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ABSTRACT: Analytical solutions are obtained for the interior and edge-zone equations of Mindlin-Reissner
plate theory in bending of composite circular sector plates laminated of transversely isotropic layers. Circular
sector laminates, under various boundary conditions, are considered. It is shown that, depending on the boundary
conditions of the laminate, the boundary-layer effect on the response quantities of the laminate will be strong,
weak, or nonexistent.
INTRODUCTION

The classical fourth-order plate theory of Kirchhoff (1850),
although it has been a very useful engineering approximation,
has some drawbacks. This theory neglects shear deformations,
and as a result it underestimates deflections and overestimates
stresses. Though in some cases sufficient, the neglect of shear
deformations does not always lead to an acceptable approxi-
mation. For example, laminated composites usually undergo
considerable shear deformations, and so the effects of shear
deformations should be taken into account when these com-
posites are analyzed. The other drawback of classical plate
theory is the inconsistency between the order of the governing
equilibrium equations and the number of boundary conditions.
For example, at a free edge one physically expects three
boundary conditions, whereas the order of the governing dif-
ferential equation dictates only two edge conditions. The re-
duction of boundary conditions from three to two is due to
Kelvin and Tait (Timoshenko and Woinowsky-Krieger 1959).
It is known that due to this inconsistency, polynomial plates
loaded laterally produce concentrated reactions at corner
points, in addition to the distributed reactions along the bound-
aries. This phenomenon is called the ‘‘corner condition.’’ Re-
cently, Yavari et al. (2000) presented a mathematical expla-
nation for this phenomenon in classical plate theory using
theory of distributions.

Over the years, researchers have tried to modify the classical
plate theory to relax its restrictions. Several alternative plate
theories have appeared in the literature, among which those of
Mindlin (1951) and Reissner (1945) are the most well known.
Both Mindlin’s and Reissner’s theories are sixth order. Min-
dlin’s theory is displacement based, whereas Reissner’s is
stress based.

Reissner (1944, 1945, 1947, 1985) found that for a homo-
geneous isotropic plate his sixth-order theory can be uncou-
pled into two equations: edge-zone and interior equations.
Nosier and Reddy (1991, 1992a,b,c) studied edge-zone and
interior equations of several shear deformation plate theories
for composite plates laminated of transversely isotropic layers.
Nosier et al. (2000) investigated the edge-zone equation of
Mindlin-Reissner plate theory in bending of symmetric lami-
nated rectangular plates. They showed that the edge-zone
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equation contributes to deflection and stresses only in a very
localized region near the boundaries of the plate. They nu-
merically showed that the width of this boundary layer is ap-
proximately equal to the plate’s thickness. They also demon-
strated that there is no boundary layer for simply supported
edges, and there are weak and strong boundary layers for
clamped and free edges, respectively. Finally, they showed that
there is no boundary-layer phenomenon for a simply supported
Timoshenko beam.

This article considers the bending of laminated circular sec-
tor plates under various boundary conditions and demonstrates
analytically the contribution to the solution made by the edge-
zone, or boundary-layer, equation. The bending equations of
laminated circular sector plates laminated of transversely iso-
tropic layers are uncoupled into two equations. The analytical
solutions are obtained for both edge-zone (boundary-layer) and
interior equations for circular sector plates with two edges sim-
ply supported under uniform loads. The effects of the bound-
ary-layer function are studied numerically, and the dependence
of the width of the boundary layer on the plate’s thickness and
on the boundary conditions is studied.

GOVERNING EQUATIONS

According to the first-order shear deformation theory, the
bending equations of a plate are obtained in polar coordinates
from the following displacement fields (Mindlin and Dere-
siewicz 1954):

u (r, u, z) = u(r, u) 1 zc (r, u) (1a)r r

u (r, u, z) = v(r, u) 1 zc (r, u); u (r, u, z) = w(r, u) (1b,c)u u z

where z = thickness coordinate; u and v = displacements of
the middle surface of the plate in the r- and u-directions, re-
spectively; and cr and cu are known as the rotation functions
(Reddy 1984, 1997, 1999). Here it is assumed that the plate
is symmetrically laminated with respect to its middle surface.
Hence the stretching and bending equations are uncoupled.
Furthermore, if each layer (or lamina) is made of transversely
isotropic material, with the plane of isotropy parallel to the
middle surface, then by introducing a new function F, which
will be referred to as the boundary-layer function, such that

1 1
F = c 2 c 2 c (2)r,u u,r u

r r

and following a procedure as in Nosier and Reddy (1992a),
the bending equations of the plate may be recast to yield two
uncoupled equations as follows:

D̄2 2 2 2 2¯ ¯ ¯C= F 2 K AF = 0; D= = w = P 2 = P (3a,b)z z2 ¯K A

where =2 = 2D Laplace operator in the polar coordinates; K 2

= shear correction factor; and Pz = transverse loading. Eqs.
(3a) and (3b) are known as the edge-zone (or boundary-layer)
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and interior equations of the plate, respectively (Reissner
1985; Nosier and Reddy 1991, 1992a,b,c). It also may be
shown that (Nosier and Reddy 1992)

¯ ¯ ¯D C 1 D2c = 2w 2 = w 1 F 2 P (4a)r ,r ,r ,u z,r2 2 2 2¯ ¯ ¯K A K A r (K A)

¯ ¯ ¯1 D 1 C D 12c = 2 w 2 = w 2 F 2 P (4b)u ,u ,u ,r z,u2 2 2 2¯ ¯ ¯r K A r K A (K A) r

The rigidity terms Ā, C̄, and D̄ are defined as

N

Ā = (G ) (z 2 z ) (5a)z k k k11O
k=1

N
1 E 3 3C̄ = (z 2 z ) (5b)k k11O S D6 1 1 nk=1 k

N
1 E 3 3D̄ = (z 2 z ) (5c)k k11O S D23 1 2 nk=1 k

where N = total number of layers; E and n = Young’s modulus
and Poisson’s ratio in the plane of isotropy (i.e., the r-u plane),
respectively; and Gz = shear modulus in the plane normal to
the plane of isotropy.

APPLICATION TO CIRCULAR SECTOR PLATES

Here the bending of a laminated plate in the form of a sector
subjected to a uniformly distributed load Pz (=P0) is studied
(Fig. 1). To this end, it is assumed that the edges at u = 0 and
u = u0 have simple supports with the boundary conditions

c = M = w = 0 at u = 0 and u = u (6)r uu 0

where Muu is given by

D̄¯ ¯M = (D 2 2C )c 1 (c 1 c ) (7)uu r,r r u,u
r

Because cr = cr,r = 0 at these two edges, it can be concluded
from (7) that cu,u = 0. Therefore, the boundary conditions in
(6) are equivalent to

c = c = w = 0 at u = 0 and u = u (8)r u,u 0

As far as (3) is concerned, the boundary conditions in (8) must
be restated in terms of F and w. With the help of (8), (4a),
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and the governing equations of motion, it can be shown that
these conditions are

1 Pz
F = w 1 = w = 0 at u = 0 and u = u (9),u ,uu 02 2 ¯r K A

Next with bn = np/u0, the uniformly distributed load may be
represented as

`
4P0

P (r, u) = sin b u (10)z nO npn=1,3,...

It is also seen that the solution representations

`

F(r, u) = F (r)cos b u (11a)n nO
n=1,3,...

`

w(r, u) = w (r)sin b u (11b)n nO
n=1,3,...

satisfy identically the boundary conditions at u = 0 and u =
u0. Substitution of (11a) into (3a) yields

2 2 ¯d F (r) dF (r) K An n2 2 2r 1 r 2 b 1 r F (r) = 0 (12)n nS D2 ¯dr dr C

which is the modified Bessel equation with the general solu-
tion

F (r) = C I (mr) 1 C K (mr) (13)n n1 b n2 bn n

where and = modified Bessel functions of the first andI Kb bn n

second kinds, respectively; and

2 ¯K A2m = (14)
C̄

Because F must be finite at r = 0, it should be concluded that
Cn2 = 0. Thus

F (r) = C I (mr) (15)n n1 bn

Also, substitution of (10) and (11b) into (3b) yields

2 2 2 2d 1 d b d w 1 dw b 4Pn n n n 0
1 2 1 2 w = ,nS D S D2 2 2 2 ¯dr r dr r dr r dr r npD

n = 1, 3, . . . (16)
FIG. 1. Circular Sector Plate with Simple Supports at u 5 0 and u 5 u0



whose general solution may be represented as

w (r) = w (r) 1 w (r) (17)n c p

where wc and wp represent, respectively, the complementary
and particular solutions of (16). When ≠ 4, ≠ 16, and u0

2 2b bn n

< 2p, these solutions are given by

b 2b b 12 2b 12n n n nw (r) = C r 1 C r 1 C r 1 C r (18a)c n3 n4 n5 n6

4w (r) = Cr (18b)p

where

2l 4P02C = ; l = (19a,b)2 2 ¯(b 2 4)(b 2 16) npDn n

When = 4 or = 16, (18a) still remains valid, but the2 2b bn n

particular solution will be given by

2l p 3p 5p 7p4w = 2 r ln r when u = , , , (20a)p 096 4 4 4 4

2l 2p 6p4w = r ln r when u = , (20b)p 048 4 4

For u0 = p, wc1 = wc(n = 1) is given by

21 3w = C r 1 C r 1 C r 1 C r ln r (21)c1 13 14 15 16

For n $ 2, (18a) still holds. Also, since w and Qr must be
finite at r = 0, it is concluded that Cn4 = Cn6 = 0. The remaining
unknown constants of integration Cn1, Cn3, and Cn5 must be
determined by imposing three boundary conditions at r = a.
For example, when the edge of the plate at r = a is simply
supported, the following conditions are imposed:

w = M = c = 0 at r = a (22)rr u

Alternatively, in terms of w and F, these conditions may be
shown to be

Pz
w = w 1 = F = 0 at r = a (23),rr ,r2 ¯K A

To impose the boundary conditions in (22), the general solu-
tions for cr and cu must be known. These solutions are readily
obtained by substituting the general solution of w and F into
(4). In either case, whether the boundary conditions of (22) or
(23) are imposed, a set of three nonhomogeneous algebraic
equations will be obtained whose solution yields the integra-
tion constants Cn1, Cn3, and Cn5. For the sake of brevity, we do
not include the coefficients of these systems of linear equa-
tions. Here, however, it should be noted that the imposition of
the last condition in (23) yields

F(r, u) = 0 (24)

That is, there is no boundary-layer effect when the sector plate
is completely simply supported. When the edge at r = a is
clamped, the following boundary conditions will be imposed:

w = c = c = 0 at r = a (25)r u

where, again, the expressions for rotation functions cr and cu

are obtained from (4). When the boundary conditions in (25)
are imposed, again three linear algebraic equations will be ob-
tained whose solution will yield the integration constants. Fi-
nally, when the sector plate has a free edge at r = a, the bound-
ary conditions will be

ˆM = Q = M = 0 at r = a (26)rr r ru

Once the expressions for w, cr, and cu have been obtained,
the stress components in any lamina of the plate at (r, u, z)
are obtained from the following relations
E n
s = c 1 (c 1 c ) z (27a)rr r,r r u,uF G21 2 n r

E 1
s = nc 1 (c 1 c ) z (27b)uu r,r r u,uF G21 2 n r

E 1 1
s = c 1 c 2 c z (27c)ru r,u u,r uS D2(1 1 n) r r

1
s = G (w 1 c ); s = G w 1 c (27d,e)rz z ,r r uz z ,u uS Dr

where E and n = Young’s modulus and Poisson’s ratio in the
r-u plane, respectively; and Gz = shear modulus in the plane
normal to the r-u plane.

For a complete circular plate (i.e., u0 = 2p) it could easily
be shown that in the axisymmetric bending problem there ex-
ists no boundary-layer effect. The details are omitted here for
the sake of brevity.

DISCUSSION OF NUMERICAL RESULTS

To study the behavior of the boundary-layer function, we
assume the laminated plate to be a single-layer transversely
isotropic plate with the following properties:

5E = 5 3 10 ; G = 0.15E; n = 0.25 (28)z

Also, it is assumed that K 2 = 5/6, a = 50, and P0 = 1. It should
be noted that the units must be consistent. For example, if E
is given in pounds per square inch, then a will be in inches.

The variation of the function F(r, u) at u = p/36 for a
clamped sector plate is shown in Fig. 2(a), for various values
of the sector angle u0. It is assumed that h = 5, where h is the
thickness of the plate. It is seen that, except near the edge of
the plate (i.e., in the edge zone of the plate), the function F
is zero everywhere. This is the justification for calling F the
boundary-layer function. The region where F is zero is also
called the interior region of the plate (Nosier and Reddy
1992a,c).The width of the edge zone may be considered to be
almost equal to the thickness of the plate. This conclusion may
be more fully supported by Figs. 2(b and c). In Fig. 2(b) it is
assumed that the edge of the sector plate at r = a is clamped,
and the variation of F is plotted along u = p/36 with the sector
angle u0 = p/2 and various values for the thickness of the plate.
Fig. 2(c) shows the variation of the boundary-layer function
for a circular sector plate with the sector angle u0 = p/2 and
free edge at r = a for different values of u. As can be seen,
the boundary-layer width is independent of u; it only depends
on the thickness of the plate. The variation of the boundary-
layer function F for free and clamped sector plates for u0 =
p/3 are compared in Fig. 3(a) along u = p/12. It is observed
that F has a larger magnitude in the free case than in the
clamped case. In other words, it may be said that in the case
of a clamped plate, the boundary-layer effect is weak, whereas
for a free plate this effect is strong. Also, it should be recalled
that when the edge at r = a is simply supported (i.e., in the
case of a completely simply supported plate), it can be ana-
lytically shown that there exists no boundary-layer effect.

Next, the effect of the boundary-layer function F on stress
components is studied. To this end, the following quantity is
defined:

s 2 s (F = 0)uu uu
ds = 3 100 (29)uu

suu

where suu(F = 0) means that in calculating suu the function
F is set equal to zero. The variations of stresses in clamped
and free sector plates with u0 = p/3 are shown in Fig. 3(b)
along u = p/6. It is seen that the effect of F on the stress
components is confined to the edge zone of the plate. Again,
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FIG. 2. Variation of Boundary-Layer Function for Circular Sector Plates: (a) u 5 p/36, h 5 5, Clamped Edge at r 5 a; (b) u 5 p/36, u0 5
p/2, Clamped Edge at r 5 a; (c) h 5 2, u0 = p/2, Free Edge at r 5 a (a = 50)
it is seen that for a clamped sector plate the boundary-layer
effect is weaker than it is when the edge is free. We found
that F has boundary-layer effects on all of the other stress
components, but for the sake of brevity we have not presented
the results here.

CONCLUSIONS

The bending problem for laminated circular sector plates is
considered in the present work. It is assumed that each layer
(lamina) is made of a transversely isotropic material. The the-
ory considered is called the first-order shear deformation plate
theory, also known as the Mindlin-Reissner plate theory. An-
alytical expressions are obtained for primary response quan-
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tities of laminated circular sector plates with various boundary
conditions under uniform loading. It is analytically shown that
when the edges of circular sector plates are simply supported,
the boundary-layer effect disappears. Numerical results indi-
cate that the boundary-layer function and its influence on the
stress components are confined to the edge zone of the plate.
It is also seen that the boundary-layer effect is stronger in the
presence of a free edge than it is near a clamped edge.

The numerical calculations consider a single-layer plate
with transversely isotropic material; however, the conclusions
drawn here are also valid for isotropic plates and laminated
transversely isotropic plates.

In this article we have reached the same conclusions as did



FIG. 3. Effect of Boundary Condition at r 5 a on: (a) Variation of Boundary-Layer Function in Circular Sector Plate (h 5 5, u 5 p/12,
u0 = p/3); (b) Stress Component suu in Circular Sector Plate (h 5 1, u0 5 p/3, u 5 p/6)
by Nosier et al. (2000). Therefore, it can be concluded that
this boundary-layer phenomenon occurs independently of
geometry.
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