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Abstract In this paper,we formulate a nonlinear elasticity theory inwhich the ambient
space is evolving. For a continuum moving in an evolving ambient space, we model
time dependency of the metric by a time-dependent embedding of the ambient space
in a larger manifold with a fixed background metric. We derive both the tangential and
the normal governing equations. We then reduce the standard energy balance written
in the larger ambient space to that in the evolving ambient space. We consider quasi-
static deformations of the ambient space and show that a quasi-static deformation of
the ambient space results in stresses, in general. We linearize the nonlinear theory
about a reference motion and show that variation of the spatial metric corresponds to
an effective field of body forces.
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1 Introduction

In the geometric theory of elasticity, an elastic body is represented by a material
manifold B , which defines the natural, stress-free state of the body. The body moves
in an ambient space, which in turn is represented by a spatial manifold S . The motion
of the body is described by a time-dependent configuration map ϕt : B → S from the
material manifold to the spatial manifold.

The manifolds B and S are not simply differential manifolds, but have further
geometric structures that allow one to measure the amount of stretch in the body
for a given configuration. While more general geometric structures involving torsion
and non-metricity are used in the nonlinear mechanics of defects (see Yavari and
Goriely 2012a, b, c, 2014 for recent work), in this paper, we restrict our attention to
Riemannian manifolds. We assume that both B and S are Riemannian, with metric
tensorsG and g , and the associatedLevi–Civita connections∇G and∇ g , respectively.
For a given configuration, theseRiemannian structures allow one to evaluate the spatial
distances between the points of the body, and distances given by the material metric. A
discrepancy between these two types of distances signifies a strain in the body from its
natural, stress-free state and hence results in stresses. Thematerial and spatial distances
can be unequal even for a body at rest, without any external forces applied—this is
the case of residual stresses. This viewpoint has been explored for thermal stresses
and for growing bodies by Ozakin and Yavari (2010), Sadik and Yavari (2015), Yavari
(2010), and Sadik et al. (2016). Certain non-elastic deformations of a material can be
described by a time-dependent material metric Gt ; for the case of thermal expansion,
the material metric has been related to the (possibly evolving) temperature distribution
in Ozakin and Yavari (2010); Sadik and Yavari (2015).

In this paper, we take the material metric as fixed, but consider an evolving spatial
metric, gt . In the geometric field theory of elasticity (Marsden andHughes 1983; Simo
andMarsden 1984b;Ciarlet 2005;Yavari et al. 2006), the spatialmetric is introduced as
a fixed background geometry. Likewise, in the classical theory of nonlinear elasticity,
this backgroundmetric is a given geometric objectwith no dynamics; h is “absolute” in
the sense of Anderson (1967) and is a “structural field” in the sense of Post (1997). Our
motivation to study the effects of a time-dependent spatial geometry stems both from
the hope of gaining a deeper understanding of the structure of the classical theory1

and from possible applications involving the analysis of elastic bodies constrained to
move on curved, dynamical surfaces. In order to have a sense of what to expect from
such a theory, let us consider a simple, two-dimensional example.

Figure 1 shows a thin elastic strip constrained to move on the surface of a torus,
which we treat as the ambient space, S. We assume that there is no friction between
the torus and the strip—the latter moves freely on the torus, but cannot move away
from it.2 Suppose that the torus is expanding in time in a predetermined manner,

1 The generalization of a theory obtained by relaxing certain standard assumptions (in this case, the staticity
of gt ), commonly results in a deeper understanding of the original theory. Examples of this include the
geometric notions of stress and traction obtained by allowing the spatial metric to be non-Euclidean.
2 It may be helpful to imagine the strip as moving between two tori of infinitesimally different sizes, so
that the strip is constrained from both sides.
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ambient space deformation

Fig. 1 A thin strip embedded in a toroidal ambient space is stretched when the ambient space deforms

and consider the motion of the strip in this dynamic ambient space. Our aim is to
investigate this dynamics in terms of the intrinsic geometry of S and forces that
“live” on this surface, to the extent possible. It is evident that the strip will stretch
and thus will store elastic energy as the torus expands, even though it does not see
any sources of external forces in the ambient space it observes. Thus, the energy
balance written inside the torus (without any reference to the surrounding Euclid-
ean R

3) will suggest a non-conservation of energy. In this example, we know the
missing piece in the energy balance; it is simply the work done by the normal
forces needed to expand the torus with the strip on it. Our aim is to obtain gen-
eral equations describing the motion of an elastic body moving in such an evolving
ambient space and investigate such issues as energy balance and Lagrangian mechan-
ics.

Implicit in this discussion of Fig. 1 is the fact that the ambient space S is considered
as an embedded submanifold of R3, instead of simply as a Riemannian manifold in
its own right. While it is tempting to consider the dynamics of a body in an ambient
space which is described purely intrinsically in terms of the time-dependent metric
gt , we will see that one needs to consider the motion in terms of a time-dependent
embedding in a larger, static space. For one, it will be possible to identify the missing
part in the intrinsic energy balance as work done by/on the outside forces transforming
the ambient space S , as the discussion above suggests. In addition, the dynamics in
a time-dependent submanifold also results in fictitious forces that cannot be obtained
purely from the intrinsic geometry—forces that depend explicitly on the embedding.
We will identify the effects of the intrinsic and the extrinsic geometries of S below.

The notion of a time-dependent ambient space also shows up in the theory of gen-
eral relativity. While there are connections between the theory of elasticity developed
in this paper and general relativistic continuum mechanics, we will leave the discus-
sion of these issues to a future communication, focusing on the non-relativistic case
exemplified by the case of Fig. 1 in this paper.

This paper is organized as follows. In Sect. 2, we first formulate a Lagrangian field
theory of elasticity when the ambient space has a time-dependent geometry.We obtain
both the intrinsic (tangential) and extrinsic (normal) governing equations of motion.
We then show that for an elastic body moving in an evolving ambient space, energy
balance must be modified and obtain a modified energy balance when the spatial
metric is time dependent. We do this by considering a time-dependent embedding of
the ambient space in a larger manifold and writing the standard energy balance in
the larger manifold. We reduce the energy balance to that written by an observer in
the evolving ambient space. In Sect. 3, we look at quasi-static deformations of the
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Fig. 2 Motion of an elastic body in an evolving ambient space

ambient space and the corresponding induced stresses. We linearize the governing
equations and show that a quasi-static deformation of the ambient space is equivalent
to an effective body force in a fixed ambient space.

2 Motion of an Elastic Body in an Evolving Ambient Space

In this section, we study the motion of an elastic body moving in an evolving (time-
dependent) ambient space. We will derive both tangential and normal governing
equations of motion, balance of mass, and energy balance.

2.1 Lagrangian Field Theory of Elasticity in an Evolving Ambient Space

We identify the reference configuration of an elastic bodywith a Riemannianmanifold
(B, G) and let the body deform in a time-dependent ambient space St , which is
evolving in aEuclidean space (Q, h)of higher dimension. The evolution of the ambient
space St is given by a time-dependent embedding ψt : S → Q , for some abstract
manifold S, such that ψt (S) = St , and the evolving metric of the ambient space S is
given as the induced metric by that ofQ , i.e., gt := ψ∗

t h , which means that ψt is an
isometric embedding,3 see Fig. 2. We denote inner products of vectors with respect
to the metrics h and gt by 〈〈·, ·〉〉h and 〈〈·, ·〉〉gt , respectively. We denote the local
coordinates on B,S , and Q by {X A}, {xa} , and {χα} , respectively. Let dim St = n ,
and dimQ = n+ k = m . Let {ηti }i=1,...,k be a smooth orthonormal basis for X⊥(St ) ,

3 Note that for a given t , such an isometric embedding always exists for dimQ large enough, by Nash
(1956)’s embedding theorem.
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the set of vector fields normal to St . Let {χα} be a local coordinate chart for Q such
that at any point of St , {χ1, . . . , χn} is a local coordinate chart for St and such that
the unit normal vector field ηti , for i ∈ {1, . . . , k} is tangent to the coordinate curve
χn+i , for i ∈ {1, . . . , k} . Recall, as discussed in Appendix 1, that every vector field
u on Q along St can be written as u = u‖ + ∑k

i=1 u
i⊥ηti , where u‖ is the part of

the vector u tangential to St and ui⊥ = un+i for i ∈ {1, . . . , k}. Also, recall that for
i, j ∈ {1, . . . , k}, and α ∈ {1, . . . , n + k}, we have

〈〈
ηti , η

t
j

〉〉

h
= δi j ,

〈〈
ηti , u‖

〉〉
h = 0 ,

and hα(n+i) = δα(n+i) . For i ∈ {1, . . . , k} , we denote the i th second fundamental
form of St along the unit normal ηti by κ t

i and let kti = ψ∗
t κ t

i . For i, j ∈ {1, . . . , k} ,
we denote the normal fundamental 1-form of St relative to the unit normals ηti and ηtj
in this order by ωt

i j and let o
t
i j = ψ∗

t ωt
i j .

4 We define a motion of (B, G) in
(St , h|St

)

as a one-parameter family of maps ϕ̃t : B → St , where t is time. This is equivalent
to a motion of (B, G) in

(S, gt
)
, i.e., ϕt : B → S , such that ϕt = ψ−1

t ◦ ϕ̃t . We
let ϕ̃(X, t) := ϕ̃t (X), ϕ(X, t) := ϕt (X) , and ψ(x, t) := ψt (x) . Let {∂̃ tα}α=1,...,n and
{∂ ta}a=1,...,n denote local coordinate bases for St and S , respectively.

In order to describe the dynamics of the motion of B , the Lagrangian field theory
should be formulated with respect to the fixed space Q . For an elastic material, the
Lagrangian density L can be written as5

L = L(X, ϕ̃, ˙̃ϕ, F̃, G, h),

where F̃ = T ϕ̃t = ψt∗F and F = Tϕt are the deformation gradients of ϕ̃t and ϕt ,
respectively. We assume that the Lagrangian density can be written as

L = 1

2
ρ0〈〈ϒ,ϒ〉〉h − ρ0W (X, F̃, G, h), (2.1)

where ρ0 is the material mass density,ϒ := ˙̃ϕ = ψt∗V +ζ ◦ϕt is the material velocity
vector field of ϕ̃, V is the material velocity vector field of ϕ, ζ = ∂ψ/∂t is the velocity
of a given, fixed point x ∈ S as it moves inQ , andW = W (X, F̃, G, h) is the elastic
energy density (energy function).

Remark 2.1 Note that since gt := ψ∗
t h , i.e., ψt is an isometry between

(S, gt
)
and

(St , h), by objectivity (the isometry ψt can be interpreted as a change of observer),
the dependence of the elastic energy on F̃ = ψt∗F reduces to a dependence on F
only. It should also depend on G and gt (instead of h ) so that one can get a scalar out

4 Recall that the order matters since ωt
i j = −ωt

j i . See Appendix 1 for more details and the definitions of
both the second and the normal fundamental forms.
5 Note that although the Lagrangian theory is formulated with respect to Q , the density is defined with
respect to the volume element of B , i.e., L is an n-dimensional density, not an m-dimensional one.
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of F . Hence, we have6

W (X, F̃, G, h) = W (X, F, G, gt ). (2.2)

For a continuum under a body force field β (not necessarily conservative), the
Lagrange-d’Alembert principle states that (Marsden and Ratiu 2003)

δ

∫ t1

t0

∫

B
LdV dt +

∫ t1

t0

∫

B
ρ0β

	 · δϕ̃dV dt = 0, (2.3)

where 	 denotes the flat operator for lowering tensor indices, β denotes body force per
unit mass, and dV denotes the volume element for B . Note that β is not necessarily
tangent to St and we write it as β = β‖ + ∑k

i=1 B
i⊥ηti , where β‖ is the part of β

tangent to St and Bi⊥ , for i ∈ {1, . . . , k} , is its component along the i th normal ηti .
The action is defined on the material manifold (B, G) as

S (ϕ̃) =
∫ t1

t0

∫

B
L(X, ϕ̃, ˙̃ϕ, F̃, G, h)dV (X)dt, (2.4)

where dV (X) is the Riemannian volume element on B . For the assumed Lagrangian
(2.1), we have S = ST + SW , where

ST =
∫ t1

t0

∫

B
1

2
ρ0 〈〈ϒ,ϒ〉〉h dV (X)dt,

SW = −
∫ t1

t0

∫

B
ρ0W (X, F, G, gt )dV (X)dt.

In order to take variations of the action (2.4), we consider a variation field ϕ̃ε of ϕ̃

such that ϕ̃0 = ϕ̃ and define its variation as

δϕ̃ = d

dε

∣
∣
∣
ε=0

ϕ̃ε .

First, we look at the resulting variations of the kinetic energy

d

dε

1

2
〈〈ϒε,ϒε〉〉h =

〈〈
Dh

ε ϒε,ϒε

〉〉

h
,

where Dh
ε denotes the covariant derivative along the curve ε �→ ϕ̃ε (X, t) for fixed

X and t . Using the symmetry lemma, we have Dh
ε ζ ε = Dh

t δϕ̃ , where Dh
t denotes

6 Another way to see this is by looking at the elastic energy as a function of the right Cauchy–Green
tensor, i.e., W = W̃ (X, C̃, G) . First, we see that since gt := ψ∗

t h , then (ψt ◦ ϕt )
∗ h = ϕ∗

t ψ∗
t h =

ϕ∗
t gt , i.e., the right Cauchy–Green tensors C of ϕt and C̃ of ϕ̃t are equal. If we denote f := Tψt , we

write in components C̃AB = f α
a Fa

A f β
bF

b
Bhαβ = Fa

AF
b
B f α

a f β
bhαβ = Fa

AF
b
Bgab = CAB .

Therefore,W = W̃ (X, C̃, G) = W̃ (X,C, G) , that is, the elastic energy does not depend on the embedding
ψt .
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the covariant derivative along the curve t �→ ϕ̃ (X, t) for fixed X . Therefore, we can
write

d

dε

1

2
〈〈ϒε,ϒε〉〉h =

〈〈
Dh
t δϕ̃,ϒ

〉〉

h
= d

dt
〈〈δϕ̃,ϒ〉〉h −

〈〈
δϕ̃, Dh

t ϒ
〉〉

h
.

Assuming that the variation of ϕ̃ is fixed at t0 and t1 , i.e., δϕ̃(t0) = δϕ̃(t1) = 0 , the
first term on the right-hand side does not contribute to the action. We decompose the
velocity ϒ into tangent and normal components as ϒ = ϒ‖ + ϒ⊥ , where ϒ‖ =
ψt∗V + ζ ‖ ◦ ϕt and ϒ⊥ = ∑k

i=1 ζ i⊥ηti , such that ζ is written in terms of its tangent

and normal components as ζ = ζ ‖ +∑k
i=1 ζ i⊥ηti . We denote the acceleration inQ by

� = Dh
t ϒ and decompose it into tangent and normal components with respect to St

as � = �‖ + ∑k
i=1 Γ i⊥ηti . We denote by A = ψ∗

t �‖ the intrinsic acceleration of S .
Therefore, the variation of the kinetic energy is calculated as

δ

(
1

2
ρ0 〈〈ϒ,ϒ〉〉h

)

= d

dt
〈〈δϕ̃, ρ0ϒ〉〉h − 〈〈

δϕ̃‖, ρ0�‖
〉〉
h − ρ0

m∑

i=n+1

Γ i⊥δϕ̃i⊥

= d

dt
〈〈δϕ̃, ρ0ϒ〉〉h − 〈〈

ψ∗δϕ̃‖, ρ0A
〉〉
gt

− ρ0

m∑

i=n+1

Γ i⊥δϕ̃i⊥,

where δϕ̃‖ is the part of δϕ̃ tangent to St and δϕ̃i⊥ is its component along ηti , for i ∈
{1, . . . , k} . Assuming that the variation of ϕ̃ is fixed on the boundary, i.e., δϕ̃|∂ϕ(B) =
0 , we obtain

δST = −
∫ t1

t0

∫

B

⎛

⎝
〈〈
ψ∗δϕ̃‖, ρ0A

〉〉
gt

+ ρ0

m∑

i, j=n+1

Γ i⊥δϕ̃ jδi j

⎞

⎠ dV (X)dt. (2.5)

Next we compute the components of the acceleration.

Proposition 2.1 The tangent and normal accelerations are given by

A =D
gt
t (V + Z) + ∇ gt

V+ZZ + 2
k∑

i=1

ζ i⊥g�
t · kti · (V + Z)

−
k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j

=D
gt
t (V + Z) −

[
∇ gt Z

]T · (V + Z) + g�
t · ∂ gt

∂t
· (V + Z)

−
k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j , (2.6a)
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Γ i⊥ =dζ i⊥
dt

+ dζ i⊥ · (V + Z) − kti (V + Z, V + Z) − 2
k∑

j=1

ζ
j

⊥o
t
i j · (V + Z)

+
k∑

j,l=1

ζ
j

⊥ζ l⊥
〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h
, (2.6b)

where i = 1, . . . , k, d denotes the exterior derivative onS, i.e., dζ i⊥ = ∑n
a=1

∂ζ i⊥
∂xa dx

a,

D
gt
t denotes the covariant derivative along the curve t �→ ϕ (X, t) for fixed X, Z :=(

ψ∗
t ζ ‖

)◦ϕt is the tangent part of the velocity ζ , and T denotes the transpose operator
with respect to the metric gt .

Remark 2.2 Before we proceed to the proof, let us first look at some particular cases.
If we assume that the evolution of the ambient space is transversal, i.e., Z = 0 , then
(2.6) reduces to

A = D
gt
t V + 2

k∑

i=1

ζ i⊥g�
t · kti · V −

k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j

= D
gt
t V + g�

t · ∂ gt
∂t

· V −
k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j , (2.7a)

Γ i⊥ = dζ i⊥
dt

+ dζ i⊥ · V − kti (V , V ) − 2
k∑

j=1

ζ
j

⊥o
t
i j · V +

k∑

j,l=1

ζ
j

⊥ζ l⊥
〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h
,

(2.7b)

where i = 1, . . . , k . If we assume thatSt is a hypersurface inQ , i.e., the co-dimension
is k = 1 , the normal fundamental 1-forms reduce to a vanishing 1-form ot11 = 0 ,

and
∑k

j,l=1 ζ
j

⊥ζ l⊥
〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h
= ζ⊥ζ⊥

〈〈
∇h

ηt
ηt , ηt

〉〉

h
= 0 , since

〈〈
ηt , ηt

〉〉
h = 1 .

Therefore, (2.6) reduces to

A = D
gt
t (V + Z) + ∇ gt

V+ZZ + 2ζ⊥g�
t · kt · (V + Z) − ζ⊥ (dζ⊥)�

= D
gt
t (V + Z) −

[
∇ gt Z

]T · (V + Z) + g�
t · ∂ gt

∂t
· (V + Z) − ζ⊥ (dζ⊥)� ,

(2.8a)

Γ⊥ = dζ⊥
dt

+ dζ⊥ · (V + Z) − kt (V + Z, V + Z) . (2.8b)

Finally, if we assume that St is a hypersurface evolving transversally inQ , i.e., k = 1
and Z = 0 , then Eqs. (2.8) reduce to

A = D
gt
t V + 2ζ⊥g�

t · kt · V − ζ⊥ (dζ⊥)�

= D
gt
t V + g�

t · ∂ gt
∂t

· V − ζ⊥ (dζ⊥)� , (2.9a)
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Γ⊥ = dζ⊥
dt

+ dζ⊥ · V − kt (V , V ) . (2.9b)

Proof 7 First, we observe that contrary to motions for which k = 0 , as in the case of
3D elasticity, ∇h

ϒϒ cannot be defined unambiguously, in general, for motions in an
evolving ambient space when k ≥ 1 . For calculating ∇h

ϒϒ at χ ∈ ϕ̃t (B) for a fixed
time t , one needs values of ϒ along a curve γ : (−ε, ε) → Q with γ (0) = χ and
γ ′(0) = ϒ . However, in general, we may haveϒ /∈ Tϕ̃t (X)ϕ̃t (B) in which case, such a
curve γ needs to leave the space ϕ̃t (B) butϒ is only defined on ϕ̃t (B) . Thus, it would
not, in general, be possible to compute∇h

ϒϒ unless we can define an extension ofϒ to
a neighborhood inQ . Note that it is always possible to compute ∇h

ϒ‖ϒ ; the problem

arises in computing ∇h
ϒ⊥ϒ . The spatial velocity at a fixed time t is a vector field on

ϕ̃t (B) defined as υ(χ, t) := ϒ(ϕ̃−1
t (χ), t) . Note that for each t, ϕ̃t : B → Q is a

smooth embedding. However, ϕ̃ : B × R → Q is not even an immersion, in general.
To see this, let {X A} and {χa} be local coordinate charts for B and Q , respectively.
The expression of T(X,t)ϕ̃ in these local coordinate charts, for n = 2 and k = 1 , reads
(Sadik et al. 2016)

T(X,t)ϕ̃ =

⎛

⎜
⎜
⎝

∂ϕ̃1

∂X1
∂ϕ̃1

∂X2
∂ϕ̃1

∂t
∂ϕ̃2

∂X1
∂ϕ̃2

∂X2
∂ϕ̃2

∂t
∂ϕ̃3

∂X1
∂ϕ̃3

∂X2
∂ϕ̃3

∂t

⎞

⎟
⎟
⎠ .

Clearly, if ϒ(X, t) = 0 (i.e., ∂ϕ̃α/∂t = 0), or ϕ̃ is an in-plane motion (i.e., in some
coordinate chart for Q such that ∂3 = n on ϕ̃t (B) we have ϕ̃3 = 0), then T(X,t)ϕ̃ is,
in general, not injective. If, however, T(X,t)ϕ̃ is injective, then the implicit function
theorem tells us that ϕ̃ is a local diffeomorphism at (X, t) . In particular, one obtains
a local vector field V on Q in a neighborhood of ϕ̃(X, t) such that V(ϕ̃(X, t)) =
ϒ(X, t) = υ(ϕ̃(X, t), t), and we can define the material acceleration as

�(X, t) = Dh
ϕ̃X

ϒX := ∇h
VV(ϕ̃(X, t)).

Recall that we chose {χα}α=1,...,n+k to be a local coordinate chart for Q such that at
any point of St , {χ1, . . . , χn} is a local coordinate chart for St and such that the i th
unit normal vector field ηti for i ∈ {1, . . . , k} is tangent to the coordinate curve χn+i .

In this coordinate chart, we recall that hα(n+i) =
〈〈
∂̃ tα, ηti

〉〉

h
= δα(n+i) , which will be

used frequently in the following computations. Note that when T(X,t)ϕ̃ is injective, the
set of chosen unit normal vector fields {ηt i }i=1,...,k is well defined on a neighborhood
of ϕ̃(X, t) in Q . Hence, one can decompose V into tangent and normal components
with respect to {ηt i }i=1,...,k as V = V‖ + V⊥ . One then writes

�(X, t) = ∇h
V(V‖ + V⊥) = ∇h

VV‖ + ∇h
VV⊥.

7 This computation is a generalization for a higher codimension of the acceleration computation in Sadik
et al. (2016). We should mention that for this calculation we benefited from a discussion with Fabio Sozio.
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Since the Levi–Civita connection is by definition torsion-free, one can write

∇h
VV‖ = [V,V‖

] + ∇h
V‖V = [V,V‖

] + ∇h
V‖V‖ + ∇h

V‖V⊥.

Note that since V = V(ϕ̃(X, t)) does not explicitly depend on time, one can write[V,V‖
] = LVV‖, which is tangent to St , where L denotes the Lie derivative.8 Note

that

∇h
V‖V‖ = ψt∗∇ gt

ψ∗
t ϒ‖ψ

∗
t ϒ‖ −

k∑

i=1

κ t
i

(
ϒ‖,ϒ‖

)
ηti ,

∇h
V‖V⊥ =

k∑

i=1

∇h
ϒ‖

(
ϒ i⊥ηti

)
=

k∑

i=1

(
∇h

ϒ‖ϒ
i⊥
)

ηti +
k∑

i=1

ϒ i⊥∇h
ϒ‖η

t
i

=
k∑

i=1

(
d̃ϒ i⊥ · ϒ‖

)
ηti +

k∑

i=1

ϒ i⊥h� · κ t
i · ϒ‖ +

k∑

i, j=1

ϒ i⊥
(
ωt
i j · ϒ‖

)
ηtj ,

where d̃ denotes the exterior derivative operator on St ,9 and where we have used,
following (4.3), that for i ∈ {1, . . . , k}10

∇h
ϒ‖η

t
i = h� · κ t

i · ϒ‖ +
k∑

j=1

(
ωt
i j · ϒ‖

)
ηtj .

Let us now compute ∇h
VV⊥ . We consider an arbitrary vector field U in Q such

that U is tangent to St in a neighborhood of ϕ̃(X, t) , i.e., 〈〈V⊥,U〉〉h = 0 . Hence,〈〈∇h
VV⊥,U

〉〉
h = − 〈〈V⊥,∇h

VU
〉〉
h . However, at ϕ̃(X, t) , we have

∇h
VU = [V,U] + ∇h

UV = [V,U] + ∇h
UV‖ + ∇h

UV⊥

= [V,U] + ψt∗∇ gt
ψ∗
t U

ψ∗
t ϒ‖ −

k∑

i=1

κ t
i

(
ϒ‖,U

)
ηti +

k∑

i=1

(
d̃ϒ i⊥ · U

)
ηti

+
k∑

i=1

ϒ i⊥∇h
Uηti .

8 The Lie derivative along the vector field V is defined as LVV‖ = d
dt

∣
∣
∣
t=s

[(
ϕ̃t ◦ ϕ̃−1

s

)∗ V‖
]
, where

ϕ̃t ◦ ϕ̃−1
s is the flow ofV .

9 For a function f defined on St , we write d̃ f = ∑n
α=1

∂ f
∂χα dχα .

10 Recall that the normal fundamental 1-forms are defined for i, j ∈ {1, . . . , k} as ωt
i j ·w =

〈〈
∇h

wηti , η
t
j

〉〉

h
for any vector w tangent to St .
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Thus, we have11

〈〈
V⊥,∇h

VU
〉〉

h
=−

k∑

i=1

ϒ i⊥κ t
i (ϒ‖,U)+

k∑

i=1

ϒ i⊥
(
d̃ϒ i⊥ · U

)
+

k∑

i, j=1

ϒ i⊥ϒ
j
⊥
(
ωt
i j · U

)
,

where we recall that
(
ωt
i j · U

)
=

〈〈
∇h
Uηti , η

t
j

〉〉

h
. Therefore, it follows from

〈〈∇h
VV⊥,U

〉〉
h = − 〈〈V⊥,∇h

VU
〉〉
h and by arbitrariness of U that

(
∇h
VV⊥

)

‖ =
k∑

i=1

ϒ i⊥h� · κ t
i · ϒ‖ −

k∑

i=1

ϒ i⊥
(
d̃ϒ i⊥

)� −
k∑

i, j=1

ϒ i⊥ϒ
j
⊥ω

t�
i j .

On the other hand, we have

∇h
VV⊥ =

k∑

i=1

∇h
V
(
V i⊥ηti

)
=

k∑

i=1

dV i⊥
dt

ηti +
k∑

i=1

V i⊥

⎛

⎝∇h
V‖η

t
i +

k∑

j=1

V j
⊥∇h

ηtj
ηt i

⎞

⎠ .

Then, it follows that at ϕ̃(X, t) , one can write

(
∇h
VV⊥

)

⊥ =
k∑

i=1

dϒ i⊥
dt

ηti +
k∑

i, j=1

ϒ i⊥
(
ωt
i j · ϒ‖

)
ηt j

+
k∑

i, j,l=1

ϒ i⊥ϒ
j
⊥
〈〈

∇h
ηtj

ηt i , η
t
l

〉〉

h
ηtl

=
k∑

i=1

⎡

⎣
dϒ i⊥
dt

+
k∑

j=1

ϒ
j
⊥
(
ωt

j i · ϒ‖
)

+
k∑

j,l=1

ϒ
j
⊥ϒ l⊥

〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h

⎤

⎦ ηt i .

Finally, the tangent and normal components of the acceleration vector read

�‖ =LVV‖ + ψt∗∇ gt
ψ∗
t ϒ‖ψ

∗
t ϒ‖ + 2

k∑

i=1

ϒ i⊥h� · κ t
i · ϒ‖ −

k∑

i=1

ϒ i⊥
(
d̃ϒ i⊥

)�

−
k∑

i, j=1

ϒ i⊥ϒ
j
⊥ω

t�
i j , (2.10a)

11 Note that since the vector U is tangent to St at ϕ̃(X, t) , the vector [V,U] = LVU is tangent to St as
well.
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�⊥ =
k∑

i=1

⎡

⎣
dϒ i⊥
dt

+ d̃ϒ i⊥ · V‖ − κ t
i

(
ϒ‖,ϒ‖

) + 2
k∑

j=1

ϒ
j
⊥
(
ωt

j i · ϒ‖
)

+
k∑

j,l=1

ϒ
j
⊥ϒ l⊥

〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h

⎤

⎦ ηti . (2.10b)

We recall that ϒ = ψt∗V + ζ ◦ ϕt , Z := ψ∗
t ζ ‖ ◦ ϕt , A := ψ∗

t �‖, kti = ψ∗
t κ t

i , and
oti j = ψ∗

t ωt
i j . However, following (Marsden andHughes 1983, Theorem 6.19, p. 101),

and recalling that V = ϒ = ψt∗V + ζ , one can write

ψ∗
t LVV‖ = LVψ∗

t ϒ‖ = LV (V + Z) = ∂

∂t

(
V a + Za) ∂a + [V , V + Z] .

Note that since the connection is torsion-free, it follows that [V , V + Z] =
∇ gt
V (V + Z) − ∇ gt

V+ZV . Denoting by D
gt
t the covariant derivative along the curve

t → ϕt (X) , one can write

D
gt
t (V + Z) = ∂

∂t

(
V a + Za) ∂a + ∇ gt

V (V + Z) .

Therefore, one concludes that

ψ∗
t LVV‖ = D

gt
t (V + Z) − ∇ gt

V+ZV .

We also have
∇ gt

ψ∗
t ϒ‖ψ

∗
t ϒ‖ = ∇ gt

V+Z (V + Z) .

Hence

ψ∗
t LVV‖+∇ gt

ψ∗
t ϒ‖ψ

∗
t ϒ‖ =∇ gt

V Z−∇ gt
Z V+∇ gt

V+Z (V + Z)=D
gt
t (V + Z)+∇ gt

V+ZZ.

Therefore, denoting by d the exterior derivative on S ,12 one can rewrite (2.10) as

A = D
gt
t (V + Z) + ∇ gt

V+ZZ + 2
k∑

i=1

ζ i⊥g�
t · kti · (V + Z)

−
k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j , (2.11a)

Γ i⊥ = dζ i⊥
dt

+ dζ i⊥ · (V + Z) − kti (V + Z, V + Z) − 2
k∑

j=1

ζ
j

⊥o
t
i j · (V + Z)

+
k∑

j,l=1

ζ
j

⊥ζ l⊥
〈〈

∇h
ηtj

ηt l , η
t
i

〉〉

h
, (2.11b)

12 For a function f defined on S , we write d f = ∑n
a=1

∂ f
∂xa dx

a .
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where i = 1, . . . , k and dζ i⊥ = ∑n
a=1

∂ζ i⊥
∂xa dx

a . ��
Let us next turn to the variation of the elastic energy, which is calculated as

δW = ∂W

∂ F̃
:Lδϕ̃ F̃ + ∂W

∂h
:Lδϕ̃h.

However, note that for an arbitrary time-independent material vector field U , one has

Lδϕ̃ F̃U=
[
d

dε

(
ϕ̃ε ◦ ϕ̃−1

s

)∗
F̃U

]

s=ε

=
[
d

dε
ϕ̃s∗ϕ̃∗

ε ϕ̃ε∗U
]

s=ε

=
[
d

dε
ϕ̃s∗U

]

s=ε

= 0.

(2.12)

Thus, Lδϕ̃ F̃ = 0 . We also obtain, by using (4.11) and similarly to (4.12), that

Lδϕ̃h = Lδϕ̃h = ψ∗

(

Lψ∗δϕ̃‖ gt + 2
k∑

i=1

δϕ̃i⊥kti

)

, (2.13)

where δϕ̃‖ is the part of δϕ̃ tangent toψt (S), δϕ̃i⊥ , for i ∈ {1, . . . , k}, is its component
along the unit normal ηti , and L denotes the autonomous Lie derivative. Therefore,
recalling (2.2), it follows that

δW = ∂W

∂h
:
[

ψ∗

(

Lψ∗δϕ̃‖ gt + 2
k∑

i=1

δϕ̃i⊥kti

)]

= ∂W

∂ g
:
(

Lψ∗δϕ̃‖ gt + 2
k∑

i=1

δϕ̃i⊥kti

)

.

(2.14)

Let us first assume that the variations of ϕ̃ are tangent to St , i.e., δϕ̃i⊥ = 0,∀i ∈
{1, . . . , k} . Therefore, the variation of the action associated with the elastic energy
reads

δSW = −
∫ t1

t0

∫

B
ρ0

∂W

∂ g
:Lψ∗δϕ̃‖ gtdV dt.

Note, however, that Lψ∗δϕ̃‖ gt = ∇ gtψ∗δϕ̃	
‖ +

[
∇ gtψ∗δϕ̃	

‖
]T

. Hence, by symmetry

of gt , one can write

δSW = −
∫ t1

t0

∫

B
2ρ0

∂W

∂ g
:∇ gtψ∗δϕ̃	

‖dV dt

= −
∫ t1

t0

∫

ϕt (B)

2ρ
∂W

∂ g
:∇ gtψ∗δϕ̃	

‖dvdt

= −
∫ t1

t0

∫

ϕt (B)

2ρ
∂W

∂gab

(
ψ∗δϕ̃‖

)
a|b dvdt

= −
∫ t1

t0

∫

ϕt (B)

divgt

(

2ρ
∂W

∂ g
· ψ∗δϕ̃	

‖
)

dvdt
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+
∫ t1

t0

∫

ϕt (B)

〈〈

divgt

(

2ρ
∂W

∂ g

)

, ψ∗δϕ̃‖
〉〉

gt

dvdt

= −
∫ t1

t0

∫

∂ϕt (B)

(

2ρ
∂W

∂ g
· ψ∗δϕ̃	

‖
)

· ndadt

+
∫ t1

t0

∫

ϕt (B)

〈〈

divgt

(

2ρ
∂W

∂ g

)

, ψ∗δϕ̃‖
〉〉

gt

dvdt,

where ρ is the mass density in S, divgt (surface divergence) denotes the divergence
operator in

(S, gt
)
, and n is the unit normal vector to ∂ϕt (B) in S . Therefore,

assuming that the value of ϕ̃ is fixed on the boundary, i.e., δϕ̃|∂ϕ(B) = 0 , one obtains

δSW =
∫ t1

t0

∫

ϕt (B)

〈〈

divgt

(

2ρ
∂W

∂ g

)

, ψ∗δϕ̃‖
〉〉

gt

dvdt. (2.15)

Hence, by (2.5) and (2.15), the Lagrange-d’Alembert principle (2.3) reads

∫ t1

t0

∫

ϕt (B)

〈〈

−ρA + divgt

(

2ρ
∂W

∂ g

)

, ψ∗δϕ̃‖
〉〉

gt

dvdt

+
∫ t1

t0

∫

ϕt (B)

〈〈
ρB, ψ∗δϕ̃‖

〉〉
gt
dvdt = 0,

where B = ψ∗β‖ . Therefore, by arbitrariness of δϕ̃‖ , one obtains the following
tangent Euler–Lagrange equations

divgt

(

2ρ
∂W

∂ g

)

+ ρB = ρA. (2.16)

In terms of the Cauchy stress tensor σ = 2ρ ∂W
∂ g , we have13

divgt σ + ρB = ρA. (2.17)

In the particular case, when St is a hyperspace evolving transversally inQ , i.e., k = 1
and Z = 0 , the tangent Euler–Lagrange equations read

divgt σ + ρB = ρD
gt
t V + 2ρζ⊥g�

t · kt · V − ρζ⊥ (dζ⊥)� . (2.18)

Equivalently, in terms of the rate of change in the spatial metric one has (c.f. (4.9))

divgt σ + ρB = ρD
gt
t V + ρg�

t · ∂ gt
∂t

· V − ρζ⊥ (dζ⊥)� . (2.19)

13 An alternate proof of this result for the special case of a transversal embedding is given in Appendix 2.
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Now, we assume that the variations of ϕ̃ are normal to St , i.e., δϕ̃‖ = 0 . Using
(2.5) and (2.14), we obtain from (2.3), by arbitrariness of δϕ̃i⊥ , the following normal
Euler–Lagrange equations

− 2ρ0
∂W

∂ g
:kti + ρ0B

i⊥ = ρ0Γ
i⊥, i = 1, . . . , k. (2.20)

In terms of the Cauchy stress, one has

− σ :kti + ρBi⊥ = ρΓ i⊥, i = 1, . . . , k. (2.21)

Remark 2.3 Equation (2.18) is identical to the tangential component of Scriven
(1960)’s Eq. (27). However, we believe that the expression of the acceleration he
wrote before his Eq. (16) should be corrected to include the extra terms depending
on the second fundamental form and the gradient of the embedding normal velocity
as can be seen in (2.18). If one neglects the inertial terms, Eq. (2.18) is identical to
Arroyo and DeSimone (2009)’s Eq. (4). However, it is not identical to their Eq. (3) in
the presence of inertial effects. For them, acceleration reads

∂V
∂t

+ ∇ gt
V V + VnHV ,

where H = gabkab is twice the mean curvature. Note that, when Z = 0 and k = 1 ,
their k is our −kt , Vn := ζ⊥ , and their acceleration should be corrected to read (in
their notation)14

∂V
∂t

+ ∇ gt
V V − 2Vnk · V − Vn (dVn)

� .

We also note that in the case of a 2D shell embedded as a hypersurface in R
3 , (2.21)

is identical to the normal component of Scriven (1960)’s Eq. (27), although Scriven
(1960) did not write down the expression of the extrinsic acceleration. Ignoring the
inertial terms, Eq. (2.21) is identical to Arroyo and DeSimone (2009)’s Eq. (5).

2.2 Conservation of Mass for Motion in an Evolving Ambient Space

Locally, conservation of mass is equivalent to (Simo and Marsden 1984a)

ρ(x, t)J (X, t) = ρ0(X),

14 We communicated with A. DeSimone and M. Arroyo, and they kindly confirmed the mistake in their
acceleration. They indicated that they followed the master balance law of Marsden and Hughes (1983,
p. 129). In Appendix 2, we show this derivation by using the master balance law and demonstrate that the
results are identical to those we obtain using Hamilton’s principle.
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where J (X, t) =
√

det gt
det G det F is the Jacobian of deformation mapping ϕ.15 Thus

d

dt
(ρ J ) = 0.

Note that

J̇ = (
divgt V

)
J + 1

2
J tr

(
∂ gt
∂t

)

,

where the superposed dot denotes total time differentiation, i.e., J̇ = dJ
dt . Therefore

16

ρ̇ + ρ divgt V + 1

2
ρ tr

(
∂ gt
∂t

)

= 0. (2.22)

Note that even if V = 0, ρ is time dependent. Therefore, in the case of a 2D shell
transversally embedded in R3 —recalling Lemma 3.2, which in this case reads ∂ gt

∂t =
2ζ⊥kt + ∇ gt Z	 +

[
∇ gt Z	

]T
—(2.22) can be written as

ρ̇ + ρ divgt (V + Z) + ρζ⊥H = 0, (2.23)

where H = tr kt is twice the mean curvature. Equation (2.23) is identical to the
conservation of mass for shells appearing in Scriven 1960, Eq. (21), Marsden and
Hughes 1983, p. 92, and Arroyo and DeSimone 2009, (Eq. 1). Note that, if we look at
the spatial mass density form ρ := ρdv , (2.22) reads

LVρ = 0. (2.24)

Equivalently, one can write

d

dt

∫

ϕt (U)

ρdv =
∫

ϕt (U)

LV (ρdv) =
∫

ϕt (U)

[LVρ dv + ρLV (dv)] = 0. (2.25)

We know that

LV (dv) = LV (dv) + ∂

∂t
(dv) =

[

div V + 1

2
tr

(
∂ gt
∂t

)]

dv. (2.26)

Substituting (2.26) into (2.25) and localizing gives (2.22), which is the local form of
conservation of mass.

15 Note that the Jacobian of the deformation ϕ̃ is equal to that of ϕ , i.e.,
√

det h
det G det F̃ =

√
det gt
det G det F ,

which follows from gt := ψ∗
t h .

16 Note that there is a typo in the corresponding equation in Marsden and Hughes (1983), p. 92.

123

Author's personal copy



J Nonlinear Sci (2016) 26:1651–1692 1667

2.3 Energy Balance in Nonlinear Elasticity in an Evolving Ambient Space

Let us consider an elastic body deforming in an evolving ambient space. We are
interested in making an explicit connection between the deformation of the elastic
body embedded in this ambient space and that in an ambient space with a dynamic
metric. Let the ambient spaceS move in a larger (fixed)manifoldQ , i.e.,ψt : S → Q .
The fixed background metric in (Q, h) induces a time-dependent metric on S , i.e.,
gt = ψ∗

t h . Energy balance can be easily written in Q, but we are interested to see
how it is written for an observer in S . When the metric g of S is fixed, the standard
material balance of energy for a given subset U ⊂ B reads

d

dt

∫

U
ρ0

(

E + 1

2
〈〈V , V 〉〉g

)

dV =
∫

U
ρ0

(〈〈B, V 〉〉g + R
)
dV

+
∫

∂U
(〈〈T , V 〉〉g + H

)
dA, (2.27)

where E, R, H , and T are the internal energy function per unit mass, the heat supply
per unit mass, the heat flux per unit undeformed area, and the boundary traction vector
per unit undeformed area, respectively. Note that E = E(X,N, F, G, g), where N
is the specific entropy. However, here the ambient space is evolving in time and the
energy balance should be modified to accommodate this time dependency. First, let
us look at an example to motivate our discussion.

Example 2.1 Suppose the ambient space is a two-dimensional sphere of radius R that
shrinks/expands in time. Then, whatever elastic material lives on this sphere will be
compressed/stretched over time. As a simple case, assume that the material manifold
is also a sphere, with radius equal to the initial radius of the ambient sphere. Assume
that the deformation map ϕ is constant over time, as the metric evolves. This means
that there will be an increase in elastic energy over time, not accounted for in terms
of the work done by external forces—since there are no external forces.

Let the ambientmetric, as a function of timebe gi j (θ, φ, t) = f (t)gspherei j (R)(θ, φ) ,
where t is time, f (t) is some function of time (the shrinkage/expansion factor) such
that f (t) > 0, f (t0) = 1 , and gspheret (R) is the metric of the 2-sphere with radius R .
Note that this is a uniform rescaling of the metric. Then, let the material manifold be
just GI J (Θ,Φ) = Gsphere

I J (R)(Θ,Φ) , and let the deformation map simply send Θ to
θ andΦ to φ at all times. Therefore, even though the material “is not moving” in terms
of the coordinates φ and θ (a given material point sits at the same φ and θ at all times),
it is shrinking/expanding. Note that Ψ = Ψ (X,C) , where CAB = Fa

AFb
Bgab f (t) .

Thus, even if Fa
B = δa A , we have CAB = δa AδbBgab f (t) . This means that Ψ

explicitly depends on f (t) and hence there is stored elastic energy coming from the
changes in the ambient space metric.

To visualize the time dependency of the metric of the ambient space, let us
embed the initial sphere of radius r = R in the Euclidean space R3 . We then
assume that the ambient space moves in the Euclidean space, i.e., there is a map
ψt : S2(r) → R3 . Explicitly this can be written in the spherical coordinates as
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(r̃ , θ̃ , φ̃) = ψt (r, θ, φ) = (k(t)r, θ, φ) with k(t) > 0 . Note that deformation map-
ping is the inclusion map, i.e., (θ, φ) = ϕt (Θ,Φ) = (Θ,Φ) . The metric of the
Euclidean space in spherical coordinates reads h = diag

(
1, r̃2, r̃2 sin2 θ

)
. Now the

map ψt induces a metric gt = ψ∗
t h on the ambient space that has the following repre-

sentation: gt = diag
(
k(t)2r2, k(t)2r2 sin2 θ

)
. It is seen that f (t) = k(t)2 , i.e., when

expanding the ambient space by k , all the square distances in the ambient space with
the time-dependent metric are multiplied by f = k2 as expected. It is seen that time
dependency of the ambient space metric can be visualized using a time-dependent
embedding in a larger space with a fixed background metric (see Yavari (2010) for a
similar discussion). In the following, we look at this in the general case of an arbitrary
deformable body.

Next, we prove the following proposition for an arbitrary deformable body:

Proposition 2.2 Energy balance for a deformable bodymoving in an evolvingambient
space is given by

d

dt

∫

U
ρ0

(

E + 1

2
〈〈V , V 〉〉gt

)

dV =
∫

U
ρ0

[〈〈
B + Ffic, V

〉〉
gt

+
(

∂E

∂ g
: ∂ gt

∂t
+ 1

2
〈〈V , V 〉〉 ∂ gt

∂t

)

+ R

]

dV

+
∫

∂U
(〈〈T , V 〉〉gt + H

)
dA, (2.28)

where we recall that E = E(X,N, F, G, gt )
17 is the material internal energy density

per unit mass and N, R, H, T , and B are the specific entropy per unit mass, the heat
supply per unit mass, the heat flux per unit undeformed area, the boundary traction
vector per unit undeformedarea, and the tangent body force per unitmass, respectively.
We also recall that V is the velocity of ϕt and Z = ψ∗

t ζ ‖ is the tangent velocity of the
embeddingψt .Ffic denotes the fictitious body force due to the evolution ofSt and reads

Ffic = − (
A − D

gt
t V

) = −D
gt
t Z − ∇ gt

V+ZZ − 2
k∑

i=1

ζ i⊥g�
t · kti · (V + Z)

+
k∑

i=1

ζ i⊥
(
dζ i⊥

)� +
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j

= −D
gt
t Z +

[
∇ gt Z

]T · (V + Z) − g�
t · ∂ gt

∂t
· (V + Z) +

k∑

i=1

ζ i⊥
(
dζ i⊥

)�

+
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j . (2.29)

17 Similar to the discussion of Remark 2.1, we can conclude that E(X,N, ψ∗F, G, h) =
E(X,N, F, G, gt ) .
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Note that in the particular case of a transversal evolution of the ambient space as a
hypersurface in Q , i.e., Z = 0 and k = 1 , the fictitious body force reduces to

Ffic = −2ζ⊥g�
t · kt · V + ζ⊥ (dζ⊥)� = −g�

t · ∂ gt
∂t

· V + ζ⊥ (dζ⊥)� . (2.30)

Proof For an observer in Q , energy balance for a subbody U ⊂ B is written as

d

dt

∫

U
ρ0

(

E + 1

2
〈〈ϒ,ϒ〉〉h

)

dV =
∫

U
ρ0

(〈〈
β̃,ϒ

〉〉

h
+ R

)
dV

+
∫

∂U

(〈〈
T̃ ,ϒ

〉〉

h
+ H

)
dA.

Body force can be decomposed into tangent and normal components with respect to
St as β = β‖ +∑k

i=1 B
i⊥ηti . Note that the traction vector is tangent to St . We denote

B = ψ∗
t β‖ , and T = ψ∗

t T̃ . Recalling that ϒ = ψt∗V + ζ ◦ ϕt and Z = ψ∗
t ζ ‖ , the

energy balance is simplified to read

d

dt

∫

U
ρ0

(

E + 1

2
〈〈ϒ,ϒ〉〉h

)

dV =
∫

U
ρ0

(

〈〈B, V + Z〉〉gt +
k∑

i=1

Bi⊥ζ i⊥ + R

)

dV

+
∫

∂U
(〈〈T , V + Z〉〉gt + H

)
dA. (2.31)

Note that

d

dt

1

2
〈〈ϒ,ϒ〉〉h =

〈〈
Dh
t ϒ,ϒ

〉〉

h
= 〈〈Γ ,ϒ〉〉h = 〈〈A, V + Z〉〉gt +

k∑

i=1

ζ i⊥Γ i⊥, (2.32)

and
d

dt
E = LϒE = ∂E

∂N
Ṅ + ∂E

∂ F̃
:Lϒ F̃ + ∂E

∂h
:Lϒh.

Similar to (2.12), we see that Lϒ F̃ = 0 . Note that18

Lϒh = Lψ∗V h+ Lζ h = Lψ∗V h+ψt∗
∂ gt
∂t

= ψ∗
(

L(V+Z)gt + ∂ gt
∂t

)

= ψ∗LV gt ,

where we used (4.10) to write Lζ h = ψt∗ ∂ gt
∂t . Therefore, it follows that in Q

dE

dt
= ∂E

∂N
Ṅ + ∂E

∂h
:Lϒh = ∂E

∂N
Ṅ + ∂E

∂ g
:LV gt . (2.33)

18 An alternate proof for this result can be found in Marsden and Hughes (1983), p. 101.
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An observer in S writes the energy balance as

d

dt

∫

U
ρ0

(

E + 1

2
〈〈V , V 〉〉gt

)

dV =
∫

U
ρ0

(〈〈B, V 〉〉gt + � + R
)
dV

+
∫

∂U
(〈〈T , V 〉〉gt + H

)
dA, (2.34)

where � = 0 if the ambient space metric is fixed. Note that in
(S, gt

)
, we have

d

dt

1

2
〈〈V , V 〉〉gt =

〈〈
D

gt
t V , V

〉〉
gt

+ 1

2
〈〈V , V 〉〉 ∂ gt

∂t
, and

dE

dt
= ∂E

∂N
Ṅ + ∂E

∂ g
:LV gt .

(2.35)

Let us now find� . Subtracting (2.34) from (2.31) and using (2.32), (2.33), and (2.35),
one obtains

∫

U

(

ρ0 〈〈A, Z〉〉gt + ρ0
〈〈
A − D

gt
t V , V

〉〉
gt

− 1

2
ρ0 〈〈V , V 〉〉 ∂ gt

∂t
+ ρ0

k∑

i=1

ζ i⊥Γ i⊥

)

dV

=
∫

U

(

ρ0 〈〈B, Z〉〉gt + ρ0

k∑

i=1

Bi⊥ζ i⊥ − �

)

dV +
∫

∂U
〈〈T , Z〉〉gt dA.

Note that 2ρ
∂E

∂ g
= 2ρ

∂W

∂ g
= σ , and

∂E

∂ g
:LZ gt = 2

∂E

∂ g
:∇ gt Z . Therefore, by using

(2.16) and (2.20) we have

∫

U

(

ρ0
〈〈
A − D

gt
t V , V

〉〉
gt

− 1

2
ρ0 〈〈V , V 〉〉 ∂ gt

∂t

)

dV =
∫

∂U
〈〈T , Z〉〉gt dA

+
∫

U

(
k∑

i=1

ζ i⊥σ :kti − J
〈〈
divgt σ , Z

〉〉
gt

− �

)

dV .

Also, note that

∫

∂U
〈〈T , Z〉〉gt dA =

∫

∂ϕt (U)

〈〈
σ · ηt , Z

〉〉
gt
da

=
∫

ϕt (U)

divgt 〈〈σ , Z〉〉gt dv

=
∫

ϕt (U)

(
σ :∇ gt Z + 〈〈

divgt σ , Z
〉〉
gt

)
dv

=
∫

U

(
1

2
σ :LZ gt + J

〈〈
divgt σ , Z

〉〉
gt

)

dV .
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Thus ∫

U

(

ρ0
〈〈
A − D

gt
t V , V

〉〉
gt

− 1

2
ρ0 〈〈V , V 〉〉 ∂ gt

∂t

)

dV

=
∫

U

(
1

2
σ :

(

LZ gt + 2
k∑

i=1

ζ i⊥kti

)

− �

)

dV .

However, since σ = 2ρ ∂W
∂ g = 2ρ ∂E

∂ g , and ∂ gt
∂t = 2

∑k
i=1 ζ i⊥k

t
i + LZ gt , it follows

that

� = ∂E

∂ g
: ∂ gt

∂t
− ρ0

〈〈
A − D

gt
t V , V

〉〉
gt

+ 1

2
ρ0 〈〈V , V 〉〉 ∂ gt

∂t
.

Therefore, the balance of energy in
(S, gt

)
reads

d

dt

∫

U
ρ0

(

E + 1

2
〈〈V , V 〉〉gt

)

dV

=
∫

U
ρ0

(

〈〈B + Ffic, V 〉〉gt + ∂E

∂ g
: ∂ gt

∂t
+ 1

2
〈〈V , V 〉〉 ∂ gt

∂t
+ R

)

dV

+
∫

∂U
(〈〈T , V 〉〉gt + H

)
dA,

where the fictitious body force Ffic is given in (2.29). If the evolution of the ambient
space as a hyperspace in Q is transversal, i.e., Z = 0 and k = 1 , the fictitious body
force reduces to (2.30). ��
Remark 2.4 Note that the non-classical extra terms appearing in the energy balance
(2.28) can be written as

∂E

∂ g
: ∂ gt

∂t
+ 1

2
〈〈V , V 〉〉 ∂ gt

∂t
= ∂

∂ g

(

E + 1

2
〈〈V , V 〉〉gt

)

: ∂ gt
∂t

,

so that this term cancels out the contribution of the rate of change in the energy (internal
+ kinetic) due to the evolving ambient space metric appearing on the left-hand side of
(2.28).

3 Quasi-Static Deformations of the Ambient Space Metric

Let us consider a spatial metric that depends on a position-dependent parameter ω(x),
e.g., g = g(x, ω(x)) . In other words, given an initial metric g0 , we quasi-statically
deform the ambient spacemanifold.As an application,we can think of a situationwhen
a thin sheet of metal is compressed between two identical and evolving surfaces to
make different curved sheets, e.g., some pieces of an automobile body. As an example,
one can start with a rescaling of the spatial metric, i.e.,

g(x, ω(x)) = e2ω(x)g0(x).
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Note that Jacobian J of deformation in the new ambient space is related to the Jacobian
with respect to the old ambient space J0 as follows:

J =
√

det g
det G

det F = e
nω(x)

2 J0,

where dim S = n . Having an equilibrium configuration, replacing g0 by its rescaled
version, the equilibrium configuration will change, in general. The following two
examples show the effect of a rescaling of the spatial metric on equilibrium configu-
ration and the corresponding stresses.

3.1 Examples of Elastic Bodies in Evolving Ambient Spaces and the Induced
Stresses

We consider two examples in this section. In the first example, a disk of radius Ro

is embedded in a two-dimensional ambient space that is initially flat. We first show
that the disk remains stress-free when the metric of the ambient space is rescaled
homogeneously. Then we calculate the stresses in the case of an ambient space inclu-
sion (the ambient space metric is uniformly rescaled inside a finite disk and is left
unchanged outside the disk). In the second example, we consider a spherical cap
embedded in a spherical ambient space. We uniformly rescale the spatial spherical
metric (equivalently changing the radius of the sphere) and calculate the resulting
stresses. In both examples, we assume an incompressible and isotropic solid. For such
solids, the energy function depends on the first and second principal invariants of
the right Cauchy–Green strain C (or the left Cauchy–Green strain b , also known as
the Finger deformation tensor), i.e., W = W (I1, I2) (Ogden 1997). Note that for an
incompressible solid I3 = J 2 = 1. The Finger deformation tensor b has components
bab = Fa

AFb
BGAB . For an incompressible isotropic solid, the Cauchy stress has the

following representation (Doyle and Ericksen 1956; Truesdell and Noll 2004)

σ =
(

−p + 2I2
∂W

∂ I2

)

g� + 2
∂W

∂ I1
b� − 2

∂W

∂ I2
b−1, (3.1)

where p is the Lagrange multiplier corresponding to the incompressibility constraint

J = 1. Note that b−1 = c has components cab = (
F−1

)A
m
(
F−1

)B
n GAB gamgbn .

Example 3.1 (Disk in a flat 2D plane) Let us consider a two-dimensional disk of
initial radius Ro made of an incompressible and isotropic material in an initially flat
two-dimensional spatial manifold. We would like to calculate the stresses that occur
in the new equilibrium configuration after we change the spatial metric in a radially
symmetric way. In spatial polar coordinates (r, θ) , the spatial metric is assumed to be:

g =
(
e2ω(r) 0
0 r2e2ω(r)

)

.
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The nonzero connection coefficients for g are:

γ r
rr = ω′(r), γ r

θθ = −r(1 + rω′(r)), γ θ
θr = 1

r
+ ω′(r). (3.2)

In material polar coordinates (R,Θ) , the material metric reads

G =
(
1 0
0 R2

)

.

We look for solutions of the form ϕ(R,Θ) = (r, θ) = (r(R),Θ) . Thus, F =
diag

(
r ′(R), 1

)
. This gives the Jacobian as

J = e2ω(r) r
′(R)r

R
.

Therefore, incompressibility (J = 1) gives the following ODE for r(R)

r(R)r ′(R)e2ω(r(R)) = R. (3.3)

To fix rigid body translations, we assume that r(0) = 0 . Hence, r(R) satisfies the
following integral equation.

r(R) =
(∫ R

0
2ξe−2ω(r(ξ))dξ

)1/2

. (3.4)

Note that the Finger tensor reads

b =
(
e−4ωR2

r2
0

0 1
R2

)

,

and hence I1 = r2e2ω
R2 + R2e−2ω

r2
and I2 = 1 . Therefore, we obtain from (3.1) the

nonzero stress components as

σ rr = −e−2ω p + e−4ωR2

r2
α +

(

e−2ω − r2

R2

)

β, and

σθθ = −e−2ω

r2
p + 1

R2 α + e−2ω

r2

(

1 − e−2ωR2

r2

)

β, (3.5)

where p(R) is the unknown Lagrange multiplier and

α(R) = 2
∂W (I1, I2)

∂ I1
, β(R) = 2

∂W (I1, I2)

∂ I2
.

In terms of the Cauchy stress tensor, the only non-trivial equilibrium equation is
σ ra |a = 0 , which, by using (3.2), reads
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r(R)e2ω(r(R))

R
σ rr

,R +
(
1

r
+ 3ω′

)

σ rr − r
(
1 + rω′) σθθ = 0. (3.6)

By using (3.5), the equilibrium equation (3.6) reduces to

p′ = β ′ − R3e−4ω(α − β)
(
rω′ + 1

)

r4
+ r2e2ω

(
2β − Rβ ′)

R3 + Re−2ω
(
Rα′ + 2α

)

r2

− (α + 3β)
(
rω′ + 1

)

R
. (3.7)

Note that because of the flat geometry of the ambient space, the second fundamental
form of the ambient plane in Q = R

3 is zero, and hence the extrinsic equilibrium
equation (2.21) gives a zero extrinsic body force Bn on the disk.

Uniform scaling of the metric Let us consider the particular case of a uniform (homo-
geneous) scaling of the ambient space metric, i.e., ω(r) = ωo . It follows from (3.3)
that r(R) = Re−ωo , and hence we get from (3.7) that p′ = α′ . Assuming zero trac-
tion at the boundary, i.e., σ rr (Ro) = 0 , we find that p = α . Thus, it follows that
σ rr (R) = σθθ (R) = 0 , i.e., the disk remains stress-free when the ambient space is
uniformly expanded/contracted.

Remark 3.1 Since the components of the deformation gradient do not have a
coordinate-independent meaning, in a given pair of bases in the material and spa-
tial spaces, F can be the identity matrix, but that does not mean that there is no stretch
in the material. Likewise, F can be a position-dependent, non-identity matrix, and
that does not mean that there is any stretch. What matters is a coordinate-independent
measure of stretch. One such measure is G − ϕ∗g . If this vanishes, we can claim that
there is no stretch (strain), according to this particular (and appropriate for shell-like
situations) definition of strain.

In this example, we chose to represent the stretch in the ambient space (assuming
uniform expansion) as a change in g . The new equilibrium configuration map was
given by a “rescaled” version of the original configurationmap (by “rescaled”wemean
rescaled in the Euclidean coordinate representation), and the final state was still stress
(and strain)-free. G−ϕ∗g will still be zero, with both ϕ and g having changed during
the process. In short, as g changes, as a result the equilibrium mapping ϕ changes,
and likewise F changes, but the pullback of g stays the same for the set of equilibrium
configurations during the process.

An ambient space inclusion We assume that the spatial metric is uniformly scaled
inside a disk of radius ri and is left unchanged elsewhere, i.e.,

ω(r) =
{

ωo if 0 ≤ r ≤ ri ,

0 if ri < r.
(3.8)

Motivated by Eshelby’s inclusion problem Eshelby (1957) (see Yavari and Goriely
2013 for a discussion on finite eigenstrains and a brief history of the problem), we
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call this an ambient space inclusion. We may think of this as a defect in the ambient
space. It follows from (3.4) that

r(R) =
⎧
⎨

⎩

Re−ωo 0 ≤ R ≤ rie
ωo ,

[
R2 + r2i

(
1 − e2ωo

)]1/2
rie

ωo < R ≤ Ro.
(3.9)

Remark 3.2 Note that if Ro ≤ rieωo , we have r(R) = Re−ωo . Hence, it follows,
similar to the previous case where the ambient metric is uniformly scaled, that the disk
remains stress-free. We assume in the remainder of this example that Ro > rieωo .

By substituting (3.8) and (3.9) into (3.7), one finds

p′(R) =
{

α′(R) 0 ≤ R ≤ rie
ωo ,

f (R) rie
ωo < R ≤ Ro,

(3.10)

where

f (R) = R
(
Rα′ + 2α

)

R2 + r2i
(
1 − e2ωo

) − R3(α − β)
(
R2 + r2i

(
1 − e2ωo

))2

+
(
2β − Rβ ′) (R2 + r2i

(
1 − e2ωo

))

R3 − α + 3β

R
+ β ′. (3.11)

Assuming zero traction at the boundary R = R0, we obtain

p(R) =

⎧
⎪⎨

⎪⎩

α(R) + σ̂o 0 ≤ R ≤ ri eωo ,

∫ R
Ro

f (ξ)dξ + R2
o

R2
o+r2i (1−e2ωo )

α(Ro) +
(

1 − R2
o+r2i

(
1−e2ωo )
R2
o

)

β(Ro) ri eωo < R ≤ Ro,

(3.12)

where σ̂o is a constant to be determined by enforcing the continuity of the traction
vector across the boundary of the ambient space inclusion, i.e., continuity of σ rr

across the disk of radius ri in the deformed configuration. Following (3.5), the nonzero
physical components of the Cauchy stress tensor read

σ̂ rr =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σ̂o 0 ≤ R ≤ ri eωo ,
∫ Ro

R
f (ξ)dξ + R2

R2 + r2i
(
1 − e2ωo

)α(R) +
(

1 − R2 + r2i
(
1 − e2ωo

)

R2

)

β(R)

− R2
o

R2
o + r2i

(
1 − e2ωo

)α(Ro) −
(

1 − R2
o + r2i

(
1 − e2ωo

)

R2
o

)

β(Ro)

ri eωo < R ≤ Ro,

(3.13)

σ̂ θθ =
⎧
⎨

⎩

σ̂o 0 ≤ R ≤ ri eωo ,

σ̂ rr +
[
R2+r2i

(
1−e2ωo )
R2 − R2

R2+r2i (1−e2ωo )

]

(α(R) + β(R)) ri eωo < R ≤ Ro,
(3.14)
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where σ̂o is a constant given by:

σ̂o =
∫ Ro

rieωo
f (ξ)dξ + r2i e

2ωo

r2i e
2ωo + r2i

(
1 − e2ωo

)α(rie
ωo)

+
(

1 − r2i e
2ωo + r2i

(
1 − e2ωo

)

r2i e
2ωo

)

β(rie
ωo)

− R2
o

R2
o + r2i

(
1 − e2ωo

)α(Ro) −
(

1 − R2
o + r2i

(
1 − e2ωo

)

R2
o

)

β(Ro).

(3.15)

Therefore, for an arbitrary incompressible isotropic solid, the stress is hydrostatic
inside the ambient space inclusion and is equal to σ̂o .

Let us assume the particular case of a disk made of a homogeneous neo-Hookean
solid, i.e., α(R) = μ and β(R) = 0 . Therefore, the nonzero physical components of
the Cauchy stress (3.13) and (3.14) simplify to read:

σ̂ rr =
⎧
⎨

⎩

σ̂o 0 ≤ R ≤ rieωo ,

μ
2

[
R2

R2+r2i (1−e2ωo )
− R2

o
R2
o+r2i (1−e2ωo )

− log

(
R2+r2i

(
1−e2ωo )

R2
o+r2i (1−e2ωo )

R2
o

R2

)]

rieωo < R ≤ Ro,

(3.16)

σ̂ θθ =
⎧
⎨

⎩

σ̂o 0 ≤ R ≤ rieωo ,

σ̂ rr + μ
R2+r2i

(
1−e2ωo )
R2 − μ R2

R2+r2i (1−e2ωo )
rieωo < R ≤ Ro,

(3.17)

where

σ̂o = μ

2

[
r2i e

2ωo

r2i e
2ωo + r2i

(
1 − e2ωo

) − R2
o

R2
o + r2i

(
1 − e2ωo

)

− log

(
r2i e

2ωo + r2i
(
1 − e2ωo

)

R2
o + r2i

(
1 − e2ωo

)
R2
o

r2i e
2ωo

)]

. (3.18)

We plot in Fig. 3 the profile of stresses in a disk of initial radius Ro , due to an ambient
space inclusion of radius ri = 0.1Ro and ωo = 0.05 . Note that since e−ωo < 0.1 , we
have ri < Roeωo . Hence, the ambient space inclusion lies entirely inside the deformed
disk of radius r(Ro). We observe that the stress is indeed hydrostatic inside the metric
inclusion. We also observe a discontinuity of the circumferential stress while the
radial stress is continuous as expected following the continuity of the traction vector.
Finally, we observe that the stress is asymptotically vanishing as we move away from
the ambient space inclusion.

Example 3.2 (Spherical cap on a 2D sphere) Let us consider a two-dimensional
spherical cap of angular radius Θo lying on a sphere of initial radius Ro . We assume
that the spherical cap is made of an incompressible and isotropic material. We would
like to calculate the stresses that occur in the new equilibrium configuration after
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σ̂ μ

R Ro

σ̂rr

σ̂θθ

rie
ωo Ro

Fig. 3 Stresses in a disk of initial radius Ro , due to an ambient space inclusion of radius ri = 0.1Ro and
ωo = 0.05

Fig. 4 Deformation of a spherical cap due to a change in the radius of the ambient space

the radius of the ambient sphere is changed to ro , see Fig. 4. In spatial spherical
coordinates (θ, φ) , the spatial metric reads

g =
(
r2o 0

0 r2o sin
2 θ

)

.

Note that changing the radius of the sphere from Ro to ro is equivalent to a uniform

scaling of its spatial metric by e2ωo = r2o
R2
o
. Changing the spatial metric the equilib-

rium configuration changes. We look for solutions of the form ϕ(Θ,Φ) = (θ, φ) =
(θ(Θ),Φ). Thus, F = diag(θ ′(Θ), 1) . It follows that the Jacobian reads

J = θ ′(Θ)
r2o sin [θ(Θ)]

R2
o sinΘ

.
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Assuming that the spherical cap is made of an incompressible material, i.e., J = 1,
fixing rigid body translations by taking θ(0) = 0 , and since 0 ≤ θ < π , we find
that

θ(Θ) = cos−1
[
r2o
R2
o

(cosΘ − 1) + 1

]

. (3.19)

For this deformation, the Finger tensor reads

b =
⎛

⎝
R2
o sin

2(Θ)

r4o sin
2(θ)

0

0 1
R2
o sin

2(Θ)

⎞

⎠ ,

and hence I1 = R2
o sin

2 Θ

r2o sin
2 θ

+ r2o sin
2 θ

R2
o sin

2 Θ
and I2 = 1 . Therefore, we obtain from (3.1) the

nonzero stress components as

σθθ = − 1

r2o
p + R2

o sin
2 Θ

r4o sin
2 θ

α + 1

r2o

(

1 − r2o sin
2 θ

R2
o sin

2 Θ

)

β,

σφφ = − 1

r2o sin
2 θ

p + 1

R2
o sin

2 Θ
α + 1

r2o sin
2 θ

(

1 − R2
o sin

2 Θ

r2o sin
2 θ

)

β,

(3.20)

where p(Θ) is the unknown Lagrange multiplier and

α(Θ) = 2
∂W (I1, I2)

∂ I1
, β(Θ) = 2

∂W (I1, I2)

∂ I2
.

Using (3.19), the physical components of stress (3.20) are written as

σ̂ θθ = −p + r2o (cosΘ + 1)

2r2o + R2
o cosΘ − R2

o
α +

[

1 − 2r2o + R2
o cosΘ − R2

o

r2o (cosΘ + 1)

]

β,

σ̂ φφ = −p + 2r2o + R2
o cosΘ − R2

o

r2o (cosΘ + 1)
α +

[

1 − r2o (cosΘ + 1)

2r2o + R2
o cosΘ − R2

o

]

β.

(3.21)

In terms of the Cauchy stress tensor, the only non-trivial intrinsic equilibrium equation
is σθa |a = 0 , which reads

r2o sin
2 θ

R2
o sin

2 Θ
σθθ

,Θ + 1

tan θ
σ θθ − sin θ cos θσφφ = 0. (3.22)
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By using (3.19) and (3.20), the equilibrium equation (3.22) reduces to

p′ = − tan2
(

Θ

2

)

β ′ + r2oα′

R2
o

− tan
(

Θ
2

) (
r2o − 2R2

o

)
(α + β)

2r2o

+r2o sin(Θ)(r2o − R2
o)(β − α)

(
2r2o + R2

o cosΘ − R2
o

)2 + R2
o tan

2
(

Θ
2

)
β ′

r2o
+ 8 sin4

(
Θ
2

) (
R2
o − r2o

)
β

r2o sin
3 Θ

+4r2o
(
R2
o − r2o

)
α′ + R2

o sin(Θ)
(
R2
o − 2r2o

)
(α + β)

4r2o R2
o + 2R4

o cosΘ − 2R4
o

. (3.23)

Note that, unlike the previous example, the spherical cap does not necessarily remain
stress-free by auniformscalingof the spatialmetric. If, however,we take ro = Ro , then
(3.23) reduces to p′ = α′ , which yields no stress by assuming zero boundary traction
at Θ = Θo . Hence, we recover the case of a trivial embedding. Back to the general
case when ro �= Ro , the evolving ambient sphere can be isometrically embedded in
R
3 , i.e., Q = R

3, where the second fundamental form of the sphere reads

k =
(−ro 0

0 −ro sin2 θ

)

.

We only have one extrinsic equilibrium equation (2.21), which gives the normal com-
ponent of the body force required to balance the stress field in the spherical cap. It is
written as

Bn = 1

ρ
σ :k = − σ̂ θθ + σ̂ φφ

roρ
. (3.24)

In the following, we explore the particular case when the spherical cap is made of
a neo-Hookean solid, i.e., α(R) = μ and β(R) = 0 . For a neo-Hookean solid, (3.23)
reduces to

p′ = μ
tan

(
Θ
2

) (
2R2

o − r2o
)

2r2o
− μ

r2o sin(Θ)(r2o − R2
o)

(
2r2o + R2

o cos(Θ) − R2
o

)2

+μ
sin(Θ)

(
R2
o − 2r2o

)

4r2o + 2R2
o cos(Θ) − 2R2

o
. (3.25)

Therefore, assuming zero boundary traction at Θ = Θo , i.e., σθθ (Θo) = 0 , we find
that

p(Θ) = μ

[

g(Θ) − g(Θo) + r2o (cosΘo + 1)

2r2o + R2
o cosΘo − R2

o

]

, (3.26)
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where

g(Θ) = 2r2o − R2
o

2R2
o

log
(
2r2o + R2

o cosΘ − R2
o

)
+ 2R2

o − r2o
2r2o

log

[

cos2
(

Θ

2

)]

− r2o
(
r2o − R2

o

)

R2
o

(
2r2o + R2

o cosΘ − R2
o

) . (3.27)

Therefore, the stress field (3.21) and the extrinsic body force (3.24) are given by

σ̂ θθ (Θ) = μ

[
R2
o − 2r2o
2R2

o
log

(
2r2o + R2

o cosΘ − R2
o

2r2o + R2
o cosΘo − R2

o

)

+ r2o cosΘ

2r2o + R2
o cosΘ − R2

o

− r2o cosΘo

2r2o + R2
o cosΘo − R2

o
+ r2o − 2R2

o

2r2o
log

(
1 + cosΘo

1 + cosΘ

)

− r4o (cosΘ − cosΘo)
(
2r2o + R2

o cosΘ − R2
o

) (
2r2o + R2

o cosΘo − R2
o

)

]

,

σ̂ φφ(Θ) = μ

[
R2
o − 2r2o
2R2

o
log

(
2r2o + R2

o cosΘ − R2
o

2r2o + R2
o cosΘo − R2

o

)

+ 2r2o + R2
o cosΘ − R2

o

r2o (cosΘ + 1)

− r2o (cosΘo + 1)

2r2o + R2
o cosΘo − R2

o
+ r2o − 2R2

o

2r2o
log

(
1 + cosΘo

1 + cosΘ

)

− r2o (r2o − R2
o)(cosΘ − cosΘo)

(
2r2o + R2

o cosΘ − R2
o

) (
2r2o + R2

o cosΘo − R2
o

)

]

,

roρB
n(Θ) = μ

[
2r2o − R2

o

R2
o

log

(
2r2o + R2

o cosΘ − R2
o

2r2o + R2
o cosΘo − R2

o

)

+ r2o (cosΘo + 1)

2r2o + R2
o cosΘo − R2

o

−2r2o + R2
o cosΘ − R2

o

r2o (cosΘ + 1)
+ 2R2

o − r2o
r2o

log

(
1 + cosΘo

1 + cosΘ

)]

. (3.28)

We plot in Fig. 5 the profile of stresses and the extrinsic body force in a spherical cap
of angular radius Θo = π

4 initially lying on a sphere of radius Ro , due to a change in
the radius of the ambient sphere to ro = 1.5Ro .

In the limiting case ro → ∞ , which corresponds to flattening the spherical cap,
we obtain from (3.28) that the stress field is given by

σ̂ θθ (Θ) = −μ

[
1

2
log

(
1 + cosΘ

1 + cosΘo

)

+ 1

4
(cosΘ − cosΘo)

]

,

σ̂ φφ(Θ) = −μ

[
1

2
log

(
1 + cosΘ

1 + cosΘo

)

+ 3

4
(cosΘ − cosΘo)

− 2

cosΘ + 1
+ cosΘo + 1

2

]

.

(3.29)

Note that the extrinsic body force field Bn vanishes when ro → ∞ , since this case
corresponds to a flat geometry of the ambient space.
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σ̂ μ

Θ ( rad)

σ̂θθ

σ̂φφ

ρroB
n

π 8 π 4

Fig. 5 Stresses and the extrinsic body force in a spherical cap of initial angular radius Θo = π
4 initially

lying on a sphere of radius Ro , due to a change in the radius of the ambient sphere to ro = 1.5Ro

3.2 Elastic Deformations Due to Linear Perturbations of the Ambient Space
Metric

In this section, we linearize the governing equations of the nonlinear theory presented
in the previous sections about a referencemotion.Thiswill shed light on themechanical
effects of a slight deformation of ambient space on the equilibrium configuration of a
deformable body.

Geometric linearization of elasticity was first discussed by Marsden and Hughes
(1983) and was further developed by Yavari and Ozakin (2008), see also Mazzucato
and Rachele (2006). Given a reference motion, we obtain the linearized governing
equations with respect to this motion. Suppose a given solid is in a static equilibrium
configuration ϕ in an ambient space with metric g . Let gε be a one-parameter family
of spatial metrics, ϕε be the corresponding equilibrium configuration, and Pε be the
corresponding first Piola–Kirchhoff stress. Let ε = 0 describe the reference motion.
Now, for a fixed point X in the material manifold, ϕε(X) describes a curve in the
spatial manifold, and its derivative at ε = 0 gives the variation δϕ as a vector U(X)

at ϕ(X):

δϕ(X) = U(X) = dϕε(X)

dε

∣
∣
∣
ε=0

. (3.30)

The variation of the ambient space metric is defined as

δg = d

dε

∣
∣
∣
ε=0

gε . (3.31)

Now consider, in the absence of body forces, the equilibrium equation Div P = 0
for the family of spatial metrics parametrized by ε:

Divε Pε = 0. (3.32)
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Linearization of (3.32) is defined as (Marsden and Hughes 1983; Yavari and Ozakin
2008):

d

dε

∣
∣
∣
ε=0

(Divε Pε) = 0. (3.33)

Once again, one should note that since the equilibrium configuration is different for
each ε, Pε is based at different points in the ambient space for different values of ε ,
and in order to calculate the derivative with respect to ε , one in general needs to use
the connection (parallel transport) in the ambient space. In components, balance of
linear momentum reads

∂PaA(ε)

∂X A
+ Γ A

AB P
aB(ε) + PbB(ε)γ (ε)abcF(ε)c A = 0. (3.34)

Thus, the linearized balance of linear momentum is written as

∂

∂X A

d

dε

∣
∣
∣
ε=0

PaA(ε) + Γ A
AB

d

dε

∣
∣
∣
ε=0

PaB(ε) +
[
d

dε

∣
∣
∣
ε=0

PbB(ε)

]

γ a
bcF

c
A

+ PbB d

dε

∣
∣
∣
ε=0

[
γ (ε)abc

]
Fc

A + PbBγ a
bc

d

dε

∣
∣
∣
ε=0

[
F(ε)c A

] = 0. (3.35)

Let us consider a one-parameter family of metrics gab(ε) such that

gab(0) = gab,
d

dε

∣
∣
∣
ε=0

gab(ε) = δgab. (3.36)

δgab is called the metric variation. It can be shown that (Chow et al. 2006)

δgab = −gamgbnδgmn, (3.37)

δγ a
bc = 1

2
gad

(
δgcd|b + δgbd|c − δgbc|d

)
. (3.38)

Thus

δ (Div P)a = ∂

∂X A
δPaA + Γ A

ABδPaB + γ a
bcF

c
AδPbB + δγ a

bcF
c
AP

bB

+γ a
bcδF

c
AP

bB

= δPaA |A + 1

2
PbB Fc

Ag
ad (δgcd|b + δgbd|c − δgbc|d

)

+PbBγ a
bcU

c |A. (3.39)

If the initial equilibrium configuration is stress-free, we have δPaA |A = 0. Note that

PaA = gab
∂Ψ

∂Fb
A

, (3.40)
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whereΨ = Ψ (X,Θ, F, G, g) is thematerial free energy density andΘ is the absolute

temperature. In calculating dPaA(ε)

dε
, we need to consider the change in F due to the

change in the ambient space metric as follows:

dPaA(ε)

dε
= d

dε
gab(ε)

∂Ψ

∂Fb
A

+ gab
∂2Ψ

∂Fc
C∂Fb

A

dFc
C (ε)

dε
+ gab

∂2Ψ

∂gcd∂Fb
A

dgcd(ε)

dε
.

(3.41)

Let us define

Aa
c
C A = gab

∂2Ψ

∂Fc
C∂Fb

A
and Bacd A = gab

∂2Ψ

∂gcd∂Fb
A
, (3.42)

where the derivatives are evaluated at the reference configuration corresponding to
ε = 0 . Note thatA is the equivalent of the elasticity tensor in classical linear elasticity.
Therefore

δPaA |A=−gac PdAδgcd+Aa
c
C AUc|C + Bacd Aδgcd = Aa

c
C AUc |C+Bacd Aδgcd ,

(3.43)

as the initial configuration is assumed to be stress-free.With these results, the linearized
balance of linear momentum (3.33) is simplified to read
[
Aa

c
C AUc|C + Bacd Aδgcd

]

|A = 0 or Div (A · ∇U + B · δg) = 0. (3.44)

Given δg , the above equations are the governing equations for the displacement field
U that results from this change in spatial metric.

We know that for a body deforming quasi-statically in an ambient space with a
fixed background metric, linearized balance of linear momentum reads (Yavari and
Ozakin 2008)

[
Aa

c
C AUc |C

]

|A + ρ0(LB0)
a = 0, (3.45)

where LB is the linearized body force. It is seen that in the absence of (mechanical)
body forces and when the ambient space is deformed, one can think of Div(B · δg)

as an effective body force. In other words, deformation of the ambient space and the
equivalent body force will have the same mechanical effect on the deformable body.

Initially Euclidean Metric Let us assume that the initial metric is Euclidean and is
isotropically rescaled, i.e., consider a one-parameter family of spatial metrics of the
form (gε(x))ab = e2ωε(x)δab . Thus, δgab = 2δωδab . In this case, (3.44) is simplified
to read

[
Aa

c
C AUc

,C + 2Bacd Aδcdδω
]

,A
= 0. (3.46)

When A and B are constants (homogeneous medium), the above equation reads

Aa
c
C AUc

,CA + 2Bacd Aδcd F
b
Aδω,b = 0. (3.47)
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Now if δω is independent of x , one finds that U = c (a constant vector) is a solution,
i.e., the body will stay stress-free in the new (Euclidean) ambient space.
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Appendix 1: Geometry of Riemannian Submanifolds

In the following, we tersely review a few elements of the geometry of embedded sub-
manifolds. Here we mainly follow do Carmo (1992), Capovilla and Guven (1995),
Spivak (1999), and Kuchař (1976). Let us consider a Riemannian manifold S embed-
ded in another Riemannian manifoldQ and assume that dim S < dimQ . We consider
a time-dependent embedding ψt : S → Q . The metric h on Q induces a metric
gt = ψ∗

t h on S (the first fundamental form). At any given point p of S , the tangent

space TpSt has an orthogonal complement
(
TpSt

)⊥ ⊂ TQ such that

TpQ = TpSt ⊕ (
TpSt

)⊥
. (4.1)

Note that such a decomposition is smooth in the sense that any smooth vector field u on
St can be smoothly decomposed into a vector field u‖ tangent to St and a vector field
u⊥ normal to St , so that p → (u‖)p = (up)‖ and p → (u⊥)p = (up)⊥ are smooth.
We write u = u‖ + u⊥ . The orientation of ηti , for i ∈ {1, . . . , k} , is chosen such that
the orientations of St and Q are consistent in the sense that the orientation induced
from St along with the ordered sequence {ηti }i∈{1,...,k} is equivalent to the orientation
of Q . Let dim S = n and dimQ = n + k = m . Following the smoothness of the
decomposition (4.1), one can take a set of smooth vector fields {ηti }i=1,...,k normal to
St such that they form an orthonormal basis forX⊥(St ) , the set of vector fields normal
to St . Let {χα}α=1,...,n+k be a local coordinate chart for Q such that at any point of
St , {χ1, . . . , χn} is a local coordinate chart for St , and such that the i th unit normal
vector field ηti for i ∈ {1, . . . , k} is tangent to the coordinate curve χn+i . Hence, every

vector field u onQ along St can be written as u = u‖ +∑k
i=1 u

i⊥ηti .
19 Note that, for

i, j ∈ {1, . . . , k} , one has
〈〈
ηti , η

t
j

〉〉

h
= δi j and

〈〈
ηti , u‖

〉〉
h = 0 , where the Kronecker

delta symbol δi j is defined as: δi j = 1 if i = j and δi j = 0 if i �= j . Note that at any
point of St , one has hα(n+i) = δα(n+i) , for i ∈ {1, . . . , k} and α ∈ {1, . . . , n + k} .
We denote the connection coefficients for the Levi–Civita connections ∇h and ∇ gt

corresponding to the metrics h and gt by γ̃ α
βγ and γ a

bc , respectively. We denote by Dh
t

and D
gt
t the covariant derivatives along ϕ̃X and ϕX , respectively. For a vector field

u on Q along St , we write Dh
t u = ∂uα

∂t ∂̃ tα + ∂ui⊥
∂t ηti + ∇h

ϒu and for a vector field

w on S, D
gt
t w = ∂wa

∂t ∂ ta + ∇ gt
V w , where {∂̃ tα}α=1,...,n and {∂ ta}a=1,...,n denote local

coordinate bases for St and S , respectively.

19 In the local coordinate {χα}α=1,...,n+k , we denote u
i⊥ = un+i for i ∈ {1, . . . , k} .
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Note that for vector fields X and Y defined on St andQ , respectively, such that Y
is everywhere tangent to St ,∇ gt

ψ∗
t X

ψ∗
t Y = ψ∗

t (∇h
XY)‖.20 As a corollary, given a curve

c in St and X a vector field along c tangent to St everywhere, D
gt
c ψ∗

t X = (Dh
c X)‖ .

For i ∈ {1, . . . , k} , the i th second fundamental form of St along ηti is a
(0
2

)
-tensor κ t

i
on St defined as (do Carmo 1992; Capovilla and Guven 1995)

κ t
i (u,w) =

〈〈
∇h
uηti ,w

〉〉

h
, ∀ u,w ∈ TχSt . (4.2)

It is known that κ t
i is a symmetric tensor and can equivalently be written as

κ t
i = (∇hηti )

	
‖, i = 1, . . . , k.

On S , we define, for i ∈ {1, . . . , k} , the i th second fundamental form as kti = ψ∗
t κ t

i .

For vector fields u,w ∈ TxS, one canwrite∇h
ψ∗uψ∗w = ψ∗∇ gt

u w+∑k
i=1 h

i (u,w)ηti ,

where hi (., .) is a bilinear form. Therefore

hi (u,w) =
〈〈
∇h

ψ∗uψ∗w, ηti

〉〉

h
, i = 1, . . . , k.

Knowing that
〈〈
ψ∗w, ηti

〉〉
h = 0, one concludes that

〈〈
∇h

ψ∗uψ∗w, ηti

〉〉

h
= −

〈〈
∇h

ψ∗uη
t
i , ψ∗w,

〉〉

h
, i = 1, . . . , k.

Hence

hi (u,w) = −
〈〈
∇h

ψ∗uη
t
i , ψ∗w,

〉〉

h
= −(∇hηti )

	(ψ∗u, ψ∗w) = −kti (u,w),

i = 1, . . . , k.

Therefore, we obtain Gauss’s equation

∇h
ψ∗uψ∗w = ψ∗∇ gt

u w −
k∑

i=1

kti (u,w)ηti .

On the other hand, for i, j ∈ {1, . . . , k} , the projection of ∇hηti along ηtj defines ωt
i j ,

the normal fundamental 1-form of St relative to the unit normals ηti and ηtj . For any
vector w tangent to St , the 1-form ωt

i j is defined by (Capovilla and Guven 1995)

ωt
i j · w =

〈〈
∇h

wηti , η
t
j

〉〉

h
.

20 The proof given in Spivak (1999) still holds even when the embedding is time dependent. Note that ∇ gt

and ∇h are the Levi–Civita connections corresponding to gt and h, respectively.
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Note that, for i, j ∈ {1, . . . , k}, the normal fundamental 1-form ωt
i j is such that

ωt
i j = −ωt

j i . OnS , one defines the normal fundamental 1-forms, for i, j ∈ {1, . . . , k} ,
as oti j = ψ∗

t ωt
i j . Note that, for a tangent vector field w on St , one can write the

following21

∇h
wηti = h� · κ t

i · w +
k∑

j=1

(
ωt
i j · w

)
ηtj . (4.3)

One needs to be careful in calculating time derivatives in
(S, gt

)
, since the induced

metric gt itself depends on time. In particular, when calculating the derivative of the
inner product 〈〈u,w〉〉gt of two vector fields u and w along a time-parametrized curve
c , the usual formula

d

dt
〈〈u,w〉〉gt = 〈〈

D
gt
t u,w

〉〉
gt

+ 〈〈
u, D

gt
t w

〉〉
gt

, (4.4)

is no longer valid when the metric gt is t dependent. One instead has22

d

dt
〈〈u,w〉〉gt = 〈〈

D
gt
t u,w

〉〉
gt

+ 〈〈
u, D

gt
t w

〉〉
gt

+ 〈〈u,w〉〉 ∂ gt
∂t

, (4.5)

where

〈〈u,w〉〉 ∂ gt
∂t

= uavb
∂gt ab

∂t
.

This can be written in terms of the inner product with respect to gt as

〈〈u,w〉〉 ∂ gt
∂t

=
〈〈

u, g�
t · ∂ g

∂t
· w

〉〉

gt

,

where g�
t denotes the “inverse metric,” with components gabt . Therefore23

d

dt
〈〈u,w〉〉gt = 〈〈

D
gt
t u,w

〉〉
gt

+ 〈〈
u, D

gt
t w

〉〉
gt

+
〈〈

u, g�
t · ∂ gt

∂t
· w

〉〉

gt

. (4.7)

21 Recall that in the chosen coordinate chart {χα}α=1,...,n+k , one has hα(n+i) =
〈〈
∂̃ tα, ηti

〉〉

h
= δα(n+i) .

22 Note that D
gt
t gt = ∂ gt

∂t .
23 It is also possible to define an alternative covariant time derivative, D̃

gt
t , so that an identity analogous

to (4.4) holds. If we let

(D̃
gt
t u)a = dua

dt
+ γ a

cdu
d dx

c

dt
+ 1

2
gab

∂gbc
∂t

uc , (4.6)

one readily verifies that
d

dt
〈〈u, w〉〉gt =

〈〈
D̃
gt
t u, w

〉〉

gt
+
〈〈
u, D̃

gt
t w

〉〉

gt
.

See Thiffeault (2001) for a discussion on this alternative covariant time derivative.
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Using the Levi–Civita connection for the metric gt to calculate covariant deriv-
atives, the symmetry lemma of classical Riemann geometry (Lee 1997; Nishikawa
2002) still holds.24

Lemma 3.1 For a Riemannian manifold with a time-dependent metric gt ,

D
gt
ε

∂c(t, ε)

∂t
= D

gt
t

∂c(t, ε)

∂ε
.

The velocity of the time-dependent embedding ψt is defined as

ζ = ∂ψ(t, x)

∂t
= ζ ‖ +

k∑

i=1

ζ i⊥ηti ,

where ζ ‖ is the tangential velocity of the embedding. We also define Z := ψ∗
t ζ ‖ ◦ϕt .

Lemma 3.2 For an arbitrary embedding ψt , the following relation holds

∂ gt
∂t

= LZ gt + 2
k∑

i=1

ζ i⊥kti , (4.8)

where L denotes the autonomous Lie derivative.25 For a transversal embedding, i.e.,
when Z = 0 , (4.8) reduces to

∂ gt
∂t

= 2
k∑

i=1

ζ i⊥kti . (4.9)

Proof First, we note that

Lζ h =
[
d

dt

(
ψt ◦ ψ−1

s

)∗
h
]

s=t
=
[
d

dt
ψs∗ψ∗

t h
]

s=t
=
[
d

dt
ψs∗gt

]

s=t

= ψt∗
[
D

gt
t gt

]
s=t = ψt∗

∂ gt
∂t

. (4.10)

On the other hand, we also have

Lζ h = Lζ h = Lζ ‖h +
k∑

i=1

ζ i⊥Lηti
h.

24 Note that if we were to use the alternative covariant derivative (4.6), this formula would need to be
modified.
25 The autonomous Lie derivative LZ gt is defined by holding the explicit time dependence of gt fixed,

i.e., LZ gt = d
ds

∣
∣
∣
t=s

[(
ψt ◦ ψ−1

s

)∗
gs
]
.

123

Author's personal copy



1688 J Nonlinear Sci (2016) 26:1651–1692

However, for i ∈ {1, . . . , k} one has
(
Lηti

h
)

αβ
= (ηti )α|β + (ηti )β|α = 2κ(i)αβ . (4.11)

We observe that Lζ ‖h = Lψt∗Zψt∗gt , and following (Marsden and Hughes 1983,
p. 98), we have Lψt∗Zψt∗gt = ψt∗LZ gt . Thus

Lζ h = ψt∗

(

LZ gt + 2
k∑

i=1

ζ i⊥kti

)

. (4.12)

Finally, it follows from (4.10) and (4.12) that

∂ gt
∂t

= LZ gt + 2
k∑

i=1

ζ i⊥kti .

��

Appendix 2: An Alternative Derivation of the Tangent Balance of Linear
Momentum

In this section, we provide an alternate proof for the tangential balance of linear
momentum in the particular case of a transversal evolution of the ambient space. This
derivation is a generalized version, for arbitrary co-dimension k = dimQ−dim St , of
a theorem appearing in Marsden and Hughes (1983), p. 129. The generalized version
can be stated as follows (see § 2.1 and Fig. 2 to recall the notation):

Theorem 3.1 Assume that given scalar functions a and b, and a vector field c satisfy
the following master balance law for any open set U with C1 piecewise boundary:

d

dt

∫

ϕt (U)

adv =
∫

ϕt (U)

bdv +
∫

∂ϕt (U)

〈〈c,n〉〉gt da, (5.1)

where n is the unit normal vector to ∂ϕt (U) in S . Localization of (5.1) gives one

da

dt
+ a divgt v + a

k∑

i=1

ζ i⊥tr
(
kti
) = b + divgt c, (5.2)

where we recall that v is the velocity field of ϕt andζ = ∑k
i=1 ζ i⊥ηti is the velocity

field of ψt (we have ζ ‖ = 0 since we are assuming transversal evolution).26

26 Note that what Marsden and Hughes (1983) denote by v is the equivalent of ϒ in our notation, so that
their v‖ corresponds to v (recall that z = ψ∗

t ζ ‖ = 0 ) and their vn would be ζ⊥ in the particular case when
St is a hypersurface in Q .
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Proof Note that

d

dt

∫

ϕt (U)

adv = d

dt

∫

U
aJdV =

∫

U
d

dt
(aJ )dV =

∫

U

(
da

dt
J + a

dJ

dt

)

dV .

However

dJ

dt
= (

divgt v
)
J + 1

2
J tr

(
∂ gt
∂t

)

,

and following (4.8), one has

∂ gt
∂t

= 2
k∑

i=1

ζ i⊥kti .

Therefore

d

dt

∫

ϕt (U)

adv =
∫

U

(
da

dt
+ a divgt v + a

k∑

i=1

ζ i⊥tr
(
kti
)
)

JdV

=
∫

ϕt (U)

(
da

dt
+ a divgt v + a

k∑

i=1

ζ i⊥tr
(
kti
)
)

dv.

(5.3)

On the other hand, by using Stokes’ theorem, one can write

∫

∂ϕt (U)

〈〈c,n〉〉gt da =
∫

ϕt (U)

divgt c dv. (5.4)

Therefore, by using (5.3) and (5.4), (5.1) transforms to

∫

ϕt (U)

(
da

dt
+ a divgt v + a

k∑

i=1

ζ i⊥tr
(
kti
)
)

dv =
∫

ϕt (U)

(
b + divgt c

)
dv.

Thus, by arbitrariness of the subset U , one finds that

da

dt
+ a divgt v + a

k∑

i=1

ζ i⊥tr
(
kti
) = b + divgt c. (5.5)

��
First, the localized conservation of mass is derived. In integral form, conservation

of mass reads

d

dt

∫

ϕt (U)

ρdv = 0.

123

Author's personal copy



1690 J Nonlinear Sci (2016) 26:1651–1692

Hence, using the above theorem (a = ρ, b = 0 , and c = 0), the conservation of mass
in localized form reads27

dρ

dt
+ ρ divgt v + ρ

k∑

i=1

ζ i⊥tr
(
kti
) = 0. (5.6)

Next, we look at the balance of linear momentum, which in integral form reads

d

dt

∫

ϕt (U)

ρvdv =
∫

ϕt (U)

ρBdv +
∫

∂ϕt (U)

σ · nda, (5.7)

where B is the body force per unit mass, σ is the Cauchy stress tensor, and n is the
unit normal vector to ∂ϕt (U) .

Remark 3.3 Note that (5.7) makes sense only when the ambient space St is endowed
with a linear structure. In a general manifold, integrating a vector field does not make
sense. Therefore, the proof given in this appendix is only valid for linear ambient
spaces. However, the resulting localized tangential balance of linear momentum (5.8)
still holds in the case of a general manifold as shown in § 2.1 using a Lagrangian field
theory, see Eq. (2.17).

In order to use the above theorem, we contract the balance of linear momentum
(5.7) with an arbitrary time-independent covariantly constant vector field u tangent to
ϕt (U) , i.e.

d

dt

∫

ϕt (U)

〈〈ρv, u〉〉h dv =
∫

ϕt (U)

〈〈ρB, u〉〉h dv +
∫

∂ϕt (U)

〈〈σ · n, u〉〉h da.

We can then use the above theorem for a = 〈〈ρv, u〉〉h , b = 〈〈ρB, u〉〉h , and c = σ ·u .
Hence, it follows that

d

dt
〈〈ρv, u〉〉h + 〈〈ρv, u〉〉h divgt v + 〈〈ρv, u〉〉h vn trk = 〈〈ρB, u〉〉h + divgt (σ · u) .

Note that

d

dt
〈〈ρv, u〉〉h = dρ

dt
〈〈v, u〉〉h + ρ

〈〈
Dh
t v, u

〉〉

h
,

where Dh
t denotes the covariant time derivativewith respect to themetric h . Therefore,

it follows that

(
dρ

dt
+ ρdivgt v + ρvn trk

)

〈〈v, u〉〉h + ρ
〈〈
Dh
t v, u

〉〉

h
= 〈〈ρB, u〉〉h + divgt (σ · u) .

27 Note that (5.6) is equivalent (2.22) since by Lemma 3.2, we have ∂ gt
∂t = 2

∑k
i=1 ζ i⊥kti .
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The first term vanishes following the conservation of mass (5.6). Thus, by arbitrariness
of u one concludes that

ρ
(
Dh
t v
)

‖ = ρB + divgtσ . (5.8)

Note that
(
Dh
t v
)
‖ is different from Dg

t v . In fact,we canwrite followingProposition 2.1
that

(
Dh
t v
)

‖ = D
gt
t v + 2

k∑

i=1

ζ i⊥g�
t · kti · v −

k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j

= D
gt
t v + g�

t · ∂ gt
∂t

· v −
k∑

i=1

ζ i⊥
(
dζ i⊥

)� −
k∑

i, j=1

ζ i⊥ζ
j

⊥o
t�
i j .

(5.9)
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