Þ

wðHÞ ¼ 1

p
2H�1
H

Z 1

0

ð1þ sÞ
2H�1
H þ ð1� sÞ

2H�1
H

ð1� s2Þ
2H�1
2H

ds. ð3:7Þ
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Here we calculate rfp for both self-similar and self-affine cracks. For a self-similar crack
Fig. 6.
as a fu
rfp ¼
2

D
K f

I

ry

�  2
2�D

. ð3:8Þ
Thus
rfp
rp

¼ 1

D
p

D�1
2�DvðDÞ

2
2�D

r
ry

� 2ðD�1Þ
2�D

. ð3:9Þ
Similarly, for a self-affine crack
rfp
rp

¼ Hp
1�H
2H�1wðHÞ

2H
2H�1

r
ry

� 2ð1�HÞ
2H�1

. ð3:10Þ
Fig. 6 shows plots of
rfp
rp
as functions of D and H for different values of sy ¼ r

ry
. As Wnuk and Yavari�s [22]

estimate is not accurate for very rough fractal cracks, we have plotted
rfp
rp

for the ranges D 2 1; 3
2

� �
and

H 2 2
3
; 1

� �
. It is seen that for a given D or H for small values of sy (sy < 0.5) the radius of the fractal plastic

zone is smaller than that of the smooth crack. But for large values of sy (given H or D) the fractal plastic
(a) Size of the plastic region as a function of fractal dimension D for different values of sy ¼ r
rY

and (b) size of the plastic region
nction of roughness exponent H for different values of sy ¼ r

rY
.
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zone is larger than that of the smooth crack. For a given value of D (or H), increasing sy increases the plas-
tic zone size, which is not surprising.
4. Conclusions

A new concept of characteristic length parameter associated with fractal nature of fracture has been pro-
posed. The length parameter is the finite root radius associated with an arbitrary fractal crack. Accepting a
hypothesis that says qa is a monotonically decreasing function in the interval a 2 ½0; 1

2

, we were able to find

qa as a function of a. The length parameter scales down with the singularity exponent a, see Eq. (2.16) and
Fig. 4. We predicted the finite maximum stress occurring at the tip of the fractal crack for all values of the
dimension D (or roughness H), excepting the limit of D = 1 (H = 1), the smooth crack limit, see Eq. (2.17)
and Fig. 5.

The outcome of the application of this length parameter concept is the correspondence principle, which
can be stated as follows:

Correspondence principle. For any given fractal dimension D (or roughness exponent H) a fractal crack
may be reduced to an equivalent smooth crack equipped with a finite root radius dependent on D (or H).

Once this transformation is accomplished, the laws of linear elastic fracture mechanics apply. Since the
root radius of the equivalent crack is finite, the crack may be further reduced to a notch visualized as an
elongated elliptical void. Therefore, the laws of the LEFM and those of Neuber�s �notch mechanics� coin-
cide, and they can be used interchangeably. The following comment is in order for justifying the Correspon-
dence Principle.

The correspondence principle between a fractal crack and a smooth blunt crack and/or an elliptical void,
as proposed in this paper, has been inspired by our earlier research, cf. Ref. [22]. There we have shown that
in the limiting case when the fractal dimension D approaches 2, or when the fractal singularity exponent
a ! 0, the fractal crack behaves as an elliptical void generating a certain finite stress at the root of the crack.
For D = 2, when fractal crack becomes a plane filling entity, this maximum stress was found to be
rmax ¼ 2

ffiffiffi
p

p
r. This result is remarkably similar to Neuber�s concept of the stress magnification factor,

C ¼ rmax

r , which for an elliptical void can be calculated from the classic equation of Inglis, C ¼ 1þ 2 a
b.

For the ratio of the semi-axes a
b ¼

ffiffiffi
p

p
� 1

2
, this equation yields C ¼ 2

ffiffiffi
p

p
, the same result which was obtained

for a fractal crack when D ! 2. Another obvious analogy is the one between the limiting fractal crack case
of D = 2 and a blunt crack. Here, all we need to know is a certain finite root radius assigned to the equiv-
alent blunt crack. When the distribution of stress resulting from the fractal field K f

Ið2prÞ
a and the one for

the blunt crack 2KIðpqÞ
1
2 are set equal to each other at a certain finite distance, say r = q, then one indeed

recovers a finite root radius qD¼2 ¼ a
p. This result is valid, though, only in the strict limit of D = 2 (or a = 0),

and the stress calculated at the crack root is again 2
ffiffiffi
p

p
r. The question now arises, would such a correspon-

dence be possible for an arbitrary fractal dimension? The answer is a qualified �yes�. If the stresses for a
fractal crack and the equivalent blunt crack are compared not at r = 0 (in which case the equation yields
no physically meaningful result), but at r = r*, where the finite distance r* becomes now a function of the
fractal dimension, which enters through the fractal singularity exponent. The symbol r* is then changed to
nqa in order to emphasize the fact that this equivalent root radius depends on the fractal dimension. The
function qa = f(a) is not an arbitrary function, but it is defined by the postulate of equal maximum stresses
for both the fractal and the equivalent blunt crack, and it is carefully adjusted by the detailed parametric
studies of the governing equation (2.13). It turns out that only a certain well defined value for r* is admis-
sible, and it is r* = �qa, where � was calculated in Section 2. Exact physical meaning of r* is not well estab-
lished yet, and deserves further investigation. It can, however, be connected with a certain thickness of the
�fractal boundary layer�. This connection will be a subject of a future research. The quantity qa varies from

a
p

at a = 0 to zero at a ¼ 1
2
, as it would be expected for the classic sharp crack (Griffith) case. The thickness of
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the fractal boundary layer, r*, is a small fraction of qa. When K f
I is substituted into Eq. (2.2), one obtains the

stress distribution
Fig. 7.
singula
depicte
identifi

Fig. 8.
functio
curves
steepes
Theref
should
quanti
ryy

r
¼ p

1
2�avðaÞ 2r

a

� �a

. ð4:1Þ
Distributions of the opening stress ahead of the leading edge of a fractal crack are shown for three values of the fractal
rity exponent a. The top curve corresponds to the Griffith case yielding the singular stress at r = 0; while the other two cases
d (a = 0.3 and a = 0.05) yield a finite stress rmax at the crack tip provided that the smallest permissible distance from the tip is
ed as the thickness of the �fractal boundary layer�. For the Griffith crack this thickness approaches zero.

Maximum stress at the tip of the fractal crack is normalized by the critical stress at fracture and plotted in the log–log scale as a
n of the crack half-length normalized by the root radius, as predicted by Eq. (4.1). The parameter that distinguishes the five
shown is the fractal exponent a varying from a ¼ 1

2
to a approaching zero representing a fractal object of dimension D = 2. The

t line corresponds to the LEFM result, while the horizontal line corresponds to the fractal object, for which D = 2 (or a = 0).
ore, both limiting cases of fracture representations, the LEFM and the UTS theories are recovered. These data suggest that
the fractal dimension depend on the crack length, then the results of this model would closely resemble those derived from the
zed fracture mechanics as found by Pugno and Ruoff [19] and by Taylor et al. [20], and used to describe behavior of short cracks.
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This equation is valid for r P qa, where qa is defined by (2.13). For three values of fractal dimension, as
measured by the parameter a, Fig. 7 shows the resulting stress distributions ahead of a fractal crack. Note
that in the interval (0,qa) the stress is assumed constant and equal the maximum stress at the crack root.
They compare very well with the available literature data, listed in Refs. [7,8,10,15] and they appear to be
physically sound. Fig. 8 shows a log–log plot of maximum normalized stress at the tip of the equivalent
blunt crack as a function of the normalized half crack length (a/qa). The parameter that distinguishes
the five curves shown is the fractal exponent a varying from a ¼ 1

2
to a approaching zero representing a frac-

tal object of dimension D = 2. The steepest line corresponds to the LEFM result, while the horizontal line
corresponds to the fractal object, for which D = 2 (or a = 0). Therefore, both limiting cases of fracture rep-
resentations, the LEFM and the UTS theories are recovered. This is in agreement with the recent results
found independently—and using a different physical models, by Pugano et al. [19] and Taylor et al. [20].

Generalizing Irwin�s method, we calculated the radius of plastic zone ahead of a fractal crack. Using
Wnuk and Yavari�s [22] estimation of K f

I, we were able to compare the size of plastic zones of fractal
and smooth cracks quantitatively.
Appendix A. Stress singularity for a scale-dependent fractal crack

Usually one property of fractals is their homogeneity, i.e., locally all the neighborhoods in a fractal set
are equivalent. It is possible to have a set with variable fractal dimension. This has been observed in tur-
bulence by Catrakis and Dimotakis [5,9] and they called such fractals �scale-dependent fractals�. A scale-
dependent fractal could be a reasonable model for a crack. Suppose one starts from a smooth crack and
under applied loads the crack starts propagating quasi-statically. Assume that the crack stops at some point
and that the new crack can be modelled by a curve which is smooth at the point of initial growth (D = 1)
and becomes rougher and rougher as one approaches the new crack tip. So, suppose the crack is smooth in
the interval (�1,a0) and is a fractal with varying fractal dimension in the interval (a0,a) and the fractal
dimension at a is D. We are interested in stress distribution very close to the crack tip. An example of a
fractal curve with dimension continuously varying from 1 to 2 in the interval [0,1] is given in [21]. Now
assume that stress has the following asymptotic form close to the crack tip,
rijðr; hÞ � r�a. ð5:1Þ

Suppose the crack grows and the crack tip moves to the point x = a + Da. In the growth process the fractal
dimension of the new fracture surfaces may vary but we assume that fractal dimension changes continu-
ously, say it is in the interval (D,D + DD). The area of the new fracture surfaces is,
DA � 2ðDaÞD. ð5:2Þ

This means that,
a ¼ 2� DðaÞ
2

; ð5:3Þ
i.e., the stress singularity exponent is a function of fractal dimension at the crack tip. This is not surprising
as Griffith�s criterion is local.
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