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In this paper, we present a geometric discretization scheme for incompressible linearized elasticity. We
use ideas from discrete exterior calculus (DEC) to write the action for a discretized elastic body modeled
by a simplicial complex. After characterizing the configuration manifold of volume-preserving discrete
deformations, we use Hamilton’s principle on this configuration manifold. The discrete Euler-Lagrange
equations are obtained without using Lagrange multipliers. The main difference between our approach
and the mixed finite element formulations is that we simultaneously use three different discrete spaces
for the displacement field. We explicitly derive the governing equations for the two-dimensional case,
where the discrete spaces for the displacement field are constructed by P; polynomials over primal
meshes for incompressibility constraint, P, polynomials over dual meshes for the kinetic energy, and
P; polynomials over support volumes for the elastic energy, and the discrete space of the pressure field
is constructed by P, polynomials over primal meshes. We test the efficiency and robustness of this geo-
metric scheme using some numerical examples. In particular, we do not see any volume locking and/or
checkerboarding of pressure in our numerical examples. This suggests that our choice of discrete solution

spaces is compatible.
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1. Introduction

Finding robust numerical schemes for solving incompressible
elasticity problems has been of great interest due to important
applications of incompressible elasticity, e.g. in analyzing biologi-
cal systems where soft tissue is usually modeled as an incompress-
ible elastic body (see [1,2] and references therein). It is well known
that numerical methods that are reliable for compressible
elasticity severely fail for the case of incompressible problems
(see [3-5] and references therein). Inaccurate results are usually
due to the locking phenomenon. Locking, in general, is the loss of
accuracy of the solution of a numerical scheme for the approxima-
tion of a parameter-dependent problem as the parameter tends to
a critical value [6,7]. For example, locking appears in plate and
shell models as the thickness d — 0, analysis of incompressible
linear elasticity as Poisson’s ratio v — 1/2, and heat transfer prob-
lems as the ratio of conductivities ¢ — 0. A robust numerical
method is uniformly convergent for all values of the parameter
of the problem. Babuska and Suri [6] gave precise mathematical
definitions for locking and robustness and gave some general re-
sults on the characterization of these phenomena.
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To this date various numerical schemes have been developed
for incompressible elasticity. The finite element (FE) method is
one of the best numerical methods for compressible elasticity.
However, FE results may be inaccurate in the near-incompressible
and incompressible regimes. To overcome this difficulty, many dif-
ferent approaches have been proposed in the literature. The stan-
dard FE formulation based on displacements using low-order
elements exhibits a poor performance for near-incompressible
elasticity. It has been observed that higher order elements can
avoid locking in near-incompressible linear elasticity [8]. Another
approach is to use discontinuous Galerkin FE methods [9-12,1].
In these formulations, independent approximations are used on
different elements and the continuity across boundaries of ele-
ments is weakly enforced. Nonconforming FE methods can also
avoid locking for near-incompressible elasticity [13-15]. The sim-
plicity of the aforementioned methods is due to the fact that they
are based on the displacement variational formulation, and there-
fore, one does not need to include other variables in the formula-
tion. There are some formulations based on the Hu-Washizu
variational principle, where the displacement, strain, and stress
are considered as independent variables. The method of enhanced
assumed strain introduced by Simo and Rifai [16] and the method
of mixed enhanced strain of Kasper and Taylor [17] are both based
on the Hu-Washizu variational principle. Another approach that
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has widely been used for near-incompressible and incompressible
elasticity is mixed formulations based on the Hellinger-Reissner
variational principle. In the near-incompressible regime, the stress
and displacement are both unknowns. For the incompressible re-
gime, the pressure and displacement are the primary unknowns,
where the pressure is the Lagrange multiplier of the incompress-
ibility constraint. It was observed that discrete spaces of the dis-
placement and pressure should be compatible [3]. Various mixed
formulations have been developed by using different techniques.
Brink and Stephan [18] proposed an adaptive coupling of boundary
elements and mixed FE method for incompressible elasticity. Cer-
vera et al. [19] developed mixed simplicial elements for incom-
pressible elasticity and plasticity. Discontinuous Galerkin
methods have also been used in the mixed formulations, see
[20,21] and references therein. It has been observed that re-
duced/selective integration techniques that are closely related to
mixed formulations are useful for incompressible elasticity
[22,23]. In these methods, the inf-sup stability requirement is also
enforced for the displacement and implicit pressure interpolant
spaces. Equal-order interpolation with stabilization methods [24]
and average nodal pressure elements [25,26] have also been suc-
cessfully implemented. Boner and Burton [25] proposed a linear
tetrahedron element that prevents locking by introducing nodal
volumes and evaluating nodal pressures in terms of these volumes.
Gatica et al. [27] developed a dual-mixed finite element method for
incompressible plane elasticity. Hauret et al. [4] introduced a dia-
mond element FE discretization for compressible and incompress-
ible linear and finite elasticity. Using both primal and dual vertices
of an arbitrary simplicial mesh for the domain and its barycentric
dual mesh, they constructed an associated diamond mesh. They
defined interpolation spaces for displacement and pressure sup-
ported on the diamond mesh by choosing piecewise linear dis-
placement interpolation on sub-elements and constant pressure
interpolation on diamond elements. They proved that the displace-
ment field converges optimally with mesh refinement and also
showed that for the problem of linearized incompressible elasticity
their scheme satisfies the inf-sup condition, and hence, it is well
posed. Alternatively, it is also possible to use element-free Galerkin
methods [28]. Vidal et al. [29] introduced a pseudo-divergence-free
element-free Galerkin method using a diffuse divergence for near-
incompressible elasticity. Similar techniques have been used by
other researchers for developing mesh-free methods for mixed for-
mulations and B-bar methods [30-32].

The incompressibility constraint can be imposed more directly
using the stream function formulation [33]. Because the diver-
gence of the displacement is zero in incompressible linear elastic-
ity, there is a scalar-valued function called stream function whose
curl gives the displacement. Then, the weak formulation of incom-
pressible linear elasticity can be rewritten as a fourth-order elliptic
problem over scalar functions. Auricchio et al. [33] used an
isogeometric interpolation based on Non-Uniform Rational B-
Splines (NURBS) [34] to obtain a locking-free isogeometric ap-
proach for the stream function formulation. The high continuity
across the elements is the key advantage of NURBS functions.
The solution of the stream function formulation automatically sat-
isfies the incompressibility constraint, i.e., it is divergence-free by
construction.

Another interesting idea in the literature (promoted mainly by
Arnold and his coworkers [35] is to use an “elasticity complex”,
which is similar in form to the classical de Rham complex. In fact,
Eastwood [36] showed that the linear elasticity complex can be
constructed from the de Rham complex. Having a complex for a
field theory, one then defines a discrete analogue of the continuum
complex. In the case of finite element method, this gives the appro-
priate finite element spaces for different fields (e.g. displacements
and stresses in the case of linear elasticity). This has led to the

discovery of several stable mixed finite elements for linear elastic-
ity [35].

Ciarlet and Ciarlet [37] proposed a new approach for finding the
solution of planar linear elasticity that may be capable of handling
the near incompressible case as well. They showed that this prob-
lem can be alternatively reformulated as minimization of an asso-
ciated Lagrangian over the strain field. They defined their finite
element space over a triangulation of the reference configuration
as the space of 2 x 2 symmetric matrix fields, which are constant
over each triangle of the triangulation, has the same values for the
degrees of freedom at common edges of any two distinct triangles,
and is curl-curl free. This curl-curl free condition plays the role of
the compatibility conditions. Thus, this method enables one to di-
rectly obtain the strains and stresses as they are considered the pri-
mary unknowns. Another numerical scheme for dealing with
incompressibility is the finite volume method. Bijelonja et al.
[38] developed a finite volume based method for incompressible
linear elasticity using the solution of the integral form of the gov-
erning equations and the introduction of pressure as an additional
variable. Considering several numerical examples, they concluded
that such numerical methods are locking free.

Geometric ideas were first introduced in numerical electromag-
netism (see [39] and references therein). Here the idea is to use
some techniques from differential geometry, algebraic topology,
and discrete exterior calculus to write the governing equations
and constraints in terms of appropriate geometric entities and then
look for the solutions in a proper solution space that satisfies the
required constraints. The main advantage of such methods is that
by construction they are free of traditional numerical artifacts such
as loss of energy or momenta. Hirani et al. [40] used discrete exte-
rior calculus to obtain a numerical method for Darcy flow. They
used flux and pressure, which are considered to be differential
forms, as the primal unknowns and then the numerical method
was derived by using the framework provided by discrete exterior
calculus for discretizing differential forms and operators that act
on forms. Pavlov et al. [41] proposed a structure-preserving dis-
cretization scheme for incompressible fluids. Their main idea is
that instead of discretizing spatial velocity, one can discretize
push-forward of real-valued functions and the Lie derivative oper-
ator. They showed that the space of discrete push-forwards is the
space of orthogonal, signed doubly-stochastic matrices and the
space of discretized Lie derivatives is the space of antisymmetric
null-column matrices. They obtained a discrete in space and con-
tinuous in time version of Euler equations using the Lagrange-
d’Alembert principle for their discrete Lagrangian and then con-
structed a fully discrete variational integrator by defining a
space-discrete/time-discrete Lagrangian.

The problem with elasticity is that unlike electromagnetism
that only requires differential forms one needs to consider various
types of tensors for elasticity. There have been recent efforts in the
literature in geometrizing discrete elasticity. Chao et al. [42] used
geometric ideas to introduce an integrator for nonlinear elasticity.
Kanso et al. [43] used bundle-valued differential forms for geome-
trization of stress. Assuming the existence of some discrete scalar-
valued and vector-valued discrete differential forms, Yavari [44]
presented a discrete theory with ideas for developing a numerical
geometric theory. In the present work, we introduce a geometric
structure-preserving scheme for linearized incompressible elastic-
ity. First, we show that in the smooth case, the governing equations
of incompressible elasticity can be obtained using Hamilton’s prin-
ciple over the space of divergence-free vector fields without using
Lagrange multipliers. Then, we develop a discrete theory for linear-
ized elasticity by assuming the domain to be a simplicial complex
and choosing a discrete displacement field, which is a primal vec-
tor field, as our primary unknown. Thus, we do not need to worry
about compatibility equations. Then, we use a discrete definition of
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divergence to specify the space of discrete divergence-free vector
fields over a simplicial mesh and choose this space as our solution
space. Motivated by the Lagrangian structure of the smooth case,
we define a discrete Lagrangian and use Hamilton’s principle over
the discrete solution space without using Lagrange multipliers. We
observe that pressure gradient appears in the discrete governing
equations. Finally, we use the discrete Laplace-Beltrami operator
to obtain the discrete pressure - a dual O-form. This can be thought
of as a geometric justification for the known fact that using differ-
ent function spaces for pressure and displacement is crucial for
obtaining robust numerical schemes for incompressible elasticity.
Finally, we consider some numerical examples that suggest that
our method is free of locking and checkerboarding of pressure.

The approach that we use for imposing the incompressibility
constraint is equivalent to the method of Lagrange multipliers for
obtaining the mixed formulation of incompressible elasticity. We
directly use the space of discrete divergence-free displacements gi-
ven by the DEC theory. This is the deviation of our approach from
the FE method: The definition of the discrete divergence implies a
specific linear interpolation for displacements. However, we are
free to choose other interpolation methods for the displacement
field when we calculate the kinetic and elastic energies. Therefore,
unlike the FE method, we simultaneously use three different dis-
crete solution spaces for the displacement field, in general. Similar
to the mixed FE formulations, discrete solution spaces for the dis-
placement field should be compatible with each other and with the
discrete space of the pressure field to obtain a stable numerical
scheme. Our numerical examples suggest that a choice of discrete
spaces given by P; polynomials over primal meshes for the incom-
pressibility constraint, P; polynomials over support volumes for
the elastic energy, and Py polynomials over primal meshes for
the pressure field is a compatible choice.

This paper is structured as follows. In §2 we review incompress-
ible linear and nonlinear elasticity, their geometries, and their var-
iational structures. In particular, we derive the governing
equations of incompressible finite and linearized elasticity using
Hamilton’s principle without using Lagrange multipliers by a direct
use of the configuration manifold of incompressible elasticity and
the Hodge decomposition theorem. Discrete exterior calculus
(DEC) specialized to elasticity applications is reviewed in §3. Dis-
crete configuration manifold of 2D incompressible linearized elas-
ticity is studied in detail in §4. In §5, kinetic and elastic energies of
a discretized linear elastic body are written in the language of DEC.
Using Hamilton’s principle in the discrete configuration manifold
of discrete incompressible linearized elasticity then gives the dis-
crete Euler-Lagrange equations. Numerical examples in §6 demon-
strate the efficiency and lack of any volume locking in our
geometric scheme. Conclusions and future directions are discussed
in §7.

2. Incompressible elasticity

In this section, we first review some basic topics in finite and
linearized incompressible elasticity. In particular, we study their
variational structure and show that the governing equations of
incompressible elasticity can be obtained using the variational
principle over the space of volume-preserving motions.

2.1. Incompressible finite elasticity

Here, we first review some preliminaries on finite elasticity and
then study the variational structure of incompressible finite elas-
ticity, see [45,46] for more details. Let an m-dimensional Riemann-
ian manifold (B,G) with local coordinates {X*} be the material
manifold for an elastic body, i.e., in this manifold the body is stress

free.! We assume that ambient space is another Riemannian mani-
fold (S,g) of dimension n > m with local coordinates {x°}. Here
for the sake of simplicity, we assume that m = n. We use (.,.); and
(,-) to denote the inner product using the metrics G and g, respec-
tively. Motion is a diffeomorphism ¢ :B xR — S. If we define
@, :=@(-,t): B — S, then we note that ¢,(B) C S is a submanifold
of & and hence it inherits the metric structure of S. Let
@y = @(X,-) : R— S. Then ¢y(t) specifies a curve in S and so we
can define the following vector field covering ¢,:

d d_o¢
VX.t) = @y g =Tel@x) - =0 (1)

where the linear mapping T ¢y is the derivative of ¢, at point t and
4 is the unit vector in the tangent space of R at t. This vector field is
called material velocity. If we push forward V, we obtain the spatial
velocity v, which is a vector field on ¢, (B) given by
v(x,t) = V(@1 (x),t). Similarly, one can define the material acceler-
ation A and the spatial acceleration a as
V(X,t)
AX t)=——"=,
(X.0) = =5
A motion ¢ is called volume preserving if for every nice set
U C B we have

/ dy — / av, 3)
@) u

where I/ is an open set with a piecewise C' boundary d/ and
dV = Vdet GdX' A--- AdX" and dv = \/det gdx' A--- Adx" are the
volume forms of B and S, respectively. If ¢(X,t) is a volume-pre-
serving motion then divv = 0 and its Jacobian J(X, t) = 1, where Jac-
obin is defined as | = \/det g/ det GdetF, with F = Tx¢,. Balance of
linear momentum reads

PoA = pyB + DivP, (4)

a(x,t) = A(p; " (x),1). (2)

where p, = py(X) denotes mass density of B,B is the body force,
and P is the first Piola-Kirchhoff stress tensor. The right Cauchy-
Green deformation tensor is defined as C = F'F = ¢;g. In this work,
we consider hyperelastic materials, i.e. we assume existence of a
stored energy function W = W(X,G,F,g) or W = W(X,C). For such
materials we have the following identity

ow
— 4

In the next section, we study the variational structure of incom-
pressible finite elasticity.

2.1.1. Variational structure of incompressible finite elasticity

Let 9,8 denote the subset of 9B on which essential boundary
conditions are imposed, i.e., ¢|,, = ¢,, and let 9.3 be the portion
of 8B on which natural boundary conditions t = (P,N’) are im-
posed, where N is the outward unit vector field normal to 95,7 is
the traction vector, and (,) denotes the natural pairing of a vector
and a form, i.e., contraction of a covariant index of one tensor with
a contravariant index of another tensor. We define the space of
configurations of B to be

C={y:B — S|y =@, on 948}, (6)

where ¢, denotes the essential boundary condition on 945. One can
show that C is a C* infinite-dimensional manifold [50]. A tangent
vector to a configuration ¢ €C is the tangent to a curve
c: (—€,€) — C with ¢(0) =y, which is a velocity field U covering v
and vanishes on 9,8. Therefore, we have

! In general, (B, G) is the underlying Riemannian manifold of the material manifold,
which is where the body is stress-free. See [47-49] for more details.
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TC = {(1/1,U)|t// €c, U:B — Ty(B) and U, ;= o}. (7)

TC is usually called the space of variations. Let H = W*? be the
Sobolev space consisting of all mappings ¢ : B — S such that ¢ and
all its derivatives up to order s belong to the Hilbert space ?.2 Note
that by defining an appropriate inner product on H’, it is possible to
show that H*® is a Hilbert space [3]. The configuration space for
incompressible elasticity is

Coo ={¥ €ClJ(Y) =1} )

Ebin and Marsden [50] showed that if ¢ ¢ H® then C,, is a
smooth submanifold of C. The tangent space of C,, at a configura-
tion ¥ € Cyy is

TyCoot = {U € T,C|div (Uoy ') = 0}. 9)

For unconstrained finite elasticity, the Lagrangian L : TC — Ris
defined as

Lo, V) =K -V, (10)

where
1 1
KV) =5 [ 0oV av = [ polVIZav,
B B
V(p) = / PoW(X.E)dV + / PoVe(@)dV + / Vilo)a (1)

with D,V,; = —7 and D,Vg = —B, where B(X,t) = b(¢(X,t),t) is the
material body force and D, denotes derivative with respect to ¢.
Note that in Euclidian space, one can consider dead loads as
Vi(@) = (7, ¢), and Vg(@) = —(B, ),. By setting 6f0T Ldt =0 in
the time interval [0, T], one obtains the Euler-Lagrange equations
for finite elasticity. For unconstrained finite elasticity, the Euler-La-
grange equations are equivalent to the weak form and the strong
form of the governing field equations of nonlinear elasticity [45].

For incompressible finite elasticity we require 5foT Ldt = 0 over
volume-preserving motions. To solve this problem, one needs to
impose the constraint J = 1. This can be done by directly imposing
the constraint into the Lagrangian using the Lagrange multipliers
[51]. An alternative approach, which is more in line with our dis-
cretization philosophy, is to consider the Lagrangian (10) on TC,,
instead of TC as follows [45] (see also [41] for a similar treatment
of incompressible perfect fluids). We want to find a curve ¢, € C,q
on the time interval [0, T] with ¢, =1d; (Ids : B — B is the iden-
tity map) and ¢; = @ € C, such that

- 5/TL(qot)dt 0. (12)
0

Let ¢,, €Cyq be a variation field such that ¢., = ¢, and
3¢ =L _op,, is a vector field in TC,,. We consider proper varia-
tions, and therefore, @, = ¢, and ¢, = @. Then, (12) is equiva-
lent to

d [T .
1= (g [ Howdus)de)o =0 (13

We have

. 1 .
L(pes, Prs) = /B {j Po(Prs, Pes)g — pOW<X, Tx(/)r,s> —PoVs <(Pt.s> }dV

- -/0.113 Ve (@r.s)dA

and therefore, using the metric compatibility and symmetry of the
Levi-Civita connection [52], we obtain

(14)

2 Recall that ¢:B — R" belongs to L? if it is square integrable, i.e.,
€17 = fs 17dV < oo

d ! . T d )
I= <% /0 L((/)t,mcpr,s)dt) T /O {&L((Pt‘s,(l’t,s”s:o}dt
' ; ow
:/o {/B [Po(q)nvé_»[é(/’)g—<POE,V(5(1))>

+pO(B,5<p)g}dV+ / (t,é(p)gdA}dt, (15)

08

where the components of the two-point tensor V(d¢) read
209)*
ax*

with ¢ denoting the Christoffel symbols of the coordinate system
{x*} on S and

(o5 V001 ) = po ) (V00D (17)

(V(39))'n = (60)°n = + (00) Y8 F s, (16)

Because of metric compatibility of the Levi-Civita connection,
we have

(60 9450) = & (@000), ~ (V401.50) (18)

As we consider proper variations, substitution of (18) into (15)
yields

I—- / { [ |poa=Bodo), + (0,55 io0))|av

- [ e 5(p)gdA}dt. (19)

g

The integrand of I is continuous and T is arbitrary, so setting
I =0 results in

[ [poa=B30),+ (5 V60) )|V~ [ (z.00),08 0.
(20)

Eq. (20) is called the weak form of the field equations of incom-
pressible finite elasticity. Now observe that

. ow ow -
oiv{p, 2 59) = o V1001
. oW
+ (o (5 ) 00 e1)
Div (po ¢ .60) = [(po 5 )s(0¢)"], and  [Div(po 5], =

(Po2¥) - Thus, if N denotes the unit normal vector field on 95,
using divergence theorem one concludes that

{3 00):N) 0= [ (0w g w1000 v
+/L;<Div (poaa—vl‘:/>,5(p>dv. (22)

We assume that 98 = 948U 9.8 and 948 N 0.8 = ¢, and there-
fore because 4¢|,, = 0, we obtain

. <<”°%’5‘/’>7N>GW‘ - /,B (<po%76<p>,N)GdA (23)

Note that we have

{Div <p0 %)T = Div (po %):, (24)

aA
with [(po%vg)f] — g7 (po )", Substituting (22) and (23) into (20)
and using (24) yields

where
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. £
/ (poA — poB — Div <po %) 75(P) dv
, :
+/ <<<p0‘2’:> ,N’>t,5(p> dA=0. (25)
JoB .

Therefore, our problem has been reduced to finding ¢, € Cyo
that satisfies (25) for every ¢ € TC,,. Next, we need to use the fol-
lowing lemma.

Lemma 2.1. Let & be a vector field on a Riemannian manifold (M, g).
If for every vector field w e {z: M — TM|divz=0,z|,,, =0} we
have [, (¢, w),dv = 0, then there exists a function p: M — R such
that ¢ = —div (pg’*).

Proof. Let Q“(M) denote the set of k-forms on M and assume that
M is a compact oriented Riemannian manifold with smooth
boundary M. The inner product of k-forms a,p e Q*(M) is
defined as

(@h), — / an ()= /M (@, B)do, (26)

where « : Q“(M) — Q" *(M) is the Hodge star operator. The Hodge
decomposition theorem [50,53] states that Q*(M) has the following
orthogonal decomposition

QM) = d(Q"’l(M)) @ DEM), (27)

where

d(Q"‘l(M)) = {oc € QF(M)|3p € QX 1 (M)s.ta = d/;},
M) = {aeQ’;(M)\sa:o}., (28)

with d: QM) — QM) and 6: QT(M) — QM) denoting
the exterior derivative and codifferential operators, respectively,
and

QM) = {oc € Q¥(M)|a is tangent to 8/\/1}. (29)

Note that the k-form & € Q“(M) is tangent to 9M if the normal
part a, =i"(xat) is zero, where i: 9M — M is the inclusion map
[53].2 Thus, if ¢ is a vector field on M, then the one-form & can be
written as

¢=-dp+y, (30)

where p: M — R is a smooth function, §y = 0, and y* is parallel to
oM, ie., ¥ (q) € Tq(OM) for q € M. Note that div(y*) = -5y =0,
and therefore y* is a divergence-free vector field parallel to oM.
Using (30), we can write the assumption of the lemma as

/M (& w),dv = / (é”,wb)gdv

JM

:/M—(dp,w”)gdwr/M (y.w),dv=0, (31)

for an arbitrary divergence-free vector field w that vanishes on oM.
Therefore, w is parallel to M and because the decomposition (27)
is orthogonal with respect to the inner product (26), —(dp,w’), is
identically zero and hence (31) is equivalent to (y, w”)g = 0, which
means that y = 0 as y,w’ € D] (M). Thus, we obtain

g = —dp. (32)

3 Note that if X is a vector field on M, then X is tangent to dM if and only if X’ is
tangent to OM [53].

On the other hand, using the identity
agab

o = 8 Ve~ & Ve (33)
one can write

a a 8 8 ab Qi al a
(pgb)‘b:gba—;w(aib +g“’v?b+g“/?b> —g". L, (34)

or equivalently
div (pg’) = (dp)". (35)

Substituting (35) into (32) yields & = —div (pg*). This completes the
proof. O

Now returning to (25), we note that ¢ is arbitrary and, in par-
ticular, it can vanish on the boundary. Hence, the first integral on
the left hand side of (25) should vanish. Now by using Lemma
2.1, we conclude that

o OWN .
PoA — poB — Div <p0 W) = —div(pg), (36)

where the time-dependent function p:¢@,(B) x R — R is the
pressure field. By defining the material pressure field
po(X,t) := @;p(X) = p(¢,(X),t), and noting that the Jacobian of ¢,
is unity, we can use the Piola identity [45] to write

div (pg!) = Div (po (F’l)t>, (37)

f a
where (F') is the tensor with components (F’l) . Substituting
(37) into (36) yields

(o) b0 (Fl)”] 7 38)

which are the governing equations of incompressible finite elastic-
ity. Substituting (38) back into (25) and using the divergence theo-
rem results in the natural boundary condition

o5 = <<poaa_‘/]\=/>m ~Po (Fl)t’Nb>' 39)

Note that p is similar to pressure for perfect fluids and can be
considered as the force of the constraint [45]. Also (38) implies that
the first Piola—l(irchuhoff stress tensor can be written as
P = (p ) —po(F ')

PoA = pyB + Div

2.2. Incompressible linearized elasticity

In this section we first review some preliminary concepts in
linearized elasticity and then study the variational structure of
incompressible linearized elasticity formulated on a Riemannian
manifold. Here we do not use Lagrange multipliers to enforce
the incompressibility constraint. Instead, we confine the dis-
placement field to the set of divergence-free vector fields; mo-
tion of an incompressible elastic body extremizes the action
function in this space.

Linear elasticity can be considered as the linearization of finite
elasticity with respect to a reference motion [45,54]. The linearized
Jacobian about the configuration ((;) reads [45]

£4U) =] +] [(divu) o ], (40)

whereu=Uo (?)*1 andj is the Jacobian ofo(?). For an incompressible
motion, we have J = 1, and by choosing ¢ to be the identity map
Ids, we obtain 1 = J(x) ~ J(Idg) +J(Ids) divu, which yields

DivU = divu = 0. (41)
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Note that (41) is the first-order incompressibility condition, i.e.,
the incompressibility condition is satisfied up to the first order
using (41). Let u = u®e, be the displacement field. The linearized
strain tensor is e = 1 2,g with components eq, = J (tgp + Upq). Bal-
ance of linear momentum for an isotropic material reads

pu = pb +div(2ue’ + J(tre)g’) in B, (42)
or in components
pii® = pb* + (2ue® + jug™), in B, (43)
where p and 1 are Lamé constants with
Ev E
T wa-2y HTaaw (44)

2.2.1. Variational structure of incompressible linearized elasticity
Let us recall that the stored energy per unit volume, £ of an iso-
tropic linear elastic solid can be written as

£ = (et e) +%(tre)2 = peeq, + i(e%)’. (45)

Because of metric compatibility of the Levi-Civita connection,
we have (Vu)’ = V', or equivalently, g, (u) = uqp, where V de-
notes the Levi-Civita connection of g,,. The incompressibility con-
dition reads divu=u“, =0. Therefore, for an incompressible
motion we can write

1 1
eg = jgab (uﬂ\b + ub\ﬂ) = jgab (gcauc\b +gcbu\ca>

- % (5bcuc‘,, + 6”Cuﬂa> =u", =0. (46)
Thus, the stored energy per unit volume of an incompressible
linear elastic body reads

£ = (et e) = pe®ey. (47)

The Cauchy stress tensor of an isotropic linear elastic body can
be written as

6’ =2ue + i(tre)g. (48)
Also we have [45]
. tro
divu = 3K (49)

where k= (32+2u)/3. If v — 1/2, then from (44) we see that
k — oo and hence divu — 0, i.e.,, when v =1/2 any motion is
incompressible. However, the converse is not necessarily true be-
causeiftre = 0 then motion is incompressible for any v. For example,
let x and y be the usual Euclidian coordinate system and consider an
elastic planar sheet under uniform tension in the x-direction and uni-
form compression of the same magnitude in the y-direction. Then,
trace of stress vanishes and this sheet undergoes an incompressible
(linearized) motion regardless of the value of its Poisson’s ratio.

Remark 1. Note thatif v = 1/2, then the elasticity tensor is neither
pointwise stable nor strongly elliptic [45], which leads to coercivity
loss in the weak formulation of the problem [3]. This means that
the problem is no longer well posed and this is usually called
locking. In this case, usually mixed finite element formulations, i.e.,
approximating displacement and pressure in different finite
element spaces, or constrained finite element formulations are
used to obtain well-posed weak forms.

The Lagrangian of a linear incompressible isotropic body is writ-
ten as L = K — V, where

1 .
K:E/Bp(u,u)gdv, Vv

_ / pebeqdv — / p(b,u),dv - / (z, u),da, (50)
B B OB

with 0B = 9,8 U 9.8, where 948 and 9.8 denote the portions of the

boundary on which displacements and traction are specified,

respectively. Let B and 9B be compact orientable Riemannian man-

ifolds (we assume that the orientation of 9B is induced from that of

B) and consider the following sets of diffeomorphisms

D={y:B — By is a diffeomorphism},

Dyt = {Y € D|¢-is volume preserving},

Dy = {y € Dly{q) = q for all q € 6B},

Dvol.q =Dy N Dq (51)

and the following sets of vector fields

B={w:B — TBw(q) € T(dB) for all q € 9B},

U = {w € B|divw = 0},

By = {w € B|w|,; =0},

o = {w € B|divw = 0, w|,,; = 0},

u= {w :B — TB|divw = 0, W], ; = 0}. (52)
Then D, Dy, Dy, and D, are infinite-dimensional Lie groups

(under composition) with infinite-dimensional Lie algebras

B, U, By, and 2y, respectively [50]. In fact, D,o and D, are subman-

ifolds (Lie subgroups) of D and D, is a submanifold (Lie sub-

group) of D,. Also, we have [, C il and U is the tangent space of

Cyo defined in (8) at the identity map [45], and thus it is an infi-

nite-dimensional manifold and u(t) is a curve in 2. For an arbitrary

w e U, let hy(t) = u(t) + sw(t) be the variational field for u(t).* The
Lagrangian for the variation field reads

L(s) = % / PO+ W, + sw),dv
B
- / u(et +sel, e+ se,)dv + / p(b,u+sw),dv
B B
+ / (z,u+ sw),da, (53)
9.8
where the components of the tensor e,, = 1 ¢,g are given by

(€w)as = 5 (Wa + W) (54)

The true motion of a linear incompressible elastic solid satisfies

5 /OT Ldt = 0 over 1, i.e.
T
I R ALCRR XN
s= 0 B

T d T
o/ Ldt:—(/ Ldt)
0 ds \ Jo

—2e" (ew) | dv + / (t,w)gda}dt
J 0B

T

:_/OT{/B [p(ii —b,w), +2p1e”(ew),,|dv

f/w(r,w)gda}du(u,w)gﬁ —0. (55)

T

As we consider proper variations, i.e., w(0) = w(T) = 0, and the
integrand of the time integral is continuous, we obtain the follow-
ing weak form for the linearized incompressible motion

/B [p(ii —bw), + Zueab(ew)ab]dv - /018(r7w)gda =0. (56)

Next, we use the following relation that can be verified by direct
substitution:

div(2ue’, w’) = 2p(e, e, ) + (div (2ue’), w’). (57)

4 This choice of the variation field is simpler to work with. The general form of the
variation field is a one-parameter family of curves hy(t) = y(s, t), with y(0,t) = u(t)
and ou = d/ds(y(s, t))|;_o, which yields the same result as the above choice does.
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Using (57) and the divergence theorem and because w|, ; = 0,
we obtain

/M ((2pe’, w’),n) da = / ((2ue*,w’),m),da

B
= | 2u(e' ey )dv
B

+ /B (div(2ue?), w), dv, (58)

where n is the unit outward normal vector field for 5. In compo-
nents this reads

Zue“bwbnada:/Z,ue“”(ew)abdv+/(Zuea”)‘awbdv. (59)
B B

OB

Substituting (58) into (56) yields

/(pi'l—pb—div(2;tet),w)gdv+/
B

B

((2ue,n’) —7,w),da=0.  (60)
Suppose w € 1, C 1, then the second term on the left hand side

of (60) is identically zero and hence by Lemma 2.1, we obtain

pi = pb + div(2ue’ — pg") in B, (61)

where the time-dependent function p: B x R — R is the pressure
field. Substituting (61) back into (60) results in

—/ (div(pgj),w)gvar/ ((2ue*, ) — 7,w) da = 0. (62)

oB
Using the relation
div (pg’,w), = p divw + (div (pg’), w), (63)

and noting that w is divergence free, we can use the divergence the-
orem to write

/B(div(pgt),w)gdv:/Bdiv(pg“,w)gdv

= [, (g w).m) da

- | (tpg'm).w),da. (64)
Substitution of (64) into (62) yields
/ ((2ue’ - pg',m’) —7,w) da = 0. (65)
B

Since w|,; is an arbitrary vector field on 9B that vanishes on
048, (65) implies that

T=(2ue’ —pg',m’) on I.B. (66)

Egs. (61) and (66) are the governing equations and the natural
boundary conditions for incompressible linearized elasticity,
respectively. In components they read

pii® = pb* + (2ue® —pg®), in B, (67)
¢ =2ue®n, —pg®n, on 9.B. (68)

Remark 2. We observed that the case v = 1/2 corresponds to an
incompressible motion, and therefore it satisfies the governing
equations of incompressible elasticity. On the other hand, we
know that v = 1/2 should satisfy Eq. (42) as well. But there is no
pressure in the compressible equations and one may wonder
how the compressible and incompressible governing equations
can be reconciled for this special case. Let v — 1/2. Then, from
(49) we see that divu — 0, and using (48) and (46) we conclude
that

tro =2utre + 3itre — 3itre. (69)

Equivalently, by assuming that tre is bounded and defining
p = —tre/3, we can write

itre — —p. (70)

Substituting (70) into (48) and (42) results in the balance of linear
momentum for incompressible linearized elasticity. Therefore, we
have shown that balance of linear momentum for compressible
and incompressible linearized elasticity are the same for v = 1/2.

Remark 3. The solution space for incompressible fluids is similar
to that of incompressible linearized elasticity. Consider the motion
of an incompressible fluid in a Riemannian manifold M. The
spatial velocity of the fluid, v, lies in the set F={w: M —
TM|divw = 0 and w(q) € T,(dM)Vq € M}, which is similar to
U. The variation of the spatial velocity of an incompressible fluid
ov satisfies the so-called Lin constraint [55,41], i.e,
ov = & + [v, &, where ¢ is an arbitrary divergence-free vector field
that vanishes at initial and final times, dot denotes derivative with
respect to time, and [,] is the usual bracket of vector fields (Lie
bracket).

3. Discrete exterior calculus

The idea of discrete exterior calculus (DEC) is to define discrete
versions of the smooth operators of exterior calculus such that
some important theorems, e.g. the generalized Stokes’ theorem
and the naturality with respect to pull-backs remain valid. How-
ever, the convergence of these discrete operators to their smooth
counterparts and, in particular, the correct topology to investigate
such convergence is still vague and needs more work [56]. For an
introductory discussion on the connections between DEC and other
structure-preserving schemes such as finite element exterior cal-
culus and mimetic methods, see [57] and references therein. In this
section we review some topics from DEC. First, we need to review
some concepts from algebraic topology and for this we mainly fol-
low [58].

3.1. Primal meshes

Let {vo,..., v} be a geometrically independent set in RV, i.e.,
{v1 — vo,...,vx — Vo} is a set of linearly independent vectors in
RN. The k-simplex o is defined as

k k
0":{xeR”|x=Ztiai, whereOgtigl,Zt,:l}. (71)
i=0

i=0

The numbers t; are uniquely determined by x and are called
barycentric coordinates of the point x of o with respect to vertices
Vo, ..., V. The number k is the dimension of ¢*. Any simplex o'
spanned by a subset of vertices {vp,..., 7} is called a face of g*
and ¢! < o% or ¢ = ¢! means that ¢' is a face of g*.

A simplicial complex K in RV is a collection of simplices in RN
such that (i) every face of a simplex of K is in K and (ii) the inter-
section of any two simplices is either empty or a face of each of
them. The largest dimension of the simplices of K is called the
dimension of K. Fig. 1 shows a 2-dimensional simplicial complex
with e representing its vertices and the solid lines representing
its 1-simplices. A subcomplex of K is a subcollection of K that con-
tains all faces of its elements. The collection of all simplices of K of
dimension at most p is called the p-skeleton of K and is denoted by
K®. The subset of RN that is the union of the simplices of K is de-
noted by |K| and is called the underlying space or the polytope of K.
The topology on |K] is considered to be the usual subspace topology
induced from the ambient space R". A flat simplicial complex K of
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Fig. 1. A primal 2-dimensional simplicial complex (solid lines) and its dual (dashed
lines). The primal vertices are denoted by e and the dual vertices by o. The
circumcenter c([i,j,k]) is denoted by cy, etc. The highlighted areas denote the
support volumes of the corresponding simplices, for example, [i,k] is the support
volume of the 1-simplex [i, k]. Note that the support volume of the primal vertex j
coincides with its dual [j] and support volume of the primal 2-simplex [I,m,n]
coincides with itself.

dimension n in RM has all its simplices in the same affine n-space of
RY, i.e., [K| is a subset of an n-dimensional subset of RY that has
zero curvature. Here we assume that all simplicial complexes are
flat.

A triangulation of a topological space X is a simplicial complex
K with a homeomorphism b : |[K| — X. A differentiable manifold
always admits a triangulation [59]. Roughly speaking, triangula-
tion of a differential manifold M c RN can be considered as a com-
plex M = h(K) that covers M and its cells, which in general, have
curved faces. A triangulation of the polytope |K| is defined to be
any simplicial complex L such that |L| = |K].

Any ordering of the vertices of ¢* defines an orientation for g*.
We denote the oriented simplex a* by [vy, . . ., 7k]. Two orderings of
a simplex o* are equivalent if one is an even permutation of the
other. By definition, a zero simplex has only one orientation. One
can see that for 1 < k < N, g* can have two different orientations.
The equivalence class of the particular ordering is denoted by
(vo,..., 7). Note that the orientation of ¢* induces an orientation
on the (k — 1)-faces of g* defined by 6% = (—1)[v, ..., Di,..., v,
where 7; means omit the ith vertex. The ordered collection of vec-
tors (v — vo, U2 — Vy,..., Ux — V) is called a corner basis at »,. The
span of this basis is called the plane of o* and is denoted by P(c*).
The orientation of two oriented simplices ¢ and 7 that have the
same dimension can be compared if and only if either they have
the same plane or they share a face of dimension k- 1. If
P(c*) = P(t*), then ¢* and ¥ have the same orientation if and only
if their corner basis orient their plane identically. If ¢* and 7% have
a common k — 1 face, then they have the same orientation if and
only if the induced orientation by ¢* on the common face is oppo-
site to that induced by t*. If two simplices have the same orienta-
tions, we write sgn(o* 7¥) = +1, and if they have opposite
orientations we write sgn(c*, 7¢) = —1. If two simplices have dif-
ferent dimensions, their orientations can not be compared.

A manifold-like simplicial complex K of dimension n is a simpli-
cial complex such that |K] is a topological manifold (possibly with
boundary) and each simplex of dimension k with0 < k<n-1isa
face of an n-simplex in the simplicial complex. A manifold-like
simplicial complex of dimension n is called an oriented manifold-
like simplicial complex if adjacent n-simplices have the same ori-
entations (orient the common (n — 1)-face oppositely) and simpli-
ces of dimensions n — 1 and lower are oriented individually. In this
work, by the primal mesh we mean a manifold-like oriented sim-
plicial complex.

3.2. Dual meshes

Dual complexes have an important rule in many computational
fields. The two most common dual complexes are circumcentric
and barycentric dual complexes. The barycentric dual has the nice
property that it can be defined for any simplicial complex but the
circumcentric dual is well-defined only for well-centered simpli-
cial complexes.” This means that in problems for which one needs
to consider a simplicial complex that evolves in time, e.g. finite elas-
ticity, circumcentric dual may not be appropriate. On the other hand,
the metric-dependent DEC operators have simpler forms in circum-
centric duals [56]. The discretization method that we describe in this
paper does not depend on the specific choice of a dual complex as far
as a consistent DEC theory is available for that choice of the dual
complex. Here we consider circumcentric duals in order to present
our method using simpler formulas. Note also that we consider lin-
earized elasticity and hence we are working with a fixed mesh.

The circumcenter of a k-simplex ¢* is the unique point c(g*)
that has the same distance from all the k+ 1 vertices of o*. If
c(a*) lies in the interior of g, then ¢* is called a well-centered sim-
plex. A well-centered simplicial complex is a simplicial complex
such that all its simplices (of all dimensions) are well-centered.
For example, a planar mesh is well-centered if all of its 2-cells
are acute triangles [61]. The (circumcenteric) dual complex for an
n-dimensional well-centered simplicial complex K is a cell complex
* K with cells ¢ defined by the duality operator % as follows: Given
a k-simplex ¢* in K, the duality operator gives an (n — k)-cell of K
as

6"k =gk = e(o*,a* ... aMc(a¥),c(a*),...

ok<gkt1 <. <o

("), (72)

where the coefficients ¢(a*, g**1, ..., ") are introduced to glue ele-
ments with consistent orientations. Sometimes it is possible to de-
fine notions similar to those of a simplicial complex for a dual cell.
For example, the dual p-skeleton of K is the union of the cells of
dimension at most p of %K and is denoted by K. Fig. 1 shows a
2-dimensional simplicial complex (solid lines) together with its
dual (dashed lines) where e and o denote primal and dual vertices,
respectively. Note that dual of a primal vertex is a dual 2-cell, dual
of a primal 1-simplex is a dual 1-simplex, and dual of a primal 2-
simplex is a dual vertex. For example, denoting c([i,j,k]) by cix,
etc., the dual of the primal 1-simplex [i,k] is either [ci,Coi] OF
[Coik, Cijk] depending on the orientation of the primal mesh.

The support volume o* of a k-simplex ¢* in an n-dimensional
complex K is the n-dimensional convex hull of the geometric union
of o* and *o*, or equivalently

0% = %ak = convexhull(a*, *a*) N K|. (73)

Support volumes of various simplices of a 2-dimensional mesh
are shown in Fig. 1, where highlighted regions denote the support
volumes.

Now we discuss how to orient a dual cell. This is important in
the subsequent work. Suppose K is a well-centered n-dimensional
primal mesh with the dual *K and we want to obtain the orienta-
tions of the simplices of the dual cell % that are induced from the
orientation of the primal mesh. First we consider the case
1<k<g<n—-1. Let 6¢%q',...,6" be primal simplices with
0% < ¢! < ... < ¢" and let the orientation of elementary dual sim-
plices be s[c(a¥),...,c(c™)], where s = +1, and the value of s is to be
determined. As we mentioned earlier, orientations of ¢* and
[c(a9),...,c(a¥)] can be compared as they have the same planes.
Similarly, one can compare the orientations of o¢" and

5 Recently, Hirani et al. [60] introduced the notion of signed duals that allows one
to work with meshes that are not well-centered as well.
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o™)]. Now let us define

s =sgn([c(a°),...,c(a")], %) x sgn ([c(a),...,c(a")],a").  (74)

If k = n, then the dimension of the dual is 0 and hence it can
have only one orientation by definition. For k=0 we define
s =sgn([c(a?),...,c(a™)], a"). Thus, we note that unlike the primal
mesh for which the orientations of the simplices with dimensions
less than n are arbitrary, the orientation of none of the simplices of
the dual mesh is arbitrary; the dual orientations are induced by the
orientation of the primal mesh. The correct orientation of the dual
cell is important when we deal with discrete dual forms. In this
work by a dual mesh we mean the oriented dual of a well-centered
primal mesh. We clarify the previous definitions in the following
simple example.

Example 1. (Orienting a 2-dimensional Dual Mesh). Consider the
2-dimensional primal mesh and its circumcentric dual shown in
Figs. 2(a) and (b), respectively. The primal mesh is oriented and we
want to obtain the induced orientation of the dual mesh. By
definition, orientation of 2-simplices of the dual mesh are the same
as those of primal 2-simplices and thus the correct orientation of
the dual 2-simplices is counterclockwise. Now consider the dual 1-
simplices. As an example, we obtain the orientation of *[3,2],
which consists of two elementary 1-simplices with vertices
{C123,¢32} and {ca43,C32}. The orientation of these elementary
simplices is s1[c32, €123] and sy [c32, C243], respectively, where

=sgn([2,c32],[3,2]) x sgn([2,cs2,C123],[1,2,3])

=( D x(+1) =-1,

=sgn([2,¢3],[3,2]) x sgn([2,c32, 3], (2,4, 3])

:( 1) x (=1) = +1. (75)

Thus, the correct orientation of %[3, 2] is [c123, C243]. Note that to ori-
ent a dual simplex, one needs to orient its elementary duals individ-
ually and if the primal mesh is correctly oriented, then these
elementary duals will have the same orientations. Similarly, one
can obtain the orientations of the other simplices of the dual mesh
as is shown in Fig. 2(b). Note that there is an easy rule for orienting
dual 1-simplices in R?: Consider a 1-dimensional face of a primal 2-
simplex. If the orientation induced on that face by the orientation of
the 2-simplex is the same as the orientation of that face then the
direction of the dual of that face points into the 2-simplex, other-
wise it points out of the 2-simplex.

3.3. Discrete vector fields

As will be explained in the next section, we choose the displace-
ment vector field as our primary unknown in incompressible line-
arized elasticity. Thus, we need to introduce the concept of discrete

(a)

3

1 [1,2] 2

vector fields on a flat simplicial mesh. Here, there are at least two
possibilities: primal and dual vector fields as follows.

A primal discrete vector field X on an n-dimensional primal
mesh K is a map from primal vertices K© to R". The space of primal
vector fields is denoted by X,4(K). One can assume that the value of
the primal vector field is constant on each of the n-cells of %K. A
dual discrete vector field X on the dual of an n-dimensional primal
mesh K is a map from dual vertices K, to R". The space of dual
vector fields is denoted by X,(*K). One can assume that the value
of the dual vector field is constant on each of the n-cells of K. In
Fig. 3, for a 2-dimensional mesh, primal and dual vectors are de-
noted by arrows on primal vertices e and dual vertices o,
respectively.

3.4. Primal and dual discrete forms

In the smooth case, a k-form on an n-manifold NV is an antisym-
metric covariant tensor of order k and the set of k-forms on A is
denoted by Q*(V). Now we define primal and dual discrete k-
forms. We need the notion of chains and cochains as follows. A
k-chain on a simplicial complex K is a function ¢, from the set of
oriented k-simplices of K to the integers such that (i)
cr(—0%) = —cx(a%), and (ii) c(o) = 0 for all but finitely many ori-
ented k-simplices o. If we add k-chains by adding their values,
we obtain the group of (oriented) k-chains of K, which is denoted
by Ci(K). If k <0 or k > dimK, Ci(K) is defined to be the trivial
group. For an oriented simplex ¥, the elementary chain ¢ corre-
sponding to ¢ is the function defined as

1, t1=0%
c(r)=1¢ -1, 1=-0k (76)
0, otherwise.

In the following the symbol ¢* denotes not only an oriented
simplex but also the elementary k-chain ¢ corresponding to o*.
The meaning is always clear from the context. It can be shown that
Cy(K) is free Abelian, i.e., a basis for Cx(K) can be obtained by ori-
enting each k-simplex and using the corresponding elementary
chains as a basis. A k-cochain c* is a homomorphism from the chain
group Cy(K) to R. The space of k-cochains is denoted by
C*(K) = Hom (C¢(K),R). A primal discrete k-form is a k-cochain
and the space of discrete k-forms on K is denoted by
Q¥(K) = C*(K). Similarly, one can define the space of dual discrete
k-forms on %K, which is denoted by QY(xK). For a k-chain
v € Ci(K) and a k-form a* € Q%(K), we denote the value of a* at
cx by (o, ) = a¥(cy). Since Ck(K) is a free Abelian group, we have
c = >.;¢iak, where ¢ = c,(6¥) € z, and summation is over all k-
simplices of K. The k-form o is a linear function of chains, and thus
we have

(ak, ) = ok (Zcio‘f‘) =) G, (77)

(b)

Fig. 2. Oriented meshes: (a) primal mesh and (b) associated circumcentric dual mesh. The primal vertices are denoted by e and the dual vertices by o. The circumcenter

c([1,2,3)) is denoted by cy3, etc.
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Fig. 3. A primal vector field (arrows on primal vertices o) and a dual vector field
(arrows on dual vertices o) on a 2-dimensional mesh. The solid and dashed lines
denote the primal and dual meshes, respectively.

where the coefficients o; = a*(0¥) € R are called the components of
the k-form. Thus, one can specify any k-form by a set of real num-
bers on k-simplices. Similarly, one can define a dual k-form. Fig. 4
shows examples of primal and dual 0, 1, and 2-forms on a 2-dimen-
sional mesh.

3.5. Discrete operators

One of the main goals of this work is to find an appropriate dis-
crete space for displacement field of incompressible linear elastic-
ity, i.e., the discrete space of divergence-free vector fields. Here, we
define the discrete divergence using discrete exterior derivative,
discrete Hodge star, and discrete flat operator.

Exterior derivative. The discrete exterior derivative is defined as
the coboundary operator as follows. A boundary operator
Ok : Ck(K) — Cy_1(K) is a homomorphism defined on each oriented
simplex 6% = [vp,..., v1] as

k N
o0 = h[vo, ..., vl =Y (~V)'[vo,..., Vi, i]. (78)

=0
The coboundary operator 6* : C*(K) — C*'(K) is defined as
(8t crn) = (€4, DkiaCnn). (79)

Using the above definitions, one can show that 9y o 9,1 = 0 and
sk o 8% = 0. The sequence

O

0— Ca(K) 2 i) 2 - 2 Co(K) — O, (80)

is called the chain complex induced by the boundary operator. Sim-
ilarly, the sequence

(a)

950,

56 -0.09

0 -102 15.9

0y Lkt L) —o, 81)

is called the cochain complex induced by the coboundary operator.
The discrete exterior derivative d : Q¥(K) — Q¥'(K) is defined to
be the coboundary operator &. It follows that d*' o d* = 0. Simi-
larly, one can define discrete exterior derivative over a dual mesh.
Let K be an n-dimensional primal mesh. Then, the dual boundary
operator 9y : Cy(*K) — Ci_1(*K) on each oriented dual simplex
*0"* = *[vp, ..., v, is defined as

ko, .. > Sprwaka" (82)

kil gnk

o) z)n—k] =

where Sgia =41, If 0<k<n—1,sa1 is chosen such that
Senti1 0" K1 induces the same orientation on ¢"* as its original
orientation. For k =n,s,: is chosen such that the orientation of
s;i%a! is the same as that induced by *¢° on its geometric
boundary. Note that unlike the primal boundary, the dual bound-
ary of a dual cell is not necessarily the same as its geometric
boundary. For example, in Fig. 2 the dual boundary of *g9 is
[C24, C243] + [C243, C123] + [C123, C12], Which is different from the geo-
metric boundary of *xa9.

The dual discrete exterior derivate d : Qf (%K) — Q&' (%K) is
defined to be the dual coboundary operator defined similarly to
(79) by using dual boundary operator. There is a major difference
between the dual discrete exterior derivative and the primal one
as we explain next. Consider primal and dual zero-forms on the
planar mesh shown in Fig. 5. Let {f',...,f*} and {f'%3 f?4*} be
the values of O-forms on primal and dual vertices, respectively.
The value of df on the primal and dual 1-simplices are shown in
Fig. 5(a) and (b), respectively. In the continuous case, we have
d(f + a) = df, where a is a real constant. The same is true for a pri-
mal 0-form as the value of df is the differences of values at the end
points of each primal 1-simplex. But the value of df for dual 1-sim-
plices with one end on the boundary is not the difference of the
values at their end points and thus, for a dual O-form we have
d(f +a) #df. As a consequence, the discrete Laplace-Beltrami
operator on dual O-forms is bijective.

Hodge star. Recall that in the smooth case, the Hodge star oper-
ator = : Q“(\) — Q" *(\) for a smooth n-manifold A, is uniquely
defined by the identity [53]

aA*p = (@ B)p (83)

where a, g are k-forms and u is the volume form for N. For an n-
dimensional mesh, the discrete Hodge star is defined as follows.
Suppose 1 < k <n -1, then the discrete Hodge star operator is a
map *: QX(K) — Q1 ¥(%K) that for a k-simplex ¢* and a discrete
k-form a, satisfies the identity

(b) (c)

Fig. 4. Examples of forms on a 2-dimensional primal mesh (solid lines) and its dual mesh (dashed lines): (a) primal and dual 0-forms, which are real numbers on primal and
dual vertices, (b) primal and dual 1-forms, which are real numbers on primal and dual 1-simplices, and (c) primal and dual 2-forms, which are real numbers on primal and

dual 2-simplices, respectively.
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]»2_ fl

(b)

Fig. 5. The discrete 1-forms df obtained from (a) primal and (b) dual O-form f. The sets {f',f2,f>,f4} and {f'?*,f?4*} are the sets of values of primal and dual 0-forms,

respectively. Note that f123 is the value of f at ¢([1,2, 3]), etc.

(xat, ka*) = (o, 0%, (84)

[%0¥] o]

where |¢g¥| and |*a*| denote the volumes of ¢* and *d*, respec-
tively. Thus, one can obtain the components of the (n — k)-form
xa using the above relation, which uniquely determines xa. Note
that the left and right-hand sides of (84) depend on the orientations
of the dual and primal meshes, respectively. But as the primal and
dual vertices have only one orientation, by definition, for the cases
k = 0 and k = n one side of (84) will be independent of the orienta-
tion while the other side changes sign by changing the orientation.
Thus, we need to modify the above definition for these cases. For
k = 0 we define

(xat, %0®) = — (at, 07, (85)

S[*x09| |0"0\

where we assume the volume of a primal or dual vertex to be +1,
e, |6°:=1, and s=(—1)""sgn(d(*a%),*c"), where an edge
o' = ¢° pointing away from ¢ and 9(*¢?) has the orientation in-
duced by *a®. Thus, if the dual of an outgoing 1-simplex has the
same orientation as the orientation induced by % then
s=(—1)""', otherwise s = (—1)". Similarly, if k = n we define

(xat, K O") = (o, 0™, (86)

[*a7| slo™|

where the value of s is determined as follows. Consider the induced
orientation of ¢" on an edge 6™ ! < ¢". If x¢"~! points away from
*¢", then s = (—1)""', otherwise s = (—1)". Note that the above
relations can be used to define the discrete Hodge star as a map
w: Q¥ XK) — QFF(K).

Flat operator. One can define different flat operators, for exam-
ple, a flat operator that associates a dual 1-form to a primal vector
field or a primal 1-form to a dual vector field. Here, we need the
former case. Note that Hirani [56] denotes this type of flat operator
by bpaa. The discrete flat operator on a primal vector field,
b: X4(K) — Q}(*K) is defined by its operation on dual elementary
chains: Given a primal vector field X and a primal (n — 1)-simplex
o™1, we define

= > X

g0<gn-1

X', *o™ 1) - (ko™ ), (87)
where x6"! is the vector corresponding to ¢!, i.e., it has the
length [%¢"!| in the direction of *¢"-!, and *“.” is the usual inner
product of R". Using this definition of flat operator, the primal dis-
crete divergence theorem holds automatically. Also note that dis-
crete flat operator is neither surjective nor injective, see [56] for
more discussions.

Divergence. For vector fields on smooth manifolds the following
relation holds [53]

divX = —6X’ = *d « X, (88)

where 6 : Q“T(V) — Q¥(W) is the codifferential operator. Since we
have already defined the discrete flat operator, discrete Hodge star,
and discrete exterior derivative, we can directly use (88) as the def-
inition of the discrete divergence as follows. Let X be a primal vector
field, then the discrete divergence divX is the dual O-form given by

(divX, *0") = xd « X (89)

Then, the following divergence theorem holds on a primal
mesh, which can be proved by a direct calculation, see Lemma
6.1.6 of [56].

Divergence Theorem on a primal mesh. Let K be an n-dimensional
primal mesh and ¢° be one of its primal vertices. Let X be a primal
vector field on the mesh. Then

n-1
) *G (90)

)= Sn_1lo™ Y X(a
O—n;gn 0—0; 1 |*O-n 1|

where s,_; = +1 if the orientation of ¢" is such that the dual edges
*0"-1 point outwards and s, ; = —1 otherwise.

In the next section, we show that the discrete divergence on a
planar simply-connected mesh is surjective and use this discrete
divergence to characterize the space of discrete displacement fields
of incompressible linearized elasticity.

Laplace-Beltrami. The smooth Laplace-Beltrami operator
A: QY (W) — Q°(W) is defined as A = div o grad. As the gradient
of a smooth function f : A — R is (df)*, we can write

|o"[(divX, *o"

Af =+« [(df ] = +dl . (91)

We already know the definitions of discrete d and %, and hence
we can use (91) to define the primal and dual discrete Laplace-Bel-
trami operators A:QJ(K) — Q3(K) and A :QY(*K) — Q(*K),
respectively. Obviously, the smooth A operator is not injective.
The same is true for the primal discrete A operator, but as we will
show, the dual discrete A operator is bijective. In §5 we use the
dual discrete A operator to calculate the discrete pressure field
from the pressure gradient.

3.6. Affine interpolation

To define the elastic energy, we need to interpolate the discrete
displacement ﬁeld over support volumes. For this we use the so-
metrically-independent pomts that are fhé vertices of the n-sim-
plex " and suppose that {x} is the canonical Euclidean
coordinate system for R". Let {U' € R"},_, a1 be a primal vector
field on these pomts i.e., U' is the value of the vector field at the
vertex r. For 1 <i<n+1,let /; : R**' — R be the associated bary-
centric coordmates [3]. Then, the interpolating function
A" - R" is given by AKX',...,x") =Sk, ... x)U, and
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we have (r) = U'. Alternatively, it is easier to use the following
non-standard form:

n
AN, X =q*" +) X, (92)
i1
where the constant vectors q' € R",i=1,...,n+ 1, are given by
. n+1
q=>0aVi=1,..n+1 (93)

j=1

and the diagonal matrices @Y € R™",i,j=1,...,n+1, depend only
on r’’s and are independent of U"s.

4. Discrete configuration manifold of incompressible linearized
elasticity

As we mentioned in §2.2, in linearized elasticity one needs to
find the unknown displacement field, which is a vector field on
the reference configuration of the elastic body. Thus, we need to
consider a fixed well-centered primal mesh for representing the
reference configuration, and therefore linearized elasticity is simi-
lar to fluid mechanics in the sense that both need a fixed mesh.
Note that choosing such well-centered primal meshes is always
possible in R? as equilateral triangles fill R?, and hence one can al-
ways approximate planar regions with these well-centered simpli-
ces. Generating well-centered meshes is not a straightforward task,
in general. See [61] and references therein for further discussions.
However, the approach that we develop here can be extended to
arbitrary domains by either generating well-centered meshes for
that domain or if it is not possible to generate a well-centered
mesh, by using another DEC theory that is appropriate for other
types of meshes.

We select the displacement field as our primary unknown,
which is a primal discrete vector field. Note that by choosing dis-
placement field as our unknown, we do not need to consider com-
patibility equations. In order to design a structure-preserving
scheme, we require that unknown variables remain in the correct
space not only when they converge to the final solution, but also
during the process of finding the solution. For incompressible elas-
ticity, this means that we need to search in the space of discrete
divergence-free vector fields. The configuration space of incom-
pressible elasticity is similar to that of incompressible fluids. Pav-
lov et al. [41] developed a structure-preserving method for
incompressible perfect fluids. In that scheme, they discretized
push-forward of real-valued functions and showed that the space
of divergence-free vector fields can be described by some orthogo-
nal matrices. However, in order to define their discrete operators,
they had to impose a nonholonomic constraint on the orthogonal
matrices, which makes sense for fluids but is not reasonable for
elasticity. Here, we propose a different idea for describing the
space of discrete divergence-free vector fields. For better under-
standing the idea, we return to the primal mesh shown in Fig. 2
and calculate the divergence of a discrete primal vector field, see
Fig. 6. Let U' denote the vector field at vertex i. A straightforward
calculation using the definitions of the previous section yields

1 4 ;
divU. %[1.2.3) = — S ¢, U,
(divy, +(1,2,3)) = 55y e
d LI
WU *[2.4.3) = S ey U 94

where “.” denotes the usual inner product and the vectors ¢; € R?
are given by

¢ L3043

BLETEYE

‘0 lisos
TIIZ.IZB

Fig. 6. A discrete primal vector field, see Fig. 2 for the numbering of the simplices
and orientation of the primal and dual meshes. The vector i3; 1,3 is the unit vector
with the same orientation as [c31, C123], etc.

U

U2

¢ = |3, 1]iz1,123 + |[1, 2][i12,123,
iz = |[1,2]li12.123 — [[3, 2][i123243,
i3 = [[3, 1[iz1.123 — I[3,2]li123.243, €14 = 0 (95)

and

€1 =0,¢x = |[2,4][iz4243 + |[3, 2]]i123 243,

€3 = |[4,3]lisz,243 + |[3, 2] [i123243,

€24 = |[2,4]li24243 + |[4, 3] |i43243, (96)
with i3 123 denoting a unit vector with the same orientation as

[c31,C123), etc. (see Fig. 6). Now we use (94) to impose divU =0,
which results in

l2x8Xgx1 =0, (97)
where
T T T T
lyos = {cn Cy Ci3 c14}
= T T oT oT |
C1 € €3 €y

Xp = {U'.. 0%} (98)

Note that the matrix [ only depends on the mesh and does not
depend on U.

Remark 4. The weak form of the incompressibility constraint
reads

/ qdivU=0, vqel2(B) (99)
B

Using the notation of [3], consider a Lagrange finite element over
the mesh of Fig. 6, where the displacement field is approximated
by continuous P; polynomials and the pressure field by Py polyno-
mials, i.e. the displacement field is continuous and piecewise-linear
while the pressure is piecewise-constant over triangles. For the sim-
plex [l s 2,3], one can write |[37 2]|i123,243 = |[1,2]|i12,]23 + ‘[3, 1]|i3]7123.
Using this relation and the similar one for [2,4, 3], it is straightfor-
ward to show that (97) is the same as the discretization of (99)
via the Lagrange finite elements.

Now let us consider an n-dimensional primal mesh K, such
that |K;| c R" is simply connected® and denote the number
of primal and dual vertices with P, and D, where h is the
diameter of the primal mesh, i.e., h = sup {diam(c?¥)|o? € K}, with
diam(a}) = sup {d(x,y)|x,y € o7}, and d(x,y) denotes the standard
distance between x and y. Now we impose the essential boundary
conditions. Suppose S, denotes the number of those primal vertices
that are located on the boundary of K, and their displacements are
specified. Note that these known displacements can be nonzero or
even time dependent. The unknown primal displacement field U is

5 We discuss the effect of simple connectedness in the sequel.
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Fig. 7. A subset of a primal mesh and its associated dual mesh. The vector ijy g is
the unit vector with the same orientation as [c([j, [, k]), c([l, q, k])], etc.

ment at the vertex i. Imposing the incompressibility constraint using
the procedure that resulted in (97) yields

h _h
”thnlf‘,,XnPnX] - uthl’

(100)

where 1" is the reduced incompressibility matrix and depends only
on the mesh, u" depends on the known values of the displacements
and also the mesh, and

S T
Xappt = {Upq - UT (101)

Thus, the displacement field is divergence free if and only if the
vector X satisfies (100). Note that if the known displacements are
all zero, then u" = 0. There is a systematic way to obtain the re-
duced incompressibility matrix and u”, which is a consequence
of the discrete divergence theorem, cf. (90). Here we explain the
method in R?, but it is also possible to extend it to higher
dimensions.

Let n = 2 and consider a subset of a 2-dimensional primal mesh
and its dual that are shown in Fig. 7. We define the matrix 17

. - . Dnx(2Pp)?
the incompressibility matrix, as
T T
C1 o Cp,
= 7 (102)
T L. T
0,1 €o,Py Dpx(2Py)
where ¢, e R?,i=1,...,Dy,m=1,---,Py, are specified as follows.

Note that the number of the rows of 1" is equal to the number of
dual vertices (or equivalently primal 2-cells) as the divergence of
a primal vector field is a dual zero-form. Now suppose that we order
primal vertices and primal 2-cells of the mesh such that the vertices
j, I, and k are the jth, Ith, and kth primal vertices of the primal mesh,
respectively, and [j, ], k] is the ith 2-cell, i.e.,, 67 = [j, [, k], as shown in
Fig. 7. Then, in the ith row of 1", ¢;, is nonzero if and only if the mth
primal vertex is a face of the ith primal 2-cell. This means that the
only nonzero elements in the ith row corresponding to ¢? = [j, ], k],
are ¢;;, ¢, and ci. The vector ¢; is given by

¢ = Skl[k, j] ik ik + Sil[L, 7] ijucjor, (103)

where iy denotes the unit vector with the same orientation as
[c([r.j, k]),c(lj, 1, k])], etc., and s is +1 if the orientation of [k,j] is
the same as the orientation induced by o¢? = [j, [ k], otherwise
sy = —1. One can determine s; similarly. Here we have s, = +1 and
s; = —1. Similarly, we obtain

i = —|[Ljlliiijor — |1k, Olijue tqk

Ci = — |1k, Dijiigr + |[K, 7]k k- (104)

Noting that ijoiju = —ljwjo, ONE can rewrite (103) and (104) as

i = |[k, Jigicjie + [1L ] 1ol e,
¢ = |1 j]orjic + | (K, 1| figw ik,
Ci = |[k, Nliigrjic + 11K, ] e

which means that for writing nonzero ¢;,’s for the ith 2-cell, one
simply needs to consider unit normal vectors pointing into that cell
and then consider all those terms with a plus sign in each nonzero
Cin’S. Thus, we can write the incompressibility matrix without using
the orientation of the primal and dual meshes. The condition
divU = 0 is equivalent to

(105)

HIE),,X(ZP;,)X(ZPI1)X1 =0, (106)

where X is defined similarly to (101) but contains both known and
unknown displacements.

Suppose |K;| ¢ R? is simply connected, i.e., its fundamental
group and consequently its first homology group are both trivial.
Then, the Euler characteristic of |K,| reads [62]

Z(IKn|) = #(0-simplices) — #(1-simplices)
+ #(2-simplices)

=Py —Ep+Dn=1, (107)

where # denotes “number of”’ and we have used the fact that the
number of 2-simplices of the primal mesh is equal to the number
of dual vertices. Let P, and P2 denote the number of primal vertices
that belong to interior and boundary of |Kj|, respectively. Then we
have P, = P}, + P}. Similarly, let E}, and E} denote the number of pri-
mal 1-simplices that belong to interior and boundary of |K;|, respec-
tively. We have E, = E}, + Eb. Using the above definitions, one can
show that the following relations hold

3Dy = Eb +2E,, Ph=Ep. (108)
Using (107) and (108) we obtain

Dy = 2P, + Pl —2=2P, — Ph — 2. (109)

Thus, we always have

Dy < 2Py (110)

So, if 1" is full ranked, then rank(I") = Dy,. Now, we show that the
incompressibility matrix of a planar simply-connected mesh is al-
ways full ranked.

Theorem 4.1. Let K}, be a 2-dimensional well-centered primal mesh
such that |Ky| is a simply-connected set. Then, the associated
incompressibility matrix 1" is full ranked.

Proof. Since |K;| is simply connected, because of (110) we need to
show that the rows of 1" are linearly independent. We use induc-
tion to complete the proof. Since K is shellable,” one can consider
a construction of K, by starting with one triangle and then adding
one triangle at a time such that the resulting simplicial complex at
each step is homeomorphic to a square. Thus, at each step the mesh
has the same topological properties as K, and, in particular, it is sim-
ply connected. Using (103) and (104), we conclude that the incom-
pressibility matrix of a single triangle is full ranked, i.e., there exist

7 A simplicial complex is called regular if it is homeomorphic to the unit cube. A
regular simplicial complex is shellable if either it consists of a single complex or it is
possible to obtain a smaller regular complex by removing one of its simplices. All 2-
dimensional regular complexes are shellable. Delaunay triangulation of a regular
complex is shellable in any dimension [63].
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Fig. 8. Two possible ways for adding a triangle to a 2-dimensional shellable mesh,
either (a) the new triangle introduces a new primal vertex or (b) the new triangle
does not introduce any new primal vertices.

non-zero elements in the matrix since edges of a triangle cannot be
parallel to each other. Now suppose that in the process of construct-
ing K;, we have a mesh with m triangles, K™, that has a full-ranked
incompressibility matrix I, i.e., rows of 1,, are linearly indepen-
dent. As Fig. 8 shows, there are two possibilities for adding a new tri-
angle to K™: (i) the new triangle adds a new primal vertex to the
mesh as in Fig. 8(a), (ii) no new primal vertex is added to the mesh
as in Fig. 8(b). In case (i) the incompressibility matrix of the resulting
mesh, 0,1, is full ranked because it is obtained from T,, by adding a
row corresponding to the added triangle and two columns for the
displacement of the new vertex q (see Fig. 8(a)). The only nonzero
entries in the new columns are placed on the new row and hence
the new row is linearly independent from other rows. In case (ii)
note that [,,,; is obtained from 1, by adding a new row correspond-
ing to the new primal 2-cell, which has the vertices p,q, and r as is
shown in Fig. 8(b). The matrix [, is full ranked and so it has D™ lin-
early independent columns, where D™ is the number of primal 2-
cells of K™. Thus, because of (110), the number of linearly-dependent
columns of [,, is equal to 2P™ — D™ = P"m + 2. Due to the structure of
Im, one can choose all the independent columns from those that do
not correspond to p, q, and r. Suppose that we choose such indepen-
dent columns. The matrix [, is obtained by adding a row to I, that
has zero components except for the ones that correspond to p, q, and
r. This means that all the chosen independent columns of T, still
remain independent for T,.; and at least one of the columns that
corresponds to p,q, and r becomes independent of other col-
umns. Therefore, 1,,.; has at least D™ + 1 independent columns and
since D™! = D™ + 1, we conclude that T,.; has exactly D™ inde-
pendent columns and rows, and therefore it is full ranked. This com-
pletes the proof. O

Remark 5. The assumption of simple connectedness is necessary
in the above proof. Note that the incompressibility matrix [ is
important in our numerical scheme and not I. The incompress-
ibility matrix is obtained by removing some rows of I and it
may or may not remain full-ranked even for a simply-connected

domain. Here the important thing is that the number of columns

112132 + 1313 hi2132 + 13132 3132 + L4313 0

i13143 + 15414 0 i13143 + 34143 34143 + 15414
i i14,154 + d165,15 0 0 i14154 + 145154

i15.165 + 117616 0 0 0

i16176 + 112717 0 0 1]

117127 + 3212 do7127 + 13212 0 0

143

of 1 remains greater than the number of its rows. This guaran-
tees that the nullity of the incompressibility matrix is greater
than zero and hence the space of divergence-free vector fields
would be a nontrivial finite-dimensional set. For both simply-
connected and non-simply-connected domains one can obtain
the incompressibility matrix with larger number of columns by
mesh refinement.

Also note that the extension of this theorem to 3-dimensional
meshes is not straightforward. In particular, a simply-connected
mesh in R3® is not necessarily shellable. In fact as Rudin
[64] shows there exists an unshellable triangulation for a
tetrahedron.

Remark 6. The above theorem tells us that the discrete primal-
dual divergence over a planar simply-connected mesh is surjective
because the discrete divergence operator from the space of discrete
primal vector fields to the space of discrete dual zero-forms is a lin-
ear map defined by the matrix 1. Thus, 1 being full-ranked implies
that the associated linear map is surjective. This is interesting as
the discrete flat operator used in the definition of divergence is
not surjective.

Now, let us consider (106). In general, using the rank-nullity
theorem and (110), we can write
nullity(I") = 2Py — rank(") = 2P, — D, = P2 +2 > 0, (111)
which means that for an arbitrary planar simply-connected mesh,
the space of discrete divergence-free primal vector fields is finite-
dimensional. In particular if {w;,..., € R?*} is a basis for the null
space of 1", we then can write

X =Y "Dw;,
i

where D; are real numbers. Therefore, a displacement field
is divergence free if and only if it can be expressed as
in (112).

By imposing the essential boundary conditions in (106), we ob-
tain (100), i.e., 1" is obtained by eliminating those columns of 1"
that correspond to the specified displacements. The vector u" is ob-
tained by moving terms that include the specified displacements to
the right-hand side of (106). If there are “too many” boundary ver-
tices with specified displacements, then the number of rows of 1"
may exceed the number of its columns, and therefore (100) may
not admit any solution. This is similar to the continuous case
where there may not exist a divergence-free vector field for some
choices of boundary conditions. We elucidate this in the following
example.

(112)

Example 2. (Incompressibility matrix for a planar mesh). Consider
a 2-dimensional mesh consisting of equilateral triangles with unit
lengths as shown in Fig. 9. Using (105), we obtain the incompress-
ibility matrix 12 _,, as

0 0 0

0 0 0
is5,154 + d16s,15 0 0 (113)
i15.165 + 156,165 56,165 + 176,16 0 7

0 i16,176 + 67,176 67,176 + 127,17

0 0

117127 + 127,127
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Fig. 9. A 2-dimensional primal mesh with its associated dual mesh and the
associated unit vectors. The vector ijpi3; is the unit vector with the same
orientation as [c([1,2]),c([1, 3,2])], etc.

where i’s are unit vectors shown in Fig. 9 with i43 13 = —i13.143, etc.
Also we have
— T
X14X1:{U17...7U7} . (114)
A primal vector field on this mesh is divergence-free if and only
if (106) is satisfied. Since 1" is full ranked in this example we have
nullity(1") = 14 — 6 = 8, so we observe that similar to the continu-
ous case where the set of divergence-free vector fields U defined
in (52) is nonempty and, in fact, is infinite-dimensional, the set
of discrete divergence-free vector fields on this mesh is also non-
empty but, of course, it is finite-dimensional. Now suppose that
all the boundary vertices have specified displacements, i.e.,
U = Ui fori=2,...,7. Then, by moving the terms corresponding
to the known displacements to the right-hand side of (106), we
obtain (100), where X,,; = U', with

12132 + 114313
113143 + 115414

i14154 + l165.15
h . ,
lo2 = | . : (115)
115165 + 117667
i57176 + 117,127
117127 + 13212
and
(12,132 +i23132) - Uz + (i3.132 +1i14313) - U3
(13,143 + I34143) - U3 + (i34:143 + f154.14) - U?
at - (i14.154 + 1a5154) - U* + (15154 + i165.15) - U° (116)
6x1 = —3 . . =~ . . =
(i15,165 + i56.165) - U + (is6.165 + 1176.67) - U°
(116,176 +167,176) - Us + (i67,176 +112717) - u’
(27,127 + 113212) - Uz + (17,127 +i27.127) - u’

Here it is obvious that (100) cannot admit any solutions for some
values of the boundary displacements. In our example, if all the
boundary displacements vanish, then X =0 is the only solution.
Thus, we see that contrary to the continuous case where the set
of divergence-free vector fields that vanish on the boundary of a
manifold (2, defined in (52)) is always infinite-dimensional, the
corresponding discrete set may only contain the zero vector field.

In general, if
25, < PP 42, (117)

then from (109) we have

nullity(I") = 2Py — rank(1") = 2P, — 25}, — rank(I")

> 2P, — Dy — 25, = P} +2 - 25, > 0, (118)

and, therefore, the space of divergence-free vector fields satisfying
the essential boundary conditions would be finite-dimensional.
Also note that if the essential boundary conditions are not imposed
on all the boundary vertices, then one can satisfy (117) by choosing
finer meshes on that part of the boundary with no essential bound-
ary conditions. To summarize, we observe that the dimension of the
space of divergence-free vector fields on a planar simply-connected
mesh is 2P, — Dy, but by imposing essential boundary conditions,
this space may become empty or may contain only the zero vector
field.

Let K;, be an n-dimensional primal mesh, possibly not simply-
connected and suppose nullity(1") = N. Let {w; € R™}!', be a basis
for the null space of I". Then, from (100) we conclude that if a time-
dependent displacement field is divergence-free we have

N
X(t) = X"+ > Di(t)w, (119)
i=1
where X° is a solution to the inhomogeneous linear system (100)
and D;'s are some real-valued functions of time and X° and w;'s
are time independent. This completely determines the space of
time-dependent displacement fields. Note that if the essential
boundary conditions are time dependent, then I" and so w;’s are still
time independent but u” becomes time dependent, which implies
that X° is time dependent, as well.

Remark 7. (Non-simply-connected meshes). If K, has some holes,
then (106) and (108) are still valid but (107) reads

A(Kn]) =Pp—En+Dp=1-H, (120)

where H denotes the number of holes. Thus, (109) is replaced by
Dy = 2Py — PP — 2 4 2H, (121)

and so (110) is not necessarily valid. Thus, the effect of holes is sim-
ilar to the effect of essential boundary conditions in the sense that
both can cause the number of the rows of the incompressibility ma-
trix exceed the number of its columns. In particular, note that a
non-simply-connected domain may have an incompressibility ma-
trix with the number of its rows exceeding the number of columns
even without any essential boundary conditions if there are too
many holes in the mesh, i.e., if P} +2 < 2H. Similar to the problems
that have too many nodes with essential boundary conditions, here
one can obtain an incompressibility matrix with more columns than
rows by refining the mesh.

5. Discrete governing equations

As we showed in §2.1 and §2.2, incompressible finite and linear
elasticity solutions extremize the action in the space of volume
preserving motions. This is the procedure that we use for obtaining
the governing equations in our discrete formulation. In the previ-
ous section, we characterized the space of discrete divergence-free
displacements in (119). Now, we need to write a discrete Lagrang-
ian. We first define discrete kinetic and stored energies in the
following,.

5.1. Kinetic energy

Let Ky be an n-dimensional mesh. The discrete displacement
field is a primal vector field with displacement U’ at the primal ver-
tex ¢?. As the numbers of primal vertices and dual n-cells are
equal, we can associate U’ to *¢?, see Fig. 10. This means that we
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Fig. 10. Dual cells that are used for defining the kinetic energy. Primal and dual
vertices are denoted by e and o, respectively. The solid lines denote the boundary of
the primal 2-cells and the colored regions denote the dual of each primal vertex.
The material properties, displacements, and velocities are considered to be constant
on each dual 2-cell. For example, consider the primal vertex i (¢?). The velocity at
the corresponding dual cell is assumed to be equal to the velocity at vertex i, which
is denoted by U'.

A

are assuming that the primal mesh is the union of the dual cells and
we consider constant displacement and velocity on each dual cell.
Suppose we order the primal vertices such thati = 1,...,P, denote
the primal vertices without essential boundary conditions and
i=Py+1,...,P,denote those primal vertices with essential bound-
ary conditions. We can now define the discrete kinetic energy, K%, as

Ph . . .. Ph .. ..
K¢ = %Zpiua?\w U +% > pixal U U, (122)
i=1

i=Py+1
where “.” denotes the usual dot product and p; is the density on the
dual cell %¢?, which can have different values on different cells if
the elastic body is inhomogeneous. In fact, mass density can be con-
sidered as a primal O-form. Note that time-dependent essential
boundary conditions contribute to the kinetic energy through the
term

Pp
K= pxof|ir U (123)
i=Py+1
but because the variation of K is zero, it does not contribute to the
Euler-Lagrange equations and hence one can safely exclude this
term from the following calculations. Using (101) we can rewrite
the discrete kinetic energy as

K= %XTMX +K4

where M € R™W*(") js 3 diagonal square matrix with elements

(124)

pilxa?|, if j=k=n@i-1)+s,
with 1 <s<n,1<i< Py,
0, ifj=k.

M = (125)

We will use (124) to write the discrete Lagrangian.
5.2. Elastic stored energy

In this section we define a discrete elastic stored energy. For the
sake of clarity, we do not use summation convention throughout
this section unless it is explicitly stated otherwise. We order the
primal vertices such that {¢?}}" and {a?}f:”ﬁh .1 denote the primal
vertices without and with essential boundary conditions, respec-

tively. We define the discrete elastic stored energy as E® = S,
where & is the internal energy of a portion of support volumes
of 1-simplices that is calculated by interpolation of discrete dis-
placements using an affine interpolation function. To fix ideas,
we derive the explicit form of the discrete stored energy in R?
(n = 2). Consider a primal mesh as shown in Fig. 11. Discrete stored
energy is written as
2E,

E=%"¢
l

where E;, is the number of primal 1-simplices and £"s are the ener-
gies associated to the colored regions. This choice of regions follows
naturally from our previous assumption of homogeneous material
properties within each dual cell and the fact that we need three ver-
tices for a planar affine interpolation. To obtain the explicit form of
&', consider the enlarged part of Fig. 11 and suppose that i,j, k, and
m are the ith, jth, kth, and mth primal vertices, respectively. Here we
have V; = [[i, k] N(*0?)|, where [i, k] denotes the support volume of
[i, k] defined in (73). Assuming summation convention on indices
a,b=1,...,n, we define

(126)

&= [ ue®eydv, (127)
Vi

where strains are calculated considering an affine interpolating
function for vertices i, Cixm, and c;. Using (92), let

n
uly, =g + beqf’, (128)
b=1
where 7 € R",b=1,...,n+ 1, are constant vectors associated to V,
that can be written as (see (93))
q = QU+ UG + 0 U, (129)

with Uy, and U,
tively, and @f',@;"*, and @*** defined in §3.6 and are calculated
using the vertices i, ¢, and Cyn. To obtain Ufjk and Uj,, we need

to interpolate displacements of Jy = {i,j,k} and 3y, = {i,k,m},
respectively. Using (92), we can write

2
3b b b b
o= D QupU’ + D %, QU

denoting displacements of ¢y and Ciy, respec-

(130)
bet\uk a=1 beSijk
2
3b b b b
fn = D Qim0+ D %, Qe U, (131)
bETikm a=1beJjm

where ng,-k and X denote the a-coordinate of cy and Cy,, respec-
tively, and the index [i,j, k] in @ﬁ't},k} emphasizes that this matrix is
obtained by interpolation over [i,j, k]. Let J,, = {i,j,k,m}, then

substituting (130) and (131) into (129) yields
q = Z HPU®, b=1,2,3,

A€ Jjjkm

(132)

where by defining € = {[i,j, k], [i, k, m]}, we can write H? ¢ R**? as

2
HY = Q'+ @ (@i‘ + Zx@@‘ﬁ) ,
a=1

ge

2
bj _ ~beijk 3j a a
H=Q™ <®[i.j,k] + lecijk@[u.k])
p

2
bk bcg 3k k
HPk =Yl (@ac + leﬁg@‘,‘, )
a=

oes

2
b bC;tm 3
H™ = @ (Q[iﬁ.:n] +ngkm ﬁTm]) (133)
a=1
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Fig. 11. Regions that are used for calculating the elastic stored energy. Primal and dual vertices are denoted by e and o, respectively. The dotted lines denote the primal one-
simplices. Displacement is interpolated using affine functions in each of the colored triangles which are the intersection of a support volume of a primal 1-simplex with a dual
2-cell. The elastic body is assumed to be homogeneous in each dual 2-cell. The region bounded by the solid lines denotes the dual of the primal vertex i. The stored energy at
this dual cell is obtained by summing the internal energy of the corresponding 6 smaller triangles.

Note that H?”'s are diagonal matrices and hence symmetric. Be-
cause the ambient space is flat, we have

a ou’ b.a

u‘b:W:ql 5 (134)

where qf"” denotes the a-component of q}. Also as g, = da, using

summation convention on index ¢ ~we can write
Ugp = Eeallp = deaq™ = g%, and hence

1/, b
eab :j(ql"’+q?‘ ) (135)

Note that (with summation convention on indices ¢ and d)

e = gghle,y = 6°6"ecy = eqp. (136)
Now using (135) and (136) we obtain
1 a a .a a,
g :71,“1%(61? +q,‘b> <q§’ +q b), (137)

where we use summation conventionona,b = 1,2, and y, is the va-
lue of Lamé constant p at V,.2 Alternatively, we can write (137) as

1
&' =5 uvi[@) gl + @) 'Ka? + (@)L, (138)
where

20 10 00
]:{O J, K:{O 2}, L:{z o}' (139)

Note that L is asymmetric and as we will see in the following, it
induces asymmetry in subsequent matrices. Substituting (132)
into (138) results in

&= 3 uy)sPu’, (140)
a,b€Fjjim

with the matrices S” € R**? given by

i — %MV: [l mai® + (07 TR <+ (13 TLH (141)

Note that H/’s, J, and K are diagonal and so symmetric but L is
asymmetric, and therefore S » (S?)7, and in particular, $/'s
are not symmetric.

8 Recall that g, can be considered as a primal O-form.

Next, we impose the essential boundary conditions and obtain
an expression for E%. First consider the following definitions

N(0?) = {00 eKk"30! e K" s.t. 0°,0° < 0'& 0 # 60},
€= {00 € K"| Essential B.C. is imposed on 00}, (142)
€(0d) = N(oH NE.

Thus, 9(a?) is the set of neighbors of 62 and €(¢?9) is the set of
the neighbors of ¢% that have essential boundary conditions.
Substituting (140) into (126) yields the following expression for
the discrete elastic stored energy

E'=X"SX +s-X +E, (143)

where X € R™ is defined in (101), the matrix S € R™*"™ can be
written as

Dl ... Dt
s=| ] (144)
DRl ... DPwPh
with
ab
Do - {25, . if b e R(a), (145)
0, otherwise.
The vector s € R™ is defined as s = {dﬂ . ,dp"}T, with
d' = > W™+ sy, (146)
be€(a)
and finally, the scalar Eg is given by
Eg=Y">(U)Ts{u”. (147)

ac€ |

The summation on I in (145) denotes summation over all those
regions whose elastic energies are affected by the displacements of
vertices a and b. Eq. (147) has a similar interpretation. The matrix S
is not symmetric, in general, and the vector s is zero if boundary
vertices have zero displacements. Because both S and S" appear
in the Euler-Lagrange equations, the governing equations remain
symmetric in the sense that reciprocity holds. Also similar to K‘j
defined in (123), Eg does not contribute to the Euler-Lagrange
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equations either. Finally, note that there are other possible choices
for writing a discrete elastic energy. In the next section, we use the
discrete kinetic and elastic stored energies to write a discrete
Lagrangian and obtain the Euler-Lagrange equations for linearized
incompressible elasticity.

5.3. Discrete Euler-Lagrange equations

In this section we use Hamilton’s principle in the space of diver-
gence-free displacements to obtain the Euler-Lagrange equations
for the unknown X. As in the continuous case that was discussed
in §2.2.1, we do not use Lagrange multipliers to impose the incom-
pressibility constraint. Instead, we confine the solution space to the
divergence-free displacements and gradient of pressure will ap-
pear naturally.

Similar to the Lagrangian in the continuous case, we define the
discrete Lagrangian as

=Kk*-v (148)

where V¢ = E — B — T9, with B? and T¢ denoting the work of body
forces and tractions at boundary nodes, respectively. We model a
body force with a primal vector field. Let B be the body force at ver-
tex i. Then, we have

Ph

B'=>"mB U =b X+B, (149)
i=1
where m' = p;|*a?|, is the mass of the dual cell x¢? and b € R" is
defined as b= {b', .. ,bF”h}T, with b' = m'B/, and
Ph L )
B = > mB.U.

i=Pp+1

(150)

Note that similar to the previous section, we order the primal
vertices such that {¢?}™ and {O-?}ZF’;.H denote the primal vertices
without and with essential boundary conditions, respectively. Let
us define

T =t-X, (151)

where the vector t ¢ R"* is defined as t = {t',... t?}, with t' = 0, if
the traction at ¢? is zero. Note that we assume that the set of ver-
tices with essential boundary conditions and the set of vertices with
natural boundary conditions are disjoint. Therefore, the specified
displacements do not contribute to T¢. Substituting (124), (143),
(149), and (151) into (148) results in

1

L :EXTM)'(fszx+F.x+L§, (152)
where
F=-s+b+t [!=K!—E +B (153)

Let the variational field of X be a 1-parameter family of diver-
gence-free vector fields X, that satisfy the essential boundary con-
ditions and

Xo =X, %k:oxé =X. (154)
Note that X, satisfies (100), i.e.

"X, =u", (155)

and therefore

1"6X =0, (156)

which means that 6X € Ker(1"). Hamilton’s principle tells us that

ty d ty
dg. 4 dge
5/t L dt7d€|E:0/ﬁ L4t = 0.

1

(157)

Using (152), we can write

2o d AT T d
5/ Ldt:%kz()/ <§XEMXE—X€SX6+F‘XE+Le>dt
t t

ty 1.
:/ [me(%ax) —XT(S+ST)5X+F~6X}dt
t
.[2 .
:7/ [MX + (S+S")X — F| - oXdt =0, (158)

t

where we used symmetry of the matrix M, the integration by parts
for simplifying the kinetic energy contribution, and the assumption
that X is a proper variation, i.e., X = 0 at both t; and t,. Because
the integrand of (158) is a continuous function of time and t; and
t, are arbitrary, we obtain

[MX + (S+S)X ~F| - oX = 0. (159)
Note that we can write

R™r = Ker(1") @ Ker(1M)", (160)

and since 0X e Ker(1"), from (159) we conclude that

MX + (S+S)X -F=A, (161)

where A € Ker(I")"

Remark 8. In the smooth case, we observed that confining the
variations to the divergence-free vector fields results in the
appearance of pressure gradient in the balance of linear momen-
tum. As the vector A appears in the discrete governing equations
through a similar procedure, it is reasonable to expect that this
vector should somehow be related to discrete pressure gradient. As
a matter of fact, the vector A € R"™" can be written as

= T
A:{Al,...,AP“} , (162)
where A’ € R" can be thought as the value of the gradient of pressure
at the primal vertex ¢?. Although we do not conduct a convergence
analysis to show that the pressure field that is obtained by this
assumption converges to the smooth pressure field, our numerical
examples in the next section demonstrate that this assumption is va-
lid. On the other hand, this correspondence suggests that pressure
should be a dual zero-form because Vp = (dp)®. This is a geometric
justification for the known fact that using different function spaces
for displacement and pressure is crucial in incompressible linearized
elasticity [3,4]). Also note that we do not obtain the pressure gradient
for vertices with essential boundary conditions.

Recall that Ker(I")* is the orthogonal complement of the null
space of 1", which is the row space of 1", i.e., the space spanned
by the rows of 1". To obtain A, note that from the rank-nullity the-
orem, one can write

dim (Ker(1")*") = nP;, — nullity(1") = rank(1") = R. (163)
Let {z!,...,z"} be a basis for Ker(1")*. Then, we have
R
At) = Ai()Z, (164)

where the time-dependent functions A;’s are unknowns to be deter-
mined. Thus, we have the following discrete governing equations
for the unknowns X and A;’s:
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MX + (S+S")X -F=) AZ, (165)

"X =u". (166)

The number of unknowns is nP; + R and since rank(I") = R, we
conclude that 1" has R independent rows (columns) and thus
(166) has R independent equations and so the number of indepen-
dent equations becomes nP;, + R, which is equal to the number of
unknowns. Therefore, one can solve (165) and obtain the displace-
ment field and the pressure gradient uniquely.

Remark 9. The difference between our approach for deriving
(165) and (166) and that of the FE method is as follows. As we
mentioned in §4, (166) is equivalent to a Lagrange finite element
approximation, where the pressure field is approximated by Pg
polynomials over the primal mesh and the displacement field is
approximated by piecewise linear P; polynomials over the
primal mesh. On the other hand, we used two different spaces
for the displacement field for writing (165), see Fig. 12. For
discretizing the kinetic energy, the displacement field is discon-
tinuous and is approximated by Py polynomials over the dual
mesh. However, for discretizing the elastic energy, it is contin-
uous and is approximated by P; polynomials over (part of) the
support volumes.

Remark 10 (Incompressible linear elastostatics). For incompress-
ible linearized elastostatics, the displacements and pressures are
time independent, and therefore (165) and (166) are equivalent to

on each shaded region of Fig. 11. Using (135) and (136), the stress of
the subregion I can be written as
ot = w(af +ar) - pro®. (171)

Thus, we need to calculate the value of pressure on each dual
vertex. The number of unknown pressures is D,. Let {p!,...,pP}
denote the value of unknown pressures at dual vertices. We need
to obtain Dy, independent equations from the pressure gradient A
to be able to specify the pressure. One way to do so is to use the
discrete Laplace-Beltrami operator. This is explained in the follow-
ing example.

Example 3. Consider the planar mesh of Fig. 9 once again. Let p be
a dual 0-form on this mesh representing the pressure and suppose
p'%3 denotes (p, %[1,2,3]), etc. We know that Ap is also a dual 0-
form. Let us define the vector p € R® as

T
p= {p132’p1437p1547p1657p1767p127} .

One can use (91) to calculate Ap. On the other hand, one can
obtain Ap using the pressure gradient A. Suppose, for example, that
the vertices 2 and 3 have essential boundary conditions. Thus,
pressure gradient obtained from (165) lies in R'® and Ap is equal
to the divergence of A. To calculate the discrete pressure field,
we need to obtain the discrete pressure gradient G, € R', which
is a primal vector field. To this end, we need to assign a pressure
gradient to those vertices that have essential boundary conditions.
This can be done by assuming that pressure gradient of these ver-
tices are equal to those of their closest interior primal vertices. This

(172)

Ky 0y < 1Py 1R) X 0Py +R)x1 = Fnpy 1015 (167) way, using A, we can optain the pressurg gradiept Gp € R™. Now
we equate the expressions for Ap obtained using the previous
ra+Tniz+T23 —T13 0 0 0 -T2
—TI3 ri3+T14+T34 —T14 0 0 0
0 -r ra+Ti5+T -r 0 0
L 14 14+ T15+Ta5 15 ’ (174)
0 0 —TIi5 is+Ti6+TIs6 —T16 0
0 0 0 —Ti6 Ie+T7+Te7 -7
—T12 0 0 0 —TI17 r7+Ti2+T127
where two approaches. This gives
T = —
= S+ 5 Do wam ZnPhXR] (168) Lex6 P = l6x14Gp, (173)
h b
uD,,an’;, 0DI1><R N
with the ith column of Z equal to Z fori = 1,...,R. Also by defining x?tire is given in (113) and
i={A4,...,Ar}" € RR, the vectors X and F can be written as
X : F : 12,1l
X = e R"PHR = € R +0n, 169 Tij = 175
{ i } uh (169) 1y =1uefi 172

5.4. Discrete pressure field

Eqgs. (165) and (166) enable us to obtain the displacement field
of linear incompressible elasticity together with the pressure gra-
dient A. The next step is to calculate stresses. Note that we do
not define a notion of discrete stress and, instead, we define stres-
ses on subregions with constant strains, cf. §5.2. Therefore, we de-
fine the stress to be

o"’”=2,ue”bfpg””, (170)

The right-hand side of (173) is a discrete analogue of A = div o grad.
Note that here L is symmetric and invertible. Therefore, we are able
to obtain a unique dual O-form p.

Let us consider a planar mesh Kj,. Fig. 7 shows part of this mesh.
We define a symmetric matrix 1" € R x Dy as follows. Each row of
" corresponds to a dual vertex of K. All the elements in each row
are zero except the diagonal elements and the ones that corre-
spond to the dual vertices that are joined to the reference dual ver-
tex by a dual 1-simplex. For example, in Fig. 7, nonzero
components of the row that corresponds to *|j, [, k] are those that
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(2) (®)

(©) (d)

Fig. 12. Discrete solution spaces: (a) Pp over the primal mesh for the pressure field, (b) P; over the primal mesh for the displacement field in the incompressibility constraint,
(c) Py over the dual mesh for the displacement field for approximating the kinetic energy, and (d) Py over support volumes for the displacement field for approximating the

elastic energy.

Fig. 13. Part of a primal mesh and its associated dual mesh. The 2-simplex [j, [, k]
lies on the boundary.

correspond to *[j, [, k], x[j, 0,1, %[l,q, k], and *[r,j, k]. Let us denote
these components of 1" by Ui, Liwjol Litkiges and Lig ik, TESPEC-
tively. Then, we have

Litkjik = Tk + Ty + Tty Likjor = =T,

Likige = =Ttk Ltkaje = —Tkj- (176)

Note that if [j, I, k] is on the boundary as shown in Fig. 13, then
the only nonzero components are Liy i, Ljijor, and Ljy qx, Which are
defined as above. Note also that by construction, the matrix L" is
symmetric. The sum of the components of the row corresponding
to an internal primal n-simplex is zero while the same sum for
rows that correspond to boundary n-simplices is not zero. As we
will see in the following theorem, as a result of this specific struc-
ture, the symmetric matrix " is nonsingular and because Ap can be
calculated using this matrix, the dual Laplace-Beltrami operator is
injective. Note that the primal A operator is not injective. The rea-
son for this is that the dual coboundary operator is not the same as
the geometric boundary of a dual cell, see (82) and (91), and the
corresponding discussions.

Theorem 5.1. Let K}, be a planar well-centered primal mesh such that
|Kp| is a simply-connected set. Then, the matrix L" e Rp x Dy, is
nonsingular.

Proof. The proof of this theorem is similar to that of Theorem 4.1.
Using the fact that K is shellable, one can use induction and the
specific structure of the matrix L to complete the proof. O

Let the vector p € R} denote the pressure p on K, i.e., the ith
component of p is p' = (p, 6?), where 67 is the ith dual vertex. Then,
one can use L" to calculate Ap. Alternatively, Ap can be calculated

using the pressure gradient G, € R"™+, which is a vector that has
the same components as A € R™ at vertices without essential
boundary conditions. Those components that are associated with
vertices with essential boundary conditions are chosen to be equal
to the pressure gradient of the closest internal primal vertex. For
example, suppose in Fig. 13, vertex k has essential boundary
conditions and the closest internal vertex to k is I Then, pressure
gradient at vertex k is assumed to be equal to the pressure gradient
at 1.° Then, equating Ap’s obtained using the above two approaches
we obtain

L'p =G, (177)

and because L" is nonsingular one can solve (177) and obtain the
pressure at each dual vertex. However, our numerical experiments
show that the direct use of (177) does not yield satisfactory results
for pressure and this is not unusual as we have not imposed the nat-
ural boundary conditions on each primal 2-cell with such boundary
conditions yet. Recall that if 7% denotes the a-component of the trac-
tion 7, then using the summation convention on index b, we can write

(178)

where n? is the b-component of the unit outward normal vector at the
natural boundary. Now suppose thatin Fig. 13, the 2-cell [j, [, k] lies on
the natural boundary. Then, using (171) and (178) we can write

79 = Jab nb _ (zlueab 7pgab)nb7

= [ (5 + a0 — Py, (179)
where we assume summation convention on index b. Using (179)
we can determine the pressure at all the 2-cells with natural bound-
ary conditions. Next, we omit the rows that correspond to those 2-
cells with natural boundary conditions in (177) and move all the
terms containing the known values of the pressure to the right-
hand side of the remaining equations. This way, from (177) we ob-
tain the required number of equations to determine pressure at all
the dual vertices. Finally, one can use (171) to calculate the stress on
each dual subregion.

6. Numerical examples

To demonstrate the efficiency and robustness of our geometric
method, in this section we consider the following two 2-dimen-
sional benchmark problems: A cantilever beam subjected to a par-
abolic end load and Cook’s membrane.

Cantilever beam. As our first example, we consider a planar can-
tilever beam shown in Fig. 14 that has a closed-form solution for its
displacements field [65]. The parabolic load per unit length at the
right boundary is given by f(y) = £ (c? — y?), where I = 2c3/3. Thus,
the total shear load on the right boundary is F. Now, we consider
the analytical solution for a beam under this load given by

9 If there are more than one closest vertexes, one can associate the average
pressure to vertex k.
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Fig. 14. Cantilever beam: (a) Geometry, boundary conditions, and loading, (b) a zgﬂﬂﬁwmﬁggg%'%
well-centered primal mesh with o denoting the circumcenter of each primal 2-cell. <§X¢X¢X#§AVA‘A‘A‘"‘"
(c) D % \VAVAVAVAV.
(1-v)Fy v\ By

Uy = ——2 ( 3x2 — 6Lx + — 2 (y* -3¢

X~ GE 1) “6ig” ),

(1= v2)F [3v(L — x)y? 3 — 8 180 Fig. 16. The pressure field for the beam problem for meshes with (a) N = 64, (b)

Uy = GEI 1—v + —X, ( ) N =156, (c) N = 494, where N is the number of primal 2-cells of the mesh.

and impose the displacements at x = 0. The divergence of the dis-
placement field reads

. 1
dlvu:ﬁ(l +Vv)(1 =2v)F(x—L)y, (181)
and hence, for v = 0.5 we have divu = 0. Note that if v = 0.5, then T
as we explained in Remark 2, the above displacements also satisfy 16

the equations of incompressible linearized elasticity. For this case,
pressure is given by

p(x,y) = —@. (182)

We assume the following parameters: L=16,c=2F=1,
E=107, and v =0.5. We show one of the primal meshes with
N = 236 primal 2-cells in Fig. 14(b). We increase the number of
primal 2-cells and study the convergence of the solutions. In
Fig. 15(a), we plot the normalized vertical displacement of the 7 8 ,
tip point A defined as U?/uf‘, where UJ“,‘ and ug denote the vertical ' '
displacement of point A obtained by our structure-preserving Fig. 17. Cook’s membrane: (a) Geometry, boundary conditions, and loading, (b) a
scheme and the exact solution, respectively. We see that the well-cente.red mesh with N = 123 primal 2-cells with o denoting the circumcenter
numerical solutions converge to the exact solution. Moreover, we of each primal 2-cell.
observe a smooth pressure field for the beam. As an example, in

44
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Fig. 15. Cantilever beam: (a) Convergence of the normalized displacement of the tip point A (ratio of the numerically-calculated and exact displacements). N is the number of
primal 2-cells of the mesh. (b) Pressure of the dual vertices that correspond to the primal 2-cells that are on the bottom of the beam.
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Fig. 18. Convergence of the normalized displacement of the tip point A of the
Cook’s membrane. N is the number of primal 2-cells of the mesh.

Fig. 15(b) we show the variation of pressure at the bottom of the
beam (y = —c) in the x-direction and again we observe that pres-
sure converges to its exact value. We plot the pressure field over
different primal meshes with exaggerated deformations in
Fig. 16. The pressure field is free from checkerboarding and be-
comes smoother and smoother upon mesh refinement.

Cook’s membrane. Now we consider the Cook’s membrane prob-
lem, which is a standard benchmark problem that has been used in
the past to investigate the incompressible and near-incompressible
solutions under combined bending and shear [4,30]. Fig. 17 depicts
the geometry, boundary conditions, and loading of the problem to-
gether with a well-centered mesh with N = 123 primal 2-cells. The
left boundary is fully clamped and the right boundary is subjected
to a distributed shearing load of magnitude T = 6.25 per unit
length (a total vertical force of 100 is imposed on the right bound-
ary). The material is assumed to be homogeneous with the param-
eters E =250 and v =0.5. Now we study the variations of the
vertical displacement of the tip point A upon mesh refinement.
The result is plotted in Fig. 18 that shows the convergence of the
normalized displacements by increasing the number of primal
2-cells, N. Note that we use the limit value of the numerically-
calculated displacement U; =4.2002 for normalization of
displacements in this figure. Finally, we observe that our struc-
ture-preserving scheme is free of checkerboarding as is clearly
seen in Fig. 19. In this figure, we plot the pressure field over

/\
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\
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&
N

deformed configuration of Cook’s membrane. We see that pressure
field becomes smoother and smoother upon mesh refinement. Also
note that the rate of convergence of the results in our numerical
examples is comparable with those of finite element mixed formu-
lations [4,30].

7. Concluding remarks

In this paper, we presented a discrete geometric structure-
preserving numerical scheme for incompressible linearized elastic-
ity. We proved that the governing equations of finite and linearized
incompressible elasticity can be obtained using Hamilton’s
principle and Hodge decomposition theorem without using La-
grange multipliers.

We used ideas from algebraic topology, exterior calculus, and
discrete exterior calculus to develop a discrete geometric theory
for linearized elasticity. We considered the discrete displacement
field as our primary unknown and characterized the space of diver-
gence-free discrete displacements as the solution space. Note that
instead of heuristically defining the discrete displacement field and
its divergence as a discretization of a smooth vector field and
smooth divergence operator, we assume the discrete displacement
field to be a discrete primal vector field and use the definition of
discrete divergence using DEC techniques. Therefore, we preserve
the geometric structure of the smooth problem by considering dis-
crete quantities that have the same geometric structure as their
smooth counterparts. This guarantees that the method remains
free of numerical artifacts as we remain in the correct discrete
space unlike the standard finite element and finite difference
schemes.

Finally, motivated by the Lagrangian structure of the smooth
case, we defined a discrete Lagrangian and used Hamilton’s princi-
ple in the space of discrete divergence-free displacement fields to
obtain the governing equations of the discrete theory. We observed
that the discrete gradient of pressure appears naturally in the gov-
erning equations. We used the discrete Laplace-Beltrami operator
to determine the pressure field, which is assumed to be a dual 0-
form. We then considered some numerical examples and observed
that our discretization scheme is free of numerical artifacts, e.g.
checkerboarding of pressure. Based on the rate of convergence of
the results of the numerical examples, our method is comparable
with finite element mixed formulations [4,30]. We observed that
by choosing the displacement field to be a primal vector field, pres-
sure is a dual 0-form; this geometrically justifies the known fact
that using different function spaces for displacement and pressure
is helpful in the incompressible regime. Also note that our method
can be used for analyzing multiply-connected bodies as well.

Fig. 19. The pressure field for the Cook’s membrane for meshes with (a) N = 123, (b) N = 530, (c) N = 955, where N is the number of primal 2-cells of the mesh.
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The smooth weak form of the incompressible elasticity is well-
posed. However, it is a well-known fact that the discretization of
the weak form is well-posed if and only if the discrete spaces for
the displacement and pressure fields are compatible [3]. For
example, a Py/P; Lagrange finite element approximation for the
displacement/pressure field is not well-posed. This low order
approximation is not well-posed even when using the diamond
element approach [4]. Although we do not present any proof, our
numerical results suggest that the discrete weak form is well-
posed for our choices of the discrete solution spaces. This also sug-
gests that choices that are naturally imposed by the geometry of a
problem can be nontrivial and hard to see using other approaches.

The structure of linearized elasticity is similar to that of perfect
fluids in the sense that both need a fixed mesh. However, finite
elasticity requires the material description of motion. This means
that one needs the time evolution of the initial simplicial complex
of the reference configuration. However, this evolving mesh would
not remain a simplicial complex, in general, and hence the exten-
sion of the present work to the case of finite elasticity is not
straightforward. Also the convergence issues are not considered
in this work. Applications to fluid mechanics and finite elasticity
and studying convergence issues will be the subjects of future
communications.
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