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Abstract

In this paper, using the Hilbert complexes of nonlinear elasticity, the approximation theory for Hilbert complexes, and the finite
element exterior calculus, we introduce a new class of mixed finite element methods for 2D nonlinear elasticity – compatible-
strain mixed finite element methods (CSFEM). We consider a Hu–Washizu-type mixed formulation and choose the displacement,
the displacement gradient, and the first Piola–Kirchhoff stress tensor as independent unknowns. We use the underlying spaces of
the Hilbert complexes as the solution and test spaces. We discretize the Hilbert complexes and introduce a new class of mixed
finite element methods for nonlinear elasticity by using the underlying finite element spaces of the discrete Hilbert complexes.
This automatically enforces the trial spaces of the displacement gradient to satisfy the classical Hadamard jump condition, which
is a necessary condition for the compatibility of non-smooth displacement gradients. The underlying finite element spaces of
CSFEMs are the tensorial analogues of the standard Nédélec and Raviart–Thomas elements of vector fields. These spaces respect
the global topologies of the domains in the sense that they can reproduce certain topological properties of the bodies regardless of
the refinement level of meshes. By solving several numerical examples, we demonstrate that CSFEMs have a good performance for
bending problems, in the near incompressible regime, and for bodies with complex geometries. CSFEMs are capable of accurately
approximating stresses and perform well in problems that standard enhanced strain methods suffer from the hourglass instability.
Moreover, CSFEMs provide a convenient framework for modeling inhomogeneities.
c⃝ 2016 Elsevier B.V. All rights reserved.

Keywords: Mixed finite element methods; Finite element exterior calculus; Nonlinear elasticity; Geometric mechanics; Hilbert complex; Hadamard
jump condition

1. Introduction

Developing well-performing finite element methods for large deformations of solids is a challenging problem. It
is well-known that in many important applications such as bending problems, domains with complex geometries, and
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in the near-incompressible regime, the standard single-field finite element methods for nonlinear elasticity written in
terms of the displacement field have poor convergence behavior. It is also well-established that simple extensions of the
well-performing methods for small deformations of solids to large deformations can lead to numerical schemes with
poor performances due to the appearance of numerical artifacts and unphysical instabilities (see [1–3] and references
therein).

Numerous approaches have been proposed in the literature for obtaining better numerical methods for large defor-
mations, some of which include: mesh-free methods [4,5]; the numerical manifold method [6,7]; methods based on
the enrichment of trial spaces including the partition of unity method [8,9], the generalized finite element method
[10–12], and the extended finite element method [13–15]; methods using reduced integration and stabilization
[16–19]; and mixed finite element methods [20–22].

Mixed finite element methods are based on saddle-point variational principles. For nonlinear elasticity, there
are various choices of saddle-point principles such as the two-field Hellinger–Reissner principle and the three-field
Hu–Washizu principle, e.g. see [21, § 1.5]. Mixed methods such as enhanced strain methods have good convergence
behavior for bending problems and also in the incompressible and near-incompressible regimes. Other features
of mixed methods include good accuracy for coarse meshes, no sensitivity against mesh distortions, and simple
implementation of nonlinear constitutive relations. Moreover, since the stress is usually considered as an independent
variable in mixed methods, it can be computed with higher accuracy. On the other hand, mixed methods are more
complicated than standard methods based on single-field formulations and one has to consider several degrees of
freedom for each element. It is also well-known that the trial and test spaces of mixed methods need to satisfy certain
compatibility conditions, e.g. the Ladyzhenskaya–Babuška–Brezzi condition [23–25]. Arbitrary selections of trial
spaces can lead to numerical artifacts such as the checkerboard instability or the locking effect, e.g. see [26, § 4.2].
Another unphysical instability observed in mixed methods is the hourglass instability of enhanced strain methods [1].

A novel approach for deriving mixed finite element methods for compressible linear elasticity was introduced
by Arnold and Winther [27]. They obtained the first stable mixed finite element methods for the displacement–stress
formulation of 2D linear elasticity by using the notion of differential complexes. Differential complexes are sequences
of linear operators such that the image of each operator is a subset of the kernel of the next operator. The differential
complex of linear elasticity introduced by Kröner [28] contains information about topological properties of bodies.
Arnold and Winther [27] obtained compatible finite element spaces for the mixed formulation of linear elasticity by
appropriately discretizing the linear elasticity complex such that the discrete complexes preserve all the topological
information of the linear elasticity complex. By generalizing this approach, Arnold and his coworkers [29,30] showed
that it is also possible to obtain stable mixed methods for some linear operators associated to specific classes of
differential complexes.

The main goal of this paper is to introduce a new class of mixed finite element methods for 2D compressible
nonlinear elasticity by employing differential complexes. The differential complexes that are suitable for describing
the kinematics and the kinetics of large deformations were recently introduced in [31,32]. These complexes are written
in terms of the displacement, the displacement gradient, and the first Piola–Kirchhoff stress tensor and are closely
related to a well-known complex in differential geometry—the de Rham complex. The nonlinear elasticity complexes
contain information about topological properties of domains and can be discretized by using the framework of the
finite element exterior calculus discussed in [29,30]. The resulting discrete complexes contain the same topological
information as the original complexes regardless of the refinement level of meshes. Moreover, the underlying spaces
of discrete complexes can be generated by the tensorial analogues of some classical edge and face finite elements for
vector fields introduced by Raviart and Thomas [33], Brezzi et al. [34], and Nédélec [35].

We consider a Hu–Washizu-type mixed formulation with the displacement, the displacement gradient, and the
first Piola–Kirchhoff stress tensor as independent unknowns. We discretize the nonlinear elasticity complexes by
using a triangulation of a given body. A new class of mixed finite element methods are then introduced by using
the underlying spaces of discrete complexes. We call the resulting methods compatible-strain mixed finite element
methods (CSFEM) as displacement gradients are sought in spaces that satisfy the classical Hadamard jump condition
for the compatibility of non-smooth strains. Note that Arnold et al. [29] considered a two-field mixed formulation
for compressible linear elasticity as it is straightforward to eliminate the linear strains by using the linear constitutive
relations. We study the performance of CSFEMs by solving several numerical examples. In particular, we observe that
these methods preform well for bending problems, in the near incompressible regime, and for bodies with complex
geometries. CSFEMs are also capable of accurately approximating stresses and perform well in problems that standard
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enhanced strain methods suffer from the hourglass instability. We also show that CSFEMs provide a novel framework
for modeling inhomogeneities.

The main difference between CSFEMs and the enhanced strain methods [20] is that the Hadamard jump condition
is explicitly imposed on the displacement gradient in CSFEMs. In enhanced strain methods, the displacement gradient
is implicitly assumed to be of L2-class and consequently, it will not necessarily satisfy the Hadamard jump condition.
In this regard, the enhanced displacement gradient can be considered as a way to implicitly impose the Hadamard
jump condition.

This paper is organized as follows. In Section 2, we introduce the mixed formulation associated to CSFEMs.
We first review the Hilbert complexes that describe the kinematics and the kinetics of 2D nonlinear elasticity in
Section 2.1. In Section 2.2, by using the strong form of the boundary-value problem of nonlinear elastostatics in terms
of the displacement, the displacement gradient, and the first Piola–Kirchhoff stress tensor and Green’s formula, we
write a mixed formulation for 2D nonlinear elastostatics. The solution and the test spaces of this mixed formulation
are the underlying spaces of the Hilbert complexes of 2D nonlinear elasticity. In Section 3, we discuss the finite
element approximations of the above mixed formulation. In Section 3.1, we use the finite element exterior calculus to
discretize the Hilbert complex of nonlinear elasticity. Consequently, the underlying spaces of the discrete complexes
are finite element spaces. We provide a systematic approach for writing these finite element spaces of an arbitrary
order. In Section 3.2, we use these finite element spaces to introduce CSFEMs. The implementation of CSFEMs is the
subject of Section 3.3. To study the performance of CSFEMs, we consider several numerical examples in Section 4.
Finally, some concluding remarks are given in Section 5.

2. The mixed formulation for 2D nonlinear elasticity

In this section, we introduce a mixed formulation for 2D nonlinear elasticity, which will be used for obtaining mixed
finite element methods. Assume that the reference configuration B ⊂ R2 is a bounded domain with the boundary ∂B
and let N be the unit outward normal vector field of ∂B. We assume that ∂B is (the closure of) the union of disjoint
subsets Γd and Γt . Let {XI

}, I = 1, 2, be the Cartesian coordinates of R2. For any vector field U and any
2

0


-tensor

field T, grad U and div T are, respectively, a
2

0


-tensor field and a vector field defined as

(grad U)I J
= U I

,J , and (div T)I
= T I J

,J ,

where “, J” denotes ∂/∂XJ and we use the summation convention on repeated indices. We also have the operators c
and s, with c(T) being a vector field (the 2D curl operator) and s(U) being a

2
0


-tensor field given by

(c(T))I
= T I 2

,1 − T I 1
,2, and (s(U))I J

= δ
1J U I

,2 − δ
2J U I

,1,

where δI J is the Kronecker delta. The above operators describe the kinematics and the kinetics of a motion
ϕ : B → R2. More specifically, let U(X) := ϕ(X) − X, X ∈ B, be the displacement field associated with ϕ.
Then, K := grad U is the displacement gradient and c(K) = 0 is the necessary condition for the compatibility of K.
On the other hand, div P = −B expresses the static equilibrium equation in terms of the first Piola–Kirchhoff stress
tensor P in the presence of the body force B. If B = 0, then the equilibrium equation div P = 0 is also the necessary
condition for the existence of a stress function Ψ such that P = s(Ψ) [31]. As we discuss in the remainder of this
section, the domains of some weak extensions of the above operators provide suitable spaces for writing a mixed
formulation for nonlinear elasticity.

2.1. Hilbert complexes for 2D nonlinear elasticity

For any unit vector Y, T(Y) := T I J Y J EI is called the traction vector of T on a surface with unit normal Y, where
{E1,E2} is the standard orthonormal basis of R2. We write T ⊥ Γd if T(Y) = 0, for any vector Y ∥ Γd . We write
T ∥ Γt if T has zero traction vector on Γt , that is, T(Y) = 0, where Y is the unit normal vector field of Γt . Let
H1(T B,Γd) be the space of H1 vector fields that vanish on Γd . Also consider the following spaces:

H c(B,Γd) :=


T ∈ L2

: c(T) ∈ L2 and T ⊥ Γd


,

Hd(B,Γt ) :=


T ∈ L2

: div T ∈ L2 and T ∥ Γt


.
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We have H c(B,Γd) ⊂ H c(B) := H c(B,∅), and Hd(B,Γd) ⊂ Hd(B) := Hd(B,∅). The standard H1 Sobolev
space is a subset of both H c and Hd. The operators grad and c can be extended to the mappings

grad : H1(T B,Γd) → H c(B,Γd), and c : H c(B,Γd) → L2(T B),

where L2(T B) is the space of L2 vector fields. It is straightforward to show that c(grad Y) = 0. These facts are more
concisely expressed by writing the following Hilbert complex:

0 // H1(T B,Γd)
grad

// H c(B,Γd)
c // L2(T B) // 0, (2.1)

where the first arrow on the left indicates a trivial operator that sends zero to zero and the last arrow on the right
indicates the zero operator sending the L2-space to zero. Similarly, we have div(s(Y)) = 0, and one can also write the
following Hilbert complex

0 // H1(T B,Γt )
s // Hd(B,Γt )

−div
// L2(T B) // 0. (2.2)

The reason for considering −div instead of div in the second Hilbert complex is that (2.2) is written to be the dual
complex of (2.1) in the sense discussed in [32, § 3.1]. The importance of these Hilbert complexes is that they contain
information about the topological properties of B, Γd , and Γt [31,32].1 Consequently, these complexes provide a deep
connection between topological properties of domains and solutions of certain PDEs. Note that the Hilbert complex
(2.1) is related to the kinematics of motion, while the Hilbert complex (2.2) is related to the kinetics of motion.

2.2. The mixed formulation of the governing equations

Let ρ0, U, K, and P be the mass density of B, the displacement, the displacement gradient, and the first Piola–
Kirchhoff stress tensor, respectively. Also suppose that the constitutive relation can be expressed as P = P(K). The
boundary-value problem of nonlinear elastostatics can be stated as follows:

Given a body force B, a boundary displacement U on Γd , and a traction vector field T on Γt , find (U,K,P) such
that

div P = −ρ0B, (a)

P −P(K) = 0, (b),
K − grad U = 0, (c)

 on B,

U = U, on Γd , (d)

P(N) = T, on Γt . (e)

(2.3)

Let ⟨⟨, ⟩⟩ be the standard inner product of R2 and let ⟨⟨, ⟩⟩L2 denote the L2-inner products of vector and tensor fields,
that is, ⟨⟨Y,Z⟩⟩L2 :=


B Y I Z I d A for vector fields and ⟨⟨S,T⟩⟩L2 :=


B S I J T I J d A for

2
0


-tensor fields. Suppose

P ∈ Hd(B) and B and T are of L2-class. Green’s formula allows one to write

⟨⟨div P,Υ⟩⟩L2 = −⟨⟨P, grad Υ⟩⟩L2 +


∂B

⟨⟨P(N),Υ⟩⟩ds, (2.4)

where Υ is an arbitrary H1 vector field. Note that H1
⊂ Hd

⊂ L2, and therefore, the restriction P|Γt is not
well-defined for an arbitrary P ∈ Hd(B), in general. Nonetheless, the following statement of the traction boundary
condition is still meaningful in Hd:

∂B
⟨⟨P(N),Υ⟩⟩ds =


Γt

⟨⟨T,Υ⟩⟩ds, ∀Υ ∈ H1(T B,Γd), (2.5)

where

∂B⟨⟨P(N),Υ⟩⟩ds is interpreted as the duality pairing between the spaces H−1/2 and H1/2, e.g. see [36, page

298] or [37, Theorem 3.4]. Since H1(T B,Γd) is dense in the space of L2 vector fields, we conclude that (2.3)(a) holds

1 More precisely, homological properties of these complexes depend on some topological properties of B, Γd , and Γt .



600 A. Angoshtari et al. / Comput. Methods Appl. Mech. Engrg. 313 (2017) 596–631

if and only if

⟨⟨div P + ρ0B,Υ⟩⟩L2 = 0, ∀Υ ∈ H1(T B,Γd).

By using (2.4) and the traction boundary condition (2.5), the above condition can be written as

⟨⟨P, grad Υ⟩⟩L2 = ⟨⟨ρ0B,Υ⟩⟩L2 +


Γt

⟨⟨T,Υ⟩⟩ds, ∀Υ ∈ H1(T B,Γd).

Conversely, Green’s formula and the L2-density of H1(T B, ∂B) imply that the above relation gives (2.3)(a) and (2.5).
On the other hand, since H c(B) is also dense in the L2-space, (2.3)(b) is equivalent to

⟨⟨P(K)− P, κ⟩⟩L2 = 0, ∀κ ∈ H c(B).

Finally, suppose that U ∈ H1(T B), K ∈ H c(B), and U is of H1/2-class. Note that the condition c(K) = 0, is the
necessary condition for the compatibility of a displacement gradient K. Since H c(B) is the domain of the operator c
in the L2-setting, the assumption K ∈ H c(B) is a direct consequence of the compatibility equation for K. By using
the fact that Hd(B,Γt ) is L2-dense, one concludes that (2.3)(c) is equivalent to

⟨⟨K − grad U,π⟩⟩L2 = 0, ∀π ∈ Hd(B,Γt ). (2.6)

Green’s formula suggests that (2.6) and the displacement boundary condition on Γd are equivalent to

⟨⟨U,div π⟩⟩L2 + ⟨⟨K,π⟩⟩L2 =


Γd

⟨⟨U,π(N)⟩⟩ds, ∀π ∈ Hd(B,Γt ). (2.7)

Consequently, we consider the following weak formulation of the boundary-value problem (2.3):
Given a body force B of L2-class, a boundary displacement U on Γd of H1/2-class, and a boundary traction T on

Γt of L2-class, find (U,K,P) ∈ H1(T B)× H c(B)× Hd(B) such that

⟨⟨P, grad Υ⟩⟩L2 = ⟨⟨ρ0B,Υ⟩⟩L2 +


Γt

⟨⟨T,Υ⟩⟩ds, ∀Υ ∈ H1(T B,Γd),

⟨⟨P(K), κ⟩⟩L2 − ⟨⟨P, κ⟩⟩L2 = 0, ∀κ ∈ H c(B), (2.8)

⟨⟨U,div π⟩⟩L2 + ⟨⟨K,π⟩⟩L2 =


Γd

⟨⟨U,π(N)⟩⟩ds, ∀π ∈ Hd(B,Γt ).

Note that the displacement and the traction boundary conditions in the above problem are imposed as natural
boundary conditions, that is, they are imposed through the weak formulation and not directly by the solution spaces.
The zero displacement boundary condition U = 0, can be imposed as an essential boundary condition by seeking a
solution (U,K,P) ∈ H1(T B,Γd)× H c(B,Γd)× Hd(B) with (Υ , κ,π) ∈ H1(T B,Γd)× H c(B,Γd)× Hd(B,Γt ).
In this case, the fact that K ∈ H c(B,Γd) is a direct consequence of the Hilbert complex (2.1) and the L2-density of
H c(B,Γd) suggests that one can assume that κ ∈ H c(B,Γd). The zero traction boundary condition T = 0 can also be
treated as an essential boundary condition by assuming P ∈ Hd(B,Γt ). In particular, note that for problems with zero
displacement and zero traction boundary conditions such as deflection of a cantilever beam under its own weight, the
solution and the test spaces are both H1(T B,Γd)× H c(B,Γd)× Hd(B,Γt ).

Remark 1. Let D be the space of H1 vector fields satisfying the displacement boundary condition (2.3)(d) and let
A be the space of Hd 2

0


-tensor fields that satisfy the traction boundary condition (2.5). The weak formulation (2.8)

corresponds to a saddle point of the Hu–Washizu-type functional J : D × H c(B)× A → R defined as

J(Υ , κ,π) =


B

W (κ)d A − ⟨⟨κ,π⟩⟩L2 + ⟨⟨π , grad Υ⟩⟩L2 − ⟨⟨ρ0B,Υ⟩⟩L2 −


Γt

⟨⟨T,Υ⟩⟩ds,

where W is the stored energy function expressed as a function of the displacement gradient. To see this, let
(U,K,P) ∈ D×H c(B)×A and note that any element of D×H c(B)×A can be written as (U+αΥ ,K+βκ,P+γπ),
where α, β, γ ∈ R and (Υ , κ,π) ∈ H1(T B,Γd)× H c(B)× Hd(B,Γt ). Next, let

I(α, β, γ ) := J(U + αΥ ,K + βκ,P + γπ).
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It is straightforward to show that ∂I
∂α

, ∂I
∂β

, and ∂I
∂γ

are zero at (α, β, γ ) = (0, 0, 0) if and only if the relations (2.8)

hold. The solution (U,K,P) of (2.8) is a saddle point of the functional J, since the sign of ∂2I
∂β∂γ

|(0,0,0) = −⟨⟨κ,π⟩⟩L2 ,
depends on the way that one approaches (U,K,P). Therefore, (2.8) is a mixed formulation for nonlinear elastostatics.

3. Finite element approximations

Our goal in this section is to write mixed finite element methods for approximating the mixed formulation (2.8)
by using the Hilbert complexes introduced in Section 2.1. We assume that B̄ is a bounded polygonal domain with a
triangulation Bh , where Bh consists of arbitrary triangles T, with

h := max
T∈Bh

diam T,

being the discretization parameter. The intersection of any two distinct triangles is either empty or a common
edge/vertex of each triangle. Thus, B̄ is the polytope of the simplicial complex associated to Bh . The set of all vertices
and edges of T are denoted by ∆0(T) and ∆1(T), respectively. Similarly, ∆0(Bh), ∆1(Bh), and ∆2(Bh) denote the
sets of all vertices, edges, and triangles of Bh . Let ∆∂

0(Bh) and ∆∂
1(Bh) be the sets of all vertices and edges of Bh ,

which lie on ∂B. The set of all interior edges are denoted by ∆i
1(Bh) := ∆1(Bh) \ ∆∂

1(Bh). We assume that Bh is
compatible with Γd and Γt in the sense that ∆∂

1(Bh) = T h
d ∪ T h

t , where the disjoint sets T h
d and T h

t are meshes for
Γd and Γt .

3.1. Finite element spaces and discrete Hilbert complexes

Next, we use appropriate piecewise polynomial vector and tensor fields on Bh for discretizing the Hilbert complexes
(2.1) and (2.2) and define suitable finite element spaces for discretizing (2.8). We begin our discussion by introducing
some polynomial fields in R2, which will be used for defining the piecewise polynomial fields.

3.1.1. Polynomial tensor fields
Let Pr (R2) be the space of R-valued polynomials in two variables {X1,X2

} of degree at most r ≥ 0 and let
Hr (R2) ⊂ Pr (R2) be the space of homogeneous polynomials of degree r , i.e. all terms of members of Hr (R2) are
of degree r . These spaces are assumed to be the zero space if r < 0. The spaces of polynomial vector and

2
0


-tensor

fields in R2 with Cartesian components in Pr (R2) are denoted by Pr (T R2) and Pr (⊗
2 T R2), respectively. The spaces

of homogeneous polynomial fields Hr (T R2) and Hr (⊗
2 T R2) are defined analogously. It is straightforward to show

that

dim Pr (⊗
2 T R2) = 2 dim Pr (T R2) = 2(r + 1)(r + 2),

dim Hr (⊗
2 T R2) = 2 dim Hr (T R2) = 4(r + 1).

One can use Pr fields to write the following polynomial complexes

0 // Pr+2(T R2)
grad

// Pr+1(⊗
2T R2)

c // Pr (T R2) // 0,

0 // Pr+2(T R2)
s // Pr+1(⊗

2T R2)
−div

// Pr (T R2) // 0.
(3.1)

Next, we introduce two subspaces of Pr (⊗
2 T R2). Suppose Y I (X1,X2) and T I J (X1,X2), I, J = 1, 2, are the

Cartesian components of a vector field Y and a
2

0


-tensor field T. We define the operators K1,K1 : Pr (⊗

2 T R2) →

Pr+1(T R2) and K2,K2 : Pr (T R2) → Pr+1(⊗
2 T R2) as

K1(T) :=


X1 T 11

+ X2 T 12

X1 T 21
+ X2 T 22


, K1(T) :=


−X1 T 12

+ X2 T 11

−X1 T 22
+ X2 T 21


,

K2(Y) :=


−X2 Y 1 X1 Y 1

−X2 Y 2 X1 Y 2


, K2(Y) :=


X1 Y 1 X2 Y 1

X1 Y 2 X2 Y 2


.
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It is straightforward to show that K1 ◦ K2 = 0, and K1 ◦ K2 = 0, and therefore, these operators give rise to the
following polynomial complexes

0 // Pr (T R2)
K2 // Pr+1(⊗

2T R2)
K1 // Pr+2(T R2) // 0, (3.2)

0 // Pr (T R2)
K2 // Pr+1(⊗

2T R2)
K1 // Pr+2(T R2) // 0. (3.3)

It turns out that any T ∈ Hr (⊗
2 T R2) can be decomposed as

T = K2(WT)+ grad(YT) = K2(WT)+ s(YT),

where WT, WT ∈ Hr−1(T R2) and YT,YT ∈ Hr+1(T R2). This result can be stated as follows.

Theorem 2. The following decompositions hold:

Hr (⊗
2 T R2) = K2


Hr−1(T R2)


⊕ grad


Hr+1(T R2)


,

Hr (⊗
2 T R2) = K2


Hr−1(T R2)


⊕ s


Hr+1(T R2)


,

where

dim K2


Hr−1(T R2)


= dim K2


Hr−1(T R2)


= 2r,

dim grad


Hr+1(T R2)


= dim s


Hr+1(T R2)


= 2(r + 2).

Proof. As discussed in [32, § 3.1], there is an isomorphism between the Hilbert complexes (2.1) and (2.2) and the
de Rham complex. One can show that this isomorphism induces an isomorphism between the complexes (3.2) and
(3.3) and a standard complex in differential geometry called the Koszul complex (for more details on this complex
see [30, § 5.1.2] or [38, § 3.4.6]). Consequently, the above decompositions directly follow from the decomposition
of polynomial 1-forms induced by the exterior derivative and the Koszul differential, which is introduced by Arnold
et al. [29, page 32]. �

Since Pr (⊗
2 T R2) = Pr−1(⊗

2 T R2)⊕ Hr (⊗
2 T R2), the decompositions introduced in the above theorem allow

one to define the following subspaces of Pr (⊗
2 T Rn):

P −
r (⊗

2 T R2) := Pr−1(⊗
2 T R2)⊕ K2


Hr−1(T R2)


,

P ⊖
r (⊗

2 T R2) := Pr−1(⊗
2 T R2)⊕ K2


Hr−1(T R2)


,

(3.4)

where dim P −
r (⊗

2 T R2) = dim P ⊖
r (⊗

2 T R2) = 2r(r + 2).

Example 3. Let (X, Y ) = (X1,X2). For r = 1, the 12-dimensional space P1(⊗
2 T R2) can be written as

P1(⊗
2 T R2) =


A0 + X · A1 + Y · A2, ∀Ai ∈ R2×2


,

where R2×2 is the space of 2 × 2 matrices. The subspaces P −

1 (⊗
2 T R2) and P ⊖

1 (⊗
2 T R2) are 6-dimensional and are

given by

P −

1 (⊗
2 T R2) =


A +


−aY aX
−bY bX


, ∀a, b ∈ R, ∀A ∈ R2×2


,

P ⊖

1 (⊗
2 T R2) =


A +


aX aY
bX bY


, ∀a, b ∈ R, ∀A ∈ R2×2


.

For r = 2, we have dim P2(⊗
2 T R2) = 24, and dim P −

2 (⊗
2 T R2) = dim P ⊖

2 (⊗
2 T R2) = 16, where

P2(⊗
2 T R2) =


A0 + X · A1 + Y · A2 + X2

· A3 + XY · A4 + Y 2
· A5, ∀Ai ∈ R2×2


,
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P −

2 (⊗
2 T R2) =


A0 + X · A1 + Y · A2

+


−a1 XY − a2Y 2 a1 X2

+ a2 XY
−b1 XY − b2Y 2 b1 X2

+ b2 XY


, ∀ai , b j ∈ R, ∀Ak ∈ R2×2


,

P ⊖

2 (⊗
2 T R2) =


A0 + X · A1 + Y · A2

+


a1 X2

+ a2 XY a1 XY + a2Y 2

b1 X2
+ b2 XY b1 XY + b2Y 2


, ∀ai , b j ∈ R, ∀Ak ∈ R2×2


.

The subspaces defined in (3.4) give rise to the following polynomial complexes:

0 // Pr+1(T R2)
grad

// P −

r+1(⊗
2T R2)

c // Pr (T R2) // 0,

0 // Pr+1(T R2)
s // P ⊖

r+1(⊗
2T R2)

−div
// Pr (T R2) // 0.

(3.5)

Remark 4. By using a subspace of the space of polynomial 1-forms introduced in [29, § 3.3], one can write the
following subspaces of Pr (T R2):

P −
r (T R2) := Pr−1(T R2)⊕ K2


Hr−1(R2)


,

P ⊖
r (T R2) := Pr−1(T R2)⊕ K2


Hr−1(R2)


,

(3.6)

where

K2( f ) :=


−X2 f
X1 f


, K2( f ) :=


X1 f
X2 f


.

Clearly, the spaces defined in (3.4) are the tensorial analogues of (3.6) that are obtained by identifying
2

0


-tensors

with the two vector fields associated to their rows.

3.1.2. Finite element spaces
We are now ready to introduce appropriate finite element spaces for discretizing (2.8). Suppose Pr (T Bh) is the

space of piecewise polynomial vector fields of order r on the triangulation Bh and let P 1
r (T Bh) be the standard

Lagrange finite element space of vector fields of degree r on Bh , that is, P 1
r (T Bh) is the space of piecewise polynomial

vector fields of degree r , which are continuous along all edges. Also let P 1
r (T Bh,Γd) := {Y ∈ P 1

r (T Bh) : Y|Γd = 0}.
Moreover, suppose Pr (⊗

2 T Bh) is the space of piecewise polynomial
2

0


-tensor fields of order r on Bh and let

P −
r (⊗

2 T Bh) (P ⊖
r (⊗

2 T Bh)) be the space of all T ∈ Pr (⊗
2 T Bh) such that T|T , ∀T ∈ Bh , is a P −

r (P ⊖
r ) polynomial.

In order to define suitable H c and Hd-conformal finite element spaces, we use the following notions for the jump of
tangent and normal tractions of a

2
0


-tensor across an edge. Let E ∈ ∆i

1(Bh) be a common edge of T,T′
∈ Bh and let t

(n) be a unit vector parallel (normal) to E. The jump of the tangent traction of T ∈ Pr (⊗
2 T R2) across E is defined as

[[tT ]]E := TT(t)− TT′(t),

where TT := T|T . Similarly, the jump of the normal traction of T across E is defined as

[[nT ]]E := TT(n)− TT′(n).

Next, we define the following spaces of piecewise polynomial
2

0


-tensors with zero tangent traction jumps:

P c
r (Bh) :=


T ∈ Pr (⊗

2 T Bh) : [[tT ]]E = 0, ∀E ∈ ∆i
1(Bh)


,

P c−
r (Bh) :=


T ∈ P −

r (⊗
2 T Bh) : [[tT ]]E = 0, ∀E ∈ ∆i

1(Bh)

.

(3.7)
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By P c
r (Bh,Γd) (P c−

r (Bh,Γd)) we denote the space of P c
r (P c−

r ) tensors, which are normal to Γd (see Section 2.1).
Similarly, one can define the following spaces

P d
r (Bh) :=


T ∈ Pr (⊗

2 T Bh) : [[nT ]]E = 0, ∀E ∈ ∆i
1(Bh)


,

P d−
r (Bh) :=


T ∈ P ⊖

r (⊗
2 T Bh) : [[nT ]]E = 0, ∀E ∈ ∆i

1(Bh)

.

(3.8)

The space of P d
r (P d−

r ) tensors with zero traction on Γt is denoted by P d
r (Bh,Γt ) (P d−

r (Bh,Γt )).

Remark 5. Suppose K ∈ Pr (⊗
2 T Bh) represents a displacement gradient on Bh . Then, if we consider the internal

edges as interfaces, the zero jump condition in (3.7) is simply the Hadamard jump condition for the strain compatibility
along edges, e.g. see [39, page 14]. The Hadamard jump condition is a necessary compatibility condition for the
existence of an H1-displacement field with the displacement gradient K.2 On the other hand, if P ∈ Pr (⊗

2 T Bh)

represents a stress tensor, the zero jump condition in (3.8) implies that traction vectors of P along all the internal
interfaces are opposite to each other.

The above remark provides a physical justification for the following result.

Theorem 6. One has P c
r (Bh),P c−

r (Bh) ⊂ H c(B) and P d
r (Bh),P d−

r (Bh) ⊂ Hd(B).

Proof. These results are direct consequences of the definition of the operators c and div (in the weak sense) together
with Green’s formula (2.4) and the following Green’s formula:

⟨⟨c(T),Y⟩⟩L2 = ⟨⟨T, s(Y)⟩⟩L2 +


∂B

⟨⟨T(t∂),Y⟩⟩ds,

where t∂ is the oriented unit tangent vector field of ∂B. Since the steps of the proof are similar to those for proving
the H1-conformity of Lagrange finite element spaces (e.g. see [26, Proposition 1.74]), we do not present the details
of the proof here. �

Our next goal is to show that piecewise polynomial spaces defined in (3.7) and (3.8) are actually finite element
spaces, i.e. they can be generated through the finite element assembly process by using appropriate finite elements.
Recall that a finite element on T ∈ Bh is a triplet (T,P,Σ ), where P is an msh-dimensional linear space of
some polynomial functions on T and Σ = {ς1, . . . , ςmsh} is the set of local degrees of freedom [41]. We need
to determine local degrees of freedom that can impose the zero jump conditions of (3.7) and (3.8). Let Pr (⊗

2 T T),
P −

r (⊗
2 T T), and P ⊖

r (⊗
2 T T) be, respectively, the spaces of Pr , P −

r , and P ⊖
r polynomial

2
0


-tensors on T and suppose

that Pr (⊗
2 T T)∗, P −

r (⊗
2 T T)∗, and P ⊖

r (⊗
2 T T)∗ are their dual spaces. It turns out that the following geometric

decompositions of these dual spaces determine the interelement continuities of (3.7) and (3.8), in the sense that any
dual basis Σ , which is consistent with these decompositions will impose the corresponding zero jump condition.

Theorem 7. Let r > 0 be an integer and suppose the vector field
−→
TI := T I J EJ , I = 1, 2, is the I th row of a2

0


-tensor T. Also for any T ∈ Bh and each E ∈ ∆1(T), suppose that tE is the oriented unit tangent vector of E and

nE is the unit outward vector normal to E. Consider the following spaces:

W c
I,r (T,E) :=


φ ∈ Pr (⊗

2 T T)∗ : ∃ f ∈ Pr (R2) such that φ(T) =


E

f ⟨⟨
−→
TI , tE⟩⟩ds


,

W c−
I,r (T,E) :=


φ ∈ P −

r (⊗
2 T T)∗ : ∃ f ∈ Pr−1(R2) such that φ(T) =


E

f ⟨⟨
−→
T I , tE⟩⟩ds


,

W d
I,r (T,E) :=


φ ∈ Pr (⊗

2 T T)∗ : ∃ f ∈ Pr (R2) such that φ(T) =


E

f ⟨⟨
−→
TI ,nE⟩⟩ds


,

W d−

I,r (T,E) :=


φ ∈ P ⊖

r (⊗
2 T T)∗ : ∃ f ∈ Pr−1(R2) such that φ(T) =


E

f ⟨⟨
−→
TI ,nE⟩⟩ds


,

2 As discussed in [40], the Hadamard jump condition is not sufficient for the compatibility of displacement gradients if Bh is not simply-
connected.
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W c
I,r (T,T) :=


φ ∈ Pr (⊗

2 T T)∗ : ∃Z ∈ P ⊖

r−1(T R2) such that φ(T) =


T

⟨⟨
−→
TI ,Z⟩⟩d A


,

W c−
I,r (T,T) :=


φ ∈ P −

r (⊗
2 T T)∗ : ∃Z ∈ Pr−2(T R2) such that φ(T) =


T

⟨⟨
−→
TI ,Z⟩⟩d A


,

W d
I,r (T,T) :=


φ ∈ Pr (⊗

2 T T)∗ : ∃Z ∈ P −

r−1(T R2) such that φ(T) =


T

⟨⟨
−→
TI ,Z⟩⟩d A


,

W d−

I,r (T,T) :=


φ ∈ P ⊖

r (⊗
2 T T)∗ : ∃Z ∈ Pr−2(T R2) such that φ(T) =


T

⟨⟨
−→
TI ,Z⟩⟩d A


,

where

dim W c
I,r (T,E) = dim W d

I,r (T,E) = r + 1, dim W c−
I,r (T,E) = dim W d−

I,r (T,E) = r,

dim W c
I,r (T,T) = dim W d

I,r (T,T) = r2
− 1, dim W c−

I,r (T,T) = dim W d−

I,r (T,T) = r2
− r.

Then, the following decompositions hold:

Pr (⊗
2 T T)∗ = ⊕

E∈∆1(T)
I=1,2

W c
I,r (T,E)⊕ ⊕

I=1,2
W c

I,r (T,T), (3.9a)

P −
r (⊗

2 T T)∗ = ⊕
E∈∆1(T)

I=1,2

W c−
I,r (T,E)⊕ ⊕

I=1,2
W c−

I,r (T,T), (3.9b)

Pr (⊗
2 T T)∗ = ⊕

E∈∆1(T)
I=1,2

W d
I,r (T,E)⊕ ⊕

I=1,2
W d

I,r (T,T), (3.9c)

P ⊖
r (⊗

2 T T)∗ = ⊕
E∈∆1(T)

I=1,2

W d−

I,r (T,E)⊕ ⊕
I=1,2

W d−

I,r (T,T). (3.9d)

Proof. The isomorphisms mentioned in the proof of Theorem 2 also induce isomorphisms between the dual spaces
of polynomial tensors and the dual space of polynomial 1-forms and consequently, any decomposition for 1-forms
induces a corresponding decomposition for tensors. In particular, the decompositions (3.9) directly follow from the
geometric decomposition for polynomial differential forms introduced in [30, Theorem 5.5]. �

One can use the decompositions (3.9) to obtain the dual bases. For example, let us write a basis for Pr (⊗
2 T T)∗

that is consistent with (3.9a). For I = 1, 2, and any E ∈ ∆1(T), one chooses an arbitrary basis { fi }1≤i≤r+1

for Pr (R2), such that

φ

T,E
I,i


1≤i≤r+1

is a basis for W c
I,r (T,E), where φT,E

I,i (T) =

E fi ⟨⟨

−→
TI , tE⟩⟩ds. Similarly,

by choosing a basis {Wj }1≤ j≤r2−1 for ∈ P ⊖

r−1(T R2), one obtains a basis

φ

T,T
I, j


1≤ j≤r2−1

for W c
I,r (T,T), with

φ
T,T
I, j (T) =


T⟨⟨

−→
TI ,Wj ⟩⟩d A. Then, one can write the following basis for Pr (⊗

2 T T)∗:

ΣT,c
:=


φ

T,E
I,1 , . . . , φ

T,E
I,r+1, φ

T,T
I,1 , . . . , φ

T,T

I,r2−1


E∈∆1(T)

I=1,2

.

Note that by choosing different auxiliary polynomials, one obtains different bases for Pr (⊗
2 T T)∗, and therefore,

bases consistent with (3.9a) are not unique. Similarly, one can obtain bases ΣT,c−, ΣT,d, and ΣT,d−, which are
consistent with (3.9b), (3.9c), and (3.9d), respectively.

Next, we consider the following finite elements:

(T,Pr (⊗
2 T T),ΣT,c), (T,P −

r (⊗
2 T T),ΣT,c−),

(T,Pr (⊗
2 T T),ΣT,d), (T,P ⊖

r (⊗
2 T T),ΣT,d−).

(3.10)

By choosing piecewise polynomial tensors that for degrees of freedom corresponding to the same edge, the same I ,
and the same auxiliary polynomial give the same values, one can construct the corresponding finite element spaces
through the finite element assembly process. As a corollary to the discussions of [29, § 5.1], one concludes that the
degrees of freedom of the above finite elements impose the interelement continuities of (3.7) and (3.8). The upshot is
the following theorem.
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Table 1
Numbers of degrees of freedom (DOF) for tensorial finite elements.

DOF # of DOF
Total For each edge For T

ΣT,c, ΣT,d 2(r + 1)(r + 2) 2(r + 1) 2(r2
− 1)

ΣT,c−, ΣT,d− 2r(r + 2) 2r 2(r2
− r)

Theorem 8. The spaces P c
r (Bh) and P c−

r (Bh) are generated by the finite elements (T,Pr (⊗
2 T T),ΣT,c) and (T,

P −
r (⊗

2 T T),ΣT,c−), respectively. Similarly, the spaces P d
r (Bh) and P d−

r (Bh) are generated by (T,Pr (⊗
2 T T),ΣT,d)

and (T,P ⊖
r (⊗

2 T T),ΣT,d−), respectively.

As was mentioned earlier, bases consistent with the decompositions (3.9) are not unique. The above theorem
suggests that the consistency of bases determines the interelement continuity rather than the specific choices of degrees
of freedom. Table 1 depicts the numbers of local degrees of freedom of the finite elements (3.10).

Example 9. In the following, we write the local and global shape functions associated with the Hd-conformal finite
element spaces P d

r (Bh) and P d−
r (Bh), for r = 1, 2.

• P d
1 (Bh): We have dim P1(⊗

2 T T) = 12, and the dimensions of the components of the decomposition (3.9c) are
dim W d

I,1(T,E) = 2 and dim W d
I,1(T,T) = 0. One can write the consistent basis

ΣT,d
=


ψ

T,E
I,J


E∈∆1(T)
I,J=1,2

,

where

ψ
T,E
I,J (T) =


E

s J−1
⟨⟨
−→
TI ,nE⟩⟩ds. (3.11)

Local shape functions associated to ΣT,d are the members of the dual basis
sT,E

I,1 , sT,E
I,2


E∈∆1(T)

I=1,2

, (3.12)

which satisfy

ψ
T,E′

K ,L


sT,E

I,J


=


1, if E = E′ and I = K and J = L ,
0, otherwise.

(3.13)

For writing the explicit forms of the local shape functions, consider a triangle T with vertices vi and edges Ei ,
i = 1, 2, 3, as shown in Fig. 1. Let ℓi and AT denote the length of Ei and the area of T, respectively. Also let
(X, Y ) = (X1,X2) and suppose that (vx

i , v
y
i ) are the Cartesian coordinates of the vertex vi . For each edge Ei , there

are four local shape functions sT,Ei
I,J , I, J = 1, 2. Using (3.13), one can show that

sT,Ei
1,J (X, Y ) =

1
AT


aT,i

X,J · (X − vx
i+1)+ aT,i

Y,J · (Y − v
y
i+1)+ aT,i

J bT,i
X,J · (X − vx

i+1)+ bT,i
Y,J · (Y − v

y
i+1)+ bT,i

J
0 0


,

with

aT,i
X,1 =

1 − ωi

2
, aT,i

Y,1 =
3 (− cotβi + ζi )

2
, bT,i

X,1 =
3 (cotβi + ζi )

2
, bT,i

Y,1 =
1 + ωi

2
,

aT,i
X,2 =

ωi

ℓi
, aT,i

Y,2 =
3 (cotβi − ζi )

ℓi
, bT,i

X,2 = −
3 (cotβi + ζi )

ℓi
, bT,i

Y,2 = −
ωi

ℓi
,

(3.14)

and

aT,i
1 = −2ℓi+2 cos(βi+1 + θi ), bT,i

1 = −2ℓi+2 sin(βi+1 + θi ), aT,i
2 = −

3aT,i
1

2ℓi
, bT,i

2 = −
3bT,i

1

2ℓi
.
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Fig. 1. A triangle with vertices vi and edges Ei , i = 1, 2, 3. The oriented unit tangent vector and the unit outward normal vector of Ei are denoted
by ti and ni , respectively.

Fig. 2. The nonzero row of sT,EI,1 (upper row) and sT,EI,2 (lower row) for all edges of a triangle.

The angles βi and θi are shown in Fig. 1, and ωi and ζi are given by

ωi =
3 sin(βi+1 − βi+2 + 2θi )

sinβi
, ζi =

cos(βi+1 − βi+2 + 2θi )

sinβi
,

and we assume that quantities associated with i are identical to those associated with i mod 3, e.g. β4 = β1, ℓ5 = ℓ2,
etc. The local shape functions sT,Ei

2,1 and sT,Ei
2,2 are obtained by interchanging the first and the second rows of sT,Ei

1,1

and sT,Ei
1,2 , respectively. In Fig. 2, we have plotted the non-zero row of sT,E

I,J for all edges of a triangle. Note that
the non-zero row of the local shape functions associated to any edge is parallel to all the other edges. This simply
follows from the duality relation (3.13) and is crucial for obtaining locally supported global shape functions.

For any T ∈ P d
1 (Bh) and E ∈ ∆1(Bh), the traction T(nE) is a linear function of s and T|T is determined by the

unique values of T(nE), ∀E ∈ ∆1(T). Therefore, one concludes that dim P d
1 (Bh) = 4mE, where mE is the number

of edges of Bh . For obtaining global shape functions for P d
1 (Bh), we proceed as follows. Instead of the local shape

functions sT,E
I,J , we consider the following local shape functions:

s̄T,E
I,1 := sT,E

I,1 +
ℓE

2
sT,E

I,2 , and s̄T,E
I,2 := −

ℓE

6
sT,E

I,2 . (3.15)
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Fig. 3. The nonzero rows of the global shape functions SE
I,1 (left) and SE

I,2 (right) associated to the common edge of two triangles. The components
of fields normal to the common edge are single-valued.

The basis dual to

s̄T,E

I,J


is denoted by


ψ̄

T,E
I,J


, see (3.13). It is straightforward to show that

⟨⟨

−−−→

(s̄T,E
I,1 )I ,nE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(s̄T,E
I,2 )I ,nE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
.

Next, we associate unit normal vectors n̂E to all E ∈ ∆1(Bh). Suppose that E is a common edge of T1 and T2 and
let ni

E, i = 1, 2, be the unit outward normal vector of E in Ti . Then, one can define the global shape functions SE
I,J

as SE
I,J |T = 0, if T ≠ T1,T2, and SE

I,J |Ti = ci
J s̄Ti ,E

I,J , where ci
1 = ⟨⟨n̂E,ni

E⟩⟩, and ci
2 = 1. If E belongs only to a

single triangle T, then SE
I,J is nonzero only on T with SE

I,J |T = s̄T,E
I,J . Fig. 3 depicts the two global shape functions

that are associated to the common edge of two triangles of a simple triangulation. Note that the nonzero rows of
the global shape functions have single-valued normal components on the common edge. According to Theorem 6,
this guarantees that the global shape functions are of Hd-class.

We should also mention that global shape functions can be constructed with the local shape functions sT,E
I,J as

well. We have chosen the modified shape functions s̄T,E
I,J because they induce simple traction vectors on edges. For

linear boundary traction vector fields, this makes enforcing the traction boundary conditions easier.
• P d−

1 (Bh): Note that dim P ⊖

1 (⊗
2 T T) = 6, and one can write the consistent basis

ΣT,d−
=


ψ

T,E
I


E∈∆1(T)

I=1,2

,

whereψT,E
I = ψ

T,E
I,1 , andψT,E

I,1 is defined in (3.11). Using the notation introduced in Fig. 1, the local shape functions

that constitute the dual basis of ΣT,d− can be written as

sT,Ei
1 (X, Y ) =

1
2AT


X − vx

i Y − v
y
i

0 0


,

and sT,Ei
2 is obtained by interchanging the rows of sT,Ei

1 . It is straightforward to show that the normal traction of

sT,E
1 on each edge is constant and satisfies sT,E

1 (nE) =
1
ℓE


1
0


. In fact, it turns out that sT,E

I = s̄T,E
I,1 (see (3.15)).

Consequently, dim P d−

1 (Bh) = 2mE, and the global shape functions associated to sT,E
I are constructed similarly to

SE
I,1 defined earlier for P d

1 (Bh).
• P d

2 (Bh): Note that dim P2(⊗
2 T T) = 24. One can write the consistent basis

ΣT,d
=


ψ

T,E
I,J , ψ

T,T
I,J


E∈∆1(T)

I=1,2, J=1,2,3

,

where

ψ
T,E
I,J (T) =


E

s J−1
⟨⟨
−→
TI ,nE⟩⟩ds, ψ

T,T
I,J (T) =


T

⟨⟨
−→
TI ,W J ⟩⟩d A, (3.16)

with W1 =


1
0


, W2 =


0
1


, and W3 =


−Y
X


. In contrast to the first-order elements, it is not easy to explicitly

write the associated dual local shape functions. In practice, it is easier to numerically calculate the local shape
functions by using the duality relations similar to (3.13). Suppose that

sT,E
I,J , sT,T

I,J


E∈∆1(T)

I=1,2, J=1,2,3
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are the dual local shape functions and consider the following basis
s̄T,E

I,J , sT,T
I,J


E∈∆1(T)

I=1,2, J=1,2,3

,

where

s̄T,E
I,1 := sT,E

I,1 +
ℓE

2
sT,E

I,2 +
ℓ2
E

3
sT,E

I,3 , s̄T,E
I,2 := −

ℓE

6
sT,E

I,2 −
ℓ2
E

6
sT,E

I,3 ,

s̄T,E
I,3 :=

10
3

sT,E
I,1 +

5ℓE
3

sT,E
I,2 +

17ℓ2
E

15
sT,E

I,3 .

It is straightforward to show that

⟨⟨

−−−→

(s̄T,E
I,1 )I ,nE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(s̄T,E
I,2 )I ,nE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
,

⟨⟨

−−−→

(s̄T,E
I,3 )I ,nE⟩⟩|E =

4

ℓ3
E


s −

ℓE

2

2

.

Consider the global shape functions SE
I,J , J = 1, 2, introduced for P d

1 (Bh). The global shape functions associated

to s̄T,E
I,1 and s̄T,E

I,3 are constructed similarly to SE
I,1, and those associated to s̄T,E

I,2 are obtained similarly to SE
I,2. Global

shape functions ST
I,J associated to sT,T

I,J are nonzero only on T with ST
I,J |T = sT,T

I,J .
• P d−

2 (Bh): We have dim P ⊖

2 (⊗
2 T T) = 16, and one can write the following consistent basis

ΣT,d−
=


ψ

T,E
I,J , ψ

T,T
I,J


E∈∆1(T)
I,J=1,2

,

where ψT,E
I,J and ψT,T

I,J are defined in (3.16). In practice, it is easier to numerically calculate the associated dual local
shape functions

sT,E
I,J , sT,T

I,J


E∈∆1(T)
I,J=1,2

.

For calculating the global shape functions, one can use the basis
s̄T,E

I,J , sT,T
I,J


E∈∆1(T)
I,J=1,2

,

where

s̄T,E
I,1 := sT,E

I,1 +
ℓE

2
sT,E

I,2 , s̄T,E
I,2 := −

ℓE

6
sT,E

I,2 .

One can show that

⟨⟨

−−−→

(s̄T,E
I,1 )I ,nE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(s̄T,E
I,2 )I ,nE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
.

The global shape functions associated to s̄T,E
I,1 (s̄T,E

I,2 ) are constructed similarly to the global shape functions

SE
I,1 (SE

I,2) introduced for P d
1 (Bh). Global shape functions ST

I,J associated to sT,T
I,J are nonzero only on T with

ST
I,J |T = sT,T

I,J .

Example 10. In this example, we calculate the local and global shape functions for the H c-conformal finite element
spaces P c

r (Bh) and P c−
r (Bh), with r = 1, 2.

• P c
1(Bh): One can write the consistent basis

ΣT,c
=


φ

T,E
I,J


E∈∆1(T)
I,J=1,2

,

where

φ
T,E
I,J (T) =


E

s J−1
⟨⟨
−→
TI , tE⟩⟩ds. (3.17)
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Fig. 4. The nonzero row of rT,EI,1 (upper row) and rT,EI,2 (lower row) for all edges of a triangle.

Using the notation of Fig. 1, the dual local shape functions rT,E
I,J can be written as

rT,Ei
1,J (X, Y ) =

1
AT


−bT,i

X,J · (X − vx
i+1)− bT,i

Y,J · (Y − v
y
i+1)− bT,i

J aT,i
X,J · (X − vx

i+1)+ aT,i
Y,J · (Y − v

y
i+1)+ aT,i

J

0 0


,

where the coefficients are defined in (3.14). The local shape functions rT,Ei
2,J are obtained by interchanging the rows

of rT,Ei
1,J . Note that for any I and J , the non-zero row of sT,Ei

I,J introduced in (3.12) is normal to that of rT,Ei
I,J . Fig. 4

depicts the non-zero row of rT,E
I,J for all edges of a triangle. The non-zero row of the local shape functions associated

to any edge is normal to all the other edges.

Since any T ∈ P c
1(Bh) is determined by its tractions T(tE) along edges, one concludes that dim P c

1(Bh) = 4mE.
For writing global shape functions, similar to P d

1 (Bh), we consider the following local shape functions:

r̄T,E
I,1 := rT,E

I,1 +
ℓE

2
rT,E

I,2 , and r̄T,E
I,2 := −

ℓE

6
rT,E

I,2 , (3.18)

that satisfy

⟨⟨

−−−→

(r̄T,E
I,1 )I , tE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(r̄T,E
I,2 )I , tE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
.

The basis dual to

r̄T,E

I,J


is denoted by


φ̄

T,E
I,J


. To obtain the global shape functions RE

I,J , one associates unit

tangent vectors t̂E to all E ∈ ∆1(Bh). Suppose that E is a common edge of T1 and T2 and suppose that ti
E, i = 1, 2,

is the oriented unit tangent vector of E in Ti . Then, the nonzero restrictions of the global shape functions RE
I,J are

given by RE
I,J |Ti = ei

J r̄Ti ,E
I,J , where ei

1 = ⟨⟨t̂E, ti
E⟩⟩, and ei

2 = 1. If E belongs to a single triangle T, then the only

nonzero restriction is given by RE
I,J |T = r̄T,E

I,J . In Fig. 5, we have plotted the nonzero rows of the global shape

functions RE
I,J associated to the common edge of two triangles. Note that the tangent components of vector fields

along edges are single-valued.

• P c−
1 (Bh): Note that dim P −

1 (⊗
2 T T) = 6, and one obtains the consistent basis

ΣT,c−
=


φ

T,E
I


E∈∆1(T)

I=1,2

,
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Fig. 5. The nonzero rows of the global shape functions RE
I,1 (left) and RE

I,2 (right) associated to the common edge of two triangles. The components
of fields tangent to the common edge are single-valued.

where φT,E
I = φ

T,E
I,1 (see (3.17)). By using the notation of Fig. 1, one can write the dual local shape functions as

rT,Ei
1 (X, Y ) =

1
2AT


−(Y − v

y
i ) X − vx

i
0 0


,

and rT,Ei
2 is obtained by interchanging the rows of rT,Ei

1 . One can show that rT,E
1 (tE) =

1
ℓE


1
0


, and it turns out that

rT,E
I = r̄T,E

I,1 (see (3.18)). Hence, dim P c−
1 (Bh) = 2mE, and the global shape functions RE

I,1 introduced for P c
1(Bh)

are locally supported global shape functions for P c−
1 (Bh).

• P c
2(Bh): We can write the following consistent basis

ΣT,c
=


φ

T,E
I,J , φ

T,T
I,J


E∈∆1(T)

I=1,2, J=1,2,3

,

where

φ
T,E
I,J (T) =


E

s J−1
⟨⟨
−→
TI , tE⟩⟩ds, φ

T,T
I,J (T) =


T

⟨⟨
−→
TI ,W J ⟩⟩d A, (3.19)

with W1 =


1
0


, W2 =


0
1


, and W3 =


X
Y


. It is not straightforward to write the explicit form of the associated

dual shape functions. In practice, one can use the duality relations similar to (3.13) to numerically calculate the
shape functions. Let

rT,E
I,J , rT,T

I,J


E∈∆1(T)

I=1,2, J=1,2,3

be the dual local shape functions. To obtain the global shape functions, we consider the following basis
r̄T,E

I,J , rT,T
I,J


E∈∆1(T)

I=1,2, J=1,2,3

, (3.20)

where

r̄T,E
I,1 := rT,E

I,1 +
ℓE

2
rT,E

I,2 +
ℓ2
E

3
rT,E

I,3 , r̄T,E
I,2 := −

ℓE

6
rT,E

I,2 −
ℓ2
E

6
rT,E

I,3 ,

r̄T,E
I,3 :=

10
3

rT,E
I,1 +

5ℓE
3

rT,E
I,2 +

17ℓ2
E

15
rT,E

I,3 .

One can show that

⟨⟨

−−−→

(r̄T,E
I,1 )I , tE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(r̄T,E
I,2 )I , tE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
,

⟨⟨

−−−→

(r̄T,E
I,3 )I , tE⟩⟩|E =

4

ℓ3
E


s −

ℓE

2

2

.

The global shape functions can be calculated by using the basis (3.20) as follows. Consider the global shape
functions RE

I,J , J = 1, 2, introduced for P c
1(Bh). The global shape functions associated to r̄T,E

I,1 and r̄T,E
I,3 are

constructed similarly to RE
I,1, and those associated to r̄T,E

I,2 are obtained similarly to RE
I,2. The global shape functions

RT
I,J associated to rT,T

I,J are nonzero only on T with RT
I,J |T = rT,T

I,J .
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Table 2
Tensorial analogues of some classical finite elements for vector fields.

Vector fields Second-order tensors

Nédélec 2nd-kind H(curl) element [35] (T,Pr (⊗
2 T T),ΣT,c)

Nédélec 1st-kind H(curl) element [35] (T,P −
r (⊗

2 T T),ΣT,c−)

Brezzi–Douglas–Marini H(div) element [34] (T,Pr (⊗
2 T T),ΣT,d)

Raviart–Thomas H(div) element [33] (T,P ⊖
r (⊗

2 T T),ΣT,d−)

• P c−
2 (Bh): Note that dim P −

2 (⊗
2 T T) = 16, and one can write the consistent basis

ΣT,c−
=


φ

T,E
I,J , φ

T,T
I,J


E∈∆1(T)
I,J=1,2

,

where φT,E
I,J and φT,T

I,J are defined in (3.19). It is easier to numerically calculate the associated dual local shape
functions

rT,E
I,J , rT,T

I,J


E∈∆1(T)
I,J=1,2

.

For calculating the global shape functions, one can use the following basis
r̄T,E

I,J , rT,T
I,J


E∈∆1(T)
I,J=1,2

,

with

r̄T,E
I,1 := rT,E

I,1 +
ℓE

2
rT,E

I,2 , r̄T,E
I,2 := −

ℓE

6
rT,E

I,2 .

It is straightforward to show that

⟨⟨

−−−→

(r̄T,E
I,1 )I , tE⟩⟩|E =

1
ℓE
, ⟨⟨

−−−→

(r̄T,E
I,2 )I , tE⟩⟩|E = −

2

ℓ2
E

s +
1
ℓE
.

The global shape functions associated to r̄T,E
I,1 (r̄T,E

I,2 ) are constructed similarly to the global shape functions

RE
I,1 (RE

I,2) introduced for P c
1(Bh). Global shape functions RT

I,J associated to rT,T
I,J are nonzero only on T with

RT
I,J |T = rT,T

I,J .

Remark 11. Local degrees of freedom derived in the previous examples are similar to those of some classical edge
and face finite elements for vector fields. This means that the above finite elements are the tensorial analogues of
some vectorial finite elements, which are obtained by identifying a second-order tensor field with two vector fields
associated to its rows. Table 2 summarizes the correspondence between the finite elements (3.10) and some classical
vectorial finite elements. The procedure for determining degrees of freedom discussed in this section follows from
the finite element exterior calculus introduced in [29,30]. This approach provides a systematic way for writing finite
elements of an arbitrary order.

3.1.3. Discrete Hilbert complexes
Using the finite element spaces introduced in the previous section, one can discretize the Hilbert complexes (2.1)

and (2.2). More specifically, one can discretize (2.1) as follows:

0−→P 1
r+2(T Bh,Γd)

grad
−−→P c

r+1(Bh,Γd)
c

−→Pr (T Bh)−→0, (3.21a)

0−→P 1
r+1(T Bh,Γd)

grad
−−→P c−

r+1(Bh,Γd)
c

−→Pr (T Bh)−→0. (3.21b)

Analogously, one can also write the following discrete complexes for (2.2):

0−→P 1
r+2(T Bh,Γt )

s
−→P d

r+1(Bh,Γt )
−div
−−→Pr (T Bh)−→0, (3.22a)

0−→P 1
r+1(T Bh,Γt )

s
−→P d−

r+1(Bh,Γt )
−div
−−→Pr (T Bh)−→0. (3.22b)
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The above complexes are the analogues of the discrete complexes (3.1) and (3.5) for the triangulation Bh . By using
the bounded cochain projections between differential forms and piecewise polynomial differential forms discussed
in [29,42], one can obtain bounded cochain projections between the Hilbert complexes (2.1) and (2.2) and the above
discrete complexes. As an implication of these projections, one can apply the general approximation theory of Hilbert
complexes introduced by Arnold et al. [30] to approximate (2.1) and (2.2) by means of the above discrete complexes.
In particular, one can derive stable mixed finite element methods for approximating the tensor Laplacian

L (T) := s ◦ c(T)− grad ◦ div(T), (3.23)

subject to suitable boundary conditions. Moreover, one can show that regardless of the refinement level of the mesh
Bh , the discrete complexes (3.21) and (3.22) inherit all the information regarding the topological properties of Bh , Γd ,
and Γt , which is contained in (2.1) and (2.2).3

3.2. Compatible-Strain mixed finite element methods

We are now in a position to introduce suitable mixed finite element methods for approximating the 2D nonlinear
elasticity problem (2.8) by means of finite element spaces introduced earlier. More specifically, suppose p, q, r > 0
are integers, let V c

p be either P c
p(Bh) or P c−

p (Bh), and let V d
q be either P d

q (Bh) or P d−
q (Bh). Also let V d

q (Γt ) :=

V d
q ∩ Hd(B,Γt ). We write the following mixed finite element methods for (2.8).

Given a body force B of L2-class, a boundary displacement U on Γd of H1/2-class, and a boundary traction T on
Γt of L2-class, find (Uh,Kh,Ph) ∈ P 1

r (T Bh)× V c
p × V d

q such that

⟨⟨Ph, grad Υ⟩⟩L2 = ⟨⟨ρ0B,Υ⟩⟩L2 +


Γt

⟨⟨T,Υ⟩⟩ds, ∀Υ ∈ P 1
r (T Bh,Γd),

⟨⟨P(Kh), κ⟩⟩L2 − ⟨⟨Ph, κ⟩⟩L2 = 0, ∀κ ∈ V c
p , (3.24)

⟨⟨Uh,div π⟩⟩L2 + ⟨⟨Kh,π⟩⟩L2 =


Γd

⟨⟨U,π(N)⟩⟩ds, ∀π ∈ V d
q (Γt ).

The choice of H c-conformal spaces for displacement gradients follows from the Hilbert complex (2.1). This choice
can also be considered as a consequence of the weak compatibility equations for L2 displacement gradients which are
implicitly given by (2.1) (also see the discussions in [40]). Therefore, we call finite element methods introduced in
(3.24) the compatible-strain mixed finite element methods (CSFEM).

It is well-known that consistent discretizations of a well-posed mixed formulation may not necessarily lead to
stable mixed finite element methods as solution and test spaces need to satisfy certain compatibility conditions, e.g. the
Ladyzhenskaya–Babuška–Brezzi condition [23–25]. The general discussions in [30, § 3] regarding approximations of
the abstract Hodge Laplacian suggest that one can obtain stable mixed finite element methods for the tensor Laplacian
(3.23) by using the discrete Laplacians associated to the discrete complexes (3.21) and (3.22). This means that one can
obtain compatible finite element spaces for the tensor Laplacian by choosing the underlying finite element spaces of
(3.21) and (3.22) in the order that they appear in the discrete complexes. This is not the case for nonlinear elasticity. For
example, Fig. 6 shows all the possible choices for obtaining a first-order CSFEM. Our numerical examples suggest
that the combination in the third row of Fig. 6 that is denoted by H1c1d1̄ has the best performance among all the
first-order combinations. However, the choice of (Uh,Kh) ∈ P 1

1 (T Bh) × P c
1(Bh) is not consistent with the order of

appearance of the H1- and H c-conformal spaces in the discrete complexes (3.21a) and (3.21b).
Since (3.24) corresponds to a saddle point of a variational problem, the numerical implementation of (3.24) leads

to the solution of linear systems with indefinite matrices. It is well-known that standard numerical methods for solving
linear systems may have a poor performance when applied to such linear systems and one may need to use methods
that are specifically developed for these linear systems, for example see [43,44]. Our numerical examples suggest that
7 out of the 32 possible CSFEMs associated to first-order and second-order elements lead to stiffness matrices that
can be efficiently solved using standard non-iterative methods. These combinations are given in Fig. 7.

3 Strictly speaking, the above cochain projections induce isomorphisms between cohomology groups of (2.1) and (2.2) and those of their discrete
counterparts.
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Fig. 6. The conventional finite element diagrams for all the first-order finite elements for (U,K,P). Each row gives a first-order finite element
method for approximating (2.8). In the numerical examples that are considered in this work, the combination of the third row has the best
performance among all the first-order combinations. Note that each arrow on (normal to) an edge represents a degree of freedom of the
corresponding finite element associated to that edge, see Examples 9 and 10.

3.3. Implementation

In this section, we discuss the implementation of CSFEMs. We first use affine transformations between the refer-
ence element and an arbitrary element of a mesh, interpolate the field variables via shape functions, and use the assem-
bly process to write the matrix formulation of (3.24). Then, we discuss Newton’s method that is used for solving the
resulting nonlinear equations. Finally, we discuss the nonlinear constitutive equations used in our numerical examples.

3.3.1. The matrix formulation
For implementing CSFEMs, it is easier to work with the matrix formulation of the governing equations. Given a

second-order tensor T, we define its corresponding vector ⌈T⌉ by

⌈T⌉ :=

T 11 T 12 T 21 T 22T

.

By using the L2-inner product of tensor fields and the standard inner product ⟨⟨, ⟩⟩ of the Euclidean space, it is
straightforward to show that ⟨⟨Y,Z⟩⟩L2 = ⟨⟨⌈Y⌉, ⌈Z⌉⟩⟩ =


B ⌈Y⌉

T
⌈Z⌉d A =


B ⌈Z⌉

T
⌈Y⌉d A. Using the standard

matrix multiplication, (3.24) can be written as
Bh

⌈grad Υ⌉
T
⌈Ph⌉ d A =


Bh

ρ0Υ
TB d A +


Γt

ΥTT ds, ∀Υ ∈ P 1
r (T Bh,Γd),

Bh

⌈κ⌉
T
⌈P (⌈Kh⌉)⌉ d A −


Bh

⌈κ⌉
T
⌈Ph⌉ d A = 0, ∀⌈κ⌉ ∈ ⌈V c

p⌉,
Bh

(div π)TUh d A +


Bh

⌈π⌉
T
⌈Kh⌉ d A =


Γd

(π(N))T U ds, ∀⌈π⌉ ∈ ⌈V d
q (Γt )⌉,

(3.25)

where (Uh, ⌈Kh⌉, ⌈Ph⌉) ∈ P 1
r (T Bh)×⌈V c

p⌉×⌈V d
q ⌉, with ⌈V c

p⌉, ⌈V d
q ⌉, and ⌈V d

q (Γt )⌉ denote the corresponding spaces
of vectors.

Let T denote the reference element with coordinates ξ = (ξ1, ξ2) as shown in Fig. 8. Also suppose the hat. on any
quantity denotes the corresponding quantity in the reference element. The reference element T can be mapped onto
any T ∈ Bh by an affine transformation TT given by

TT : T −→ T, TT(ξ) := JTξ + bT, (3.26)
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Fig. 7. The conventional finite element diagrams for some first-order and second-order CSFEMs. Numerical examples suggest that these 7
combinations have a better performance compared to the other 25 possible first-order and second-order CSFEMs. For each CSFEM, DOF indicates
the total number of degrees of freedom per each triangle.

Fig. 8. The three-node reference element (left), the six-node reference element (middle), and the reference directions for the unit normal and
tangent vectors (right). The circled numbers are the numbering of edges in the reference elements.

with

JT :=


vx

2 − vx
1 vx

3 − vx
1

v
y
2 − v

y
1 v

y
3 − v

y
1


and bT :=


vx

1

v
y
1


,
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where (vx
i , v

y
i ) denotes the Cartesian coordinates of the i th vertex of each element. The mapping (3.26) is bijective

and JT is invertible.
We use the standard Lagrange finite element for P 1

r (T Bh). For the three-node reference element, the Lagrange
shape functions read

N1
1(ξ) = 1 − ξ1

− ξ2, N1
2(ξ) = ξ1, N1

3(ξ) = ξ2. (3.27)

By using (3.27), the Lagrange shape functions for the six-node reference element can be written as

N2
i (ξ) = N1

i (ξ)


2N1
i (ξ)− 1


, N2

3+i (ξ) = 4N1
i (ξ)N

1
i+1(ξ), (3.28)

where i = 1, 2, 3 and N1
4 = N1

1. The affine transformation (3.26) implies that

grad Nr
i (ξ) = (J−1

T )T grad Nr
i (ξ), (3.29)

where grad is gradient in the reference element coordinates ξ = (ξ1, ξ2).
The derivation of the local shape functions for P d

r (Bh), P d−
r (Bh), P c

r (Bh), and P c−
r (Bh), r = 1, 2 was explained

in Examples 9 and 10. For the implementation purposes, we define the following vector representations of the local
shape functions:

Nd
T,k(ξ) := cT,Ei

J


s̄T,Ei

I,J ◦ TT


(ξ)


, Nd

T,l(ξ) :=


sT,T

I,J ◦ TT


(ξ)


, (3.30a)

Nc
T,k(ξ) := eT,Ei

J


r̄T,Ei

I,J ◦ TT


(ξ)


, Nc

T,l(ξ) :=


rT,T

I,J ◦ TT


(ξ)


, (3.30b)

where

cT,Ei
J =


⟨⟨nE,nT

Ei
⟩⟩, if J is odd,

1, if J is even,
and eT,Ei

J =


⟨⟨tE, tTEi

⟩⟩, if J is odd,
1, if J is even.

In the above relations, nE and tE are, respectively, the unit normal and tangent vectors, which are associated to all
edges of all the elements in the mesh. For the edges Ei of an element T, nT

Ei
is the unit outward normal vector and tTEi

is the unit tangent vector with counterclockwise orientation. The numbering and the directions of these local vectors
must be compatible with the reference element T (see Fig. 8). Note that the subscripts E and Ei indicate the global
numbering and the local numbering of the same edge in the mesh, respectively. The subscripts k and l in (3.30)
correspond to the degrees of freedom and the corresponding shape functions in each element. We define

k := I + 2(J − 1)+ 2(i − 1)max J, l := I + 2(J − 1)+ max k, (3.31)

where i = 1, 2, 3, and I = 1, 2. For P d−

1 (Bh) and P c−
1 (Bh), we have J = 1. For P d

1 (Bh), P c
1(Bh), P d−

2 (Bh), and
P c−

2 (Bh), we have J = 1, 2, and J = 1, 2, 3 for P d
2 (Bh) and P c

2(Bh). Note that in (3.30), Nd
T,l and Nc

T,l are defined
only for second-order finite element spaces.

Remark 12. We write the shape functions of Hd and H c finite element spaces directly in the global coordinates
X = (X, Y ) (see Examples 9 and 10). It is also possible to define these shape functions in the reference element and

then map them to the global coordinates. For a standard Lagrange shape function, we have L(X) =


N ◦ T−1

T


(X).

However, this mapping is not valid for Hd and H c-spaces. In these cases, one should use mappings similar to the
Piola mapping for Raviart–Thomas and Nédélec elements discussed in [26, § 1.4].

On each element T we have

UT = B1q1
T, ⌈KT⌉ = Bc

Tqc
T, ⌈PT⌉ = Bd

Tqd
T,

ΥT = B1t1
T, ⌈κT⌉ = Bc

Ttc
T, ⌈πT⌉ = Bd

Ttd
T,

(3.32)
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where q1
T , qc

T , and qd
T denote the local vectors of unknown degrees of freedom corresponding to displacement,

displacement gradient, and stress, respectively. These vectors are written as

q1
T =


q1

T,1 q1
T,2 · · · q1

T,n1

T
, q1

T,m = U J
h (v

x
i , v

y
i ), (3.33a)

qc
T =


qc

T,1 qc
T,2 · · · qc

T,nc

T
, qc

T,k = φ̄
T,Ei
I,J , qc

T,l = φ
T,T
I,J , (3.33b)

qd
T =


qd

T,1 qd
T,2 · · · qd

T,nd

T
, qd

T,k = ψ̄
T,Ei
I,J , qd

T,l = ψ
T,T
I,J . (3.33c)

In (3.33a), U J
h (v

x
i , v

y
i ), J = 1, 2, is the value of the displacement at the i th node of each element. We define m :=

J + 2(i − 1). In (3.33b) and (3.33c), φ̄T,Ei
I,J , φT,T

I,J and ψ̄T,Ei
I,J , ψT,T

I,J have been given in Examples 10 and 9, respectively.

The subscripts k and l are defined in (3.31). The size of the vectors (q1
T , qc

T , qd
T) is denoted by (n1, nc, nd), which

depends on the choice of CSFEMs. These values are given in Fig. 7 for the first-order and the second-order CSFEMs.
For example, for H1c1d1̄ we have (n1, nc, nd) = (6, 12, 6), and for H2c2d2̄ we have (n1, nc, nd) = (12, 24, 16).
The vectors t1

T , tc
T , and td

T in (3.32) are arbitrary vectors associated with the corresponding test spaces. Moreover, by
using (3.27), (3.28), (3.30), and (3.31), the sparse matrices B1

T , Bc
T , and Bd

T in (3.32) can be written as

B1
=


Nr

1 0 Nr
2 0 · · · Nr

n1 0
0 Nr

1 0 Nr
2 · · · 0 Nr

n1


2×n1

,

Bc
T =


Nc

T,1 Nc
T,2 · · · Nc

T,nc


4×nc ,

Bd
T =


Nd

T,1 Nd
T,1 · · · Nd

T,nd


4×nd

.

(3.34)

The remaining terms of the left-hand sides of (3.25) are interpolated as

⌈gradΥT⌉ = G1
Tt1

T, and divπT = Dd
Ttd

T, (3.35)

where the sparse matrices G1
T and Dd

T are given by

G1
T =


gradNr

1 0 gradNr
2 0 · · · gradNr

n1 0
0 gradNr

1 0 gradNr
2 · · · 0 gradNr

n1


4×n1

,

Dd
T =


div Nd

T,1 div Nd
T,2 · · · div Nd

T,nd


2×nd

.

(3.36)

We use (3.29) to obtain G1
T . For calculating Dd

T , we use the following relations using (3.30a) and (3.31):

div Nd
T,k(ξ) = cT,Ei

J


div sT,Ei

I,J ◦ TT


(ξ)


, div Nd

T,l(ξ) =


div sT,T

I,J ◦ TT


(ξ)


.

Eq. (3.25) together with (3.26), (3.34), and (3.36), allows one to define the following local stiffness matrices:

K1d
T = detJT


T(G1

T)
TBd

T d A, Kcd
T = −detJT


T(Bc

T)
TBd

T d A,
Kd1

T = detJT


T(Dd

T)
TB1 d A, Kdc

T = detJT


T(Bd

T)
TBc

T d A. (3.37)

Note that Kdc
T = −(Kcd

T )
T. The nonlinear part of (3.25), i.e., the first term on the left-hand side of the second equation,

which is associated with the constitutive relation, has the following matrix representation

Sc
T(q

c
T) = detJT


T(Bc

T)
T
P 

Bc
Tqc

T


d A. (3.38)

The term containing the body force in (3.25) gives the following vector

F1
T = ρ0detJT


T(B1)T(B ◦ TT) d A. (3.39)
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The terms in (3.25) that contain the boundary traction and the boundary displacement result in the following
vectors:

F1
Et

= ℓEt


E(B1

Et
)T (T ◦ TT) ds, and Fd

Ed
= ℓEd


E(Bd

Ed
)T (U ◦ TT) ds, (3.40)

where Et and Ed are those edges of elements that lie on the traction and displacement boundaries, respectively. ℓEt

and ℓEd denote the length of Et and Ed , respectively. The matrices B1
Et

and Bd
Ed

are defined similarly to (3.34) only
for the edges at the boundary. Finally, (3.33), (3.37), (3.38), (3.39), and (3.40) allow one to write (3.25) as

T∈∆2(Bh)

(t1
T)

T

K1d

T qd
T − F1

T − F1
Et


= 0,


T∈∆2(Bh)

(tc
T)

T

Sc

T(q
c
T)+ Kcd

T qd
T


= 0,


T∈∆2(Bh)

(td
T)

T

Kd1

T q1
T + Kdc

T qc
T − Fd

Ed


= 0.

(3.41)

By assembling the local matrices (3.33), (3.37), (3.38), (3.39), and (3.40), one obtains

{q1
Bh
,qc

Bh
,qd

Bh
, t1

Bh
, tc

Bh
, td

Bh
} = A

T∈∆2(Bh)
{q1

T,q
c
T,q

d
T, t

1
T, t

c
T, t

d
T},

{K1d
Bh
,Kd1

Bh
,Kcd

Bh
,Kdc

Bh
,Sc

Bh
,F1

Bh
,F1

Γt
,Fd

Γd
} = A

T∈∆2(Bh)
{K1d

T ,K
d1
T ,K

cd
T ,K

dc
T ,S

c
T,F

1
T,F

1
Et
,Fd

Ed
},

where A simply concatenates all the column vectors of local degrees of freedom vertically to a global vector and A
denotes the assembly operator of local matrices. Using the assembled matrices, one can define

Q =

q1
Bh

qc
Bh

qd
Bh

 , and T =

t1
Bh

tc
Bh

td
Bh

 , (3.42)

where the vector Q includes all the unknown degrees of freedom of the system and T is an arbitrary vector corre-
sponding to the test fields. The global stiffness matrix, the global nonlinear stiffness part of the system, and the global
external forces can be written as

K =

 0 0 K1d
Bh

0 0 Kcd
Bh

Kd1
Bh

Kdc
Bh

0

 , S(Q) =

 0
Sc

Bh
(qc

Bh
)

0

 , F =

F1
Bh

+ F1
Γt

0

Fd
Γd

 . (3.43)

Let n, nE, and nT be the total numbers of nodes, edges, and elements in the mesh, respectively. The total number
of degrees of freedom is nD = 2n + (ec

+ ed)nE + (ac
+ ad)nT , where ec and ac are the numbers of degrees of

freedom for displacement gradient on each edge and element face, respectively. Similarly, ed and ad are the numbers
of degrees of freedom for stress on each edge and element face, respectively. These numbers depend on the specific
choice of CSFEMs. Therefore, the size of the sparse matrix K is nD × nD, and the size of the vectors T, Q, S, and, F
is nD × 1. Finally, by using (3.42) and (3.43), (3.41) can be written as

TT

KQ + S(Q)− F


= 0.

Since T is arbitrary, one concludes that

KQ + S(Q) = F. (3.44)

3.3.2. Newton’s method and the tangent stiffness matrix
Let V = KQ+S(Q)−F be the residual of the nonlinear equation (3.44) for some initial guess. By using Newton’s

method, the solution of (3.44) can be obtained iteratively as Qi+1 = Qi − K−1
t (Qi )V(Qi ), where i is the iteration
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number and the tangent stiffness matrix Kt is given by

Kt =

 0 0 K1d
Bh

0 Hcc
Bh

Kcd
Bh

Kd1
Bh

Kdc
Bh

0

 .
Here, Hcc

Bh
is obtained by assembling Hcc

T = detJT

T(Bc
T)

TCTBc
T d A for all T ∈ ∆2(Bh).

Remark 13. The tangent stiffness matrix Kt is non-symmetric and indefinite, in general. As we mentioned in
Section 3.2, the linear system associated to Kt can be efficiently solved using standard non-iterative methods for 7
out of the 32 first-order and second-order CSFEMs (see Fig. 7). Also note that if one does not apply Green’s formula
to (2.6) and use this equation instead of (2.7) in the mixed formulation (2.8), then the corresponding tangent stiffness
matrix will be symmetric.

3.3.3. Constitutive equations
For our numerical examples in the next section, we consider compressible neo-Hookean materials with the energy

functions W1(F) and W2(F), and Ogden materials with the energy function W3(F), given as

W1(F) =
µ

2
(I1 − 3)−

µ

2
ln I3 +

κ

2
(I 1/2

3 − 1)2, (3.45a)

W2(F) =
µ

2
(I1 − 3)−

µ

2
ln I3 +

κ

8
(ln I3)

2, (3.45b)

W3(F) =

m
i=1

µi

αi


I

−αi
6

3


λ
αi
1 + λ

αi
2 + λ

αi
3


− 3


+
κ

2
(I 1/2

3 − 1)2, (3.45c)

where µ and κ are the shear and bulk moduli for infinitesimal strains, respectively. Also, F := I+K is the deformation
gradient, and Ii , i = 1, 2, 3, are the principal invariants of the right Cauchy–Green deformation tensor C = FTF,
where I1 = tr(C) and I3 = detC. In (3.45c), λi , i = 1, 2, 3, are the principal stretches and µi ’s and αi ’s are some
material constants.

Using (3.45), the constitutive relations readP1(F) = µ


F − F−T


+ κ


J 2
− J


F−T, (3.46a)

P2(F) = µ


F − F−T


+ κ(ln J )F−T, (3.46b)

P3(F) =

m
i=1

µi J−
αi
3 F−T


−

1
3

tr(C
αi
2 )I + C

αi
2


+ κ


J 2

− J


F−T, (3.46c)

where J = detF, and F−T
:= (F−1)T.

For the neo-Hookean materials (3.45a) and (3.45b), and for the 2D case, the elasticity tensors have the following
matrix representations

C1(F) = µI +

µ
J

− κ(J − 1)


I + (µ+ κ J 2)


F−T


F−T

T

, (3.47a)

C2(F) = µI +
µ− κ ln J

J
I + (µ+ κ(1 − ln J ))


F−T


F−T

T

, (3.47b)

where I is the 4 × 4 identity matrix, and I denotes an anti-diagonal matrix with non-zero components I
14

= I
41

= −1

and I
23

= I
32

= 1. The above relations are used for calculating the tangent stiffness matrix. We compute the elasticity
tensor of (3.45c) numerically.

4. Numerical examples

To test the performance of CSFEMs introduced in this paper, we consider six different numerical examples in this
section.
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Fig. 9. The shearing plate example: Geometry and boundary conditions (left), four unstructured meshes (right).

4.1. Example 1: Shearing plate

As the first example, following [22], we consider a clamped square plate subject to shear loads and a body force.
The side length of the plate is 1 mm and we assume the following displacement field (see Fig. 9):

Ue =

1
2

Y 3
+

1
2

sin

π Y

2


0

 .
We assume a neo-Hookean material with energy function W1(F) given in (3.45a), with µ = κ = 1 N/mm2. Using Ue,
it is straightforward to calculate the deformation gradient Fe, the first Piola–Kirchhoff stress tensor Pe, the body force,
and the boundary traction. Then, (Ue, Fe, Pe) can be considered as the exact solution of the square plate clamped on
the bottom and subject to shear loads on the other sides as shown in Fig. 9.

As was mentioned in Section 3.2, there are 32 possible first-order and second-order CSFEMs. Our numerical
experiments suggest that the 7 combinations shown in Fig. 7 have a better performance among all the first-order and
second-order CSFEMs. All these 7 combinations pass the patch test in the sense discussed in [45, § 4.6]. For the
meshes shown in Fig. 9, the L2-norm of errors associated to each of these CSFEMs are given in Table 3. Note that the
L2-norm of a second-order tensor T is given by

∥T∥
2
L2 :=


B

∥T∥
2d A, with ∥T∥

2
:=


I,J

T I J T I J .

We observe that although H1c2̄d1̄, H1c2̄d1, H1c2d1̄, and H1c2d2̄ have more degrees of freedom than H1c1d1̄, they
do not result in more accurate approximations.

For studying convergence orders of the above CSFEMs, in Fig. 10, we have plotted the L2-norms of errors versus
the maximum diameter h for some uniform meshes. The convergence order of displacement is close to 2 for all
methods. This is the optimal convergence order for all these CSFEMs except for H2c2d2̄. The convergence order of
P is close to 1 for all methods. The order of convergence of K is close to 1 for all methods except H2c2d2̄, for which
the convergence order is 2. By considering some other meshes, we see that errors and convergence orders of U and
K are not very sensitive to the underlying meshes. However, except for H1c2d1, H1c2d2̄, and H2c2d2̄, errors and
convergence rates of P are more mesh-dependent. Based on the above discussions, one may use H1c1d1̄, H1c2d1,
and H2c2d2̄, in practice.

Fig. 11 shows the deformed configuration, ∥K∥, and ∥P∥ corresponding to the exact solution, H1c1d1̄, and H2c2d2̄.
Solutions for CSFEMs are calculated for the mesh with 114 elements shown in Fig. 9. Note that due to the interelement
continuities of H c and Hd-conformal finite element spaces, ∥K∥ and ∥P∥ obtained using CSFEMs are not continuous,
in general.
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Table 3
Convergence and error of different CSFEMs for the shearing plate example. DOF is the total number of degrees of freedom for each mesh, (Ue ,
Fe , Pe) is the exact solution, and (Uh , Fh , Ph ) is the approximate solution for each CSFEM.

CSFEM #Elements #DOF ∥Uh − Ue∥L2 ∥Kh − Ke∥L2 ∥Ph − Pe∥L2

H1c1d1̄

16 194 1.43e−02 1.00e−01 3.09e−01
48 546 2.34e−03 3.41e−02 1.08e−01

114 1238 8.92e−04 1.90e−02 5.49e−02
244 2586 3.42e−04 8.94e−03 3.70e−02

H1c2̄d1̄

16 258 2.46e−02 2.01e−01 3.01e−01
48 738 4.93e−03 7.82e−02 1.13e−01

114 1694 2.00e−03 4.61e−02 5.90e−02
244 3562 7.31e−04 2.52e−02 3.88e−02

H1c2̄d1

16 314 8.56e−03 8.53e−02 2.91e−01
48 898 1.75e−03 1.97e−02 8.58e−02

114 2060 6.95e−04 9.66e−03 2.94e−02
244 4330 3.13e−04 6.16e−03 1.97e−02

H1c2d1̄

16 346 9.53e−02 5.77e−01 1.89e−01
48 994 2.39e−02 3.69e−01 9.03e−02

114 2288 1.10e−02 2.66e−01 5.88e−02
244 4818 5.57e−03 2.01e−01 3.87e−02

H1c2d1

16 402 5.65e−03 1.00e−01 6.34e−02
48 1154 1.44e−03 2.65e−02 2.09e−02

114 2654 6.49e−04 1.74e−02 1.54e−02
244 5586 2.93e−04 1.01e−02 8.72e−03

H1c2d2̄

16 466 9.35e−03 8.88e−02 2.02e−01
48 1346 3.14e−03 4.59e−02 1.18e−01

114 3110 1.32e−03 2.99e−02 8.17e−02
244 6562 6.37e−04 1.97e−02 5.38e−02

H2c2d2̄

16 522 1.50e−03 1.51e−02 2.66e−02
48 1506 4.14e−04 4.65e−03 1.04e−02

114 3476 1.80e−04 2.13e−03 6.47e−03
244 7330 8.07e−05 9.67e−04 4.17e−03

4.2. Example 2: Cook’s membrane

For studying the performance of CSFEMs in bending and in the near-incompressible regime, we consider the
standard Cook’s membrane problem shown in Fig. 12. We use the energy function W2(F), with µ = 80.194 N/mm2,
and κ = 400889.8 N/mm2.

To investigate the pointwise convergence of the approximate solutions, in Fig. 13, we have plotted vertical
displacement of point A for different meshes and for different values of the shearing force f . We use H1c1d1̄
and H2c2d2̄ and compare our results with those of Reese [46]. We observe that both of these CSFEMs give good
approximations for relatively coarse meshes. Fig. 14 shows the global convergence of H1c1d1̄ and H2c2d2̄. We plot
L2-norms of displacement, displacement gradient, and stress for different meshes. One observes that these CSFEMs
have comparable accuracy for U and K. However, as the shearing force increases, H1c1d1̄ becomes less accurate in
approximating P. Fig. 15 shows the deformed configuration of Cook’s membrane for the meshes of Fig. 12 by using
H2c2d2̄ and f = 32 N/mm2. Colors in this figure indicate the values of ∥P∥ := (


I,J P I J P I J )1/2, with lighter

colors corresponding to larger values of ∥P∥.

4.3. Example 3: Inhomogeneous compression

Next, we consider a plate under compression shown in Fig. 16. The horizontal (vertical) displacement of the top
(bottom) of the plate is constrained to be zero, and the material properties are the same as those of the previous
example. Many enhanced strain methods suffer from the hourglass instability in this problem, e.g. see Reese [46] and
references therein.
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Fig. 10. L2-norms of errors in approximating displacement, displacement gradient, and stress versus the maximum diameter h for the shearing plate
example. In each diagram, different curves correspond to different CSFEMs. The points on each curve correspond to uniform meshes consisting of
16 (h = 0.5), 64 (h = 0.25), 256 (h = 0.125), and 1024 (h = 0.0625) cells. In each diagram, the dash–dot line and the dashed line have the slopes
1 and 2, respectively.

Due to the symmetry of this problem, as shown in Fig. 16, we only consider the right half of the plate. Fig. 17
depicts the vertical displacement of point A in Fig. 16 for different values of the force f . Displacements are obtained
by using H2c2d2̄. Our results agree with those of Reese [46], which are obtained by using hourglass stabilization
techniques. We observe that all the first-order and second-order CSFEMs except H2c2d2̄ become unstable if the
displacement of point A is more than 30% of the height of the plate. However, H2c2d2̄ remains stable without using
any additional stabilization technique. Fig. 18 shows L2-norms of U, K, and P. One observes that H2c2d2̄ has a good
global convergence behavior in this example. Finally, in Fig. 19, we have plotted the deformed configuration and ∥P∥

for the force f = 600 N/mm2, which results in displacement of point A being 65% of plate height.

4.4. Example 4: Rubber sealing

Next, we consider the compression of a rubber sealing studied in [47]. The geometry of the sealing is shown in
Fig. 20. The Ogden material with energy function W3(F) given in (3.45c) is assumed with the following parameters

κ = 1000 N/mm2, m = 3,

µ1 = 0.63 N/mm2, µ2 = 0.0012 N/mm2, µ3 = −0.01 N/mm2,

α1 = 1.3, α2 = 5, α3 = −2.

We impose a vertical displacement v on the top of the sealing. Due to the symmetry of the problem, we only consider
half of the sealing. Four unstructured meshes of the sealing are shown in Fig. 20.

In Fig. 21, we have plotted L2-norms of Uh , Kh , and Ph for different meshes under various vertical displacements
v. The dashed and the solid curves are calculated by using H1c1d1̄ and H2c2d2̄, respectively. We observe that H2c2d2̄
converges rapidly. However, H1c1d1̄ has a poor performance in approximating K and P. Fig. 22 shows the deformed
configurations of the sealing with v = −2.2 mm using the meshes of Fig. 20. The results are obtained using H2c2d2̄
and colors indicate values of ∥P∥, where lighter colors correspond to higher values.

4.5. Example 5: A plate with randomly distributed holes

For studying the performance of CSFEMs on domains with complex geometries, we consider a square plate
containing some randomly distributed holes with arbitrary shapes as shown in Fig. 23. The material properties are
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Fig. 11. The comparison between the deformed configuration, the norm of displacement gradient ∥K∥, and the norm of stress ∥P∥ associated to the
exact solution of the shearing plate example and those obtained by CSFEMs. Colors indicate values of ∥U∥, ∥K∥, and ∥P∥ in the first, the second,
and the third columns, respectively. Lighter colors indicate larger values. The first, the second, and the third rows correspond to the exact solution,
H1c1d1̄, and H2c2d2̄, respectively. The underlying mesh of CSFEMs has 114 cells. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Cook’s membrane: Geometry, boundary conditions, and three unstructured meshes.

the same as those of the Cook’s membrane example. We fix the bottom of the plate and impose the displacement
field U = (0, v) at the top of the plate. Fig. 23 shows three unstructured meshes for the plate. In Fig. 24, we have
plotted the L2-norms of U, K, and P for various meshes under different values of the vertical displacement v at the top
of the plate. The results are calculated using H2c2d2̄. One observes that even relatively coarse meshes lead to good
approximations for stress. Fig. 25 depicts the deformed configurations and the norm ∥P∥ associated to the meshes of
Fig. 23. The vertical displacement v = 0.5 mm is imposed at the top of the plate.
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Fig. 13. Cook’s membrane: Vertical displacement of point A in Fig. 12 for different values of the shearing force f versus the number of elements
in the mesh. The dashed and the solid lines are the results obtained by H1c1d1̄ and H2c2d2̄, respectively. The underlying meshes have 46, 81, 122,
157, 207, and 264 elements. The dotted lines indicate the results of Reese [46].

Fig. 14. Cook’s membrane: L2-norms of displacement, displacement gradient, and stress (for different values of the shearing force f ) versus the
number of elements in the mesh. The dashed and the solid lines are obtained by H1c1d1̄ and H2c2d2̄, respectively. The underlying meshes have
46, 81, 122, 157, 207, and 264 elements.

4.6. Example 6: Tension of a heterogeneous plate

As was mentioned in Section 3.1.2, the underlying H c and Hd-conformal finite element spaces of CSFEMs
automatically satisfy the Hadamard jump condition and the zero traction jumps at the internal edges, respectively.
This fact can be used to model certain types of heterogeneous materials. More specifically, if inhomogeneities do not
slide at the interfaces, i.e. at internal interfaces displacement is continuous and traction vectors are single-valued, then
one can consider a single mesh for the entire heterogeneous structure and only associate different material properties
to different elements depending on their locations.

To demonstrate the idea, we consider a simple heterogeneous square plate shown in Fig. 26. The plate size is
1 mm × 1 mm and there is a circular inhomogeneity of radius 0.25 mm at the center of the plate. The bottom of the
plate is fixed and a 1 mm vertical displacement (100% stretch) is imposed on the top. Fig. 26 shows four unstructured
meshes for the plate. Instead of considering two separate meshes for the plate and the inhomogeneity and imposing
suitable boundary conditions on their interfaces, we use a single mesh for the 1 mm × 1 mm square and associate
different material properties to elements depending on their position.

The energy function W2(F) with (κ, µ) = (120.291, 80.194) N/mm2 is assumed for the plate. For the inho-
mogeneity, we use W2(F) with (κ, µ) = (κ̄, µ̄). The following four cases are studied: (i) A homogeneous plate:
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Fig. 15. Deformed configurations of Cook’s membrane using H2c2d2̄ and the meshes of Fig. 12, with the shear force f = 32 N/mm2. Colors
indicate values of the norm of stress ∥P∥, where lighter colors correspond to larger values of ∥P∥. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 16. The inhomogeneous compression example: Geometry, boundary conditions, and four unstructured meshes. Note that using the symmetry
of this example, only half of the plate is modeled.

(κ̄, µ̄) = (120.291, 80.194) N/mm2, (ii) a plate with a hole: (κ̄, µ̄) = (10−9, 10−9) N/mm2, (iii) (κ̄, µ̄) =

(481.164, 320.776) N/mm2, (iv) a rigid inhomogeneity: (κ̄, µ̄) = (109, 109) N/mm2. Fig. 27 shows the convergence
of solutions for these cases. The dashed and solid curves are obtained by using H1c1d1̄ and H2c2d2̄, respectively.
One observes that except for the rigid inhomogeneity case, H1c1d1̄ has a good performance.

Fig. 28 depicts the deformed configuration of the case (iii) for the meshes of Fig. 26. The results are calculated by
using H2c2d2̄ and colors indicate the values of the stress norm ∥P∥, where lighter colors correspond to higher values of
∥P∥. Finally, we have plotted the deformed configurations of the above four cases in Fig. 29. The results are calculated
by using H2c2d2̄ and the underlying mesh has 200 elements. Colors indicate ∥P∥ and are normalized between all the
deformed configurations so that the same colors in different configurations indicate the same values of ∥P∥. As one
expects, ∥P∥ increases as the inhomogeneity becomes stiffer. For comparison purposes, we also considered tension of
the same plate with a circular hole instead of the inhomogeneity and observed that the results coincide with those of
case (ii) with a very soft inhomogeneity.
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Fig. 17. The inhomogeneous compression example: Vertical displacement of point A of Fig. 16 for different values of the force f versus the
number of elements in the mesh. The results are obtained by using H2c2d2̄. The underlying meshes have 39, 82, 120, 160, 197, and 236 elements.
The dotted lines indicate the results of Reese [46].

Fig. 18. The inhomogeneous compression example: L2-norms of displacement, displacement gradient, and stress (for different values of the
compressing force f ) versus the number of elements in the mesh. The results are obtained by using H2c2d2̄. The underlying meshes have 39, 82,
120, 160, 197, and 236 elements.

Fig. 19. Deformed configurations of the inhomogeneous compression example using H2c2d2̄ and the meshes of Fig. 16. The plate is under the
force f = 600 N/mm2, which results in displacement at the middle point A being 65% of the plate height. Colors indicate values of the norm of
stress ∥P∥ with lighter colors corresponding to higher values of ∥P∥. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 20. The rubber sealing example: Geometry, boundary conditions, and four unstructured meshes. Using symmetry of this problem, only half of
the sealing is modeled.

Fig. 21. The rubber sealing example: L2-norms of displacement, displacement gradient, and stress versus the number of elements in the mesh.
Different curves indicate results associated to different values of the vertical displacement v at the sealing upper boundary. The dashed and the solid
curves are obtained using H1c1d1̄ and H2c2d2̄, respectively. The underlying meshes have 49, 106, 149, 210, 250, 305, 349, and 400 elements.

5. Concluding remarks

In this paper, we introduced a new class of mixed finite element methods for nonlinear elasticity—compatible-
strain mixed finite element methods (CSFEMs). These finite element methods are based on a Hu–Washizu type
functional with the displacement U, the displacement gradient K, and the first Piola–Kirchhoff stress tensor P as the
independent unknowns. The trial spaces for K and P are assumed to be the Hilbert spaces H c and Hd, respectively.
The differential operators c (the 2D curl operator) and div can be weakly defined on H c and Hd, respectively. The
choice of the trial space H c for K follows form the necessary compatibility condition for K, i.e. c(K) = 0. By using H c

and Hd, one can write two Hilbert complexes for 2D nonlinear elasticity that describe the kinematics and the kinetics
of large deformations. By utilizing the relation between these Hilbert complexes and the celebrated de Rham complex,
we discretized the Hilbert complexes using the finite element exterior calculus. CSFEMs are obtained by replacing
solution spaces of the above mixed formulation with suitable finite element spaces of the discrete complexes.

In comparison with the standard finite element methods for nonlinear elasticity, CSFEMs require more degrees
of freedom. However, we observed that CSFEMs have good performances for problems for which many standard
finite element methods fail or have a poor performance. In particular, CSFEMs give accurate approximations of
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Fig. 22. Deformed configurations of the rubber sealing example using H2c2d2̄ and the meshes of Fig. 20. The imposed vertical displacement at
the upper boundary of the sealing is v = −2.2 mm (almost 25% shortening). Colors indicate values of the norm of stress ∥P∥, where lighter colors
correspond to higher values of ∥P∥. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 23. Three unstructured meshes for a plate with randomly distributed holes.

Fig. 24. A plate with randomly distributed holes: L2-norms of displacement, displacement gradient, and stress versus the number of elements in
the mesh. Different curves indicate the results for different values of the vertical displacement v at the upper boundary of the plate. The results are
obtained by using H2c2d2̄. The underlying meshes have 139, 231, 407, 606, 789, 951, and 1033 elements.
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Fig. 25. Deformed configurations of a plate with randomly distributed holes using H2c2d2̄ and the meshes of Fig. 23. The imposed vertical
displacement at the upper boundary of the plate is v = 0.5 mm (50% stretch). Colors indicate values of the norm of stress ∥P∥, where lighter colors
correspond to higher values of ∥P∥. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 26. Four unstructured meshes for the heterogeneous plate example. The (yellow) circle indicates the interface between the plate and the
circular inhomogeneity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. Tension of a heterogeneous plate: L2-norms of displacement, displacement gradient, and stress for 100% tension versus the number of
elements in the mesh. The plate material parameters are κ = 120.291 N/mm2 and µ = 80.194 N/mm2 and those of the inhomogeneity (κ̄, µ̄) are
given in the legend. The dashed and the solid curves are obtained by using H1c1d1̄ and H2c2d2̄, respectively. The underlying meshes have 103,
151, 200, 251, 301, 356, and 400 elements.

stress on domains with complex geometries. Such a performance is highly desirable in many applications such
as fracture mechanics. Moreover, CSFEMs provide a convenient framework for modeling inhomogeneities. It is
possible to extend CSFEMs to 3D nonlinear elasticity. To this end, one should use the 3D counterpart of the Hilbert
complexes (2.1) and (2.2). In future communications, we will extend CSFEMs to 3D nonlinear elasticity and also to
incompressible nonlinear elasticity.
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Fig. 28. Deformed configurations of the heterogeneous plate under 100% stretch using H2c2d2̄ and the meshes of Fig. 26. The plate material
parameters are (κ, µ) = (120.291, 80.194) N/mm2 and those of the inhomogeneity are (κ̄, µ̄) = (481.164, 320.776) N/mm2. Colors indicate
values of the norm of stress ∥P∥, where lighter colors correspond to higher values of ∥P∥. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 29. Deformed configurations of the heterogeneous plate under 100% stretch with different material properties for its inhomogeneity. Results
are calculated using H2c2d2̄ and the mesh has 200 elements. The plate material parameters are (κ, µ) = (120.291, 80.194) N/mm2 and those of
the inhomogeneity are written above the corresponding figure. Colors indicate values of the norm of stress ∥P∥, where lighter colors correspond to
larger values of ∥P∥. Colors are normalized between figures such that the same colors in different figures indicate the same values. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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