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The objective of this short note is to trace back the major contributions that led to the multiplicative decompo-
sition of the deformation gradient in finite plasticity, nonlinear thermoelasticity, and growth mechanics. In the
1940s, Eckart in the US and Kondo in Japan independently paved the road to the formulation of a nonlinear
theory capable of modeling anelastic phenomena. As opposed to assuming, for a given body, the existence of a
global stress-free configuration (the “principle of relaxability-in-the-large” according to Eckart) that the body
takes whenever it is completely relaxed, Eckart [1] suggested an alternative framework for anelasticity based on
what he called “relaxability-in-the-small”. He conceptually constructed a local stress-free “fragmented” state
following a local relaxation of the reference configuration by “cutting out” a “small bit of matter” around every
material point and letting it relax independently of the remainder of the body. He also asserted that such a con-
struction should be accompanied by an elastic deformation to ensure that the body keeps its structural integrity.
This is nothing but the decomposition of the deformation gradient into an anelastic relaxation, leading to the
so-called “intermediate” configuration, followed by the elastic portion of the deformation gradient.

Independently of Eckart’s work, Kondo [2] observed that due to plastic deformations, the relaxed state of a
body has a non-trivial geometry that is not compatible with that of the Euclidean space. This observation first
led him to construct a stress-free configuration as a Riemannian manifold in which a non-vanishing curvature is
a measure of the incompatibility of the plastic deformation. Inspired by the works of Cartan [3, 4] on non-trivial
holonomy groups, Kondo [5–7] extended his framework to consider the material body as a non-Riemannian
space with a non-zero torsion. He used this geometric framework in the context of crystals with geometrical
imperfections, e.g. dislocations, and introduced the idea of considering the stress-free state as “an amorphous
aggregation” of small pieces of relaxed perfect “crystalline pieces” that he modeled as a non-Riemannian man-
ifold. Further, he interpreted the torsion tensor as a measure of the density of dislocations and initiated the
development of a geometric theory of dislocation mechanics. Soon after, further contributions to the nonlinear
theory of dislocation mechanics were introduced by Kröner [8, 9] and Bilby et al. [10]. For a review of the
interactions between the Japanese (led by Kondo), the British (led by Bilby), and the German (led by Kröner)
schools and their contributions, see [11]. It is worth mentioning that Sedov [12] independently realized that a
body in plastic deformation can be relaxed in a stress-free intermediate configuration, which he called “a new
starting position”, with a changing metric that is generally non-Euclidean.

Following the original idea of local relaxation inspired by the pioneering works cited above, the first formal
introduction of the multiplicative decomposition of the deformation gradient in finite plasticity appeared in the
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late 1950s in the work of Bilby et al. [13]. Bilby et al. [13] called the total deformation gradient F, the elastic
deformation gradient Fe, and the plastic deformation gradient Fp, “shape deformation, “lattice deformation”,
and “dislocation deformation”, respectively. The decomposition F = FeFp was explicitly written in [13, p.
41, Equation (12)]. The same decomposition is seen in the work of Kröner [14, p. 286, Equation (4)] as well.
Almost a decade later, Lee and Liu [15, 16] discussed the multiplicative decomposition in finite plasticity and
received most of the credit for it. In nonlinear thermoelasticity, the first formal introduction of the multiplicative
decomposition of the deformation gradient is due to Stojanović et al. [17, 18]. In the biomechanics and growth
mechanics literature, the introduction of the multiplicative decomposition is usually attributed to Rodriguez
et al. [19]. However, it was first introduced about a decade earlier independently in Russia by Kondaurov and
Nikitin [20] and in Japan by Takamizawa et al. [21–23].
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[18] Stojanović, R. On the stress relation in non-linear thermoelasticity. Int J Non-Lin Mech 1969; 4(3): 217–233.
[19] Rodriguez, EK, Hoger, A, and McCulloch, AD. Stress-dependent finite growth in soft elastic tissues. J Biomech 1994; 27(4):

455–467.
[20] Kondaurov, V, and Nikitin, L. Finite strains of viscoelastic muscle tissue. J Appl Math Mech 1987; 51(3): 346–353.
[21] Takamizawa, K, and Hayashi, K. Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech

1987; 20(1): 7–17.
[22] Takamizawa, K, and Matsuda, T. Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J Appl

Mech 1990; 57(2): 321–329.
[23] Takamizawa, K. Stress-free configuration of a thick-walled cylindrical model of the artery: an application of riemann geometry

to the biomechanics of soft tissues. J Appl Mech 1991; 58(3): 840–842.


