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Abstract. In this paper we make a connection between covariant elasticity based on covariance of energy balance and Lagrang-

ian field theory of elasticity with two background metrics. We use Kuchař’s idea of reparametrization of field theories and
make elasticity generally covariant by introducing a “covariance field”, which is a time-independent spatial diffeomorphism.
We define a modified action for parameterized elasticity and show that the Doyle-Ericksen formula and spatial homogeneity
of the Lagrangian density are among its Euler–Lagrange equations.
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1. Introduction

In the geometric field theory of classical elasticity [6,9,10], one introduces two background metric fields,
one for the material manifold and one for the ambient space manifold. In the classical theory of nonlinear
elasticity and in the absence of defects, these background metrics are given geometric objects with no
dynamics, and in this sense, not all fields are on the same footing. These metrics are “absolute” in the
sense of Anderson [1] and “structural fields” in the sense of Post [8]. It should also be emphasized that
the material and ambient space manifolds are, in general, genuinely different. We should mention that
there are concrete examples for which the material metric is a dynamic field, for example, in geometric
formulation of growth mechanics [11], thermoelasticity [7], and dislocation mechanics [12].

There are two parallel approaches for geometric formulation of elasticity with no clear explicit con-
nection between them. These are the following: (1) Postulating energy balance and its invariance under
arbitrary time-dependent spatial diffeomorphisms (covariance) give all the known balance laws of elasticity
and the Doyle-Ericksen formula all covariantly. (2) Lagrangian field theory of elasticity can be formu-
lated geometrically. Here one assumes existence of a Lagrangian density that, in addition to the standard
fields, explicitly depends on the metrics of the material and ambient space manifolds. Hamilton’s princi-
ple of least action then gives the Euler–Lagrange (EL) equations. The only known connection between
these two approaches is through Noether’s theorem [10]; covariance of Lagrangian density results in the
Doyle-Ericksen formula and homogeneity of the Lagrangian density in both spatial and material settings.

There have been attempts in the literature in making field theories with background metrics generally
covariant [2,3]. Recently, [4] and [5] extended Kuchař’s idea to multisymplectic field theories. The basic
idea is to consider two separate copies of space-time, one with a fixed metric and one with a pulled-back
metric induced by a diffeomorphism η between the two copies of the space-time. The diffeomorphism η
is considered a field by which the space-time metric is reduced to a mere geometric object. Then, Hamil-
ton’s action principle for a modified action with η as an extra field gives the standard EL equations, and
some vacuous EL equations stating that the stress-energy-momentum tensor is divergence free. In other
words, the covariance field η makes the resulting field theory generally covariant and has vacuous EL
equations. Our motivation in this paper is to make a connection between covariant balance laws resulting
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from covariance of energy balance and the Lagrangian field theory of elasticity. We generalize Kuchař’s
parametrization idea to elasticity and show how one can make elasticity spatially covariant.

This paper is structured as follows. In Sect. 2, we first briefly review geometric elasticity, the
Lagrangian field theory of elasticity, covariance of energy balance, and the role of background met-
ric. In Sect. 3, following Kuchař’s idea of parametrization of field theories, we parametrize elasticity by
introducing a “covariance field” that makes the background metric dynamic and obtain its EL equations.
Conclusions are given in Sect. 4.

2. The background metric in geometric elasticity

Let us assume that reference configuration is a Riemannian manifold (B,G) and that the body deforms
in a Riemannian ambient space (S,g). Motion is a one-parameter family of maps ϕt : B → S, where
t is time. Let us denote local coordinates on B and S by {XA} and {xa}, respectively. For a fixed
t, ϕt(X) = ϕ(X, t), where X is position of material points in the undeformed configuration B. The mate-
rial velocity is the map Vt : B → Tϕ(X)S given by Vt(X) = ∂ϕ(X,t)

∂t . The material acceleration is defined
by At(X) = ∂Vt(X)

∂t . In components Aa = ∂V a

∂t +γa
bcV

bV c, where γa
bc is the Christoffel symbol of the local

coordinate chart {xa}. Deformation gradient is the tangent map of ϕ and is denoted by F = Tϕ. Thus,
at each point X ∈ B, it is a linear map

F(X) : TXB → Tϕ(X)S. (2.1)

Components of F are F a
A(X) = ∂ϕa

∂XA (X). Suppose B and S are Riemannian manifolds with inner prod-
ucts 〈〈, 〉〉G and 〈〈, 〉〉g based at X ∈ B and x ∈ S, respectively. Transpose of F is defined by

FT : TxS → TXB, 〈〈FV,v〉〉g = 〈〈V,FTv〉〉G ∀V ∈ TXB, v ∈ TxS. (2.2)

In components (FT(X))A
a = gab(x)F b

B(X)GAB(X). The right Cauchy-Green deformation tensor is
defined by C(X) = F(X)TF(X), where g and G are metric tensors on S and B, respectively. In compo-
nents CA

B = (FT)A
aF a

B . One can show that C� = ϕ∗(g) = F∗gF, that is, CAB = (gab ◦ ϕ)F a
AF b

B .

Lagrangian field theory of elasticity. In elasticity one assumes existence of a Lagrangian density L [6]
such that1

L = L(X,G, ϕ, ϕ̇,F,g), (2.3)

where F = Tϕ is the so-called deformation gradient. Action is defined on the material manifold (B,G)
as

S =

t1∫

t0

∫

B
L dV dt, (2.4)

where dV = dV (X) is the Riemannian volume element on B. Hamilton’s principle of least action states
that δS = dS · δϕ = 0. This gives the following Euler–Lagrange equations that are equivalent to balance
of linear momentum [10].

∂L
∂ϕa

− d

dt

∂L
∂ϕ̇a

−
(

∂L
∂F a

A

)
|A

− ∂L
∂F b

A
F c

Aγb
ac + 2

∂L
∂gcd

gbdγ
b
ac = 0. (2.5)

When non-conservative forces are present the governing equations can be obtained using the Lagrange-
d’Alembert principle. Denoting the non-conservative force by f , the above EL equations are modified to

1To make a scalar out of the vector field ϕ̇ and the two-point tensor F, L has to explicitly depend on both G and g.
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read
∂L
∂ϕa

− d

dt

∂L
∂ϕ̇a

−
(

∂L
∂F a

A

)
|A

− ∂L
∂F b

A
F c

Aγb
ac + 2

∂L
∂gcd

gbdγ
b
ac + fa = 0. (2.6)

Remark 2.1. Note that the metric g cannot be variational because if it is assumed that g is variational,
then the corresponding EL equation would be ∂L

∂g = 0, which cannot be the case as was explained in the
previous footnote.

Covariance of energy balance. Another approach in deriving the balance laws of elasticity is to first
postulate an energy balance

d
dt

∫

U
ρ0

(
E +

1
2
〈〈V,V〉〉g

)
dV =

∫

U
ρ0 (〈〈B,V〉〉g + R) dV +

∫

∂U
(〈〈T,V〉〉g + H) dA, (2.7)

where E = E(X,N,G,F,g ◦ ϕ) is the material internal energy density, N, ρ0,B,T, R, and H are specific
entropy, material mass density, body force per unit undeformed mass, traction vector, heat supply, and
heat flux, respectively. Then, one postulates that energy balance is covariant, that is, it is invariant under
an arbitrary time-dependent spatial change of frame ξt : S → S, that is, [6]

d
dt

∫

U
ρ′
0

(
E′ +

1
2
〈〈V′,V′〉〉g′

)
dV =

∫

U
ρ′
0 (〈〈B′,V′〉〉g′ + R′) dV +

∫

∂U
(〈〈T′,V′〉〉g′ + H ′) dA. (2.8)

It can be shown that the following are necessary and sufficient for covariance of energy balance [10]

∂ρ0

∂t
= 0, (2.9)

Div P + ρ0B = ρ0A, (2.10)

2ρ0
∂E

∂g ◦ ϕ
= τ , (2.11)

τT = τ , (2.12)

where P is the first Piola–Kirchhoff stress and τ = Jσ is the Kirchhoff stress.

Remark 2.2. Note that for energy balance to be covariant, in addition to the standard balance laws, a
nontrivial relation, that is, the Doyle-Ericksen formula must hold.

3. Covariantization of elasticity

We consider a time-independent spatial change of frame η : S → S as our covariance field (see Fig. 1)2.
Let us define L̃ as

L̃(X,G, ϕ, ϕ̇, Tϕ, η, η̇, Tη) := L (X,G, η ◦ ϕ, ˙η ◦ ϕ, Tη · Tϕ, η∗g
)

= L (X,G, η ◦ ϕ, ∂η/∂t + Tη · ϕ̇, Tη · Tϕ, η∗g). (3.1)

Note that in components

g̃αβ := (η∗g)αβ =
∂xa

∂ηα

∂xb

∂ηβ
gab ◦ ϕ. (3.2)

2If η is time dependent, one of the Euler–Lagrange equations would be ∂L/∂ϕ̇ = 0, which is not physical unless the
problem is static. Note that in Noether’s theorem, one considers a time-independent vector field and its flow [6,10].
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Fig. 1. Covariance field for nonlinear elasticity

A modified action S̃ is defined as

S̃ =

t1∫

t0

∫

B
L̃(X,G, ϕ, ϕ̇, Tϕ, η, η̇, Tη) dV dt. (3.3)

Next, we obtain the ϕ and η-variations of the modified action.

ϕ-Variation. ϕ-variation of action is written as

δϕS̃ =

t1∫

t0

∫

B

(
∂L̃
∂ϕa

δϕa +
∂L̃
∂ϕ̇a

δϕ̇a +
∂L̃

∂F a
A

δF a
A

)
dV dt. (3.4)

or

δϕS̃ =

t1∫

t0

∫

B

⎡
⎣ ∂L̃

∂ϕa
− d

dt

(
∂L̃
∂ϕ̇a

)
−
(

∂L̃
∂F a

A

)

|A
− ∂L̃

∂F c
A

F b
Aγc

ab

⎤
⎦ δϕa dV dt. (3.5)

It can be shown that

∂L̃
∂ϕa

=
∂L
∂ϕ̃α

∂ηα

∂xa
+ 2

∂L
∂g̃αβ

g̃βμ
∂xm

∂ηα

∂ημ

∂xd
γd

am, (3.6)

∂L̃
∂ϕ̇a

=
∂L
∂ ˙̃ϕ

α
∂ηα

∂xa
, (3.7)

∂L̃
∂F a

A
=

∂L
∂F̃α

A

∂ηα

∂xa
. (3.8)

Also (
∂L̃

∂F a
A

)

|A
=
(

∂L
∂F̃α

A

)
|A

∂ηα

∂xa
. (3.9)

We know that the connection coefficients are transformed as follows

γc
ab =

∂xc

∂ημ

∂ηα

∂xa

∂ηβ

∂xb
γ̃μ

αβ +
∂2ηλ

∂xa∂xb

∂xc

∂ηλ
. (3.10)
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After some lengthy calculations, it can be shown that

δϕS̃ =

t1∫

t0

∫

B

{[
∂L
∂ϕ̃α

− d

dt

(
∂L
∂ ˙̃ϕ

α

)
−
(

∂L
∂F̃α

A

)
|A

− ∂L
∂F̃μ

A

F̃ β
Aγ̃μ

αβ + 2
∂L

∂g̃βλ
g̃βμγ̃μ

αλ

]
∂ηα

∂xa
δϕa

+
(

2
∂L

∂g̃βμ
g̃αμ − ∂L

∂F̃α
A

F̃ β
A

)
∂2ηα

∂xa∂xb

∂xb

∂ηβ
δϕa − ∂L

∂ ˙̃ϕ
α

d

dt

∂ηα

∂xa

}
dV dt. (3.11)

Note that

d

dt

∂ηα

∂xa
=

∂2ηα

∂xa∂xb
ϕ̇b. (3.12)

Also note that

˙̃ϕ
β

=
∂ηβ

∂xb
ϕ̇b. (3.13)

Hence

ϕ̇b =
∂xb

∂ηβ
˙̃ϕ

β
. (3.14)

Therefore

d

dt

∂ηα

∂xa
= ˙̃ϕ

β ∂2ηα

∂xa∂xb

∂xb

∂ηβ
. (3.15)

Substituting (3.15) into (3.11), one obtains

δϕS̃ =

t1∫

t0

∫

B

{[
∂L
∂ϕ̃α

− d

dt

(
∂L
∂ ˙̃ϕ

α

)
−
(

∂L
∂F̃α

A

)
|A

− ∂L
∂F̃μ

A

F̃ β
A γ̃μ

αβ + 2
∂L

∂g̃βλ
g̃βμ γ̃μ

αλ

]
∂ηα

∂xa
δϕa

+

(
2

∂L
∂g̃βμ

g̃αμ − ∂L
∂F̃α

A

F̃ β
A − ∂L

∂ ˙̃ϕ
α

˙̃ϕ
β

)
∂2ηα

∂xa∂xb

∂xb

∂ηβ
δϕa

}
dV dt = 0. (3.16)

As η is arbitrary, it can be chosen such that Tη is independent of x. This would imply that one has the
following two sets of EL equations:

∂L
∂ϕ̃α

− d
dt

(
∂L
∂ ˙̃ϕ

α

)
−
(

∂L
∂F̃α

A

)
|A

− ∂L
∂F̃μ

A

F̃ β
Aγ̃μ

αβ + 2
∂L

∂g̃βλ
g̃βμγ̃μ

αλ = 0, (3.17)

2
∂L

∂g̃βμ
g̃αμ − ∂L

∂F̃α
A

F̃ β
A − ∂L

∂ ˙̃ϕ
α

˙̃ϕ
β

= 0. (3.18)

Note that (3.17) is the standard EL equations (2.5) written with respect to (B,G) and (S, η∗g) and (3.18)
is the Doyle-Ericksen formula again with respect to (B,G) and (S, η∗g).

η-Variation. η-variation of action is written as

δηS̃ =

t1∫

t0

∫

B

(
∂L̃
∂ηα

δηα +
∂L̃

∂Fη
a

A
δFη

a
A

)
dV dt. (3.19)

Note that

∂L̃
∂ηα

=
∂L

∂ηα ◦ ϕ
=

∂L
∂ϕ̃α

. (3.20)
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After some lengthy manipulations, it can be shown that

∂L̃
∂Fη

a
A

=

(
∂L

∂F̃α
A

F̃ β
A +

∂L
∂ ˙̃ϕ

α
˙̃ϕ

β − 2
∂L

∂g̃βμ
g̃αμ

)
∂xa

∂ηβ
. (3.21)

Therefore, the η-variation of the modified action reads

δηS̃ =

t1∫

t0

∫

B

[
∂L
∂ϕ̃α

δηα −
(

2
∂L

∂g̃βμ
g̃αμ − ∂L

∂F̃α
A

F̃ β
A − ∂L

∂ ˙̃ϕ
α

˙̃ϕ
β

)
∂xa

∂ηβ
δFη

a
A

]
dV dt. (3.22)

Hence, from δηS̃ = 0 and (3.18), we obtain

∂L
∂ϕ̃α

= 0. (3.23)

In summary, we have proved the following proposition.

Proposition 3.1. Given a Lagrangian density L, define an auxiliary Lagrangian density L̃ by (3.1) and its
corresponding action S̃ as in (3.3). Hamilton’s principle of least action for S̃, that is, δS̃ = dS̃·(δϕ, δη) = 0
gives the following Euler–Lagrange equations (written with respect to (B,G) and (S, η∗g)):

∂L
∂ϕ̃α

− d

dt

(
∂L
∂ ˙̃ϕ

α

)
−
(

∂L
∂F̃α

A

)
|A

− ∂L
∂F̃μ

A

F̃ β
Aγ̃μ

αβ + 2
∂L

∂g̃βλ
g̃βμγ̃μ

αλ = 0, (3.24)

2
∂L

∂g̃βμ
g̃αμ − ∂L

∂F̃α
A

F̃ β
A − ∂L

∂ ˙̃ϕ
α

˙̃ϕ
β

= 0, (3.25)

∂L
∂ϕ̃α

= 0. (3.26)

In other words, stationarity of the modified action S̃ gives the standard EL equations, the Doyle-Ericksen
formula, and spatial homogeneity of the Lagrangian density L.

Remark 3.2. Note that this result is similar to what was obtained in [10], where using Noether’s theorem,
it was shown that spatial covariance of the Lagrangian density leads to the Doyle-Erciksen formula and
spatial homogeneity of the Lagrangian density.

Remark 3.3. There are subtle differences between spatial and material manifolds. The spatial manifold is
homogenous and isotropic. Material manifold—where the body is stress free—is inhomogenous, in general,
and has a nontrivial geometry [11,12]. In other words, material metric is a dynamic field, and for this
reason, we do not discuss a material version of covariantization.

4. Concluding remarks

In this paper we studied the problem of covariance of the field theory of elasticity. First, we observed
that the non-dynamic nature of the spatial metric prevents the field theory of elasticity to be generally
covariant. We extended Kuchař’s idea of parametrization of field theories to elasticity by defining a spa-
tial covariance field to be a time-independent spatial diffeomorphism. We then defined a modified action
that, in addition to depending on the standard fields, depends on the covariance field as well. We showed
that the Euler–Lagrange equations of the modified field theory, in addition to the standard EL equations,
contain spatial homogeneity of the Lagrangian density and the Doyle-Ericksen formula.



Vol. 63 (2012) Covariantization of nonlinear elasticity 927

Acknowledgments

AY benefited from discussions with M.J. Gotay and M.C. López. This work was partially supported by
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