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The geometrical formulation of continuum mechanics
provides us with a powerful approach to understand
and solve problems in anelasticity where an
elastic deformation is combined with a non-
elastic component arising from defects, thermal
stresses, growth effects or other effects leading to
residual stresses. The central idea is to assume that
the material manifold, prescribing the reference
configuration for a body, has an intrinsic, non-
Euclidean, geometrical structure. Residual stresses
then naturally arise when this configuration is
mapped into Euclidean space. Here, we consider
the problem of discombinations (a new term that
we introduce in this paper), that is, a combined
distribution of fields of dislocations, disclinations
and point defects. Given a discombination, we
compute the geometrical characteristics of the
material manifold (curvature, torsion, non-metricity),
its Cartan’s moving frames and structural equations.
This identification provides a powerful algorithm
to solve semi-inverse problems with non-elastic
components. As an example, we calculate the residual
stress field of a cylindrically symmetric distribution
of discombinations in an infinite circular cylindrical
bar made of an incompressible hyperelastic isotropic
elastic solid.

1. Introduction
In a series of seminal papers, Rivlin developed a
systematic approach to solve simple but fundamental
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problems of nonlinear elasticity [1–3]. Rivlin’s approach is mostly based on the semi-inverse
method where the geometry of the deformation is known up to a few unknown functions
or constants that are obtained through simple boundary-value problems. For instance, in
incompressible isotropic elasticity, one can consider the deformation of a spherical shell into
another spherical shell when subjected to internal pressure. Once this deformation is known,
the computation of the solution amounts to finding a single parameter (say, the internal radius
of the deformed sphere) that is obtained by a single quadrature. The beauty of such solutions
is that they exist for arbitrary strain-energy functions (in that case, they are known as universal
semi-inverse solutions). Arguably, Rivlin’s work has been central in the development of nonlinear
elasticity over the past 50 years as it has provided a systematic way to explore analytically the
nonlinear behaviour of elastic materials [4–6].

Whereas the framework for computing solutions for semi-inverse problems in elasticity is now
completely understood, the equivalent framework for systems with defects, or more generally
for anelastic problems, has not yet been established. Many authors have obtained particular
solutions for specific anelastic problems in different fields as they naturally arise in the theory of
distributed defects (see below), finite strain plasticity [7], morpho-elasticity (the theory of growth
and remodelling) [8–12] or thermoelasticity [13]. The central problem is to compute the residual
stress created by the non-elastic components of the deformation. Perhaps the main reason why
a general method for semi-inverse problems in anelasticity has not yet been proposed is that
the characterization of the non-elastic components is a non-trivial task. However, we argue here
that the geometrical approach of anelasticity provides a natural framework both to characterize
non-elastic effects and to compute the residual stresses they generate. The approach presented
here is suitable to describe any anelastic components but, for the sake of illustration, we discuss
the problem of distributed defects. The translation to any other anelastic theory follows with a
suitable change of terminology.

The mathematical study of defects in solids goes back to Volterra [14] more than a century
ago. Combinations of dislocations and disclinations were originally referred to as ‘distortions’
by Volterra, but we call them line defects in this paper. Love [15] and Frank [16] called the
translational and rotational line defects, dislocations and disclinations, respectively. As defects
strongly affect the mechanical properties of various structural components, calculating stress
fields of defects, their dynamics and understanding their interactions has been a central problem
for the mechanics community. The existing stress calculations are overwhelmingly linear. In
the setting of linear elasticity, Green’s functions can be used and, from the knowledge of a
fundamental solution, the stress field of an arbitrary defect distribution can be computed. One
can also study the interaction of defects by using the superposition principle. However, in the
framework of nonlinear elasticity, superposition is not possible and each problem combining
defects has to be solved separately.

In the framework of nonlinear elasticity, there are very few exact solutions for defects. We
should mention [7,17–20] for dislocations, [19,21,22] for disclinations and the authors’ recent
works [23,24] for point defects. For a combination of defects, we are aware only of the work
of Zubov [19], who calculated the stress field of a combination of a single screw dislocation and
a single wedge disclination both lying on the same line (a dispiration according to Harris [25]).
By extension, we refer to discombination as any combination of line and point defects in nonlinear
solids. We should emphasize that discombination is a new term that we introduce in this paper.
As we are not aware of any calculation of stress field for general discombinations, we present here
a general algorithm with application to some problems with cylindrical symmetry.

In a recent paper, Clayton [26] used a geometrical theory based on a multiplicative
decomposition of deformation gradient into elastic and defect parts and presented analytical
second-order solutions for a single screw dislocation, a single wedge disclination and a single
point defect in isotopic compressible solids. In these approximate second-order solutions, the
strain-energy function is a polynomial truncated at third order with respect to displacement
gradients. Kupferman et al. [27] describe defects assuming only a metric structure. Bodies
with isolated defects are viewed as multiply-connected affine manifolds. Both disclinations and
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dislocations are characterized by the monodromy, which maps curves that surround the loci of
the defects into affine transformations. They also show that two-dimensional defects with trivial
monodromy (e.g. metric quadrupoles) are purely local. We should also mention the recent work
of Acharya & Fressengeas [28], who present a continuum theory of interactions of dislocations
and phase boundaries.

In the 1950s, Kondo [29,30] and Bilby et al. [31] independently discovered the close connection
between non-Riemannian geometries and the mechanics of distributed defects. Their discussions
were mainly kinematic. Following their seminal works, many researchers studied the geometric
mechanics of defects. Unfortunately, these geometrical works remained mostly formal with very
few stress calculations for distributed defects. Recently, we revisited the geometric theory of
solids with distributed defects and showed that it is also suitable for the calculation of stress
fields in nonlinear solids with distributed defects by computing explicitly solutions with either
dislocations, disclinations or point defects [7,22,23]. To further emphasize the power of such an
approach, here we first present the general geometric theory for combined defects and derive from
it a general method for semi-inverse problems in anelasticity based on Cartan’s moving frames
and structural equations. We then illustrate this method on a cylinder with general radial defects.

2. Non-Riemannian geometries, Cartan’s moving frames and the nonlinear
mechanics of defects

(a) Metric-affine manifolds
The stress-free configuration of a body with distributed defects is described by a metric-affine
manifold, which is a triple (B, ∇, G), where B is a manifold, ∇ is a connection and G is a metric. In
general, ∇ and G are independent geometrical entities. When ∇ is the Levi–Civita connection of
G, for example, (B, ∇, G) is reduced to a Riemannian manifold. We briefly review the geometrical
machinery needed for the analysis of defective solids; details are given in [7,22,23].

A linear (affine) connection on a manifold B is an operation ∇ : X (B) × X (B) →X (B),
where X (B) is the set of vector fields on B, such that ∀X, Y, X1, X2, Y1, Y2 ∈X (B), ∀f , f1, f2 ∈
C∞(B), ∀a1, a2 ∈ R: (i) ∇f1X1+f2X2 Y = f1∇X1 Y + f2∇X2 Y, (ii) ∇X(a1Y1 + a2Y2) = a1∇X(Y1) + a2∇X(Y2),
and (iii) ∇X( f Y) = f∇XY + (Xf )Y. The vector ∇XY is the covariant derivative of Y along X. In a
local chart {XA}, ∇∂A∂B = Γ C

AB∂C, where Γ C
AB are Christoffel symbols of the connection and

∂A = ∂/∂XA are the natural bases for the tangent space corresponding to a coordinate chart {XA}. A
linear connection is compatible with a metric G if and only if ∇G = 0. The torsion of a connection
is defined as

T(X, Y) = ∇XY − ∇YX − [X, Y]. (2.1)

The connection ∇ is symmetric if it is torsion-free, i.e. ∇XY − ∇YX = [X, Y]. On any Riemannian
manifold (B, G), there is a unique linear connection ∇ that is compatible with G and is torsion-
free. This is the Levi–Civita connection. In a manifold with a connection the curvature, which
quantifies the deviation of a manifold from being flat, is a map R : X (B) × X (B) × X (B) →X (B)
defined by

R(X, Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z. (2.2)

Finally, we quantify non-metricity. Given a manifold with a metric and an affine connection
(B, ∇, G), the non-metricity is a map Q : X (B) × X (B) × X (B) →X (B) defined as

Q(U, V, W) = 〈〈∇UV, W〉〉G + 〈〈V, ∇UW〉〉G − U[〈〈V, W〉〉G]. (2.3)

Or simply, Q = −∇G. As we see, from a mechanical point of view, the torsion and curvature
tensors are the geometrical analogues of, respectively, the dislocation and the disclination density
tensors [7,22]. In the case of distributed point defects, ∇ is not compatible with G [23,24].
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(b) Cartan’s moving frames
Many calculations can be conveniently performed using a judicious choice of coordinate bases.
However, to establish the theory, it is easier to work with non-coordinate bases. A Cartan’s
moving frame is an orthonormal frame field {eα}N

α=1 that forms a basis for the tangent space
at every point of a manifold B. Because this frame is orthonormal, i.e. 〈〈eα , eβ 〉〉G = δαβ , we have
G = δαβϑα ⊗ ϑβ , where {ϑα} is the orthonormal coframe field. This is, in general, a non-coordinate
basis for the tangent space. Connection 1-forms are defined as

∇eα = eγ ⊗ ωγ
α . (2.4)

The corresponding connection coefficients are defined as ∇eβ
eα = 〈ωγ

α , eβ 〉eγ = ωγ
βαeγ . In other

words, ωγ
α = ωγ

βαϑβ . Similarly, ∇ϑα = −ωα
γ ϑγ and ∇eβ

ϑα = −ωα
βγ ϑγ .

We can now express the key geometrical parameters introduced in §2a in terms of Cartan’s
moving frames {eα}. First, consider the non-metricity for which we have Qγαβ = Q(eγ , eα , eβ ).
The non-metricity 1-forms are defined as Qαβ =Qγαβϑγ , where {ϑα} is the co-frame field, so that

Qαβ = ωαβ + ωβα − dGαβ =: −DGαβ , (2.5)

where D is the covariant exterior derivative. This is Cartan’s zeroth structural equation. For
an orthonormal frame, Gαβ = δαβ and hence Qαβ = ωαβ + ωβα . The Weyl 1-form is defined as
Q = (1/n)QαβGαβ . Hence, Qαβ = Q̃αβ + QGαβ , where Q̃ is the traceless part of non-metricity. Here,
we restrict our attention to manifolds with Q̃ = 0; in that case (B, ∇, G) is called a Weyl–Cartan
manifold. (At this time, we do not know what defect(s) Q̃ may represent. This remains to be
investigated in the future.) In addition, if ∇ is torsion-free, then (B, ∇, G) is called a Weyl manifold.
One can show that [32]

ωα
α = n

2
Q + 1

2
GαβdGαβ = n

2
Q + d ln

√
det G. (2.6)

And it follows that

D
√

det G = d
√

det G − ωα
α

√
det G = −n

2
Q

√
det G, (2.7)

i.e. the connection ∇ is not volume-preserving.
Similarly, we can define the torsion and curvature 2-forms with respect to the connection

1-forms as

T α = dϑα + ωα
β ∧ ϑβ and Rα

β = dωα
β + ωα

γ ∧ ωγ
β . (2.8)

These are Cartan’s first and second structural equations. Figure 1 schematically shows special cases of
metric-affine manifolds. In the presence of combined line and point defects, the material manifold
is a Weyl–Cartan manifold.

The Bianchi identities read

DQαβ := dQαβ − ωγ
α ∧ Qγβ − ωγ

β ∧ Qαγ =Rαβ + Rβα , (2.9)

DT α := dT α + ωα
β ∧ T β =Rα

β ∧ ϑβ (2.10)

and DRα
β := dRα

β + ωα
γ ∧ Rγ

β − ωγ
β ∧ Rα

γ = 0. (2.11)

Equations (2.10) and (2.11) are the geometrical analogues of Anthony’s [33] compatibility
equations (11) and (12) relating the dislocation and disclination density tensors.

(c) The compatible volume element on a Weyl manifold
In the presence of point defects, we need to relate non-metricity to the volume density of point
defects. This is done using the notion of the compatible volume element [23,24]. A volume form on
an n-manifold is a nowhere vanishing n-form. In the orthonormal coframe field {ϑα}, a volume
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metric-affine manifold (   ,   , G)

~
Weyl manifold (   ,   , G)

Q = 0, T = 0, R π 0
~Weyl–Cartan manifold (   ,   , G)
Q = 0, T π 0, R π 0

Riemann–Cartan manifold (    ,   , G)
—G = 0, T π 0, R π 0

Riemannian manifold (   ,   , G)
—G = 0, T = 0, R π 0

Weitzenböck manifold (   ,   , G)
—G = 0, T π 0, R = 0

flat (Euclidean) manifold (   ,   , G)
—G = 0, T = 0, R = 0

Figure 1. Special cases of metric-affine manifolds.

form can be written as μ = hϑ1 ∧ · · · ∧ ϑn, for some positive function h to be determined. In a
coordinate chart {XA}, the volume form is written as

μ = h
√

det G dX1 ∧ · · · ∧ dXn. (2.12)

When h = 1, we recover the classical Riemannian volume element. The divergence of an arbitrary
vector field W on B can be defined using the Lie derivative as (Div W)μ = LWμ [34]. For a given
connection, the divergence of a vector field is defined as Div∇W = WA|A = WA

,A + Γ A
ABWB.

The connection μ is compatible with ∇ if LWμ = (WA|A)μ [35]. Thus, dh/h = d ln h = (n/2)Q. In
coordinate form, this reads

∂h
∂XA − n

2
hQA = 0. (2.13)

Note that the existence of a compatible volume element implies that the Weyl 1-form Q is closed,
i.e. dQ = (2/n)d ◦ d ln h = 0.

(d) Geometric elasticity and anelasticity
So far, we have established the kinematic framework for the geometry of a body with defects.
Next, we briefly review aspects of the theory of geometric nonlinear elasticity. A body B is
identified with a Riemannian manifold B, and a configuration of B is a mapping ϕ : B → S,
where S is another Riemannian manifold. We assume that the body is stress free in the material
manifold. The material velocity is the map Vt : B → Tϕt(X)S given by Vt(X) = V(X, t) = ∂ϕ(X, t)/∂t.
The deformation gradient is the tangent map of ϕ and is denoted by F = Tϕ. Therefore, at each
point X ∈B, it is a linear map F(X) : TXB → Tϕ(X)S. If {xa} and {XA} are local coordinate charts
on S and B, respectively, then the components of F read Fa

A(X) = (∂ϕa/∂XA)(X). The transpose
of F is defined by FT : TxS → TXB, 〈〈FV, v〉〉g = 〈〈V, FTv〉〉G, for all V ∈ TXB, v ∈ TxS. In components
(FT(X))A

a = gab(x)Fb
B(X)GAB(X), where g and G are metric tensors on S and B, respectively. F has

the following local representation: F = Fa
A(∂/∂xa) ⊗ dXA. The right Cauchy–Green deformation

tensor C(X) : TXB → TXB is defined by C(X) = F(X)TF(X). In components, CA
B = (FT)A

aFa
B. One can
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show that C� = ϕ∗(g), i.e. CAB = (gab ◦ ϕ)Fa
AFb

B. The following are the governing equations of
nonlinear elasticity in material coordinates [36]:

∂ρ0

∂t
= 0, Div P + ρ0B = ρ0A, τ T = τ , (2.14)

where P is the first Piola–Kirchhoff stress and τ = Jσ is the Kirchhoff stress, σ is the Cauchy stress,
J =√

det g/ det G det F is the Jacobian, and σ ab = (1/J)PaAFb
A.

As usual, one can use different measures of strain. The left Cauchy–Green deformation tensor
is defined as B� = ϕ∗(g�) and has components BAB = (F−1)A

a(F−1)B
bgab. The spatial analogues of

C� and B� are

c� = ϕ∗(G), cab =
(

F−1
)A

a

(
F−1

)B
bGAB (2.15)

and

b� = ϕ∗(G�), bab = Fa
AFb

BGAB, (2.16)

where b� is the Finger deformation tensor. C and b have the same principal invariants usually
denoted by I1, I2 and I3 [37]. For an isotropic material, the strain-energy function W depends
only on the principal invariants of b. It is standard to show that for a compressible and isotropic
material the Cauchy stress has the following representation [38]:

σ = 2
(

I2

I3

∂W
∂I2

+ ∂W
∂I3

)
g� + 2

∂W
∂I1

b� − 2
∂W
∂I2

b−1. (2.17)

Similarly, for an incompressible and isotropic material, the Cauchy stress has the following
representation [38]:

σ =
(

−p + 2I2
∂W
∂I2

)
g� + 2

∂W
∂I1

b� − 2
∂W
∂I2

b−1. (2.18)

(e) Continuummechanics of solids with distributed defects
In the presence of defects, a solid body may become residually stressed. In classical nonlinear
elasticity, one assumes that the reference (natural) configuration is stress free. Stresses caused by
external forces are then due to a deviation from the natural configuration. Such deviations are
quantified using different measures of strain. Classically, residual stresses are computed by using
a multiplicative decomposition, that is, by decomposing the deformation gradient into elastic and
inelastic parts. In the present geometrical framework, such steps are not necessary as the effect of
non-elastic components is directly contained in the geometry of the material manifold. Therefore,
the first step in computing the residual stress for a given configuration of defects is to identify
a material manifold in which the defective body is stress free. This manifold has a non-trivial
geometry that explicitly depends on the geometrical nature of defects and their distributions.
Once the material manifold is known, we look for an embedding of the underlying Riemannian
material manifold into the Euclidean ambient space. Any measure of strain must be defined with
respect to the material manifold.

In the following, we assume a fixed distribution of defects, find the corresponding material
manifold and then compute the residual stress field by mapping the body into the ambient
space. We assume a hyperelastic material with energy density W, which explicitly depends on
the deformation gradient F. Because the deformation gradient is a two-point tensor, the energy
function explicitly depends on the metrics of both the material and ambient space manifolds, i.e.

W = W(F, G, g). (2.19)

The first Piola–Kirchhoff stress is calculated as

P = g� ∂W
∂F

. (2.20)
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The Riemannian manifold (B, G) being the underlying Riemannian material manifold implies that

∂W
∂F

∣∣∣∣∣
F=id,g=G

= 0. (2.21)

Remark 2.1. In the present geometrical framework, it is assumed that the defect-free body is
stress free in Euclidean space in the absence of external loads. The body may be composed of
a material with multiple stress-free configurations, e.g. a strain-energy density with multiple
wells. However, it is assumed that every material point is in the same energy well. In other
words, we are not considering phase transformations. It is then assumed that some distribution
of defects appears in the body that induces residual stresses. It should be emphasized that
we are not considering nucleation or the work associated with the creation of defects. The
stress-free configuration of the defective body—the material manifold—explicitly depends on
the distribution of defects and their types but not on the constitutive equations of the material.
However, residual stresses explicitly depend on the constitutive equations.

3. Examples of defects with cylindrical symmetry
Before we carry out the full computation of stress in the presence of discombinations, it is
instructive to consider two simpler settings. We first look at a combination of a single dislocation
and a single disclination and construct the corresponding material manifold using Volterra’s
cut-and-weld process [39]. In the second example, we solve the problem of an infinite circular
cylindrical bar with a cylindrically symmetric distribution of point defects and find the non-
metricity 1-forms corresponding to an isotropic distribution of point defects. This result will
be needed later on when we calculate the residual stress field of a cylindrically symmetric
distribution of discombinations.

(a) Combination of a single screw dislocation and a single wedge disclination along
the same line

We look at a combination of a single screw dislocation and a single wedge disclination lying on the
same line as a motivation for studying more complex combinations of defects for which Volterra’s
cut-and-weld approach cannot be used. We denote the Euclidean 3-space by B0 with flat metric
in cylindrical coordinates (R0, Θ0, Z0) given by

dS2 = dR2
0 + R2

0dΘ2
0 + dZ2

0. (3.1)

We cut B0 along the closed half-planes Θ0 = 0 and Θ0 = α(0 < α < 2π ), remove the line R = 0
and the region 0 < Θ0 < α, translate the two closed half-planes by b in the Z0-direction and
then identify the two closed half-planes. This is Volterra’s cut-and-weld construction of a
combined screw dislocation–wedge disclination (dispiration) with the Z-axis as its defect line.
The coordinates

R = R0, Θ = β(Θ0 − α) and Z = Z0 − b
2π

Θ0, (3.2)

where β = 2π/(2π − α) are smooth on B [39]. Note that β > 1 if we remove a wedge region
(positive disclination), but β < 1 corresponds to the insertion of a wedge (α < 0, negative
disinclination). In the new coordinate system, the flat metric (3.1) has the following representation
in cylindrical coordinates:

dS2 = dR2 + R2
(

1
β

dΘ

)2
+
(

dZ + b
2πβ

dΘ

)2

= dR2 +
(

R2

β2 + b2

4π2β2

)
dΘ2 + dZ2 + b

πβ
dΘdZ. (3.3)
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Therefore, the material metric for the defective body has the following form:

G =

⎛
⎜⎜⎜⎜⎝

1 0 0

0
R2

β2 + b2

4π2β2
b

2πβ

0
b

2πβ
1

⎞
⎟⎟⎟⎟⎠ . (3.4)

In the absence of external forces, we embed the body into the ambient space (S, g), which is
the flat Euclidean 3-space, and look for solutions of the form (r, θ , z) = (r(R), Θ , Z). Having the
defective body in the material manifold, the anelasticity problem is transformed to an elasticity
problem mapping a material manifold with a non-trivial geometry to the Euclidean ambient
space. The deformation gradient is F = diag(r′(R), 1, 1), for which the incompressibility condition
reads

J =
√

det g
det G

det F = r′(R)r(R)
R/β

= 1. (3.5)

Assuming that r(0) = 0 to fix the rigid translations, we obtain r = (1/
√

β)R. In order to easily
compare the stress field with the linear solution, we consider a neo-Hookean solid for which
we have [40] PaA = μFa

BGAB − p(F−1)b
Agab, where p = p(R) is the unknown pressure field. The

non-zero first Piola–Kirchhoff stress components read

PrR = μ√
β

− √
βp(R), PθΘ = μβ2

R2 − β

R2 p(R),

PzZ = μ − p(R) + μb2

4π2R2 , PθZ = PzΘ = − μbβ
2πR2 .

⎫⎪⎪⎬
⎪⎪⎭ (3.6)

The corresponding Cauchy stresses are

σ rr = μ

β
− p(R), σφφ = μβ2

R2 − β

R2 p(R),

σ zZ = μ − p(R) + μb2

4π2R2 , σθz = σ zθ = − μbβ
2πR2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

In the absence of body forces, the only non-trivial equilibrium equation is σ ra|a = 0 (p = p(R) is the
consequence of the other two equilibrium equations), which is simplified to read

σ rr
,r + 1

r
σ rr − rσθθ = 0. (3.8)

Or

σ rr
,R + 1√

β

(
1
r
σ rr − rσθθ

)
= 0. (3.9)

This then gives us

p′(R) = μ

(
1
β

− β

)
1
R

. (3.10)

Assuming that the traction at R = Ro is −p∞, i.e. σ rr(Ro) = −p∞, we have

p(R) = μ

β
+ p∞ − μ

(
β − 1

β

)
ln

R
Ro

. (3.11)

The Cauchy stress is written as

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ

(
β − 1

β

)
ln

R
Ro

0 0

0 − p∞β

R2 + μ(β2 − 1)
R2

(
1 + ln

R
Ro

)
− μbβ

2πR2

0 − μbβ
2πR2

p∞√
β

+ μ

(
1 − 1

β

)
+ μ

(
β − 1

β

)
ln

R
Ro

+ μb2

4π2R2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.12)
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Note that the spatial metric in cylindrical coordinates has the form g = diag(1, r2, 1). The
non-zero physical components of the Cauchy stress read

σ̄ rr = σ rr, σ̄ θθ = r2σθθ = R2

β
σθθ = −p∞ + μ

(
β − 1

β

)(
ln

R
Ro

+ 1
)

(3.13)

and

σ̄ zz = σ zz, σ̄ θz = σ̄ zθ = rσθz = −μb
√

β

2πR
. (3.14)

Note that the coupling effect is seen only in shear stresses and obviously superposition breaks
down.

Remark 3.1. For p∞ = 0, α, b � 1 and β ≈ 1, we obtain

σ̄ rr ≈ μα

π
ln

R
Ro

, σ̄ θθ ≈ μα

π

(
ln

R
Ro

+ 1
)

,

σ̄ zz ≈ μα

π

(
ln

R
Ro

+ 1
2

)
, σ̄ θz ≈ σ̄ zθ ≈ − μb

2πR
.

⎫⎪⎪⎬
⎪⎪⎭ (3.15)

This is exactly the classical solution obtained in linearized elasticity for the superposition of
disclinations [41,42] and dislocations (with ν = 1/2).

Remark 3.2. Note that, in general, in the presence of disclinations Burger’s vector is not well
defined as the rotations created by the disclinations also induce translations [43–45]. However, if
the plane of rotation is perpendicular to the direction of translations at all points, Burger’s vector
is well defined.

(b) A cylindrically symmetric distribution of point defects
In [23,24], we built the material manifold of a spherically symmetric distribution of point defects
in a ball of radius Ro. Here, we consider the equivalent problem for a cylindrically symmetric
distribution of point defects in an infinite circular cylindrical bar of radius Ro and construct its
material manifold and then calculate its residual stress field assuming that the defective body is
an arbitrary incompressible isotropic body.

The key to model point defects is to relate the volume form to the density of point defects.
Here, we assume a volume density of point defects n(R). Denoting the volume form of the Weyl
manifold by μ, for a sub-body U ⊂B, the volumes of the point defect-free and the defective
sub-body are

V̂(U) =
∫
U

μ̂, V(U) =
∫
U

μ, (3.16)

where μ̂ is the volume form in the material manifold in the absence of point defects. The volume
of the point defects in U is calculated as

Vd(U) =
∫
U

μ̂ −
∫
U

μ =
∫
U

(μ̂ − μ) =
∫
U
nμ̂. (3.17)

To explicitly relate this volume of point defects to the geometry of the material manifold, we look
for a coframe field in the cylindrical coordinates (R, Θ , Z), R ≥ 0, 0 ≤ Θ ≤ π , Z ∈ R of the following
form:

ϑ1 = f (R)dR, ϑ2 = RdΘ and ϑ3 = dZ, (3.18)

for some unknown function f to be determined. With this coframe, we can compute explicitly the
two volume forms, that is,

μ̂ = RdR ∧ dΘ ∧ dZ, μ = h(R)ϑ1 ∧ ϑ2 ∧ ϑ3 = Rf (R)h(R)dR ∧ dΘ ∧ dZ, (3.19)
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for some positive function h satisfying (2.13). Therefore, μ̂ − μ = [1 − f (R)h(R)]RdR ∧ dΘ ∧ dZ,
and n(R) = 1 − f (R)h(R). We can now compute the non-metricity. We assume the following
connection 1-form matrix:

ω = [ωα
β ] =

⎛
⎜⎜⎝

q(R)ϑ1 ω1
2 −ω3

1

−ω1
2 q(R)ϑ1 ω2

3

ω3
1 −ω2

3 0

⎞
⎟⎟⎠ , (3.20)

where q is a function to be determined. Note that this choice of diagonal connection forms
corresponds to Q11 =Q22 = 2q(R)ϑ1, Q33 = 0. We first need to enforce T α = 0, for α = 1, 2, 3. Note
that

dϑ1 = 0, dϑ2 = 1
Rf (R)

ϑ1 ∧ ϑ2, dϑ3 = 0. (3.21)

From Cartan’s first structural equations, we obtain the following connection 1-forms:

ω1
2 = −

[
1

Rf (R)
+ q(R)

]
ϑ2, ω2

3 = ω3
1 = 0. (3.22)

From the second structural equations, we can easily check that R2
3 =R3

1 = 0 are trivially satisfied
and

R1
2 = − 1

f (R)

[
q′(R) + q(R)

R
− f ′(R)

Rf 2(R)

]
ϑ1 ∧ ϑ2. (3.23)

R1
2 = 0 gives us (Rq(R))′ = −(1/f (R))′ and hence Rq(R) = −1/f (R) + C. When q(R) = 0, we know

that f (R) = 1 and hence C = 1. Thus

q(R) = 1
R

[
1 − 1

f (R)

]
. (3.24)

The Weyl 1-form is calculated as

Q = 1
3
Qαβδαβ = 1

3
(Q11 + Q22 + Q33) = 4

3
q(R)ϑ1

= 4
3R

[
1 − 1

f (R)

]
ϑ1 = 4(f (R) − 1)

3R
dR. (3.25)

For our cylindrically symmetric point defect distribution, the relationship (2.13) is simplified
to read

d
dR

ln h(R) = h′(R)
h(R)

= 3
2

4( f (R) − 1)
3R

= 2( f (R) − 1)
R

. (3.26)

Therefore, Rh′(R) + 2h(R) = 2(1 − n(R)) and hence

h(R) = 1 − 1
R2

∫R

0
2yn(y) dy. (3.27)

Thus

f (R) = 1 − n(R)

1 − (1/R2)
∫R

0 2yn(y) dy
. (3.28)

Remark 3.3. We conclude that, given an isotropic distribution of point defects with volume
density n= n(R), the corresponding non-metricity 1-forms are

Q11 =Q22 = 1
R

[
1 − n(R)

1 − (1/R2)
∫R

0 2yn(y) dy
− 1

]
dR, Q33 = 0, Qαβ = 0, α �= β. (3.29)
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The material metric in cylindrical coordinates (R, Θ , Z) has the following form:

G =

⎛
⎜⎜⎝

f 2(R) 0 0

0 R2 0

0 0 1

⎞
⎟⎟⎠ . (3.30)

We use the cylindrical coordinates (r, θ , z) for the Euclidean ambient space with the following
metric: g = diag(1, r2, 1). To calculate the residual stress field, we embed the material manifold
into the Euclidean ambient space and look for solutions of the form (r, θ , z) = (r(R), Θ , Z). In the
following, we consider incompressible solids.

For an incompressible solid, we have

J =
√

det g
det G

det F = r(R)
Rf (R)

r′(R) = 1. (3.31)

Assuming that r(0) = 0 we obtain

r(R) =
(∫R

0
2xf (x) dx

)1/2

. (3.32)

The physical components of the deformation gradient are given by

F̂a
A = √

gaa

√
GAAFa

A no summation on a or A. (3.33)

Therefore

F̂ =

⎛
⎜⎜⎜⎜⎜⎝

R
r(R)

0 0

0
r(R)

R
0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . (3.34)

Thus, the principal stretches
(

eigenvalues of U = √
C
)

are

λ1 = R
r(R)

, λ2 = r(R)
R

and λ3 = 1. (3.35)

Because for an isotropic material strain-energy function depends only on the principal stretches,
i.e. W = W(λ1, λ2, λ3) [37], and the Cauchy stress is diagonal in the cylindrical coordinates (r, θ , z),
we have

σ rr = λ1g11 ∂W
∂λ1

− p(R)g11 = R
r(R)

∂W
∂λ1

− p(R), (3.36)

σθθ = λ2g22 ∂W
∂λ2

− p(R)g22 = 1
Rr(R)

∂W
∂λ2

− p(R)
r2(R)

(3.37)

and σφφ = λ3g33 ∂W
∂λ3

− p(R)g33 = ∂W
∂λ3

− p(R). (3.38)

In the absence of body forces, the only non-trivial equilibrium equation is σ ra|a = 0, which is
simplified to read

σ rr
,r + 1

r
σ rr − rσθθ = 0. (3.39)

Or

σ rr
,R + Rf

r

(
2
r
σ rr − 2rσθθ

)
= 0. (3.40)

This then gives us p′(R) = k(R), where

k(R) = 1
r(R)

(
∂W
∂λ1

− f (R)
∂W
∂λ2

)
+ R

r2(R)

(
1 − R2f (R)

r2(R)

)(
∂2W

∂λ2
1

− r2(R)
R2

∂2W
∂λ1∂λ2

)
. (3.41)
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Suppose that at the boundary σ rr(Ro) = −p∞. Thus

p(R) = p∞ + Ro

r(Ro)
∂W
∂λ1

∣∣∣∣
R=Ro

+
∫Ro

R
k(x) dx. (3.42)

Having the pressure field, all the stress components are easily calculated.

4. An algorithm for semi-inverse problems with discombinations
The two previous examples demonstrated how to obtain the stress field for defects by building
the corresponding material manifold. The first example depended on the cut-and-weld process to
build the material metric. The second example demonstrated how to obtain the non-metricity for
point defects. We are now interested in computing the stress field for a body with discombinations
(with and without external loads). Before considering particular problems, we obtain the general
equations that fully define the geometry of systems with given discombinations (assuming a
traceless non-metricity). In three dimensions, this leads to a system of 22 nonlinear PDEs for
the connection 1-forms and associated geometrical quantities. Obviously, this problem cannot
be solved in general, but for semi-inverse problems for which the deformation is prescribed, an
explicit computation can be performed. The basic idea is to start from a known geometry (for
instance, a cylinder, a sphere, a rectangular block) and consider a family of known geometric
deformations parametrized by a number of arbitrary parameters or functions. Then, the problem
reduces to computing these unknowns based on the conditions of mechanical equilibrium.
In the case of a material with defects, the body is characterized by its geometry, its local
material properties (the strain-energy density function, mass density), but also its distribution
of defects.

The step-by-step process to obtain the general equations that define the material manifold is
as follows:

Step 1: The physical inputs. We start naturally with the description of the physical defects.
Traditionally, these are given by Burger’s density vector for dislocations, Frank’s density
vector for disclinations, and the volume density of point defects. Each of these quantities
has a natural geometrical equivalent in a continuum representation. Burger’s density
vector is associated with the torsion 2-form (as detailed in [7,46]). Frank’s density vector
is associated with the curvature 2-form (as detailed in [22]), and from the volume
density of point defects, one can calculate the non-metricity 1-forms (see [23,24]) through
equation (2.13).

Step 2: Geometry. In a given coordinate chart {XA} whose geometry is closely related to the given
physical fields, we define the coframe field as ϑa = FaAdXA. Further, we introduce the
material connection 1-forms ωα

β and compute the torsion and curvature 2-forms given
by equations (2.8) with respect to the coframe field.

Counting the number of variables and unknowns. In n dimensions, F has n2 unknown
elements. The connection 1-forms ωα

β are also unknowns. We assume that ωα
β = −ωβ

α

(α �= β) and ωα
α = (n/2)Q (no summation) for some unknown Weyl 1-form Q. Note

that, in the presence of symmetry, some of the ωα
βs may vanish identically. Therefore,

there are 1/2(n2 − n) + 1 unknown 1-forms or (n/2)(n2 − n) + n unknown scalars. In the
compatible volume element, the function h is an unknown, i.e. 1 unknown. Therefore, the
total number of unknowns is

Nu = n2 +
(

n(n2 − n)
2

+ n

)
+ 1 = n3

2
+ n2

2
+ n + 1. (4.1)

Step 3: Cartan’s structural equations. From steps 1 and 2, we have on the one hand a description
of the defects in terms of curvature, torsion and non-metricity, and, on the other hand,
a characterization of the same objects in terms of the coframe fields. Therefore, we
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disclination density tensor
point defect volume density

d ln h dQ = 0

Ja = Fa
AdXA

a π b: wa
b = –wb

a
na = b: wa

b = Q
2

n Q
2

=

unknowns: Fa
A, Q,wa

b  and h

Fa
A, Q and h

G = dabJa

dislocation density tensor

a = dJa + wa
b  Ÿ Jb

a
b = dwa

b
 + wa

g  Ÿ wg
b

a = b:    ab = 0
a π b:    ab = –    ba m0 – m = nm0

Jb

fl
fl fl

fl

fi

ƒ

Figure 2. Construction of the material manifold for a defective body. Top: step 1, define the coframe field, the connection
1-forms and the volume functions. Middle: steps 2 and 3, from the physical inputs, solve for the unknown functions appearing
in step 1. Bottom: step 4, obtain the material metric. (Online version in colour.)

can identify the dislocation density tensor, disclination density tensor and point defect
volume density with their geometrical counterparts and the structural equations provide
a number of equations for the unknowns (the functions FaA, the connection 1-forms ωα

β ,
the Weyl 1-form Q and the volume function h).

Counting the number of equations. The first structural equations T α = dϑα + ωα
β ∧ ϑβ give

us n, 1-form equations or n2 scalar equations. The compatibility of the volume element
d ln h = (n/2)Q (and hence dQ = 0) is a 1-form equation or n scalar equations. The relation
μ̂ − μ = nμ̂ is an n-form equation or 1 scalar equation. Note that μ̂ is the volume form
of the point defect-free configuration. Finally, the second structural equations Rα

β =
dωα

β + ωα
γ ∧ ωγ

β imply that, for α = β, Rα
α = (n/2)dQ = 0 (no summation) are trivially

satisfied. For α �= β, Rα
β = −Rβ

α , i.e. the second structural equations give us 1/2(n2 − n),
1-form equations or (n/2)(n2 − n) scalar equations. Therefore, the number of governing
equations is

Ne = n2 + n + 1 + n(n2 − n)
2

= n3

2
+ n2

2
+ n + 1. (4.2)

Note that, as expected but nevertheless reassuring, Nu = Ne.
Step 4: Material metric. Assuming that there exists a solution at step 3, we know the coframe

field and hence the material metric G = δαβϑα ⊗ ϑβ can be computed. In a semi-inverse
problem, the metric is known up to a number of undetermined functions to be specified
by the elastic problem.

Step 5: Elasticity. Once the material metric is known, the standard equations of elasticity from a
Riemaniann manifold to the ambient space (a flat Riemannian manifold) given by (2.14)
can be solved for the remaining unknown parameters. For given boundary conditions,
the elastic computation gives the deformation gradient and the stress field (the residual
stress in the case of free-traction boundary conditions).

Figure 2 summarizes our approach for constructing the material manifold of a defective
solid.
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Remark 4.1. Given a torsion 2-form distribution and starting with a coframe field the
connection 1-forms are uniquely determined. This is a simple consequence of Cartan’s lemma
and a simple generalization of a similar result proved in [7]. Let us assume that Qαβ and T α are
given. In particular, we have Cartan’s first structural equations T α = dϑα + ωα

β ∧ ϑβ . Suppose
that there is another set of connection 1-forms ω̃α

β satisfying the same structural equations. Now,
defining κα

β = ω̃α
β − ωα

β , we have

κα
β ∧ ϑβ = 0. (4.3)

Using the zeroth structural equations and assuming that non-metricity is given we know that
κα

α = 0 (no summation) and κα
β = −κα

β (α �= β) and hence from Cartan’s lemma we conclude
that κα

β = 0 and hence the connection 1-forms are uniquely calculated.

Remark 4.2. In general, the number of unknowns and equations for step 3 are equal. For n = 3,
we have 22 equations for 22 unknowns. This is a large set of nonlinear coupled PDEs for which
no analytical progress seems possible. However, in problems with some symmetry, one can use
a semi-inverse approach, which means that most of FαA’s are assumed to be zero and the non-
zero ones are assumed to be functions of only a small number of {XA} coordinates. This judicious
ansatz will significantly simplify the construction of the material manifold and allows for the
explicit computation of systems with a combination of defects.

5. A detailed example of discombinations
We combine the two examples of §3 and consider a combination of cylindrically symmetric
distributions of screw dislocations, wedge disclinations and point defects in an infinite
incompressible isotropic circular cylindrical bar allowed to only deform radially, that is, (r, θ , z) =
(r(R), Θ , Z). We present the construction of solutions with discombinations by following the step-
by-step algorithm given in the previous section by first constructing the material manifold and
then calculating the stress field under uniform hydrostatic pressure.

(a) Step 1: physical inputs
(i) Screw dislocations

We assume a radial density of screw dislocations b(R). Written in terms of the torsion 2-forms, it
reads simply

T 1 = T 2 = 0, T 3 = b(R)
2π

dR ∧ RdΘ . (5.1)

(ii) Wedge disclinations

Similarly, a radial density of wedge disclinations w(R) is related to the curvature 2-forms,

R1
2 = w(R)

2π
dR ∧ RdΘ , R2

3 =R3
1 = 0. (5.2)

We define the auxiliary radial wedge disclination function as

W(R) = 1
2π

∫R

0
ρw(ρ) dρ. (5.3)
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(iii) Point defects

We assume again a volume density of point defects n(R). Following the construction of §3b, the
volume of point defects in U is calculated as

Vd(U) =
∫
U

(μ̂ − μ) =
∫
U
nμ̂. (5.4)

Importantly, because the non-metricity is solely owing to the presence of point defects and not
the other defects, we can directly use the result of remark 3.3 and set the non-metricity 1-forms to

Q11 =Q22 = 1
R

[
1 − n(R)

1 − (1/R2)
∫R

0 2yn(y) dy
− 1

]
dR, Q33 = 0, Qαβ = 0, α �= β. (5.5)

(b) Step 2: geometry
We assume that the wedge disclinations and the screw dislocations are parallel to the Z-axis.
Therefore, based on this geometry (and following remark 4.2 above), we expect the coframe field
to be a function of R only and we use the following ansatz:

ϑ1 = f (R)dR, ϑ2 = ξ (R)dΘ and ϑ3 = dZ + η(R)dΘ , (5.6)

for some unknown functions f , ξ and η to be determined. A simple calculation gives

dϑ1 = 0, dϑ2 = ξ ′

f ξ
ϑ1 ∧ ϑ2 and dϑ3 = η′

f ξ
ϑ1 ∧ ϑ2. (5.7)

Note that, because the traceless part of non-metricity vanishes, ωα
β = −ωβ

α for α �= β. Moreover,
the diagonal elements are related to the non-metricity given by (5.5) as explained in §3b. Therefore,
the matrix of connection 1-forms is assumed to have the following form:

ω = [ωα
β ] =

⎛
⎜⎜⎝

F(R)ϑ1 ω1
2 −ω3

1

−ω1
2 F(R)ϑ1 ω2

3

ω3
1 −ω2

3 0

⎞
⎟⎟⎠ , (5.8)

where

F(R) = f0(R) − 1
Rf (R)

, f0(R) = 1 − n(R)

1 − (1/R2)
∫R

0 2yn(y) dy
. (5.9)

(i) The torsion 2-forms

The first structural equations T α = dϑα + ωα
β ∧ ϑβ can be used to compute the torsion 2-forms

in terms of the connection 1-forms and the coframe field. Explicitly for α = 1, it reads

T 1 = dϑ1 + ω1
1 ∧ ϑ1 + ω1

2 ∧ ϑ2 + ω1
3 ∧ ϑ3

= ω1
2 ∧ ϑ2 − ω3

1 ∧ ϑ3

= ω1
12ϑ

1 ∧ ϑ2 − (ω1
32 + ω3

21)ϑ2 ∧ ϑ3 + ω3
11ϑ

3 ∧ ϑ1. (5.10)

Similarly, we have

T 2 =
(

ξ ′

f ξ
+ F + ω1

22

)
ϑ1 ∧ ϑ2 + ω2

23ϑ
2 ∧ ϑ3 − (ω1

32 + ω2
13)ϑ3 ∧ ϑ1 (5.11)

and

T 3 =
(

η′

f ξ
− ω3

21 − ω2
13

)
ϑ1 ∧ ϑ2 + ω2

33ϑ
2 ∧ ϑ3 + ω3

31ϑ
3 ∧ ϑ1. (5.12)
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(ii) The curvature 2-forms

Next, we compute the curvature 2-forms through the second Cartan’s structural equations Rα
β =

dωα
β + ωα

γ ∧ ωγ
β (trivially satisfied for α = β). For instance for α = 1, β = 2, we have

R1
2 = dω1

2 + ω1
1 ∧ ω1

2 + ω1
2 ∧ ω2

2 + ω1
3 ∧ ω3

2

= dω1
2 + Fϑ1 ∧ ω1

2 + ω1
2 ∧ Fϑ1 + ω3

1 ∧ ω2
3

= dω1
2 + ω3

1 ∧ ω2
3. (5.13)

Similarly, we have

R2
3 = dω2

3 + ω1
2 ∧ ω3

1 + Fϑ1 ∧ ω2
3 (5.14)

and

R3
1 = dω3

1 + ω2
3 ∧ ω1

2. (5.15)

(iii) The compatible volume element

Finally, we consider the Weyl 1-form Q. Because we assume that the only source of non-metricity
is given by point defects, it is identical to that of a cylindrical bar with only point defects. Indeed,
let h0 denote the volume function in the case where the only defects are point defects and,
similarly, define h to be the volume function for the discombination case. Then, we have

d ln h0 = d ln h = 3
2

Q. (5.16)

Thus, ln h = ln h0 + C1 or h = Ch0. In the absence of dislocations and disclinations, we have h = h0.
Therefore, we conclude that C = 1, i.e. h = h0 even in the case of discombinations. We define the
volume density of point defects with respect to the no point defect configuration, which has the
Riemannian volume form μ̂, and note that

μ̂ = μ|f=h=1 = ξ (R)
R

μ0, μ = hϑ1 ∧ ϑ2 ∧ ϑ3 = f (R)h0(R)ξ (R)
R

μ0,

μ0 = RdR ∧ dΘ ∧ dZ.

⎫⎪⎬
⎪⎭ (5.17)

The volume density of point defects n is defined as μ̂ − μ = nμ̂. Thus, 1 − h0(R)f (R) = n(R). Noting
that 1 − h0(R)f0(R) = n(R), we conclude that f (R) = f0(R).

We have now set up the geometry of our problem by providing an ansatz for the coframe field
and ξ (R) and η(R) are 2 unknown functions to be determined as functions of the physical fields.

(c) Step 3: Cartan’s structural equations
We have defined the torsion 2-forms in terms of both the coframe field and the physical inputs. We
can now solve the structural equations for the unknowns in terms of the given physical fields. We
start again with the torsion 2-forms.

(i) The torsion 2-forms

We start with the first component of the vector-valued torsion 2-form (5.10), which according
to (5.1) vanishes identically. In turn, this implies

ω1
12 = ω3

11 = 0, ω1
32 = −ω3

21. (5.18)

Similarly, the vanishing of the second component of the torsion leads to

ω2
23 = 0, ω1

22 = − ξ ′

f ξ
− F and ω1

32 = −ω2
13. (5.19)
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Finally, by writing T 3 = (b(R)/2π )dR ∧ RdΘ = (b(R)/2π f0ξ )ϑ1 ∧ ϑ2, we obtain

ω3
31 = ω2

33 = 0 and ω1
32 = − 1

2f0ξ

[
η′ − Rb

2π

]
. (5.20)

Therefore, the connection 1-forms can be written as

ω1
2 = −

[
ξ ′

f0ξ
+ F

]
ϑ2 − 1

2f0ξ

[
η′ − Rb

2π

]
ϑ3, (5.21)

ω2
3 = 1

2f0ξ

[
η′ − Rb

2π

]
ϑ1 (5.22)

and ω3
1 = 1

2f0ξ

[
η′ − Rb

2π

]
ϑ2. (5.23)

(ii) The curvature 2-forms

The second Cartan’s structural equations are trivially satisfied for α = β. The only non-trivial
ones are R1

2 and R2
3. First consider, R2

3 = 0, using the identities (5.21)–(5.23), we have dω2
3 = 0,

Fϑ1 ∧ ω2
3 = 0, and hence

R2
3 = ω1

2 ∧ ω3
1 = 1

4f 2
0 ξ2

(
η′ − Rb

2π

)2
ϑ2 ∧ ϑ3 = 0. (5.24)

Therefore, we conclude that

η′ = Rb
2π

⇒ η(R) = 1
2π

∫R

0
ρb(ρ) dρ + C. (5.25)

In the absence of dislocations η(R) = 0 and thus C = 0. Hence, we have

ω1
2 = −

[
ξ ′

f0ξ
+ F

]
ϑ2, ω2

3 = ω3
1 = 0. (5.26)

Next, consider

R1
2 = dω1

2 = − 1
ξ f0

d
dR

[
ξ ′

f0
+ Fξ

]
ϑ1 ∧ ϑ2 = Rw

2π f0ξ
ϑ1 ∧ ϑ2.

Therefore
d

dR

[
ξ ′

f0
+ Fξ

]
= −Rw

2π
⇒ ξ ′

f0
+ Fξ = C − W(R). (5.27)

Or
ξ ′

f0
+ ( f0 − 1)ξ

Rf0
= C − W(R). (5.28)

When there are no defects f0 = 1, ξ = R, W = 0, and hence C = 1. Therefore

ξ ′ + f0 − 1
R

ξ = f0(1 − W). (5.29)

The solution to this equation is

ξ (R) = C
γ (R)

+ 1
γ (R)

∫R

0
γ (x)f0(x)(1 − W(x)) dx, γ (R) = e

∫R
0 (( f0(x)−1)/x) dx. (5.30)

Note that in the absence of defects W = 0, f0 = 1, γ = 1, ξ = R, and hence C = 0. Thus

ξ (R) = 1
γ (R)

∫R

0
γ (x)f0(x)(1 − W(x)) dx. (5.31)
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(d) Step 4: material metric
Having determined all our unknown functions f (R), ξ (R) and η(R) in terms of the physical inputs,
we can write the material metric. Note that G = δαβϑα ⊗ ϑβ = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3. Thus

G =

⎛
⎜⎜⎝

f 2 0 0

0 ξ2 + η2 η

0 η 1

⎞
⎟⎟⎠ and G� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
f 2 0 0

0
1
ξ2 − η

ξ2

0 − η

ξ2 1 + η2

ξ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.32)

(e) Step 5: elasticity
From the material manifold, we obtain the stress field by embedding the body into the ambient
space (S, g), which is the flat Euclidean 3-space, and look for solutions of the form (r, θ , z) =
(r(R), Θ , Z). Having the defective body in the material manifold the anelasticity problem is
transformed to an elasticity problem from a material manifold with a non-trivial geometry to
the Euclidean ambient space. The deformation gradient is F = diag(r′(R), 1, 1), which leads to the
incompressibility condition

J =
√

det g
det G

det F = r
f0ξ

r′ = 1. (5.33)

Assuming that r(0) = 0 to fix the rigid translations, we obtain

r(R) =
(∫R

0
2f0(x)ξ (x) dx

)1/2

, (5.34)

with the condition
∫R

0 f0(x)ξ (x) dx > 0.
The Finger tensor for our problem is given by

b� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ2

r2 0 0

0
1
ξ2 − η

ξ2

0 − η

ξ2 1 + η2

ξ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5.35)

The principal invariants of b are

I1 = 1 + ξ2

r2 + r2

ξ2 + η2

ξ2 and I2 = 1 + ξ2

r2 + r2

ξ2 + η2

r2 . (5.36)

Because the material is assumed to be isotropic, we have in general that σ = (−p + I2B)g� + Ab� −
Bb−1, where b� = id∗(G�) and A(R) = 2(∂W/∂I1), B(R) = 2(∂W/∂I2). Now, (b−1)ab = cab =
gamgbmcmn has the following representation:

b−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

r2

ξ2 0 0

0
ξ2 + η2

r4
η

r2

0
η

r2 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.37)
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Therefore, the Cauchy stress can be written as

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−p + (A + B)
ξ2

r2 + B

(
1 + η2

R2

)
0 0

0
−p + B

r2 + A + B
ξ2 −Aη

ξ2 − Bη

r2

0 −Aη

ξ2 − Bη

r2 −p + A

(
1 + η2

ξ2

)
+ B

(
r2

ξ2 + ξ2 + η2

r2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5.38)

The only remaining unknown, p = p(R), is obtained from the only non-trivial equilibrium
equation

σ rr
,R + ξ

r

(
1
r
σ rr − rσθθ

)
= 0, (5.39)

which, following the classical case, simplifies to the ODE p′(R) = k(R) with

k(R) = ( f0 − 2)(A + B)
ξ3

r4 + B

(
Rbη
πr2 + (f0 − 2)

ξη2

r4

)

− f0
A + β

ξ
+ (A′ + B′)

ξ2

r2 + B′
(

1 + η2

r2

)
+ 2(A + B)

ξξ ′

r2 . (5.40)

For definition, we recall how the functions appearing in the Cauchy stress are related to the
distribution of defects,

f0(R) = 1 − n(R)

1 − (1/R2)
∫R

0 2yn(y) dy
, (5.41)

η(R) = 1
2π

∫R

0
ρb(ρ) dρ (5.42)

and ξ (R) = 1
γ (R)

∫R

0
γ (x)f0(x)(1 − W(x)) dx, γ (R) = e

∫R
0 (( f0(x)−1)/x) dx. (5.43)

Once the pressure p(R) is known, the Cauchy stress is fully determined and the remaining
calculations are identical to those of the previous sections. We note again that the presence of
combined dislocation and disinclination induces shear stress and that the stress field cannot
be calculated using superposition (in particular, it depends intimately on the point defect
distribution through f0 and γ ).

6. Conclusion
We have presented a systematic method for constructing the material manifold of solids
with distributed discombinations using Cartan’s machinery of moving frames and structural
equations. Given the physical fields (defect densities), we can compute the associated geometric
quantities and write the general equations of equilibrium. In general, these equations are
particularly difficult as they are a large number of nonlinear coupled PDEs. However, for
semi-inverse problems where both deformation and defect distribution preserve elementary
symmetries, a general method for computing the solution is achievable by first constructing
the material manifold and second computing the conditions for mechanical equilibrium. As a
model example, we constructed the material manifold of an infinite circular cylindrical bar with
a cylindrically symmetric distribution of combined screw dislocations, wedge disclinations and
point defects (discombinations). We calculated the induced residual stress field for arbitrary
incompressible isotropic solids and observed on that simple system the breakdown of the
superposition principle. The algorithm presented in this paper offers a systematic and rigorous
way to derive new solutions for semi-inverse problems for anelastic systems.
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