
Author's personal copy
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Abstract

A modification of the classical theory of brittle fracture of solids is offered by relating discrete nature of crack propa-
gation to the fractal geometry of the crack. The new model incorporates all previously considered theories of fracture pro-
cesses, in particular the Griffith [Griffith AA. The phenomenon of rupture and flow in solids. Philos Trans Roy Soc Lond
1921;A221:163–398] theory, its contemporary extension known as LEFM and the most recently developed Quantized
Fracture Mechanics (QFM) by Pugno and Ruoff [Pugno N, Ruoff RS. Quantized fracture mechanics. Philos Mag
2004;84(27):2829–45]. Using an equivalent smooth blunt crack for a given fractal crack, we find that assuming that radius
of curvature of the blunt crack is a material property, the crack roughens while propagating. In other words, fractal dimen-
sion at the crack tip is a monotonically increasing function of the nominal crack length, i.e., the presence of the Mirror–
Mist–Hackle phenomenon is analytically demonstrated.
Published by Elsevier Ltd.
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1. Introduction

In fracture mechanics, there are two fundamental failure theories proposed by Griffith [22] and Barenblatt
[3]. Griffith realized that brittle fracture happens as a result of competition between strain energy release and
surface energy required to create new fracture surfaces. In the Griffith’s theory it is predicted that for a given
crack length there is a unique critical stress above which crack grows and below which crack remains in equi-
librium. Barenblatt [3] proposed the cohesive theory of fracture in which one assumes that there is a nonlinear
region in the vicinity of the crack tip. The interesting thing here is that there is no stress singularity. Increasing
applied loads causes the separation between crack faces to increase in the cohesive region and when the open-
ing displacement is large enough the crack propagates.

The interest in understanding brittle fracture on a more fundamental level has led many researchers to
study it in the lattice scale. Thomson et al. [55] showed that in a very simplified 1D model for a range of stres-
ses above and below Griffith’s stress a crack becomes lattice trapped. Later Hsieh and Thomson [23] extended
their results to 2D. Esterling [19] using a lattice statics method, studied similar problems for three-dimensional
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cracks in a cubic lattice with nearest-neighbor interactions. Masudajindo et al. [36,37] studied fracture of crys-
talline materials using the lattice Green’s function method. In particular, they showed that mode I and II crack
problems are coupled in the lattice scale. There have been some very recent atomic-scale fracture studies in the
literature (see [35,34,32,33] and references therein) and it seems that even after a few decades of research in
fracture mechanics, some physics/mechanics coupled problems remain to be resolved.

Search for some novel mathematical tools that would remove the physically unacceptable singularities pre-
dicted by the classical mechanics of fracture began soon after the publication of the seminal work by Griffith
[22]. Orowan [43] and Irwin [27] proposed the ‘‘plasticity correction’’ term that was added in the equations
describing the stress intensity factors for fracture of various modes, so that for the crack length approaching
zero a finite stress resulted. This outcome described the intrinsic strength of the undamaged material, while the
associated stress at the crack tip could now be identified with a finite stress level corresponding to the local
yield stress. Similar effort was undertaken in Russia by Novozhilov [42], who suggested that the very nature
of the crack propagation is discrete, and who for the first time introduced the concept of the minimum admis-
sible growth step a0. According to Novozhilov [42] this entity, named by him a ‘‘fracture quantum’’, must be
included in the energy Griffith criterion – or an equivalent local stress criterion for fracture. Initially, the frac-
ture quantum was identified with the interatomic distance b0 (in a cubic lattice). Similar concepts were pro-
posed independently by Eshelby [15] (see also [10]). In recent years, similar ideas have been pursued mainly
in [44], where ‘‘Quantized Fracture Mechanics’’ (QFM) was introduced and was later used in several applica-
tions [45,54,38,46,12,25,47].

Recent work by Ippolito et al. [25] summarizes the pertinent results of the newly developed QFM model.
This model is based on the hypothesis of discrete nature of crack propagation and it is used to explain the
atomistic simulations data for nano-meter size cracks in b-SiC. Here, the fracture quantum a0 is seen to be
a fraction of a nanometer. In addition to fracture quantum, another length entity has been considered; it is
the finite radius of curvature q found at the tip of a QFM crack, which resembles a blunt crack known in
LEFM. In the end, it turns out that it is not the fracture quantum alone but rather the ratio q/a0 that describes
the microstructural behavior of the material. The third important variable is the crack length itself, especially
so in the nano-scale range, where fracture resistance is visibly sensitive to the crack length. Comparing the
theoretical and atomistic simulations data, Ippolito et al. [25] found that the best fit was obtained for both
a0 and q being on the order of magnitude comparable with the interatomic distances in silicon carbide.

In this paper, a new model of fracture, Discrete Fractal Fracture Mechanics (DFFM), is proposed. This
theory is built on the outcome of the earlier works by Wnuk and Yavari [59,60]. Here, we propose a general-
ized model of fracture that encompasses all the QFM results, but it adds one important characteristics of geo-
metrical nature: fractality of the fracture surfaces. The latter is usually described either by the fractal
dimension D, or the roughness exponent H. Overall, two essential parameters enter the theory: one is used
to describe the micro structure when the discrete fracture is considered (like in the QFM model of fracture),
while the second one is suggested by the fractal nature of fracture. In this way a new mathematical model is
constructed, which in addition to the micro structural parameter, a0, incorporates a geometrical variable,
namely the fractal exponent a or the fractal dimension D (or roughness exponent H). It should be emphasized
that the goal of the present theory is not to simply add a fitting parameter. Instead, it links the micro and
macro phenomena of fracture through a fractal dimension (roughness exponent).

This paper is structured as follows. In Section 2, the basic ideas of discrete crack propagation are discussed.
We also present a configurational force interpretation of discrete fracture. In Section 3, we introduce a theory
of fractal fracture mechanics that takes into account the discrete nature of crack propagation. Given a fractal
crack, assuming that the radius of curvature of its equivalent smooth blunt crack is a material property, it is
shown that the fractal crack roughens while propagating, i.e. the so-called Mirror–Mist–Hackle transition
phenomenon is analytically predicted. Section 4 gives a discussion of the proposed theory and its implications.
Conclusions are given in Section 5.

2. Fracture criterion for discrete crack propagation

In local failure criteria, it is assumed that at a given point, a scalar-valued function of Cauchy stress reaches
a critical value, i.e., f(r(x)) = rc. These types of failure criteria have been successfully used in many practical
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applications, e.g. plasticity of metals, etc. However, there are problems for which these criteria result in par-
adoxical predictions. An example is an infinite plate with a circular hole under uniform tension at infinity.
Classical elasticity predicts a stress concentration factor 3, independent of the radius of the hole. However,
in reality for small holes failure depends on the size of the hole, i.e. an appropriate failure criterion should
be geometry dependent in this case [28]. In the case of stress singularities, any such failure criterion would
incorrectly predict a zero resistance to failure. On the other hand, energy-based failure criteria, e.g. Griffith’s
fracture theory can predict a finite critical stress in the case of a finite crack, for example. However, such a
failure criterion breaks down for very small cracks (see [28] for more examples). This and similar examples
show the need for the so-called non-local failure criteria for design of structures with multiscale failure
mechanisms.

One of the simplest and most interesting non-local failure criteria is due to Neuber [41] and Novozhilov
[42], in which it is assumed that average stress reaches a critical value at the onset of fracture. This can be
interpreted equivalently as assuming a minimum crack propagation length or fracture ‘‘quantum’’ a0. If this
is the case, then one would need a certain ‘‘critical force’’ on this finite region for the crack to propagate. This
simple idea is the basis for the recent new attempts in modelling size-dependent failure of very small structures.
See also [29,39,30] for similar discussions.

An analogous concept of finite crack step growth was proposed for elastic-plastic fracture occurring at
macro-scale level by Wnuk [56,57], who instead of considering stresses ahead of the crack front analyzed
the increment of the opening displacement associated with each discrete crack advance. This increment in
the displacement was considered at the forward edge of the ‘‘process zone’’ adjacent to the crack front and
embedded within a larger non-linear end zone, say the plastic zone. Wnuk’s [56] results based on his ‘‘finite
stretch criterion’’ for the subcritical crack growth were fully confirmed by independent studies of Rice and
Sorensen [50] and Rice et al. [51]. Further developments of Wnuk’s model were given in [58]. When one com-
pares the discrete model, considered here, that suggests a certain ‘‘fracture quantum’’ (a0) with Wnuk’s model,
which postulated existence of the ‘‘process zone’’ (D), one arrives at a clear conclusion that the ‘‘process zone’’
is an analog of the ‘‘fracture quantum’’. These concepts apply when two very different scale ranges are con-
sidered, namely the atomistic model for nano-fracture versus the continuum model for nonlinear macro-
fracture.

In the modified energy criterion valid for discrete crack propagation model, as suggested by Pugno and
Ruoff [44], the infinitesimals dP and dA, representing the increments of the potential energy of the system
(dP) and the change in the newly created free surface area (dA), are replaced by the finite differences DP
and DA, respectively, however this should be done with some care as will be explained shortly. Therefore,
instead of the classic equation defining the incipient point of crack growth

GLEFM ¼ � dP
dA
¼ Gc ð2:1Þ

one applies

GQFM ¼ �Da0
P

DA
P Gc ð2:2Þ

as will be explained in the following.
Energy failure criterion in linear elastic fracture mechanics can be stated in various mathematically equiv-

alent forms. Consider the total potential energy of a cracked elastic body subjected to external loading that
can be written as

Ptotðr; ‘Þ ¼ Pðr; ‘Þ þ Sð‘Þ: ð2:3Þ
Here r and ‘denote the applied stress and the crack length, say 2a, respectively, while P denotes the energy
available for fracture, i.e. the difference between work of the external forces and the strain energy. Specifically,
the potential energy of the system consisting of an elastic body loaded by the tractions ti and containing a
crack of length 2a, is written as

Pðr; ‘Þ ¼ 1

2

Z
X

rijeij dv�
Z

oX
tiui ds: ð2:4Þ
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Here rij and eij are the standard notations for the Cauchy stress and linearized strain tensors, ui is the displace-
ment vector, ti is the vector of tractions, r denotes the remotely applied uniform stress, while the term Sð‘Þ
represents the surface energy, S ¼ 4ac. In the classic treatment of fracture propagation, the specific energy
of fracture c is assumed to be independent of the crack length. This assumption will be challenged in the pres-
ent treatment of a discrete crack growth. For a 2D pre-cracked plate with a crack oriented perpendicularly to
the remote stress r, Griffith [22] calculated all terms in the right hand side of Eq. (2.1). The first term turned
out to be 2pr2a2/E

0
, while the second was pr2a2/E

0
, in which E

0
equals the Young modulus E for plane stress

condition and it is E/(1 � m2) for plane strain condition.
The term S was introduced for the first time by Griffith. It is postulated that at the point of incipient frac-

ture Ptot attains a stationary value. Thus, at r = const. we have

dPtot

d‘
¼ 0 or � dP

d‘
¼ dS

d‘
: ð2:5Þ

For the classic case of the Griffith crack, we have ‘ = 2a, P = �pr2a2/E
0
, S ¼ 4ac and thus Eq. (2.5) results in

a prediction for the stress at failure

rLEFM
crit ¼

ffiffiffiffiffiffiffiffiffi
2E0c
pa

r
: ð2:6Þ

Here the symbol c denotes the specific surface energy describing material resistance to fracture. Using the
contemporary notation Eq. (2.6) is usually written as

rLEFM
crit ¼ Kcffiffiffiffiffiffi

pa
p ; ð2:7Þ

where Kc designates the so-called material fracture toughness, which is related to the fracture energy Gc = 2c
and the modulus E

0
as follows K2

c ¼ GcE0. The left hand side of (2.5) is readily recognized as the energy release
rate G or the J-integral, c.f. [49,6]. When these quantities are used the energy fracture criterion can be written
as a local criterion (rather than Griffith’s global equation), namely

G ¼ Gc: ð2:8Þ
An essential departure from the classic treatment of the fracture problem here concerns a change from the
notion of continuous crack extension, for which da is an infinitesimal, to a step-wise picture of crack propa-
gation involving a certain finite increment in the length of the crack, say Da = a0. The constant a0, named by
Novozhilov [42] ‘‘fracture quantum’’, was initially thought of as an equivalent of the interatomic distance b0

(for a cubic lattice). Recent work of Ippolito et al. [25] indicates that a0 is greater than all the lattice spacings; it
may be several times or even an order of magnitude larger than all the lattice parameters. In fact, the ‘‘best fit’’
between the atomistic simulations and theoretical data pertaining to fracture at nanoscale in b-SiC simulated
by Ippolito et al. [25] was obtained by choosing the appropriate value of the fracture quantum to be
a0 = 0.25 nm.

Now, in their Quantized Fracture Mechanics, Pugno and Ruoff [44] replaced Eq. (2.5) by an expression that
replaces differentials with finite differences, namely

�Da0
P

D‘
¼ Da0

S
D‘

; ð2:9Þ

where

Da0
f

D‘
¼ f ð‘þ a0Þ � f ð‘Þ

a0

: ð2:10Þ

Note that this is not quite correct because if at the point of incipient fracture Ptot attains a maximum value
(unstable crack growth) then

Da0
Ptot

D‘
¼ Ptotð‘þ D‘Þ �Ptotð‘Þ

D‘
6 0: ð2:11Þ

1130 M.P. Wnuk, A. Yavari / Engineering Fracture Mechanics 75 (2008) 1127–1142



Author's personal copy

Thus, instead of (2.9) one has

�Da0
P

D‘
P

Da0
S

D‘
: ð2:12Þ

Let us briefly review the derivation process of the expression analogous to (2.7), but for discrete crack growth.
With P = �p r2a2/E

0
, we have

�Da0
P

D‘
¼ 1

2a0

pr2

E0

� �
½ðaþ a0Þ2 � a2� ¼ pr2

E0
ðaþ a0=2Þ: ð2:13Þ

This is the energy release rate G(r,a), which at failure is set equal to the fracture energy Gc. Thus we obtain

pr2

E0
aþ a0

2

� �
P Gc: ð2:14Þ

The critical stress is defined to be the minimum stress that satisfies the above inequality. Hence it follows that

rQFM
crit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0Gc

p aþ a0

2

� �
s

¼ Kcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p aþ a0

2

� �q : ð2:15Þ

Contrary to the Griffith–Orowan–Irwin theory of fracture, Eq. (2.15) predicts a finite stress for a vanishing
crack length, namely

r0 ¼ lim
a!0

rQFM
crit ¼

ffiffiffiffiffiffiffi
2

pa0

s
Kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2E0Gc

pa0

s
: ð2:16Þ

This is a very interesting way of representing the intrinsic strength of an undamaged material through the enti-
ties, which define its elastic modulus, its resistance to a propagating crack and the characteristic microstruc-
tural constant a0.

Let us attempt to estimate the size of the fracture quantum for fracture occurring in brittle solids. The esti-
mate will be expressed in terms of the interatomic distance b0 (in a cubic lattice). We know that the intrinsic
strength of an undamaged material (implying a zero crack length) equals

ffiffiffiffiffi
2

pa0

q
Kc, and hence the size of the

fracture quantum can be calculated as 2K2
c=pr2

0. If the intrinsic strength of an undamaged material is identified
as the molecular strength rmol, then we arrive at the following predictions: Replace K2

c by EGc, or by 2Ec, then
the fracture quantum a0 can be estimated as follows:

a0 ¼
2

p
K2

c

r2
mol

¼ 2

p
2Eb0rmol

r2
mol

� �
¼ 4

p
Eb0

rmol

: ð2:17Þ

Now, assuming that the magnitude of the molecular strength r0 is on the order of magnitude of E/10, one
obtains an estimate a0 � 12b0. Since b0 is about 2 · 10�10 m, one gets an estimate for the quantum fracture
in brittle solids as 2.4 nm. In principle, if the quantities r0 and Kc are obtained in a careful laboratory test,
then the fracture quantum a0 can be estimated as follows

a0 ¼
2

p
Kc

r0

� �2

: ð2:18Þ

This quantity is an atomistic analog of the plastic zone size suggested by the early research of Orowan [43] and
Irwin [26] and then Barenblatt [3] and Dugdale [14] for elastic–plastic fracture occurring at macro-scale level
that reads

rp ¼
p
8

Kc

rY

� �2

: ð2:19Þ

For a low carbon structural steel such as ASTM-A36 the toughness Kc is on the order of magnitude of
100 MPa, while the local yield stress measured at the crack tip equals the constraint factor of about three times
the standard yield point of 250 MPa, which gives 750 MPa. Therefore, the estimate of the plastic zone size is
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about 3.42 mm. This is seven orders of magnitude larger than the fracture quantum estimated above! It is
noteworthy, though, that in elasto-plastic fracture the length of the plastic zone per se should not be consid-
ered a fracture quantum. It is rather the size of the process zone D embedded within the plastic zone and adja-
cent to the crack front that could be viewed as a finite growth step (or fracture quantum), cf. [56–58,6]. For
ductile materials D is much smaller than rp, while in the brittle limit D roughly equals rp as then they both
approach the fracture quantum a0. This distinction between D and rp clarifies the diversity of the ranges of
the observed quanta a0 for various materials and specimen geometries as reported in the literature, cf. [52,9].

2.1. Configurational-force interpretation of discrete fracture

The idea of a driving force in continuum mechanics goes back to Eshelby [16–18] and this notion is impor-
tant in developing evolution laws for the movement of defects, including dislocations, vacancies, interfaces,
cavities, cracks, etc. Driving forces on these defects cause climb and glide of dislocations, diffusion of point
defects, migration of interfaces, changing the shape of cavities and propagation of cracks, to mention a few
examples. Eshelby defined the force on a defect as the generalized force corresponding to position of the defect
(in the reference configuration), which is thought of as a generalized displacement. Eshelby studied inhomo-
geneities in elastostatic and elastodynamic systems by considering the explicit dependence of the elastic energy
density on position in the reference configuration.

In Novozhilov’s [42] approach to fracture, one assumes that a crack propagates in a continuum but in dis-
crete steps. In other words, one can still work within the framework of continuum elasticity theory. A crack is
a special case of a defect and growth of cracks can be understood as evolution of the reference configuration.
In this setting, crack propagation is driven by the so-called configurational (material) force at the crack tip. It
turns out that component of configurational force in the crack growth direction is the J-integral. Now if a
crack propagates in a given direction and with the amount Da = a0, there should be a material force driving
it. In continuous crack growth one has

ftip ¼ J da: ð2:20Þ

Note that we are working in the linearized theory of elasticity and hence material and spatial configurations
are not distinguishable. Now when a crack propagates by an amount a0, one can calculate the average material
force as (for a mode I crack of initial length 2a in an infinite plate)1

�f tip ¼
1

a0

Z a0

0

J da ¼ r2pa0

2E0
: ð2:21Þ

Assuming that �f tip ¼ Gc ¼ K2
c=E0, one obtains

r0 ¼

ffiffiffiffiffiffiffi
2

pa0

s
Kc: ð2:22Þ

We know that the asymptotic opening stress ahead of a crack tip has the following form

rðrÞ ¼ KIffiffiffiffiffiffiffi
2pr
p : ð2:23Þ

1 Pugno and Ruoff [44] define the QFM stress intensity factor as

KQFM
I ¼ 1

a0

Z aþa0

a
K2

I da
� �1

2

:

This means that they, implicitly, define their stress intensity factor through an average configurational force. It should also be noted that in
Novozhilov’s [44] criterion one needs to use the complete stress distribution and not just the asymptotic distribution. However, using aver-
age configurational force, we see in the sequel that using the asymptotic form would suffice.
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Thus averaging this stress in the interval r 2 [0,a0], one obtains

�rtip ¼

ffiffiffiffiffiffiffi
2

pa0

s
KI: ð2:24Þ

Now when KI = Kc, �rtip ¼ r0, i.e. averaging stress and configurational stress give the same r0. This is because
in brittle fracture of an elastic solid, configurational force (energy release rate) is a function of only KI and not
the other (non-singular) parts of stress. The QFM Theory developed recently by Pugno and Ruoff [44] fully
supports these conclusions.

3. Fractal cracks with discrete propagation

Fracture surfaces are usually irregular and the classical treatment of cracks, where a crack is modelled by
smooth curves (surfaces), is at best an approximation. It has long been known that cracks in brittle solids have
rough surfaces and this ‘‘roughness’’ can evolve in the process of crack propagation (Mirror–Mist–Hackle
transition phenomenon). Very rough curves (surfaces) show up in many natural phenomena and it turns
out that unlike their seemingly random forms, all these irregular (rough) objects have some hidden degree
of order. A fractal is a very special case of an irregular set, which has specific properties under scaling trans-
formations. Curiosity of some researchers and also the inability of classical fracture mechanics in explaining
many interesting failure phenomena motivated several studies on modelling rough fracture surfaces with frac-
tals. These works started in the nineties and now there is an overwhelming amount of experimental evidence
that cracks in real materials are fractals in a wide range of scales. Among the important theoretical contribu-
tions we can mention Mosolov [40], Goldshtein and Mosolov [20,21], Balankin [2], Borodich [4], Cherepanov
et al. [11], Xie [61], Xie and Sanderson [62], Carpinteri [7], Carpinteri and Chiaia [8], Yavari et al. [63,65],
Yavari [64], Wnuk and Yavari [59,60], etc. The main results of these and similar studies were the effect of frac-
tality on the order of stress singularity at the crack tip, existence of new modes of fracture, possibility of crack
propagation in uniform compression, etc. For quite sometime there was a hope in relating toughness of a
material to the fractal dimension of fractal cracks forming in it (assuming that fractal dimension is only mate-
rial dependent) [31]. However, such hopes seem to be too optimistic and in our opinion not very realistic (see
[5] and references therein for similar discussions).

It seems that after about two decades of research in this field, fractals do not seem to have been predictive.
In this paper, we will show that in a physically important problem fractals are predictive and the predicted
result agrees with experimental observations. The problem is the dependence of fractal dimension (roughness
exponent) of a fractal crack on the nominal crack length. As will be shown shortly, our fractal model predicts
that when a small crack starts a stable growth, its fractal dimension increases. This, to our best knowledge, is
the first analytic model that predicts the well-known Mirror–Mist–Hackle transition phenomenon for fractal
cracks.

Now we repeat the calculations of the previous section for an elastic body containing a fractal crack. We
should mention that there has been a recent work on extending QFM to self-similar fractal cracks [47] using
the analogy of a fractal crack with a re-entrant corners [9].

We begin with the expression for stress intensity factor as represented by the fractal crack geometry, c.f.
[40,20,21,65,64]

K f
I ¼ vðaÞr

ffiffiffiffiffiffiffiffiffi
pa2a
p

: ð3:1Þ

The function v(a) has been calculated by Wnuk and Yavari [60] as follows

vðaÞ ¼ 1

p2a

Z 1

0

ð1þ sÞ2a þ ð1� sÞ2a

ð1� s2Þa ds: ð3:2Þ

It is interesting to check the two limits of the expression (3.1) for the stress intensity factor as predicted by the
fractal crack model. One such limit is obtained for the fractal dimension D approaching one, or – equivalently
– the fractal exponent a approaching the value 1

2
. This corresponds to a sharp non-fractal crack (Griffith case),

while the other limiting case is obtained for D = 2 or a = 0, which represents a 2D void filling the plane,
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similar to an elliptical cavity with the ratio of the major to minor axes equal about 1.27. For vanishing a we get
v = 2, while for a approaching 1

2
we obtain v = 1, as expected. Thus the Eq. (3.1) reduces as follows

K f
I ¼

r
ffiffiffiffiffiffi
pa
p

for a ¼ 1
2
;

2
ffiffiffi
p
p

r for a ¼ 0:

	
ð3:3Þ

Physical meaning of the limiting case of a = 0 was discussed in detail by Wnuk and Yavari [59]. In this limit
the fractal crack is shown to behave as an elliptical void, for which the stress concentration can be evaluated
by Inglis [24] formula

rmax ¼ r 1þ 2
a
b

� �
: ð3:4Þ

With a/b ’ 1.27 one recovers rmax=r ¼ 2
ffiffiffi
p
p

as predicted by Wnuk and Yavari’s approximate model of a frac-
tal crack of the dimension D = 2.

It is known that a fractal dimension (or roughness exponent) is only one measure of irregularity of a curve.
In other words, a fractal dimension D does not uniquely specify a fractal curve, i.e. two different curves can
have the same fractal dimension. To use this simple measure of irregularity in fracture mechanics, Wnuk and
Yavari [59] made a simplifying assumption and embedded a smooth crack in the stress field generated by the
given fractal crack (see Fig. 3.1) and this enabled them to find an approximation for the function v(a). Note
that dimensional analysis requires that elastic energy release per unit of the D-Hausdorff measure HD of the
fractal crack be [64]

Fig. 3.1. Discrete growth of a fractal crack and its auxiliary smooth crack.
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Gf ¼ WðDÞ ðK
f
IÞ

2

E0
; ð3:5Þ

where W(D) is some scalar-valued function. The problem with Hausdorff dimension is that it is extremely dif-
ficult to calculate even for the simplest fractal sets. Also, as was mentioned fractal dimension (roughness expo-
nent) is simply a complexity index and does not provide enough information to distinguish different irregular
sets from one another, in general, and one cannot use a fractal measure unambiguously. This necessitates an
approximate analysis of fractal cracks if one likes to work with a fractal dimension (or roughness exponent).

As the energy release per unit of a fractal measure (3.5) will be compared with a critical fractal energy
release rate, we can equivalently consider Gf/W(D) as the fractal energy release rate. Thus, we can define
the following energy release rate

Gf ¼ ðK
f
IÞ

2

E0
¼ vðaÞ2r2pa2a

E0
: ð3:6Þ

For the auxiliary smooth crack the ‘‘fractal’’ energy available for fracture is2

�Pf ¼ 2

Z a

0

Gfðr; aÞda ¼ vðaÞ2r2pa2aþ1

ð2aþ 1ÞE0 : ð3:7Þ

We now set up the energy fracture criterion for finite crack extension as3

Gf ¼ �Da0
Pf

D‘
¼ vðaÞ2r2p

a0ð2aþ 1ÞE0 ½ðaþ a0Þ2aþ1 � a2aþ1�: ð3:8Þ

Thus

Gf ¼ vðaÞ2r2p
a0ð2aþ 1ÞE0 ½ðaþ a0Þ2aþ1 � a2aþ1�: ð3:9Þ

At failure

vðaÞ2r2p
a0ð2aþ 1ÞE0 ½ðaþ a0Þ2aþ1 � a2aþ1�P Gf

c: ð3:10Þ

It is interesting to note that the fractal energy release rate Gf
c has the dimensions of Stress · Length2a, as this is

consistent with the equation Gf
c ¼ ðK f

cÞ
2
=E0, in which K f

c is defined by (3.1). Also note that a-dependence of the
critical stress intensity factor is similar to that of notches [52]. Applying the condition Gf P Gf

c at the point of
incipient fracture one obtains the following expression for the critical stress due to presence of a fractal crack.

rf
crit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1ÞE0Gf

c

p

s ffiffiffiffiffi
a0
p

vðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ a0Þ2aþ1 � a2aþ1

q : ð3:11Þ

2 Here a comment is in order. A fractal surface has unbounded surface area but a finite fractal measure. Gf has the dimension of energy
per unit of a D-measure. This means that integrating this specific energy with respect to the corresponding fractal measure, the resulting
quantity is energy and has a finite value. In the present model, we embed an auxiliary smooth crack in the stress field of the fractal crack.
When the fractal crack propagates its nominal length increases, i.e. the auxiliary smooth crack propagates too. We integrate Gf with
respect to the measure of the auxiliary smooth crack, i.e. the standard Lebesgue measure, and because Gf is finite this gives us a finite scalar
that we call ‘‘fractal energy release’’. ‘‘Fractal potential energy’’ Pf is defined as fractal specific energy release rate Gf times the nominal
crack length growth, i.e.

�dPf

d‘
¼ Gf :

3 Note that there is always a lower cut-off e for fractality of a rough crack, i.e. a rough crack should be modelled as a physical fractal [4].
In this case, in the present formulation it is implicitly assumed that a0 > e. However, a rough crack can be idealized as a mathematical
fractal and in that case there is no restriction on a0.
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It is desirable to normalize this expression by dividing both sides through the intrinsic strength of undamaged
material that is defined as follows.

rf
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2aþ 1ÞE0Gf

c

p

s
1

aa
0vðaÞ

¼ r0

K f
c

Kc

a
1
2�a
0

ffiffiffiffiffiffiffiffiffiffi
aþ 1

2

q
vðaÞ : ð3:12Þ

This formula presents a generalization of the non-fractal expression for strength given in Eq. (2.16) and it can
be readily shown that for a ¼ 1

2
Eq. (3.12) yields rf

0 ¼ r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=pa0

p
Kc as predicted by the QFM theory, c.f.

(2.16). One interesting observation is that the fracture quantum a0 should never be assumed zero, as then
the material strength would reach infinity.

If (3.11) is rewritten in a non-dimensional form, one obtains

sf
c ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ X Þ2aþ1 � X 2aþ1

q ; ð3:13Þ

where X = a/a0 and sf
c ¼ rf

c=r
f
0. For a ¼ 1

2
, this formula reduces to the QFM result for a slit crack, i.e.

rQFM
crit

r0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2X
p : ð3:14Þ

For a approaching zero it follows that the critical stress given by (3.13) predicts sf
c ¼ 1. We conclude that the

discrete fractal fracture mechanics developed here encompasses all the known special theories of fracture, both
the linear elastic fracture mechanics (LEFM) and the quantized fracture mechanics (QFM) theories. When the
expression (3.11) is squared and divided by the square of the critical stress predicted by the LEFM, we obtain
an estimate of the fracture energy ca/c as

ca

c
¼ ð2aþ 1ÞX 2a

ð1þ X Þ2aþ1 � X 2aþ1
: ð3:15Þ

Note that in this case surface energy is a function of:

(i) crack length, X = a/a0,
(ii) fractal exponent a.

Note also that

lim
X!1

ca

c
¼ 1: ð3:16Þ

Eq. (3.15) is used to generate the family of curves shown in Fig. 3.2.

Fig. 3.2. Crack length dependent specific energy of fractal fracture shown as a function of normalized nominal crack size a/a0 and the
fractal exponent a. It is seen that for fractal exponent approaching 1/2 the present result reduces to the QFM.
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Let us examine the expression for the stress at failure due to a crack considered as a fractal. Recall that for a
slit fractal crack the following stress distribution holds, c.f. [59]

rf
yyðrÞ ¼

K f
I

ð2prÞa : ð3:17Þ

Stress intensity factor in this equation is defined as, c.f. [59]

K f
I ¼ r

ffiffiffi
p
p

aavðaÞ: ð3:18Þ

Letting K f
I ! K f

c and applying the averaging technique of Novozhilov we calculate the critical stress due to a
slit fractal crack

rf
crit ¼ rf

yyðrÞ
D E

0;a0

¼ 1

a0

K f
c

ð2pÞa
Z a0

0

dr
ra
¼ K f

c

ð1� aÞð2pa0Þa
: ð3:19Þ

As expected this expression reduces to
ffiffiffiffiffi

2
pa0

q
Kc when a approaches 1

2
. Indeed, the result (3.19) describes the

intrinsic material strength that now in addition to the fracture quantum a0 depends also on the degree of frac-
tality measured by a.

3.1. The Mist–Mirror–Hackle transition phenomenon

We know that opening stress in a blunt crack with radius of curvature q has the following form [13]

rðrÞ ¼ KIffiffiffiffiffiffiffi
2pr
p 1þ q

2r

� �
: ð3:20Þ

Comparison of the critical stresses obtained for a sharp and a blunt discrete crack, gives a relation between
the corresponding critical stress intensity factors, Kc and Kb

c , i.e. [45,25]

Kb
c ¼ Kc

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

2

r
¼ Kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

2a0

r
; ð3:21Þ

where C = q/a0. Thus, it is seen that the material toughness obtained for a blunt crack is somewhat greater
than the toughness associated with the sharp crack with a zero tip radius, when q = C = 0. This is somewhat
reminiscent of the Irwin’s correction to the ‘‘effective stress intensity factor’’ valid for an elasto-plastic case.
Pugno et al. [45]; Ippolito et al. [25] show that

rQFM
crit ¼

Kb
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p aþ a0

2

� �q ¼ Kcffiffiffiffiffiffi
pa
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

2a0

1þ a0

2a

s
: ð3:22Þ

Since the ratio Kc=
ffiffiffiffiffiffi
pa
p

is recognized as rLEFM
crit the Eq. (3.22) can be cast into the following final form

rQFM
crit ¼ rLEFM

crit

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q

2a0

1þ a0

2a

s
: ð3:23Þ

If the dimensionless variables C = q/a0 and X = a/a0 are used, then the relation (3.23) reads

rQFM
crit ¼ rLEFM

crit

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C

2

1þ 1
2X

s
: ð3:24Þ

It can be readily seen that the resistance to fracture Gc ¼ K2
c=E0 is proportional to the square of the critical

stress, thus

GQFM
c

GLEFM
c

¼ rQFM
c

rLEFM
c

� �2

¼
1þ C

2

1þ 1
2X

: ð3:25Þ
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We recall that since G = 2c the ratio written above can also be expressed as ca/c, where ca denotes the crack
length dependent specific energy of fracture, as is seen in Fig. 3.3. It is clearly seen that the dependence of ca on
the non-dimensional crack length X is not significant for X > 4, but it is very pronounced for short cracks, i.e.
for 0 < X < 4.

Given a fractal crack, one can define an equivalent smooth blunt crack. Wnuk and Yavari [60] showed that
the equivalent smooth blunt crack has the following radius of curvature.

qa ¼
aini

p
vðaÞ

21það0:05Þa

 � 2

2a�1

; ð3:26Þ

where aini is the initial nominal length of the fractal crack. Thus

C ¼ 1

p
aini

a0

vðaÞ
21það0:05Þa

 � 2

2a�1

: ð3:27Þ

For a given a and the initial crack size expressed as a multiple of the fracture quantum, the microstructural
constant C can be readily evaluated (see Fig. 3.4). Analytically the exact value of a is given as a root of the
following transcendental equation

qa

aini

� 1

p
vðaÞ

21það0:05Þa

 � 2

2a�1

¼ 0: ð3:28Þ

Fig. 3.3. Nondimensional specific energy of fracture shown as a function of the microstructural constant C and the crack size X.

Fig. 3.4. A relationship between the microstructural constant qa and the fractal exponent a. Note that for the longer cracks the radius qa is
larger for the same roughness. This relationship was suggested by Wnuk and Yavari [60]. A strong dependence of the finite root radius at
the crack front on the degree of fractality of crack geometry is noted.
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The root radius qa and the initial crack length for this particular problem are assumed to be known. Finally,
an interesting observation needs to be made. It concerns interpretation of the constant defined above as the
ratio of the initial crack size to fracture quantum, aini/a0. As soon as the crack begins to propagate, this
constant changes into a variable ratio a/a0. And then Eq. (3.28) suggests that the fractal exponent becomes
a certain function of the current crack length as it has been always suspected. The relationship must be con-
sistent with the expression (3.28), in which aini is simply replaced by ‘‘a’’ implying now a function a = a(a). A
comment is in order here. As was shown in [60], stress distribution around the tip of a fractal crack depends
only on the dimension (roughness exponent) at the crack tip. In other words, the method of Wnuk and Yavari
[59] can be used for fractal cracks, with evolving fractal dimension in stable crack growth.

The inverse function representing the fractal exponent as a function of the current crack length a = a(a) can
be plotted using the nondimensional variables X = a/a0 and a. The resulting curves are shown in Fig. 3.5.
These curves reflect the Mirror–Mist–Hackle effect for the cracks described by fractals. To our knowledge,
this is the first quantitative representation of the MMH effect for the fractal cracks.

The functions shown in Fig. 3.5 demonstrate a rather intricate relation between fractal geometry, fracture
quantum and appearance of the Mirror–Mist–Hackle effect. For the sake of argument, let us assume that the
fracture quantum a0 is allowed to approach zero, while the radius of curvature q remains a finite entity. In this
case the microstructural constant C approaches infinity and the MMH effect disappears entirely and the crack
behaves like a fractal object defined by the exponent a = 1/2. This demonstrates that the concepts of discrete
crack propagation and that of fractal nature of the crack surfaces, if incorporated into one consistent theory,
produce the results, which do not exist within the framework of the classical theory of fracture.

4. Discussion

For nearly a century an apparent controversy has existed as a question without an answer built-in within
the classical fracture mechanics as originated by Griffith in his seminal paper [22]. Griffith’s work was inspired
by an attempt to explain why the strength of solids measured in the laboratory was several orders of magni-
tude lower than the theoretical strength calculated based on the theoretical molecular cohesive strength. Grif-
fith’s theory provided an explanation for these discrepancies, with one caveat though, that in the limit of
vanishing crack size the Griffith’s theory predicted an infinite intrinsic strength of the material. Such a conclu-
sion was physically unacceptable, but if short cracks were excluded, then the theory worked well. Thus, for
nearly a century the LEFM and its variations such as the J-integral concept, c.f. [48], R-curve tech-
nique, c.f. [57,51], the EPRI estimation schemes, Shih [53] designed for the elasto-plastic range of fracture
and the numerous modifications of the cohesive crack model due to Barenblatt–Dugdale–Bilby–Cottrell–
Swinden research, provided remarkable analytical tools for failure prevention and engineering fracture
mechanics.

Fig. 3.5. Dependence of the fractal exponent on the current normalized crack length. The parameter that distinguishes the curves shown is
the microstructural constant C = q/a0. It is seen that for short cracks, when C! 0 the function describing the Mirror–Mist–Hackle effect
becomes extremely sensitive to the variations in the fractal exponent a.
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Yet, the basic controversy persisted over the past decades. The presently proposed model of Discrete Frac-
tal Fracture Mechanics (DFFM) offers the following new features that are built into the present theory of frac-
ture. These are: (1) quantized fracture mechanics based on an assumption of Novozhilov’s ‘‘fracture
quantum’’, and (2) fractal nature of the geometry of a crack viewed as a fractal object from its inception
to the point of transition to the catastrophic fracture. It should be noted that according to our model, assum-
ing that radius of curvature of the equivalent smooth blunt crack is a material property, the degree of fractality
as measured by the exponent a or the fractal dimension D or the Hurst exponent H, becomes a certain func-
tion of the current crack length. This function turns out to be extremely sensitive to minute variations in the
fractal exponent a, making the entire process highly nonlinear. The DFFM model proposed here is equipped
with four essential attributes that were lacking in the previous theories of fracture, namely

– discrete rather than continuous nature of crack propagation;
– inherent roughness of the crack surface that is mathematically accounted for by the DFFM model;
– interdependence of the fractal dimension D and the current crack length;
– fractal specific energy of fracture becomes a certain function of the crack length.

Andrade and Tsien [1] in a series of experiments demonstrated that any undamaged material in its ‘‘virgin’’
state contains numerous microcracks, which usually remain dormant, unless the external loads are raised to
the ‘‘critical’’ level, at which one of these pre-existing cracks begins to propagate in a catastrophic way. The
onset of such propagation is predicted correctly by the Griffith’s criterion. Now we submit that even in a per-
fect material with no initial defects, when the external loads of static or variable (fatigue) nature are applied,
the cracks will eventually initiate, and once they are there they will be best represented by fractals, say D = 0
for an atomistic defect prior to forming a microcrack, i.e., D varies between zero and one, then a crack-like
defect described by a fractal dimension of D = 1 (sharp initial crack), and then – as this crack propagates in a
stable manner at load levels lower than the Griffith threshold, the fractal dimension of the crack will tend
towards the limiting value of D = 2. This theoretical limit most likely is never reached with few exceptions
of ‘‘forgiving’’ materials, which are insensitive to the existence of defects up to a certain size level. Otherwise,
the onset of catastrophic fracture will interfere with the growth of subcritical crack, and the subcritical growth
process ends at a certain fractal dimension that belongs to the interval (1,2), say Dcrit = 1.47.

For a physicist the most interesting stage of crack development history is the stage of stable crack growth,
which immediately follows the point of initiation and which can be described mathematically by use of a
known function describing the dependence of the degree of fractality of fracture surfaces on the current crack
length. This function is a quantitative representation of the Mirror–Mist–Hackle phenomenon and it is inti-
mately related to another function; see Eq. (3.28) and Fig. 3.5. This function relates to the specific energy of
fracture given as a function of the crack length as shown in Fig. 3.3.

5. Concluding remarks

A discrete rather than continuous model of fractal crack propagation has been proposed in this paper. This
model is within the framework of the quantized fracture mechanics (QFM), but with an additional feature
added to the theory of fracture process: fractal dimension (roughness exponent) of the fractal crack. Thus,
certain new concepts are incorporated into the present model such as the ‘‘fracture quantum’’ as defined by
Novozhilov [42], and a measure of ‘‘roughness’’ of the crack surface resulting from its fractal nature. This
roughness enters all the pertinent equations, and it turns out that it influences the intrinsic strength of the
material (when the crack length equals zero).

The following important limiting cases are included in the present theory of fracture:

(1) The case of ‘‘smooth’’ crack is obtained when the fractal dimension D = 2(1 � a) equals one. In this limit
one recovers the quantized fracture mechanics (QFM). In this model crack propagation is viewed as a
sequence of minute ‘‘jumps’’, each of which is proportional to a fracture quantum. Such notion has been
discussed by Pugno and Ruoff [44], based on the earlier observations of Eshelby [15] and Novozhilov
[42].
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(2) The other extreme incorporated into the present theory involves the case of D = 2(H = 1/2), or a = 0. In
this limit the crack degenerates into a 2D object that behaves much like an elliptical void obeying Inglis
[24] rule of stress magnification at both ends of the ellipse. Interestingly, it was exactly this formula that
inspired Griffith’s seminal work on Mechanics of Fracture in 1920. It appears that our model proposed
here addresses this special case, too, as it results in a quite natural way when the fractal dimension D

approaches 2.

Both special cases represent interesting physical realities, one is that of a 2D void described by Neuber’s
Notch Mechanics [41] (when D = 2), while the other one, when D = 1, corresponds to the Griffith’s classic
theory of sharp cracks, the well-known LEFM. The most interesting part of the theory, though, lies in between
these two limits determined by the Notch Theory (D = 2) and the LEFM (D = 1). This range corresponds to
‘‘rough’’ cracks mathematically described by fractals.

Although a number of newly arising problems need to be studied in greater detail, two essential conclusions
seem to transpire from the DFFM model. Our theory predicts a finite intrinsic material strength that is explic-
itly related to the following material properties:

(1) Fracture quantum, a0.
(2) Fractal dimension D or the roughness exponent H.

All the pertinent equations of the present theory become substantially different from the classic theory pre-
dictions especially for short cracks. Finite radius of the curvature at the crack root turns out to be inseparably
related to the fractal exponent a, or to the fractal dimension D. Wnuk and Yavari [60] postulated existence of
such a relation between q and a by studying the thickness of a fractal boundary layer. If this thickness is
known, the degree of fractality can be quantitatively established. Assuming that q is a material constant
for the equivalent smooth blunt crack of a given fractal crack, we showed that fractal dimension at the tip
of the fractal crack is a monotonically increasing function of the current length of the crack.
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