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Abstract

We study some differential complexes in continuum mechanics that involve both
symmetric and non-symmetric second-order tensors. In particular, we show that
the tensorial analogue of the standard grad-curl-div complex can simultaneously
describe the kinematics and the kinetics of motion of a continuum. The relation
between this complex and the de Rham complex allows one to readily derive the
necessary and sufficient conditions for the compatibility of displacement gradient
and the existence of stress functions on non-contractible bodies. We also derive the
local compatibility equations in terms of the Green deformation tensor for motions
of 2D and 3D bodies, and shells in curved ambient spaces with constant curvatures.
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194 Arzhang Angoshtari & Arash Yavari

1. Introduction

Differential complexes can provide valuable information for solving PDEs.
The celebrated de Rham complex is a classic example. Let B be a 3-manifold and
let Ωk(B) be the space of smooth k-forms on B, that is α ∈ Ωk(B) is an anti-
symmetric (0

k)-tensor with smooth components αi1···ik .1 The exterior derivatives
dk : Ωk(B) → Ωk+1(B) are linear differential operators satisfying dk+1 ◦ dk = 0,
where ◦ denotes the composition of mappings.2 Using algebraic language, one can
simply write the complex

0 �� Ω0(B)
d �� Ω1(B)

d �� Ω2(B)
d �� Ω3(B) �� 0,

to indicate that d is linear and the composition of any two successive operators
vanishes. Note that the first operator on the left sends 0 to the zero function and the
last operator on the right sends Ω3(B) to zero. The above complex is called the de
Rham complex on B and is denoted by (Ω(B), d).

The complex property d ◦ d = 0, implies that im dk (the image of dk) is a
subset of ker dk+1 (the kernel of dk+1). The complex (Ω(B), d) is exact if im dk =
ker dk+1. Given β ∈ Ωk(B), consider the PDE dα = β. Clearly, β ∈ im d is the
necessary and sufficient condition for the existence of a solution. If (Ω(B), d) is
exact, then dβ = 0 guarantees that β ∈ im d. In general, the de Rham cohomology
groups Hk

d R(B) = ker dk/im dk−1 quantify the deviation of (Ω(B), d) from being
exact, that is, this complex is exact if and only if all Hk

d R(B) are the trivial group
{0}.

If Hk
d R(B) is finite dimensional, then the celebrated de Rham theorem tells us

that dim Hk
d R(B) = bk(B), where the k-th Betti number bk(B) is a purely topo-

logical property of B. For example, if B is contractible, that is, it does not have
any holes in any dimension, then bk(B) = 0, k � 1, or if B is simply-connected,
then b1(B) = 0. On contractible bodies, dβ = 0 is the necessary and sufficient
condition for the solvability of dα = β. If B is non-contractible, then the de Rham
theorem [23, Theorem 18.14] tells us that β ∈ im d if and only if

dβ = 0, and
∫

ck

β = 0, (1.1)

where for the purposes of this work, ck can be considered as an arbitrary closed
(that is compact without boundary) k-dimensional C0-manifold inside B.3 For
more details on the de Rham complex, we refer the readers to the standard texts in
differential geometry such as [6,23].

To summarize, we observe that the de Rham complex together with the de Rham
theorem provide the required conditions for the solvability of dα = β. Suppose

1 Throughout this paper, smooth means C∞.
2 When there is no danger of confusion, the subscript k in dk is dropped.
3 In fact, ck is a singular k-chain in B that can be identified with (a formal sum of) closed

k-manifolds for integration, see standard texts such as [7,23] for the precise definition of ck .
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Differential Complexes in Continuum Mechanics 195

that B is the interior of a manifold with boundary B̄. One can restrict (Ω(B), d) to(
Ω(B̄), d

)
, where Ωk(B̄) is the space of those smooth forms in Ωk(B) that can be

continuously extended to the boundary ∂B̄ of B̄. If B̄ is compact, then
(
Ω(B̄), d

)
induces various Hodge-type decompositions on Ωk(B̄). Such decompositions allow
one to study the above PDE subject to certain boundary conditions, for example
see [16,26]. On the other hand, it has been observed that differential complexes
can be useful for obtaining stable numerical schemes. By properly discretizing
the de Rham complex, one can develop stable mixed formulations for the Hodge–
Laplacian [3,4].

Generalizing the above results for an arbitrary differential complex can be a
difficult task, in general. This can be significantly simplified if one can establish
a connection between a given complex and the de Rham complex. The grad-curl-
div complex of vector analysis is a standard example. Let C∞(B) and X(B) be
the spaces of smooth real-valued functions and smooth vector fields on B. From
elementary calculus, we know that for an open subset B ⊂ R

3, one can define
the gradient operator grad : C∞(B) → X(B), the curl operator curl : X(B) →
X(B), and the divergence operator div : X(B) → C∞(B). It is easy to show that
curl◦grad = 0, and div◦curl = 0. These relations allow one to write the following
complex

0 �� C∞(B)
grad

�� X(B)
curl �� X(B)

div �� C∞(B) �� 0, (1.2)

that is called the grad-curl-div complex or simply the gcd complex. It turns out that
the gcd complex is equivalent to the de Rham complex in the following sense. Let
{X I } be the Cartesian coordinates of R

3. We can define the following isomorphisms

ı0 : C∞(B) → Ω0(B), ı0( f ) = f,

ı1 : X(B) → Ω1(B), (ı1(Y))I = Y I ,

ı2 : X(B) → Ω2(B), (ı2(Y))I J = εI J K Y K ,

ı3 : C∞(B) → Ω3(B), (ı3( f ))123 = f,

(1.3)

where εI J K is the standard permutation symbol. Simple calculations show that

ı1 ◦ grad = d ◦ ı0, ı2 ◦ curl = d ◦ ı1, ı3 ◦ div = d ◦ ı2.

These relations can be succinctly depicted by the following diagram.

0 �� C∞(B)
grad

��

ı0

��

X(B)
curl ��

ı1

��

X(B)
div ��

ı2

��

C∞(B) ��

ı3

��

0

0 �� Ω0(B)
d �� Ω1(B)

d �� Ω2(B)
d �� Ω3(B) �� 0

(1.4)

Diagram (1.4) suggests that any result holding for the de Rham complex should have
a counterpart for the gcd complex as well.4 For example, diagram (1.4) implies that

4 More precisely, the isomorphisms ı0, . . . , ı3 induce a complex isomorphism.
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196 Arzhang Angoshtari & Arash Yavari

ı0, . . . , ı3 also induce isomorphisms between the cohomology groups. This means
that Y = grad f , if and only if ı1(Y) = d(ı0( f )), and similarly Y = curl Z, if and
only if ı2(Y) = d(ı1(Z)). By using the de Rham theorem and (1.1), one can show
that Y is the gradient of a function if and only if

curl Y = 0, and
∫

�

ı1(Y) =
∫

�

G(Y , t�)d S = 0, ∀� ⊂ B, (1.5)

where � is an arbitrary closed curve in B, t� is the unit tangent vector field along
�, and G(Y , t�) is the standard inner product of Y and t� in R

3. Similarly, one
concludes that Y is the curl of a vector field if and only if

div Y = 0, and
∫
C

ı2(Y) =
∫
C

G(Y , NC) dA = 0, ∀C ⊂ B, (1.6)

where C is any closed surface in B and NC is the unit outward normal vector field
of C. If B̄ is compact and if we restrict C∞(B) and X(B) to smooth functions and
vector fields over B̄, then by equipping the spaces in diagram (1.4) with appro-
priate L2-inner products, ı0, . . . , ı3 become isometries. Therefore, any orthogonal
decomposition for Ωk(B̄), k = 1, 2, induces an equivalent decomposition for X(B̄)

as well, for example see [26, Corollary 3.5.2]. Moreover, one can study solutions
of the vector Laplacian Δ = grad ◦ div − curl ◦ curl, and develop stable numerical
schemes for it by using the corresponding results for the Hodge–Laplacian [3,4]. In
summary, the diagram (1.4) allows one to extend all the standard results developed
for the de Rham complex to the gcd complex.

The notion of a complex has been extensively used in linear elasticity. Motivated
by the mechanics of distributed defects, and in particular incompatibility of plastic
strains, Kröner [22] introduced the linear elasticity complex, also called the Kröner
complex, which is equivalent to a complex in differential geometry due to Calabi
[8]. Eastwood [12] presented a construction of the linear elasticity complex from
the de Rham complex. Arnold et al. [3] used the linear elasticity complex and
obtained the first stable mixed formulation for linear elasticity. This complex can
be used for deriving Hodge-type decompositions for linear elasticity as well [15].
To our best knowledge, there has not been any discussion on analogous differential
complexes for general (nonlinear) continua, and in particular, nonlinear elasticity.

Contributions of this paper. Introducing differential complexes for general con-
tinua is the main goal of this paper. We can summarize the main contributions as
follows.

• We show that a tensorial analogue of the gcd complex called the GCD complex,
can describe both the kinematics and the kinetics of motions of continua. More
specifically, the GCD complex involves the displacement gradient and the first
Piola–Kirchhoff stress tensor. We show that a diagram similar to (1.4) commutes
for the GCD complex as well, and therefore, the nonlinear compatibility equa-
tions in terms of the displacement gradient and the existence of stress functions for
the first Piola–Kirchhoff stress tensor directly follow from (1.1). Another tensor-
ial version of the gcd complex is the gcd complex that involves non-symmetric
second-order tensors. This complex allows one to introduce stress functions for
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Differential Complexes in Continuum Mechanics 197

non-symmetric Cauchy stress and the second Piola–Kirchhoff stress tensors. By
using the Cauchy and the second Piola–Kirchhoff stresses, one obtains complexes
that only describe the kinetics of motion.

• It has been mentioned in several references in the literature that the linear elastic-
ity complex is equivalent to the Calabi complex, for example see [12]. Although
this equivalence is trivial for the kinematics part of the linear elasticity complex,
in our opinion, it is not trivial at all for the kinetics part. Therefore, we include
a discussion on the equivalence of these complexes by using a diagram similar
to (1.4). Another reason for studying the above equivalence is that it helps one
understand the relation between the linear elasticity complex and the GCD com-
plex. In particular, the linear elasticity complex is not the linearization of the
GCD complex. The Calabi complex also provides a coordinate-free expression
for the linear compatibility equations. Using the above complexes one observes
that on a 3-manifold, the linear and nonlinear compatibility problems, and the
existence of stress functions are related to H1

d R(B) and H2
d R(B), respectively.

• Using the ideas underlying the Calabi complex, we derive the nonlinear compat-
ibility equations in terms of the Green deformation tensor for motions of bodies
(with the same dimensions as ambient spaces) and shells in curved ambient
spaces with constant curvatures.

Notation. In this paper, we use the pair of smooth Riemannian manifolds (B, G)

with local coordinates {X I } and (S, g) with local coordinates {xi } to denote a
general continuum and its ambient space, respectively. If B ⊂ R

n , then B̄ denotes
the closure of B in R

n . Unless stated otherwise, we assume the summation con-
vention on repeated indices. The space of smooth real-valued functions on B is
denoted by C∞(B). We use Γ (V) to indicate smooth sections of a vector bundle
V . Thus, Γ (⊗2T B) and Γ (⊗2T ∗B) are the spaces of (2

0)- and (0
2)-tensors on B.

The space of symmetric (0
2)-tensors is denoted by Γ (S2T ∗B). It is customary to

write X(B) := Γ (T B), and Ωk(B) := Γ (Λk T ∗B), that is Ωk(B) is the space
of anti-symmetric (0

k)-tensors or simply k-forms. Tensors are indicated by bold
letters, for example T ∈ Γ (⊗2T B) and its components are denoted by T I J or
(T )I J . The space of k-forms with values in R

n is denoted by Ωk(B; R
n), that is

if α ∈ Ωk(B; R
n), and X1, . . . , Xk ∈ TXB, then α(X1, . . . , Xk) ∈ R

n , and α is
anti-symmetric. Let ϕ : B → S be a smooth mapping. The space of two-point
tensors over ϕ with components Fi I is denoted by Γ (T ϕ(B) ⊗ T B).

2. Differential Complexes for Second-order Tensors

In this section, we study some differential complexes for 2D and 3D flat mani-
folds that contain second-order tensors. These complexes fall into two categories:
Those induced by the de Rham complex and those induced by the Calabi complex.
Complexes induced by the de Rham complex include arbitrary second-order ten-
sors and can be considered as tensorial versions of the gcd complex. Complexes
induced by the Calabi complex involve only symmetric second-order tensors. In
Section 3, we study the applications of these complexes to some classical problems
in continuum mechanics.
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198 Arzhang Angoshtari & Arash Yavari

2.1. Complexes Induced by the de Rham Complex

Complexes for second-order tensors that are induced by the de Rham complex
only contain first-order differential operators. We begin our discussion by consid-
ering 3-manifolds and will later study 2-manifolds separately.

2.1.1. Complexes for Flat 3-manifolds Let B ⊂ R
3 be an open subset and

suppose {X I } is the Cartesian coordinates on B. We equip B with metric G, which
is the Euclidean metric of R

3. The gradient of vector fields and the curl and the
divergence of (2

0)-tensors are defined as

grad : X(B) → Γ (⊗2T B), (grad Y)I J = Y I
,J ,

curl : Γ (⊗2T B) → Γ (⊗2T B), (curl T )I J = εI K L T J L
,K ,

div : Γ (⊗2T B) → X(B), (div T )I = T I J
,J ,

where “,J ” indicates ∂/∂ X J . We also define the operator

curlT : Γ (⊗2T B) → Γ (⊗2T B), (curlTT )I J = (curl T )J I .

It is straightforward to show that curlT ◦ grad = 0, and div ◦ curlT = 0. Thus, we
obtain the following complex

0 �� X(B)
grad

�� Γ (⊗2T B)
curlT�� Γ (⊗2T B)

div �� X(B) �� 0, (2.1)

that, due to its resemblance with the gcd complex, is called the gcd complex.
Similar to the gcd complex, useful properties of the gcd complex also follow from
the de Rham complex. This can be described via the R

3-valued de Rham complex
as follows. Let d : Ωk(B) → Ωk+1(B) be the standard exterior derivative given
by

(dβ)I0···Ik =
k∑

i=0

(−1)iβI0··· Îi ···Ik ,Ii
,

where the hat over an index implies the elimination of that index. Any α ∈
Ωk(B; R

3) can be considered as α = (α1,α2,α3), with αi ∈ Ωk(B), i = 1, 2, 3.
One can define the exterior derivative d : Ωk(B; R

3) → Ωk+1(B; R
3) by

dα = (dα1, dα2, dα3). Since d ◦ d = 0, we also conclude that d ◦ d = 0, which
leads to the R

3-valued de Rham complex
(
Ω(B; R

3), d
)
. Given α ∈ Ωk(B; R

3), let
[α]i

I1···Ik denote the components of αi ∈ Ωk(B). By using the global orthonormal
coordinate system {X I }, one can define the following isomorphisms

ı0 : X(B) → Ω0(B; R
3), [ı0(Y)]i = δi I Y I ,

ı1 : Γ (⊗2T B) → Ω1(B; R
3), [ı1(T )]i

J = δi I T I J ,

ı2 : Γ (⊗2T B) → Ω2(B; R
3), [ı2(T )]i

J K = δi I εJ K L T I L ,

ı3 : X(B) → Ω3(B; R
3), [ı3(Y)]i

123 = δi I Y I ,
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where δi I is the Kronecker delta. Let TT be the transpose of T , that is
(

TT
)I J =

T J I , and let {EI } be the standard basis of R
3. For T ∈ Γ (⊗2T B), we define

−→
TN

to be the traction of TT in the direction of unit vector N = N I EI ∈ S2, where
S2 ⊂ R

3 is the unit 2-sphere. Thus,
−→
TN = N I T I J EJ . By using (1.3), we can write

ık(T ) =
(

ık

(−→
TE1

)
, ık

(−→
TE2

)
, ık

(−→
TE3

))
, k = 1, 2. (2.2)

It is easy to show that

ı1 ◦ grad = d ◦ ı0, ı2 ◦ curlT = d ◦ ı1, ı3 ◦ div = d ◦ ı2.

Therefore, the following diagram, which is the tensorial analogue of the diagram
(1.4) commutes for the gcd complex.

0 �� X(B)
grad

��

ı0

��

Γ (⊗2T B)
curlT��

ı1

��

Γ (⊗2T B)
div ��

ı2

��

X(B) ��

ı3

��

0

0 �� Ω0(B; R
3)

d �� Ω1(B; R
3)

d �� Ω2(B; R
3)

d �� Ω3(B; R
3) �� 0

(2.3)

Remark 1. Diagram (1.4) is valid for any 3-manifold, see [26, Section 3.5] for the
definitions of grad, curl, and div on arbitrary 3-manifolds. However, we require a
global orthonormal coordinate system for defining curl and the isomorphisms ık .
Thus, the gcd complex and the diagram (2.3) are valid merely on flat 3-manifolds.

The contraction 〈T , Y 〉 of T ∈ Γ (⊗2T B) and Y ∈ X(B) is a vector field that
in the orthonormal coordinate system {X I } reads 〈T , Y 〉 = T I J Y J EI . Clearly,
if NC is the unit outward normal vector field of a closed surface C ⊂ B, then
〈T , NC〉 is the traction of T on C. Suppose Hk

gcd(B) is the k-th cohomology group
of the gcd complex. Diagram (2.3) implies that ık also induces the isomorphism
Hk

gcd(B) ≈ ⊕3
i=1Hk

d R(B) between the cohomology groups. Using this fact and
(1.5), we can prove the following theorem.

Theorem 2. An arbitrary tensor T ∈ Γ (⊗2T B) is the gradient of a vector field if
and only if

curlTT = 0, and
∫

�

〈T , t�〉 dS = 0, ∀� ⊂ B, (2.4)

where � is an arbitrary closed curve in B and t� is the unit tangent vector field
along �.

Proof. By using (2.2) and diagram (2.3), we conclude that T = grad Y , if and only

if ı1(T ) = d(ı0(Y)), if and only if ı1

(−→
TEI

)
= d Y I , I = 1, 2, 3. The condition

(1.5) implies that in addition to curlTT = 0, T should also satisfy∫
�

ı1

(−→
TEI

)
=

∫
�

G(
−→
TEI , t�)d S = 0, ∀� ⊂ B, I = 1, 2, 3,

which is equivalent to the integral condition in (2.4). ��
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Similarly, one can use (1.6) for deriving the necessary and sufficient conditions
for the existence of a potential for T induced by curlT. The upshot is the following
theorem.

Theorem 3. Given T ∈ Γ (⊗2T B), there exists W ∈ Γ (⊗2T B) such that T =
curlTW , if and only if

div T = 0, and
∫
C
〈T , NC〉d A = 0, ∀C ⊂ B, (2.5)

where C is an arbitrary closed surface in B and NC is its unit outward normal
vector field.

Remark 4. If the Betti numbers bk(B), k = 1, 2, are finite, then it suffices to
check (2.4) and (2.5) for b1(B) and b2(B) “independent” closed curves and closed
surfaces, respectively. In particular, one concludes that if B is simply-connected,
then any curlT-free (2

0)-tensor is the gradient of a vector field and if B is contractible,
then any div-free (2

0)-tensor admits a curlT-potential. If B̄ ⊂ R
3 is compact, that

is, B̄ is closed and bounded, then all bk(B)’s are finite. The calculation of bk(B) for
some physically interesting bodies and the selection of independent closed loops
and closed surfaces are discussed in [2].

We can also write an analogue of the gcd complex for two-point tensors. Let
S = R

3 with coordinate system {xi }, which is the Cartesian coordinates of R
3.

Suppose ϕ : B → S is a smooth mapping and let TXϕ(B) := Tϕ(X)S. Note that
although ϕ is not necessarily an embedding, the dimension of TXϕ(B) is always
equal to dim S. We can define the following operators for two-point tensors that
belong to Γ (T ϕ(B)) and Γ (T ϕ(B) ⊗ T B):

Grad : Γ (T ϕ(B)) → Γ (T ϕ(B) ⊗ T B), (Grad U)i I = Ui
,I ,

CurlT : Γ (T ϕ(B) ⊗ T B) → Γ (T ϕ(B) ⊗ T B), (CurlT F)i I = εI K L Fi L
,K ,

Div : Γ (T ϕ(B) ⊗ T B) → Γ (T ϕ(B)), (Div F)i = Fi I
,I .

We have CurlT ◦ Grad = 0, and Div ◦ CurlT = 0. Thus, the GCD complex is
written as:

0 �� Γ (T ϕ(B))
Grad�� Γ (T ϕ(B) ⊗ T B)

CurlT�� Γ (T ϕ(B) ⊗ T B)
Div �� Γ (T ϕ(B)) �� 0.

By using the following isomorphisms

I0 : Γ (T ϕ(B)) → Ω0(B; R
3), [I0(U)]i = Ui ,

I1 : Γ (T ϕ(B) ⊗ T B) → Ω1(B; R
3), [I1(F)]i

J = Fi J ,

I2 : Γ (T ϕ(B) ⊗ T B) → Ω2(B; R
3), [I2(F)]i

J K = εJ K L Fi L ,

I3 : Γ (T ϕ(B)) → Ω3(B; R
3), [I3(U)]i

123 = Ui ,
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one concludes that the following diagram commutes.

0 �� Γ (T ϕ(B))
Grad��

I0

��

Γ (T ϕ(B) ⊗ T B)
CurlT��

I1

��

Γ (T ϕ(B) ⊗ T B)
Div ��

I2

��

Γ (T ϕ(B)) ��

I3

��

0

0 �� Ω0(B; R
3)

d �� Ω1(B; R
3)

d �� Ω2(B; R
3)

d �� Ω3(B; R
3) �� 0

The above isomorphisms also induce an isomorphism Hk
GCD(B) ≈ ⊕3

i=1Hk
d R(B),

where Hk
GCD(B) is the k-th cohomology group of the GCD complex. Let {EI } and

{ei } be two copies of the standard basis of R
3. For F ∈ Γ (T ϕ(B) ⊗ T B), and

n = ni ei ∈ S2, let
−→
Fn = ni Fi J EJ ∈ X(B). Then, one can write

Ik(F) =
(

ık

(−→
Fe1

)
, ık

(−→
Fe2

)
, ık

(−→
Fe3

))
, k = 1, 2.

Let 〈F, Y 〉 := Fi I Y I ei . The above relations for the GCD complex allow one to
obtain the following results that can be proved similarly to Theorems 2 and 3.

Theorem 5. Given F ∈ Γ (T ϕ(B) ⊗ T B), there exists U ∈ Γ (T ϕ(B)) such that
F = Grad U , if and only if

CurlT F = 0, and
∫

�

〈F, t�〉d S = 0, ∀� ⊂ B.

Moreover, there exists Ψ ∈ Γ (T ϕ(B) ⊗ T B) such that F = CurlTΨ , if and only
if

Div F = 0, and
∫
C
〈F, NC〉d A = 0, ∀C ⊂ B.

Remark 6. Note that for writing the GCD complex, only S needs to be flat and
admit a global orthonormal coordinate system. This observation is useful for deriv-
ing a complex for motions of 2D surfaces (shells) in R

3. By using the natural
isomorphism � : X(B) → Ω1(B) induced by G and the Hodge star operator
∗ : Ωk(B) → Ωn−k(B), where n = dim B, one can write

I1(F) = (
(F(dx1))�, (F(dx2))�, (F(dx3))�

)
,

I2(F) = ( ∗ (F(dx1))�, ∗(F(dx2))�, ∗(F(dx3))�
)
.

2.1.2. Complexes for 2-manifolds Let B ⊂ R
2 be a 2-manifold and suppose

{X I } is the Cartesian coordinate system. For 2-manifolds, instead of curlT, we
define the operator

c : Γ (⊗2T B) → X(B), (c(T ))I = T I 2
,1 − T I 1

,2,

that satisfies c ◦ grad = 0. Also consider the following isomorphisms

j0 : X(B) → Ω0(B; R
2), [j0(Y)]i = δi I Y I ,

j1 : Γ (⊗2T B) → Ω1(B; R
2), [j1(T )]i

J = δi I T I J ,

j2 : X(B) → Ω2(B; R
2), [j2(Y)]i

12 = δi I Y I .
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It is straightforward to show that the following diagram commutes.

0 �� X(B)
grad

��

j0

��

Γ (⊗2T B)
c ��

j1

��

X(B) ��

j2

��

0

0 �� Ω0(B; R
2)

d �� Ω1(B; R
2)

d �� Ω2(B; R
2) �� 0

(2.6)

The complex in the first row of (2.6) is called the gc complex. This diagram implies
that Hk

gc(B) ≈ ⊕2
i=1Hk

d R(B), where Hk
gc(B) is the k-th cohomology group of the

gc complex and we obtain the following result.

Theorem 7. A tensor T ∈ Γ (⊗2T B) on a 2-manifold B ⊂ R
2 is the gradient of a

vector field if and only if

c(T ) = 0, and
∫

�

〈T , t�〉d S = 0, ∀� ⊂ B.

For 2-manifolds, we can write a second complex that contains div. In an
orthonormal coordinate system {X I }, the codifferential operator δk : Ωk(B) →
Ωk−1(B) reads

(δβ)I1···Ik−1 = −βJ I1···Ik−1,J .

We have δ ◦ δ = 0, that gives rise to the complex (Ω(B), δ) with the cohomology
groups Hk

co(B) := ker δk/im δk+1. Using the Hodge star operator ∗ : Ωk(B) →
Ωn−k(B), it is straightforward to show that Hk

co(B) ≈ Hn−k
d R (B). One can also write

the complex
(
Ω(B; R

2), δ
)
, where δα = (δα1, δα2). By defining the operator

s : X(B) → Γ (⊗2T B), (s(Y))I J = δ
1J Y I

,2 − δ
2J Y I

,1,

one obtains the following diagram.

0 X(B)��

−j0

��

Γ (⊗2T B)
div��

j1

��

X(B)
s��

j2

��

0��

0 Ω0(B; R
2)�� Ω1(B; R

2)
δ�� Ω2(B; R

2)
δ�� 0��

(2.7)

We call the first row of (2.7) the sd complex and denote its homology groups by
Hk

sd(B). We have Hk
sd(B) ≈ ⊕2

i=1Hn−k
d R (B). Let {EI } be the standard basis of R

2

and let N� be a unit vector field along a closed curve �, which is normal to the
tangent vector field t�, such that {t�, N�} has the same orientation as {E1, E2} does.
The following theorem is the analogue of Theorem 7 for the sd complex.

Theorem 8. On a 2-manifold B ⊂ R
2, there exists Y ∈ X(B) for T ∈ Γ (⊗2T B)

such that T = s(Y), if and only if

div T = 0, and
∫

�

〈T , N�〉d S = 0, ∀� ⊂ B. (2.8)
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Proof. We know that T = s(Y), if and only if j1(T ) = δ(j2(Y)), if and only

if (
−→
TEI )

� = δY I , I = 1, 2. The Hodge star operator induces an isomorphism
between the cohomology groups of (Ω(B), d) and (Ω(B), δ), and therefore, the last
condition is equivalent to ∗(

−→
TEI )

� = (
−→
T ⊥

EI
)� = dY I , where

−→
T ⊥

EI
= (T I 2,−T I 1),

I = 1, 2. Since G(
−→
T ⊥

EI
, t�) = G(

−→
TEI , N�), one obtains (2.8). ��

Next, suppose that ϕ : B → R
2 is a smooth mapping and let {xi } be the Carte-

sian coordinates of R
2 with {ei } being its standard basis. Consider the following

isomorphisms

J0 : Γ (T ϕ(B)) → Ω0(B; R
2), [J0(U)]i = Ui ,

J1 : Γ (T ϕ(B) ⊗ T B) → Ω1(B; R
2), [J1(F)]i

J = Fi J ,

J2 : Γ (T ϕ(B)) → Ω2(B; R
2), [J2(U)]i

12 = Ui ,

together with the operators

C : Γ (T ϕ(B) ⊗ T B) → Γ (T ϕ(B)), (C(F))i = Fi2
,1 − Fi1

,2,

S : Γ (T ϕ(B)) → Γ (T ϕ(B) ⊗ T B), (S(U))i I = δ
1I U i

,2 − δ
2I U i

,1.

Replacing j0, j1, j2, c, and s with J0, J1, J2, C, and S, respectively, in dia-
grams (2.6) and (2.7) gives one the corresponding diagrams for two-point tensors.
The associated complexes are called the GC and the SD complexes and one has
the following result.

Theorem 9. Let ϕ : B → R
2 be a smooth mapping and F ∈ Γ (T ϕ(B) ⊗ T B).

We have F = Grad U , if and only if

C(F) = 0, and
∫

�

〈F, t�〉d S = 0, ∀� ⊂ B.

Moreover, we can write F = S(U), if and only if

Div F = 0, and
∫

�

〈F, N�〉d S = 0, ∀� ⊂ B.

As was mentioned earlier, the complexes for two-point tensors do not require
B to be flat. This allows one to obtain a complex describing motions of 2D surfaces
(shells) in R

3. Let (B, G) be a 2D surface in R
3 with an arbitrary local coordinate

system {X I }, I = 1, 2, and let {xi } and {ei }, i = 1, 2, 3, be the Cartesian coordinates
and the standard basis of R

3, respectively. The local basis for T B induced by {X I }
is denoted by {E I }. Suppose ϕ : B → R

3 is a smooth mapping and consider the
following isomorphisms

J0 : Γ (T ϕ(B)) → Ω0(B; R
3), [J0(U)]i = Ui ,

J1 : Γ (T ϕ(B) ⊗ T B) → Ω1(B; R
3), [J1(F)]i

J = G J I Fi I ,

J2 : Γ (T ϕ(B)) → Ω2(B; R
3), [J2(U)]i

12 = √
det G I J Ui ,
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where G I J are the components of G and det G I J is the determinant of the matrix
[G I J ]2×2. Let G I J be the components of the inverse of [G I J ]2×2. We define the
operators Grad : Γ (T ϕ(B)) → Γ (T ϕ(B) ⊗ T B) and C : Γ (T ϕ(B) ⊗ T B) →
Γ (T ϕ(B)) by

(Grad U)i I = G I J Ui
,J , (C(F))i =

(
G2K Fi K

)
,1 − (

G1K Fi K
)
,2√

det G I J
.

Using the above operators, one obtains the following diagram for the GC complex.

0 �� Γ (T ϕ(B))
Grad��

J0

��

Γ (T ϕ(B) ⊗ T B)
C ��

J1

��

Γ (T ϕ(B)) ��

J2

��

0

0 �� Ω0(B; R
3)

d �� Ω1(B; R
3)

d �� Ω2(B; R
3) �� 0

Thus, the following result holds.

Theorem 10. Let B be a 2D surface and let ϕ : B → R
3 be a smooth mapping.

Then, F ∈ Γ (T ϕ(B) ⊗ T B) can be written as F = Grad U , if and only if

C(F) = 0, and
∫

�

〈F, t�〉d S = 0, ∀� ⊂ B,

where 〈F, t�〉 = G I J Fi J (t�)I ei .

2.2. Complexes Induced by the Calabi Complex

A differential complex suitable for symmetric second-order tensors was intro-
duced by Calabi [8]. It is well-known that the Calabi complex in R

3 is equivalent
to the linear elasticity complex [12]. In this section, we study the Calabi complex
and its connection with the linear elasticity complex in some details. As we will
see later, this study provides a framework for writing the nonlinear compatibil-
ity equations in curved ambient spaces and comparing stress functions induced
by the Calabi complex with those induced by the gcd or the GCD complexes.
Moreover, the Calabi complex provides a coordinate-free expression for the linear
compatibility equations.

The Calabi complex is valid on any Riemannian manifold with constant
(sectional) curvature (also called a Clifford-Klein space). These spaces are
defined as follows: let ∇ be the Levi-Civita connection of (B, G) and let X i ∈
X(B), i = 1, . . . , 5. The curvature R and the Riemannian curvature R induced
by G are given by R(X1, X2)X3 = ∇X1∇X2 X3 − ∇X2∇X1 X3 − ∇[X1,X2]X3, and
R(X1, X2, X3, X4) = G(R(X1, X2)X3, X4). Let Σ X be a 2-dimensional subspace
of TXB and let X1, X2 ∈ Σ X be two arbitrary linearly independent vectors. The
sectional curvature of Σ X is defined as

K (Σ X ) = R(X1, X2, X2, X1)

(G(X1, X1)G(X2, X2))
2 − (G(X1, X2))

2 .
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Sectional curvature K (Σ X ) is independent of the choice of X1 and X2 [10]. A
manifold B has a constant curvature k ∈ R if and only if K (Σ X ) = k, ∀X ∈ B
and ∀Σ X ⊂ TXB. If B is complete and simply-connected, it is isometric to: (i) the
n-sphere with radius 1/

√
k, if k > 0, (ii) R

n , if k = 0, and (iii) the hyperbolic
space, if k < 0 [20]. An arbitrary Riemannian manifold with constant curvature
is locally isometric to one of the above manifolds depending on the sign of k. For
example, the sectional curvature of a cylinder in R

3 is zero and the cylinder is locally
isometric to R

2. Discussions on the classification of Riemannian manifolds with
constant curvatures can be found in [30]. One can show that (B, G) has constant
curvature k if and only if

R(X1, X2)X3 = k
(
G(X3, X2)X1 − G(X3, X1)X2

)
. (2.9)

Similar to the de Rham complex, the Calabi complex on n-manifolds terminates
after n non-trivial operators. For n = 3, these operators are: the Killing operator
D0, the linearized curvature operator D1, and the Bianchi operator D2.

The first operator in the Calabi complex on (B, G) is the Killing operator
D0 : X(B) → Γ (S2T ∗B) defined as

(D0U)(X1, X2) = 1

2

(
G(X1,∇X2 U) + G(∇X1 U, X2)

)
.

Note that D0U = 1
2LU G, whereLU is the Lie derivative. The kernel of D0 coincides

with the space of Killing vector fields (B) on B.5 If an n-manifold B is a subset
of R

n with Cartesian coordinates {X I }, any U ∈ (B) at X = (X1, . . . , Xn) ∈ R
n

can be written as U(X) = v + A · X , where v ∈ R
n , A ∈ so(Rn) := {A ∈ R

n×n :
A + AT = 0}, with R

n×n being the space of real n × n matrices.6 Therefore, we
conclude that dim (B) = n(n + 1)/2.

The second operator of the Calabi complex can be obtained by linearizing the
Riemannian curvature. Let A be a Riemannian metric on B and let ∇ A and RA be
the corresponding Levi-Civita connection and Riemannian curvature, respectively.
The tensor RA has the following symmetries.

RA(X1, X2, X3, X4) + RA(X2, X3, X1, X4)+RA(X3, X1, X2, X4)=0,(2.10)

RA(X1, X2, X3, X4) = −RA(X2, X1, X3, X4)

= −RA(X1, X2, X4, X3). (2.11)

Equivalently, the components RA
I1 I2 I3 I4

of RA satisfy

RA
I1 I2 I3 I4

+ RA
I2 I3 I1 I4

+ RA
I3 I1 I2 I4

= 0,

RA
I1 I2 I3 I4

= −RA
I2 I1 I3 I4

= −RA
I1 I2 I4 I3

.

5 A Killing vector field U ∈ (B) is also called an infinitesimal isometry in the sense
that its flow FlU induces an isometry FlUt := FlU (t, ·) : U ⊂ B → B [10].

6 This implies that (B) is isomorphic to euc(Rn), which is the Lie algebra of the group
of rigid body motions Euc(Rn).
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The identity (2.10) is called the first Bianchi identity. The above symmetries imply
that RA has n2(n2 −1)/12 independent components [27]. The relations (2.10) and
(2.11) also induce the symmetry

RA(X1, X2, X3, X4) = RA(X3, X4, X1, X2), (2.12)

that is RA
I1 I2 I3 I4

= RA
I3 I4 I1 I2

. For n = 2, 3, (2.11) and (2.12) determine all the

symmetries of RA, and therefore, the space of tensors with the symmetries of
the Riemannian curvature is Γ (S2(Λ2T ∗B)).7 Let e ∈ Γ (S2T ∗B) be an arbitrary
symmetric (0

2)-tensor. The linearization of the operator A �→ RA is the linear
operator rA : Γ (S2T ∗B) → Γ (S2(Λ2T ∗B)) defined by rA(e) := d

dt

∣∣
t=0RA+te

[13,14]. One can write

2rA(e)(X1, X2, X3, X4) = LA(e)(X1, X2, X3, X4)

+ e(R A(X1,X2)X3, X4) − e(R A(X1, X2)X4, X3),

with

LA(e)(X1, X2, X3, X4) =
(
∇ A

X1
∇ A

X3
e
)

(X2, X4) +
(
∇ A

X2
∇ A

X4
e
)

(X1, X3)

−
(
∇ A

X1
∇ A

X4
e
)

(X2, X3) −
(
∇ A

X2
∇ A

X3
e
)

(X1, X4)

−
(

∇ A
∇ A

X1
X3

e
)

(X2, X4) −
(

∇ A
∇ A

X2
X4

e
)

(X1, X3)

+
(

∇ A
∇ A

X1
X4

e
)

(X2, X3) +
(

∇ A
∇ A

X2
X3

e
)

(X1, X4),

where ∇ AT for (0
k)-tensor T is defined as(

∇ A
X0

T
)

(X1, . . . , Xk) = X0 (T (X1, . . . , Xk))

−
k∑

i=1

T (X1, . . . ,∇ A
X0

X i , . . . , Xk).

Note that rA(e) inherits the symmetries of the Riemannian curvature. If (B, G) has
constant curvature k, by using (2.9), one obtains the operator D1 : Γ (S2T ∗B) →
Γ (S2(Λ2T ∗B)), D1 := 2rG , which can be written as

(D1e)(X1, X2, X3, X4) = LG(e)(X1, X2, X3, X4)

+k
{

G(X2, X3)e(X1, X4) − G(X1, X3)e(X2, X4)

−G(X2, X4)e(X1, X3) + G(X1, X4)e(X2, X3)
}
. (2.13)

7 Tensors in Γ (S2(Λ2T ∗B)) have (n2 − n + 2)(n2 − n)/8 independent components.
For n � 4, (2.11) and (2.12) do not imply (2.10), and thus, tensors with the symmetries
of the Riemannian curvature belong to a subspace of Γ (S2(Λ2T ∗B)). If T ∗B is induced
by a representation, that is it is a homogeneous vector bundle corresponding to an irre-
ducible representation, the representation theory provides some tools to specify tensors with
complicated symmetries such as those of the Riemannian curvature [5,25].
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One can show that D1 ◦ D0 = 0. The Calabi complex for a 2-manifold B reads

0 �� X(B)
D0 �� Γ (S2T ∗B)

D1 �� Γ (S2(Λ2T ∗B)) �� 0. (2.14)

The last non-trivial operator of the Calabi complex for 3-manifolds is defined
as follows: let Γ (V 5T ∗B) be the space of (0

5)-tensors such that h ∈ Γ (V 5T ∗B)

admits the following symmetries.

hI1 I2 I3 I4 I5 = −hI2 I1 I3 I4 I5 = −hI1 I3 I2 I4 I5 ,

hI1 I2 I3 I4 I5 + hI1 I3 I4 I2 I5 + hI1 I4 I2 I3 I5 = 0,

hI1 I2 I3 I4 I5 = −hI1 I3 I2 I4 I5 = −hI1 I2 I3 I5 I4 ,

that is, h is anti-symmetric in the first three entries and has the symmetries of the
Riemannian curvature in the last four entries. For n = 3, h has 3 independent
components that can be represented by h12323, h21313, and h31212. The operator
D2 : Γ (S2(Λ2T ∗B)) → Γ (V 5T ∗B) is defined by

(D2s)(X1, . . . , X5) = (∇X1 s
)
(X2, X3, X4, X5)

+ (∇X2 s
)
(X3, X1, X4, X5) + (∇X3 s

)
(X1, X2, X4, X5).

By using D2, the second Bianchi identity for the Riemannian curvature R can be
expressed as D2(R) = 0. We have D2 ◦ D1 = 0. Thus, the Calabi complex on a
3-manifold B is written as

0 �� X(B)
D0 �� Γ (S2T ∗B)

D1 �� Γ (S2(Λ2T ∗B))
D2 �� Γ (V 5T ∗B) �� 0. (2.15)

Calabi [8] showed that there is a systematic way for constructing operators Di ,
2 � i � n − 1, for n-manifolds. Let Hk

C (B) := ker Dk/im Dk−1 be the k-th
cohomology group of the Calabi complex. Calabi [8] also showed that the Calabi
complex induces a fine resolution of the sheaf of germs of Killing vector fields.
Thus, the dimension of (B) determines the dimension of Hk

C (B). In particular, if
an n-manifold B ⊂ R

n has finite-dimensional de Rham cohomology groups, one
can write

dim Hk
C (B) = n(n + 1)

2
dim Hk

d R(B) = n(n + 1)

2
bk(B). (2.16)

Next, we separately consider 2- and 3-submanifolds of the Euclidean space.

2.2.1. The Linear Elasticity Complex for 3-manifolds Let B ⊂ R
3 be an open

subset and let G and {X I } be the Euclidean metric and the Cartesian coordinates
of R

3, respectively. Consider the following operator

grads : X(B) → Γ (S2T B),
(
gradsY

)I J = 1

2

(
Y I

,J + Y J
,I

)
.

It is straightforward to show that curl ◦ curl ◦ grads = 0. If T ∈ Γ (S2T B), then
curl ◦ curl T is symmetric as well. Therefore, one obtains the following operator

curl ◦ curl : Γ (S2T B) → Γ (S2T B), (curl ◦ curl T )I J = εI K LεJ M N T L N
,K M .

Author's personal copy



208 Arzhang Angoshtari & Arash Yavari

We have div ◦ curl ◦ curl = 0. Let ι0 : X(B) → X(B) be the identity map. The
global orthonormal coordinate system {X I } allows one to define the following three
isomorphisms:

ι1 : Γ (S2T B) → Γ (S2T ∗B), (ι1(T ))I J = T I J ,

the isomorphism ι2 : Γ (S2T B) → Γ (S2(Λ2T ∗B)) defined by

(ι2(T ))2323 = T 11, (ι2(T ))3123 = T 12, (ι2(T ))1223 = T 13,

(ι2(T ))1313 = T 22, (ι2(T ))2113 = T 23, (ι2(T ))1212 = T 33,

and ι3 : X(B) → Γ (V 5T ∗B)) given by

(ι3(Y))12323 = Y 1, (ι3(Y))21313 = Y 2, (ι3(Y))31212 = Y 3.

Simple calculations show that

ι1 ◦ grads = D0 ◦ ι0, ι2 ◦ curl ◦ curl = D1 ◦ ι1, ι3 ◦ div = D2 ◦ ι2,

and therefore, the following diagram commutes.

0 �� X(B)
grads

��

ι0

��

Γ (S2T B)
curl◦curl��

ι1

��

Γ (S2T B)
div ��

ι2

��

X(B) ��

ι3

��

0

0 �� X(B)
D0 �� Γ (S2T ∗B)

D1 �� Γ (S2(Λ2T ∗B))
D2 �� Γ (V 5T ∗B) �� 0

(2.17)

The first row of (2.17) is the linear elasticity complex. Therefore, we observe that
useful properties of this complex follow from those of the Calabi complex. In
particular, (2.16) implies that the dimensions of the cohomology groups Hk

E3(B)

of the linear elasticity complex are given by

dim H1
E3(B) := dim

(
ker curl ◦ curl/im grads) = 6b1(B),

dim H2
E3(B) := dim (ker div/im curl ◦ curl) = 6b2(B).

We should mention that it is possible to calculate the cohomology groups of the lin-
ear elasticity complex without explicitly using its relation with the Calabi complex
[18]. Note also that the Calabi complex is more general than the linear elasticity
complex in the sense that the Calabi complex is valid on any Riemannian mani-
fold with constant curvature. However, the linear elasticity complex is only valid
on flat manifolds that admit a global orthonormal coordinate system. Yavari [31,
Proposition 2.8] showed that for T ∈ Γ (S2T B), there exists Y ∈ X(B) such that
T = gradsY , if and only if

curl ◦ curl T = 0,∫
�

[
T I J − Xk(T I J

,K − T J K
,I )

]
dX J = 0,

∫
�

(
T I K

,J − T J K
,I

)
dX K = 0, ∀� ⊂ B.

(2.18)
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Let NC be the unit outward normal vector field of an arbitrary closed surface C ⊂ B.
Gurtin [17] showed that the necessary and sufficient conditions for the existence
of curl ◦ curl-potentials for T are

div T = 0,

∫
C
〈T , NC〉d A = 0,

∫
C

εK I J X I T J L(NC)Ld A = 0, ∀C ⊂ B. (2.19)

2.2.2. The Linear Elasticity Complex for 2-manifolds Next, suppose B ⊂ R
2

is a 2-manifold and let {X I } be the Cartesian coordinates of R
2. Let

Dc : Γ (S2T B) → C∞(B), DcT = T 11
,22 − 2T 12

,12 + T 22
,11.

Then, we have Dc ◦ grads = 0. Also consider isomorphisms γ0, γ1, and γ2 that
are defined as follows: γ0 : X(B) → X(B) and γ1 : Γ (S2T B) → Γ (S2T ∗B) are
defined similarly to ι0 and ι1 for 3-manifolds and γ2 : C∞(B) → Γ (S2(Λ2T ∗B)),
(γ2( f ))1212 = f . Using these operators, one obtains the following diagram.

0 �� X(B)
grads

��

γ0

��

Γ (S2T B)
Dc ��

γ1

��

C∞(B) ��

γ2

��

0

0 �� X(B)
D0 �� Γ (S2T ∗B)

D1 �� Γ (S2(Λ2T ∗B)) �� 0

(2.20)

Therefore, (2.16) implies that the dimension of the cohomology group H1
E2(B) :=

ker Dc/im grads is 3b1(B). Moreover, the necessary and sufficient conditions for
the existence of potentials induced by grads for T ∈ Γ (S2T B) is DcT = 0,
together with the integral conditions in (2.18). For 2-manifolds, it is also possible
to write the complex

0 �� C∞(B)
Ds �� Γ (S2T B)

div �� X(B) �� 0, (2.21)

where (Ds f )11 = f,22, (Ds f )12 = − f,12, and (Ds f )22 = f,11. The kernel of Ds

is 3-dimensional, which suggests that the dimension of H1
E2′(B) := ker div/im Ds ,

is 3b1(B). By replacing C with arbitrary closed curves � in (2.19), one obtains the
necessary and sufficient conditions for the existence of Ds-potentials.

3. Some Applications in Continuum Mechanics

Let B ⊂ R
n , n = 2, 3, be a smooth n-manifold. Note that B can be unbounded

as well. For 3-manifolds, the linear elasticity complex (2.17) describes both the
kinematics and the kinetics of deformations in the following sense [22]: if one con-
siders X(B) as the space of displacements, then grads associates linear strains to
displacements, Γ (S2T B) is the space of linear strains, and curl◦curl expresses the
compatibility equations for the linear strain. On the other hand, one can consider
Γ (S2T B) as the space of Beltrami stress functions and consequently, curl ◦ curl
associates symmetric Cauchy stress tensors to Beltrami stress functions, and div
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expresses the equilibrium equations. We observed that for 2-manifolds, the kine-
matics and the kinetics of deformation are described by two separate complexes:
The former is addressed by the complex (2.20) and the latter by the complex (2.21).

Let a smooth embedding ϕ : B → S = R
3 be a motion of B in S. Let

C := ϕ∗ g ∈ Γ (S2T ∗B), and F := T ϕ be the Green deformation tensor and
the deformation gradient of ϕ, respectively. Also suppose σ ∈ Γ (⊗2T ϕ(B)),
P ∈ Γ (T ϕ(B) ⊗ T B), and S ∈ Γ (⊗2T B) are the Cauchy, the first, and the
second Piola–Kirchhoff stress tensors, respectively. If σ is symmetric, then the last
two operators of the linear elasticity complex on (ϕ(B), g) address the existence
of Beltrami stress functions and the equilibrium equations for σ . The first operator
in this complex does not have any apparent physical interpretation. If σ is non-
symmetric, then the last two operators of the gcd complex on (ϕ(B), g) describe
the kinetics of ϕ. The operator curlT associates stress functions induced by curlT

to σ and div is related to the equilibrium equations. Similar conclusions also hold
for S if one considers the linear elasticity complex and the gcd complex on the flat
manifold (B, C).

On the other hand, by using P , one can write a complex that describes both
the kinematics and the kinetics of motion. Let U ∈ Γ (T ϕ(B)) be the displacement
field defined as U(X) = ϕ(X) − X ∈ Tϕ(X)S, ∀X ∈ B.8 Then, Grad U is the
displacement gradient and CurlT expresses the compatibility of the displacement
gradient. On the other hand, we can assume that CurlT associates stress functions
induced by CurlT to the first Piola–Kirchhoff stress tensor, and that Div expresses
the equilibrium equations. Hence, the GCD complex is the nonlinear analogue of
the linear elasticity complex in the sense that both contain the kinematics and the
kinetics of motion simultaneously. Note that the linear elasticity complex is not
the linearization of the GCD complex. In particular, the operator curl ◦ curl is
obtained by linearizing the curvature operator, which is related to the compatibility
equations in terms of C and not the displacement gradient.

In the following, we study the applications of the above complexes to the non-
linear compatibility equations and the existence of stress functions in more details.
Classically, the linear and nonlinear compatibility equations are written for flat
ambient spaces. We study these equations on ambient spaces with constant curva-
tures as well.

3.1. Compatibility Equations

We study the nonlinear compatibility equations for the cases dim B = dim S,
and dim B < dim S (shells), separately. It is well-known that compatibility equa-
tions depend on the topological properties of bodies, see [31] and references therein
for more details. More specifically, both linear and nonlinear compatibility equa-
tions are closely related to b1(B). The nonlinear compatibility equations in terms of

8 Displacement fields are usually assumed to be vector fields on B. The choice of
Γ (T ϕ(B)) instead of X(B) is equivalent to applying the shifter TX B → Tϕ(X)S to ele-
ments of X(B), see [24, Box 3.1].
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the displacement gradient (or equivalently F) directly follow from the complexes
we introduced earlier for second-order tensors.

3.1.1. Bodies with the same Dimensions as the Ambient Space Suppose
dim B = dim S. Since motion ϕ : B → S is an embedding, it is easy to observe
that the Green deformation tensor C = ϕ∗ g is a Riemannian metric on B. The
mapping ϕ is an isometry between (B, C) and (ϕ(B), g). Thus, the compatibil-
ity problem in terms of C reads: Given a metric C on B, is there any isometry
between (B, C) and an open subset of S? Note that a priori we do not know
which part of S would be occupied by B. This suggests that a useful compatibility
equation should be written only on B. Let Rg and Rg be the curvature and the
Riemannian curvature of (S, g) that are induced by the Levi-Civita connection ∇ g .
Let X1, . . . , X4 ∈ X(B). By using the pull-back ϕ∗ and the push-forward ϕ∗, one
concludes that the linear connection ∇ g on T S induces a linear connection ϕ∗∇ g

on T B given by (ϕ∗∇ g)X1X2 = ϕ∗(∇ g
ϕ∗ X1

ϕ∗X2
)
. The definition of the Levi–Civita

connection ∇ g implies that

C(X3, (ϕ∗∇ g)X1 X2) = g(ϕ∗X3,∇ g
ϕ∗ X1

ϕ∗X2)

= 1

2

{
X2 (C(X1, X3)) + X1 (C(X3, X2)) − X3 (C(X1, X2))

− C ([X2, X3], X1) − C ([X1, X3], X2) − C ([X2, X1], X3)
}
,

and therefore, ϕ∗∇ g coincides with the Levi-Civita connection ∇C on (B, C). Since

(ϕ∗ Rg)(X1, X2)X3 = ϕ∗ (
Rg(ϕ∗X1, ϕ∗X2)ϕ∗X3

)
= ∇C

X1
∇C

X2
X3 − ∇C

X2
∇C

X1
X3 − ∇C

[X1,X2]X3,

we also conclude that ϕ∗ Rg is the curvature RC of (B, C) induced by ∇C . There-
fore, if ϕ : B → S is an isometry between (B, C) and (ϕ(B), g), then we must
have

RC(X1, X2, X3, X4) = Rg(ϕ∗X1, ϕ∗X2, ϕ∗X3, ϕ∗X4), (3.1)

where RC is the Riemannian curvature of (B, C). It is hard to check the above
condition on arbitrary curved ambient spaces. However, if S has constant curva-
ture, (3.1) admits a simple form. The following theorem states the compatibility
equations in terms of C on an ambient space with constant curvature.

Theorem 11. Suppose dim B = dim S, and (S, g) has constant curvature k̂. If C
is the Green deformation tensor of a motion ϕ : B → S, then (B, C) has constant
curvature k̂ as well, that is C satisfies

RC(X1, X2)X3 = k̂C(X3, X2)X1 − k̂C(X3, X1)X2. (3.2)

Conversely, if C satisfies (3.2), then for each X ∈ B, there is a neighborhood
UX ⊂ B of X and a motion ϕX : UX → S, with C|UX being its Green deformation
tensor. Motion ϕX is unique up to isometries of S.
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Proof. If C = ϕ∗ g, then by using RC = ϕ∗ Rg , and (2.9), one obtains (3.2).
Conversely, consider arbitrary points X ∈ B and x ∈ S and let {E′

i } and {e′
i } be

arbitrary orthonormal bases for TXB and TxS, respectively. Choose the isometry
i : TXB → TxS such that i(E′

i ) = e′
i . Then, by using a theorem due to Cartan

[10, page 157] and (3.2), one can construct an isometry ϕX : UX → ϕX (UX ) ⊂ S,
in a neighborhood UX of X such that TXϕX = i. This concludes the proof. ��
Remark 12. Theorem 11 implies that there are many local isometries between
manifolds with the same constant sectional curvatures. Formulating sufficient con-
ditions for the existence of global isometries between arbitrary Riemannian mani-
folds is a hard problem. Ambrose [1] derived such a condition by using the parallel
translation of Riemannian curvature along curves made up of geodesic segments. In
particular, his result implies that (3.2) is also a sufficient condition for the existence
of a global motion ϕ : B → S, if B is complete and simply-connected. For the flat
case B ⊂ S = R

n , Yavari [31] derived the necessary and sufficient conditions for
the compatibility of C when B is non-simply-connected.

Remark 13. The symmetries of the Riemannian curvature determine the number
of compatibility equations induced by (3.2), that is, the number of independent
equations that we obtain by writing (3.2) in a local coordinate system. Thus, the
number of compatibility equations in terms of C only depends on the dimension of
the ambient space and is the same as the number of linear compatibility equations
induced by the operator D1 in the Calabi complex.

Next, suppose B ⊂ S = R
n , n = 2, 3, and let {X I } and {xi } be the Cartesian

coordinates of R
n . Any smooth mapping ϕ : B → R

n induces a displacement
field U ∈ Γ (T ϕ(B)) given by U(X) = ϕ(X) − X . One can use the GCD and the
GC complexes for writing the compatibility equations in terms of the displacement
gradient. Note that ϕ is assumed to be specified for writing the above complexes. Let
Υ ∈ Ω0(B; R

3) and κ ∈ Ω1(B; R
3). If κ = dΥ , then I−1

1 (κ) = Grad I−1
0 (Υ ),

where I−1
0 (Υ ) and I−1

1 (κ) are two-point tensors over any arbitrary smooth mapping
ϕ. In particular, by using the linear structure of R

3, one can choose ϕ to be ϕ(X) =
X + Υ (X). Thus, we obtain the following theorem, cf. Theorems 5 and 9.

Theorem 14. Given κ = (κ1, . . . , κn) ∈ Ω1(B; R
n) on a connected n-manifold

B ⊂ R
n, there exists a smooth mapping ϕ : B → R

n with displacement gradient
I−1

1 (κ) (or J−1
1 (κ) if n = 2) if and only if

dκ = 0, and
∫

�

κ(t�) dS = 0, ∀� ⊂ B.

The mapping ϕ is unique up to rigid body translations in R
n.

Remark 15. This theorem does not guarantee that the displacement gradient is
induced by a motion of B, that is ϕ is not an embedding, in general. For example,
consider the mapping depicted in Fig. 1 which is not injective. This mapping is a
local diffeomorphism, its tangent map is bijective at all points, and its displacement
gradient satisfies the above condition. Also note that in contrary to Theorem 11, ϕ

is unique only up to rigid body translations and not rigid body rotations. This is a
direct consequence of the fact that H0

d R(B) ≈ R, for any connected manifold B.
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Fig. 1. A mapping with a compatible displacement gradient, which is not an embedding

If H1
d R(B) is finite dimensional, then the integral condition in the above theorem

merely needs to be checked for a finite number of closed curves and Theorem 14 is
equivalent to Proposition 2.1 of [31]. In contrary to the compatibility equations in
terms of C, by using the notion of displacement, we are explicitly using the linear
structure of R

n for writing the compatibility equations in terms of the displacement
gradient.

Remark 16. The Green deformation tensor does not induce any linear complex
for describing the kinematics of ϕ. Let (S, g) have constant curvature k̂ and let
C(B,S) and ΓM (S2T ∗B) be the spaces of smooth embeddings of B into S and
Riemannian metrics on B, respectively. Consider the operators DM : C(B,S) →
ΓM (S2T ∗B), DM (ϕ) := ϕ∗ g, and DR : ΓM (S2T ∗B) → Γ (S2(Λ2T ∗B)) given
by
(
DR(C)

)
(X1, X2, X3, X4) = RC(X1, X2, X3, X4)

− k̂C(X3, X2)C(X1, X4) + k̂C(X3, X1)C(X2, X4).

The compatibility equation (3.2) implies that DR ◦ DM = 0. However, note that
the sequence of operators

C(B,S)
DM �� ΓM (S2T ∗B)

DR �� Γ (S2(Λ2T ∗B)), (3.3)

is not a linear complex as the underlying spaces and operators are not linear.9

The operator curl ◦ curl of the linear elasticity complex is related to the nonlinear
compatibility equations in terms of C. Note that the kinematics part of this complex
is not the linearization of the kinematics part of the GCD complex.

3.1.2. Shells Let (S, g) be an orientable n-manifold with constant curvature k̂.
We will derive the compatibility equations for motions of hypersurfaces in S, that
is motions of (n − 1)-dimensional submanifolds of S. We first tersely review some
preliminaries of submanifold theory, see [10,28] for more details. Suppose (B, G)

is a connected orientable submanifold of S, where G is induced by g. Let ∇ and
∇ g be the associated Levi-Civita connections of B and S, respectively, and let
X1, . . . , X4 ∈ X(B). We have the decomposition TXS = TXB⊕ (TXB)⊥, ∀X ∈ B,
where (TXB)⊥ is the normal complement of TXB in T S. Any vector field X1 on B

9 The complex (3.3) was suggested to us by Marino Arroyo.
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can be locally extended to a vector field X̃1 on S and we have ∇X1X2 = (∇ g
X̃1

X̃2)
T,

where T denotes the tangent component. The second fundamental form B of B
is defined as B(X1, X2) = ∇ g

X̃1
X̃2 − ∇X1X2. Let X ∈ Γ (T B⊥) =: X(B)⊥. The

shape operator of B is a linear self-adjoint operator SX : T B → T B defined as
G(SX(X1), X2) = g(B(X1, X2),X). One can show that

(∇ g
X1

X
)T = −SX(X1). It

is also possible to define a linear connection ∇⊥ on T B⊥ by ∇⊥
X1

X = (∇ g
X1

X)N,

where N denotes the normal component. The normal curvature R⊥ : X(B) ×
X(B)×X(B)⊥ → X(B)⊥ is the curvature of ∇⊥. One can show that the following
relations hold:

Rg(X1, X2, X3, X4) = R(X1, X2, X3, X4)

+g(B(X1, X3), B(X2, X4))−g(B(X1, X4), B(X2, X3)), (3.4)

G([SY, SX]X1, X2) = g(Rg(X1, X2)X, Y) − g(R⊥(X1, X2)X, Y), (3.5)

g(Rg(X1,X2)X3,X) = (∇X1B
)
(X2, X3, X) − (∇X2B

)
(X1, X3, X), (3.6)

where X,Y ∈ X(B)⊥, [SY, SX] = SY ◦ SX − SX ◦ SY, and B(X1, X2,X) =
g(B(X1, X2),X), with

(∇X1B
)
(X2, X3,X) = X1

(
B(X2, X3,X)

) − B(∇X1 X2, X3,X)

− B(X2,∇X1 X3,X) − B(X2, X3,∇⊥
X1

X).

The Eqs. (3.4), (3.5), and (3.6) are called the Gauss, Ricci, and Codazzi equa-
tions, respectively. These equations generalize the compatibility equations of the
local theory of surfaces. Let dim S − dim B = 1. By using (2.9) and the fact that
the second fundamental form of hypersurfaces can be expressed as B(X1, X2) =
g(B(X1, X2),N)N, where N is the unit normal vector field of B, the Gauss equa-
tion can be written as

R(X1, X2, X3, X4) + G(SNX3, X1)G(SNX4, X2)

− G(SNX4, X1)G(SNX3, X2) + k̂G(X1, X3)G(X2, X4)

− k̂G(X1, X4)G(X2,X3) = 0.

For hypersurfaces in an ambient space with constant curvature the Ricci equation
becomes vacuous and the Codazzi equation simplifies to read

∇X1(SN(X2)) − ∇X2(SN(X1)) = SN([X1, X2]).
Let ϕ : B → S be an orientation-preserving isometric embedding and let X̄1 =
ϕ∗X1 ∈ X(ϕ(B)). The extrinsic deformation tensor θ ∈ Γ (S2T ∗B) is defined as
θ(X1, X2) := g(B̄(X̄1, X̄2), N̄), where B̄ is the second fundamental form of the
hypersurface ϕ(B) ⊂ S with the unit normal vector field N̄ and the induced metric
ḡ := g|ϕ(B). Let C = ϕ∗ ḡ be the Green deformation tensor. The pull-back of the
Gauss equation on (ϕ(B), ḡ) by ϕ reads

RC(X1, X2, X3, X4) + θ(X1, X3)θ(X2, X4) − θ(X1, X4)θ(X2, X3)

+ k̂C(X1, X3)C(X2, X4) − k̂C(X1, X4)C(X2, X3) = 0.
(3.7)
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Fig. 2. Two isometric embeddings of a plane into R
3. The resulting surfaces are cylinders

with different radii and both motions have the same Green deformation tensor C

The pull-back of the Codazzi equation on (ϕ(B), ḡ) by ϕ reads(
∇C

X1
θ
)

(X2, X3) =
(
∇C

X2
θ
)

(X1, X3), (3.8)

that is the (0
3)-tensor ∇Cθ defined by

(∇Cθ
)
(X1, X2, X3) :=

(
∇C

X1
θ
)

(X2, X3), is

completely symmetric.
The compatibility problem for motions of hypersurfaces in terms of C and θ can

be stated as follows: given a metric C ∈ Γ (S2T ∗B) on B and a symmetric tensor
θ ∈ Γ (S2T ∗B), determine the necessary and sufficient conditions for the existence
of an isometric embedding ϕ : B → S such that C = ϕ∗ ḡ, and θ(X1, X2) =
g(B̄(X̄1, X̄2), N̄). The reason for including θ in the compatibility problem is that
we want surfaces with identical deformation tenors to be unique up to isometries
of the ambient space. This criterion cannot be satisfied if we only consider C.
For example, consider isometric deformations of a plane in R

3 into portions of
cylinders with different radii as shown in Fig. 2. All these motions induce the same
C , but obviously cylinders with different radii cannot be mapped into each other
using rigid body motions in R

3. The above discussion together with some standard
results of submanifold theory (for example see [19, Chapter 2] or [21]) give us the
following theorem.

Theorem 17. Suppose S is a complete, simply-connected n-manifold with constant
curvature and B is a connected hypersurface in S. The deformation tensors C and
θ induced by an embedding ϕ : B → S satisfy (3.7) and (3.8). Conversely, if a
Riemannian metric C on B and a symmetric tensor θ ∈ Γ (S2T ∗B) satisfy (3.7)
and (3.8), for each X ∈ B, there is an open neighborhood UX ⊂ B of X and a local
embedding ϕX : UX → S, such that C|UX and θ |UX are the deformation tensors
of ϕX . The embedding ϕX is unique up to isometries of S.

If B is also simply-connected, then (3.7) and (3.8) imply that there exists a global
embedding ϕ : B → S, which is unique up to isometries of S [28]. The relations
(3.7) and (3.8) generalize the classical compatibility equations of 2D surfaces in
R

3 discussed in [11].
One can exploit the GC complex for writing the compatibility equations for

motions of shells in R
3 in terms of the displacement gradient. Using the same

notation used in Theorem 10, the upshot can be stated as follows.
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Theorem 18. Suppose B ⊂ R
3 is a connected 2D surface. Given κ =

(κ1, κ2, κ3) ∈ Ω1(B; R
3), there is a smooth mapping ϕ : B → R

3 with dis-
placement gradient J−1

1 (κ) if and only if

dκ = 0, and
∫

�

κ(t�)d S = 0, ∀� ⊂ B.

The mapping ϕ is unique up to rigid body translations in R
3.

It is straightforward to extend the above theorem to hypersurfaces in R
n . Also

note that a discussion similar to Remark 15 shows that the mapping ϕ in Theorem
18 is not necessarily an embedding and unlike Theorem 17, ϕ is unique only up to
rigid body translations in R

3.

3.1.3. Linearized Elasticity on Curved Manifolds The operator D1 : Γ (S2T ∗B)

→ Γ (S2(Λ2T ∗B)) in the Calabi complex expresses the compatibility equations
for the linear strain on the n-manifold (B, G) with constant curvature k. Note that
D1 is obtained by linearizing the Riemannian curvature, and therefore, it is related
to the compatibility equations for C. Next, we write D1 in a local coordinate sys-
tem. To simplify the calculations, we use the normal coordinate system {X I } in
the following sense: At any point X of B, there is a local coordinate system {X I }
centered at X such that ∇E I E J = 0, at X , where ∇ is the Levi-Civita connection
and {E I } is the local basis induced by {X I } for T B, which is orthonormal at X
[20]. The Cartesian coordinate system of R

n is a global normal coordinate system
for the Euclidean space. Let e ∈ Γ (S2T ∗B). In a normal coordinate system {X I }
at X , it is straightforward to verify that(∇E I ∇EK e

)
(E J , EL) = E I (EK (e(E J , EL))) − E I

(
e(∇EK E J , EL)

+ e(E J ,∇EK EL)
)
.

We have ∇E I E J = Γ K
I J EK , where Γ K

I J ’s are the Christoffel symbols of ∇. The
linear compatibility equations can be written as D1(e) = 0. By using the above rela-
tion, the compatibility equation at X corresponding to the component (D1(e))I J K L

reads

∂2eJ L

∂ X I ∂ X K
+ ∂2eI K

∂ X J ∂ X L
− ∂2eJ K

∂ X I ∂ X L
− ∂2eI L

∂ X J ∂ X K
+

(
∂Γ M

L J

∂ X I
− ∂Γ M

L I

∂ X J

)
eM K

+
(

∂Γ M
K I

∂ X J
− ∂Γ M

K J

∂ X I

)
eM L +k

{
δJ K eI L −δI K eJ L −δJ LeI K +δI LeJ K

} = 0.

If B ⊂ R
n and {X I } is the Cartesian coordinate system, one recovers the classical

expression curl ◦ curl e = 0. For n = 2, there is only one compatibility equation
corresponding to (D1(e))1212:

∂2e11

∂X2∂ X2 − 2
∂2e12

∂ X1∂ X2 + ∂2e22

∂ X1∂ X1 +
(

∂Γ M
11

∂ X2 − ∂Γ M
12

∂ X1

)
eM2

+
(

∂Γ M
22

∂ X1 − ∂Γ M
21

∂ X2

)
eM1 − k(e11 + e22) = 0.
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For n = 3, we have 6 compatibility equations corresponding to (D1(e))1212,
(D1(e))1223, (D1(e))1313, (D1(e))2113, (D1(e))2323, and (D1(e))3123.

As an example, let us write the compatibility equation on the 2-sphere with
radius R and k = 1/R2. We choose the spherical coordinate system with
(X1, X2) := (θ, φ), with G11 = R2 sin2 φ, G12 = 0, and G22 = R2. The nonzero
Christoffel symbols are Γ 2

11 = − 1
2 sin 2φ, and Γ 1

12 = Γ 1
21 = cot φ. Note that (θ, φ)

is an orthogonal coordinate system but it is not a normal coordinate system at any
point. Therefore, we must use the general form of the compatibility equations given
in (2.13). Using the relations ∇E1 E1 = Γ 2

11 E2, ∇E1 E2 = ∇E2 E1 = Γ 1
12 E1, and

∇E2 E2 = 0, one obtains the following compatibility equation:

∂2e11

∂ X2∂ X2 − 2
∂2e12

∂ X1∂ X2 + ∂2e22

∂ X1∂ X1 − (cot X2)
∂e11

∂ X2

− 1

2
(sin 2X2)

∂e22

∂ X2 + 2(cot2 X2)e11 = 0.

The components eI J are not the conventional components eθθ , eθφ , and eφφ of the
linear strain in the spherical coordinate system as E1 and E2 are not unit vector
fields. Since e11 = R2 sin2φ eθθ , e12 = R2 sin φ eθφ , and e22 = R2eφφ , the above
equation can be written as

sin2 φ
∂2eθθ

∂φ2 − 2
∂2

(
eθφ sin φ

)
∂θ∂φ

+ ∂2eφφ

∂θ2 + 3

2
sin 2φ

∂eθθ

∂φ

− 1

2
sin 2φ

∂eφφ

∂φ
+ (sin 2φ − 1)eθθ = 0.

Note that instead of using the Calabi complex and the linearization of the Rie-
mannian curvature, it is possible to derive the compatibility equations of the lin-
ear strain on manifolds with constant curvature by a less-systematic elimination
approach discussed in [29, Section 11].

3.2. Stress Functions

Next, we study the applications of the complexes we derived earlier to the
existence of stress functions. Let ϕ : B → S = R

3 be a motion of a 3-manifold
B ⊂ R

3 and suppose σ ∈ Γ (S2T ϕ(B)) is the associated symmetric Cauchy
stress tensor. Since (ϕ(B), g) is a flat manifold, one obtains a diagram similar to
(2.17) on (ϕ(B), g). Potentials induced by the operator curl ◦ curl for σ are the
Beltrami stress functions. The necessary and sufficient conditions for the existence
of Beltrami stress functions are given by (2.19): σ must be equilibrated and the
resultant forces and moments on any closed surface in ϕ(B) must vanish. Such a
stress tensor is called totally self-equilibrated [17]. Note that the operator grads

in the linear elasticity complex on (ϕ(B), g) does not have any obvious physical
interpretation.

If σ is not symmetric, one can obtain curlT-stress functions for σ by considering
the gcd complex on (ϕ(B), g), that is curlT-stress functions are potentials induced
by curlT. Theorem 3 implies that σ admits a curlT-stress function if and only if
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div σ = 0, and the resultant force on any closed surface in ϕ(B) vanishes. If the
closure B̄ of B is a compact subset of R

3, then Theorem 3 would be identical to
Theorem 2.2 of [9]. If σ admits a Beltrami stress function, then it also admits a
curlT-stress function. Unlike Beltrami stress functions that are symmetric tensors,
even if σ is symmetric, curlT-stress functions are not necessarily symmetric.

For the 2D case B ⊂ R
2, Airy stress functions and s-stress functions for sym-

metric and non-symmetric Cauchy stress tensors are induced by the complex (2.21)
and the sd complex, respectively. Note that if B̄ is compact, then the complex (2.21)
and the sd complex are the dual complexes of the 2D linear elasticity complex and
the gc complex with respect to the proper L2-inner products [2].

In the above discussions, by replacing (ϕ(B), g) with the flat manifold (B, C)

together with its global orthonormal coordinate system endowed with the Carte-
sian coordinate system of ϕ(B), one obtains stress functions for the second Piola–
Kirchhoff stress tensor S as well. In summary, we observe that the complexes for
σ and S only describe the kinetics of motion.

The GCD complex allows one to introduce CurlT-stress functions for the first
Piola–Kirchhoff stress tensor P ∈ Γ (T ϕ(B) ⊗ T B). More specifically, Theorem
5 implies that P admits a CurlT-stress function if and only if Div P = 0, and the
resultant force induced by P on any closed surfaces is zero. This together with
Theorem 14 show that the GCD complex describes both the kinematics and the
kinetics of motion. Similarly, one can define S-stress functions for 2-manifolds by
using the SD complex.

As mentioned in Remark 4, the dimensions of the cohomology groups of the
de Rham complex determine the number of independent closed curves and sur-
faces that one requires in the integral conditions for the existence of potentials.
Suppose Hk

d R(B) is finite dimensional. Then, for the linear and nonlinear com-
patibility problems for both 2- and 3-manifolds, one merely needs to use b1(B)

independent closed curves. The same is true for the existence of stress functions on
2-manifolds. For 3-manifolds, we need to consider b2(B) independent closed sur-
faces. Here, independent closed curves and surfaces are those that induce distinct
cohomology classes in Hk

d R(B).

3.3. Further Applications

In this paper, we assumed that a body B is an arbitrary submanifold of R
n , for

example it can be unbounded or has infinite-dimensional de Rham cohomologies.
We also assumed that all sections and mappings on B are C∞. One way to relax
this smoothness assumption is to impose certain restrictions on the topology of
B. In particular, suppose B is the interior of a compact manifold B̄. Then, B̄ is a
compact manifold with boundary and hence all Hk

d R(B̄)’s are finite dimensional.
The compactness of B̄ allows one to define L2-inner products for smooth tensors
on B̄ and the completion of smooth tensors with respect to these inner products
gives us some Sobolev spaces that contain less smooth tensors as well. Using these
Sobolev spaces, one can extend smooth complexes discussed here to more general
Hilbert complexes.
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As is discussed in [2], one can use the corresponding Hilbert complexes to intro-
duce Hodge-type and Helmholtz-type orthogonal decompositions for second-order
tensors. Moreover, one can also include Dirichlet boundary conditions in the com-
patibility problem. On the other hand, these Hilbert complexes can provide suitable
solution spaces for mixed formulations for nonlinear elasticity and inelasticity in
terms of the displacement gradient and the first Piola–Kirchhoff stress tensor. Sim-
ilar to the numerical schemes developed in [3,4] for the Laplace and the linear
elasticity equations, such mixed formulations may provide numerical schemes that
are compatible with the topology of the underlying bodies.
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