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Abstract
This paper presents a stability analysis for fractal cracks. First, the Westergaard stress
functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields
associated with the corresponding self-affine fractal cracks. These new stress functions satisfy
all the required boundary conditions and according to Wnuk and Yavari’s (2003 Eng. Fract.
Mech. 70 1659–74) embedded crack model they are used to derive the stress and displacement
fields generated around a fractal crack. These results are then used in conjunction with the
final stretch criterion to study the quasi-static stable crack extension, which in ductile
materials precedes the global failure. The material resistance curves are determined by solving
certain nonlinear differential equations and then employed in predicting the stress levels at the
onset of stable crack growth and at the critical point, where a transition to the catastrophic
failure occurs. It is shown that the incorporation of the fractal geometry into the crack model,
i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of
the material resistance to crack propagation and (2) higher levels of the critical stresses
associated with the onset of catastrophic fracture. While the process of quasi-static stable
crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability
attained at the end of this process is identified with the global instability. The phenomenon of
SCG can be used as an early warning sign in fracture detection and prevention.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phenomenon of slow stable crack extension or subcritical
crack growth so ubiquitous in ductile and quasi-brittle fracture
is not addressed in Griffith’s theory of brittle fracture.
Ultimately the analysis of this process leads to solutions for
advancing cracks, which significantly differ from those valid
for stationary cracks. The effect has been clearly noted in
the antiplane case where continued crack advance is predicted
under increasing load, and fracture appears as an instability in
the process (Hult and McClintock 1956, McClintock 1958,
McClintock and Irwin 1965). It has been shown that this
instability behaviour from McClintock’s antiplane analysis
can be formulated in terms of a universal resistance curve,
much as proposed by Krafft et al (1961). Physically this

type of continuing crack growth resembles time-dependent
or creep fracture observed in polymers. Studies on the
microstructural level of ductile fracture occurring in metals
and metallic alloys have brought up certain new mechanisms
facilitating such growth as a sequence of debonding of the hard
inclusions, followed by the formation of voids and their plastic
deformation, growth and coalescence (Rice 1968). Rice also
noticed that stable crack extension preceding instability is to
be expected from the incremental and path-dependent nature
of the plastic stress–strain relations such as those given by the
Prandtl–Reuss relations.

Since elasto-plastic stress–strain relations are incremental
in nature and path dependent, the analysis based on the
continuum theory of plasticity (e.g. incremental flow theory
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of Prandtl–Reuss) is extremely difficult if feasible at all (Gross
1990). There are only two exceptions to this statement, namely,
antiplane exact formulation by Hult and McClintock (1956)
and for the tensile fracture—analysis of Prandtl slip lines field
generated in front of a crack advancing in a rigid-perfectly
plastic solid (Rice and Sorensen 1978, Rice et al 1980). Their
governing differential equation, which defines the material
resistance curve, is identical to the results of Wnuk (1972,
1974, 1990) derived via application of the ‘cohesive’ and then
‘structured cohesive’ crack model, see also Budiansky (1988)
and Wnuk and Legat (2002). When within the equilibrium
cohesive zone associated with a tensile crack a ‘unit step
growth’ or ‘process zone’ is incorporated into the Barenblatt–
Dugdale model, and when Wnuk’s final stretch criterion of
fracture initiation is employed, one can then apply such a novel
‘structured cohesive’ model for analysis of continuing crack
growth as a viable alternative to the continuum approaches
(which with very few exceptions are not available), compare
Wnuk and Mura (1983). In this context the exact coincidence
of the governing equations derived by Wnuk (1972) and that
of Rice et al (1980) is rather encouraging. More recently,
Le et al (2009) have connected the phenomenon of subcritical
crack growth in inelastic solids to the scale effects in lifetime
and structural strength statistics. These authors show that
there would be no scale effect, observed experimentally,
if the process of slow stable crack growth (SCG) was not
accounted for.

Real fracture surfaces are rough and the traditional
modelling of cracks as smooth surfaces is at best an
approximation. It is a known experimental fact that cracks in
solids have rough surfaces and this ‘roughness’ evolves while a
crack propagates (mirror-mist-hackle transition phenomenon).
Irregular curves (surfaces) appear in many natural phenomena
and it turns out that in many cases these irregular (rough)
objects have some hidden degree of order. A fractal is a
very special irregular set that has specific properties under
scaling transformations. Curiosity of some researchers and
the quest for finding better fracture models motivated several
studies on modelling rough fracture surfaces with fractals.
The experimental works started in the 1980s (Mandelbrot
et al 1984) and today there is an overwhelming amount of
experimental evidence that cracks in real materials are fractals
in a wide range of scales. Among the theoretical contributions
we can mention Mosolov (1991), Gol’dshteǐn and Mosolov
(1991), Gol’dshteǐn and Mosolov (1992), Balankin (1997),
Borodich (1997), Cherepanov et al (1995), Xie (1989),
Carpinteri (1994), Carpinteri and Chiaia (1996), Yavari (2002),
Yavari et al (2000, 2002a, 2002b), Wnuk and Yavari (2003,
2005, 2008, 2009), Yavari and Khezrzadeh (2010). The
main results of these and related studies were the influence of
fractality on the stress singularity at the crack tip, appearance
of new modes of fracture, possibility of crack propagation in
uniform compression, crack roughening and the increase in the
cohesive zone size. The results of the mathematical evaluations
presented here are subject to certain limitations. First, the
range of the roughness parameter α is to be restricted to the
interval (0.40, 0.50), which means that the crack surfaces are
of small or moderate ruggedness. Such limitation is dictated

by the confines of the ‘embedded crack model’ of Wnuk and
Yavari (2003) and the limit α ≈ 0.40 is justified independently
by the phenomenon of crack branching described by Yavari and
Khezrzadeh (2010). While there are no restrictions imposed
on the material ductility ρ defined in (54), satisfaction of
Barenblatt’s condition of small cohesive zone versus crack
length (R � a) is assumed throughout this paper.

The primary objective of crack stress field analysis is
to obtain a characterization of the stress and strain fields in
the close vicinity of a crack tip within which the progressive
separation events occur. Characterization in terms of stress
intensity factor K , assuming linear-elastic behaviour, only
requires knowledge of stresses and strains close to the crack
tip. However, studies of cracks often involve displacement
calculations at some distance from the crack tip. Therefore,
solutions of crack problems that permit stress and displacement
calculations in a finite domain around the crack tip are of
interest. One effective way to solve the plane elasticity
problems is to use complex variables. Muskhelishvili (1933)
noted certain analysis advantages in using complex variables in
solving plane elasticity problems. He showed that the solution
of plane elasticity problem, ∇4� = 0, where � is Airy’s stress
function, is the real or the imaginary part of

F = z∗φ(z) + χ(z), (1)

where z = x + iy, z∗ = x − iy and φ(z) and χ(z) are
two arbitrary holomorphic functions. Westergaard (1939) for
some special types of crack problems proposed a simpler one-
function approach. Westergaard discussed several mode I
crack problems that can be solved using the following form
of solutions:

� = Re ¯̄Z + yIm Z̄, (2)

where Z̄ = d ¯̄Z
dz

, Z = dZ̄
dz

and Z is the Westergaard stress
function, which is holomorphic.

In this paper we will find general solutions for fractal
cracks in mode I. To do so, first we will obtain the close tip
solutions for fractal cracks. Then we find the stress functions
for a semi-infinite fractal crack and a fractal crack of finite
nominal length 2a, which are both under point loads. After
obtaining these general stress functions we will use them
to obtain stress functions for some special cases, and then
the corresponding stress intensity factors and crack opening
displacements (CODs). The aim of this paper is to study the
effect of ductility and roughness on fracture instability. We
extend Wnuk’s work to self-affine fractal cracks and will show
that roughness has a profound effect on fracture instability.

This paper is organized as follows. In section 2 we review
general formulae required for the stress and displacement
fields analysis by the use of Westergaard stress functions.
Then the Westergaard stress functions and smooth crack field
analysis results for the cases of semi-infinite and finite cracks
of length 2a are briefly reviewed. In section 3 we propose
Westergaard stress functions for three fractal crack cases: near-
tip fields case, semi-infinite case and finite crack case. Using
these Westergaard stress functions we determine the stress
and displacement fields using the method of embedded crack
(Wnuk and Yavari 2003). The stress fields are then used to
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determine the fractal stress intensity factors. In section 4
stability of crack propagation and different efforts in analysing
it are discussed. Section 5 is devoted to extending the final
stretch criterion of Wnuk (1972, 1974) for fractal cracks.
Using this criterion we carry out a stability analysis for fractal
cracks. We discuss the terminal instability state in section 6.
Conclusions are given in section 7. Some of the required
detailed formulae and expressions for the stability analysis are
given in the appendix.

2. Stress and displacement fields of smooth cracks

If the elasticity problem can be arranged so that the
crack of interest lies on a straight segment of the x-axis
(y = 0) according to Westergaard (1939) the stresses and
displacements can be obtained from the stress function Z(z) as

σxx = Re Z − yIm Z′, σyy = Re Z + yIm Z′,
σxy = −yRe Z′ (3)

and
4Gu = (k − 1)Re Z̄ + 2yIm Z,

4Gv = (k + 1)Im Z̄ − 2yRe Z,
(4)

where Z = dZ̄
dz

, Z′ = dZ
dz

and k = 3 − 4ν for plane strain
and k = 3−ν

1+ν
for plane stress. The term k+1

4G
, which appears

in the COD calculations can be simplified to 2/E′, where
E′ = E/(1 − ν2) for plane strain and E′ = E for plane stress.
In the following the results for smooth cracks are reviewed
and then fractal cracks are studied (figure 1). In each case we
start with point loads as we are interested in having Green’s
functions.

2.1. A semi-infinite smooth crack

We start with the problem of a semi-infinite smooth crack
loaded by a pair of point loads. This problem was solved
by Irwin (1957), and later on Tada et al (1985) added more
details to this solution and derived exact relations for the COD
and displacements along (0, y). The stress function for the
case of loading a semi-infinite crack by a pair of point loads of
magnitude P at the point x = −s (figure 1(a) and H = 1) as
given by Irwin (1957) reads

Z(z) = P

π(z + s)

√
s

z
. (5)

The COD resulting from this stress function has the following
form:

v = 2

E′
P

π
ln

∣∣∣∣
√|x| +

√
s√|x| − √
s

∣∣∣∣ x < 0. (6)

The stress function (5) is used as a Green’s function for
determining stress functions for different loading conditions
on a semi-infinite smooth crack. For example, for the case of
a semi-infinite smooth crack loaded by a uniform pressure p

along the segment −b < x < 0 the stress function is simply
obtained by integrating (5) multiplied by p with respect to

x over the interval [−b, 0]. This yields the following stress
function:

Z(z) = 2p

π

{√
b

z
− tan−1

√
b

z

}
. (7)

The resulting COD calculated from the stress function (7) reads

v = 2

E′
2pb

π

{√ |x|
b

+
(

1 +
x

b

) 1

2
ln

∣∣∣∣∣
√|x| +

√
b√|x| − √
b

∣∣∣∣∣
}

x < 0.

(8)

The case of small-scale yielding can be easily obtained from the
above results. If we denote the length of the yield zone ahead
of the crack by R, and the restraining stress acting within this
zone by σY, for small-scale yielding case (R � a) the stress
function (7) reads

Z(z) = 2σY

π
tan−1

√
R

z
. (9)

The COD at the beginning (mouth) of the yield zone is of
interest in fracture mechanics and is called crack tip opening
displacement (CTOD). The resulting CTOD, δ for small-scale
yielding is δ = 8σYR

πE′ (Barenblatt 1962, Irwin 1969). The size
of the yield zone is obtained from the finiteness condition,

which yields the equilibrium length R = π
8 [K

applied
I
σY

]2.

2.2. A finite smooth crack of length 2a

The stress function for the case of loading a crack of finite
length 2a by two pairs of point loads of magnitude P at the
points x = ±s (figure 1(b) and smooth crack for which H = 1)
has the following form (Irwin 1957, 1958, Erdogan 1962,
Sih 1962, 1964, Paris and Sih 1965):

Z(z) = 2P

π

√
a2 − s2

(z2 − s2)
√

1 − (a/z)2
. (10)

The resulting COD from the above stress function reads

v = 2

E′
P

π
ln

∣∣∣∣∣
√

a2 − x2 +
√

a2 − s2

√
a2 − x2 − √

a2 − s2

∣∣∣∣∣ |x| < 0. (11)

The problem of a crack of length 2a in an infinite plate under
tensile far-field stresses can be solved by superposition of two
distinct problems: (i) an infinite plate without a crack under
tensile stress σ applied on its boundaries and (ii) an infinite
plate with free boundaries and a finite crack of length 2a, which
is loaded by uniform pressure σ on its faces. Superposing these
two problems one reaches the following Westergaard stress
function:

Z(z) = σz√
z2 − a2

. (12)

For more details see Burdekin and Stone (1966) and
Anderson (2004).
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Figure 1. (a) A semi-infinite self-affine fractal crack loaded by a pair of point loads, (b) a self-affine fractal crack of finite nominal length 2a
loaded by two pairs of point loads. Note that in the limit H = 1 these become their corresponding classical smooth cracks.

A cohesive crack. Let us consider a cohesive crack for which
the lengths of the extended and physical cracks are 2c and
2a, respectively. Stress function for constant tensile stress σY

applied along the cohesive zone is obtained again by integrating
Green’s function (10) over a < |s| < c, which for arbitrary
R/c ratios yields

Z(z) = −2σY

π

[
z√

(z2 − c2)
cos−1

(a

c

)

− tan−1


 z

a

√
c2 − a2

z2 − c2


]

. (13)

By superimposing the stress functions (12) and (13), the strip
yield solution for the finite smooth crack is obtained. To do so
we need to have the size of the cohesive zone ahead of the crack.
As stated earlier, the size of the cohesive zone is chosen so that
the stresses at the tips of the extended crack (of length 2a) are
finite, which corresponds to satisfying the finiteness condition:
K

applied
I + Kcohesive

I = 0. The ratio of the size of the physical
crack to the size of the extended crack (a/c) is obtained as

h = a

c
= cos

(
πσ

2σY

)
. (14)

Now by substituting the ratio a/c in (12) and (13) and
after some algebraic manipulations one reaches the following
expression for the COD:

v = 4σY

πE′

[
a coth−1


1

c

√
c2 − z2

1 − h2




− z coth−1


h

z

√
c2 − z2

1 − h2


]

, |z| � c. (15)

By substituting z = a in the above equation the CTOD, δ is
obtained as

δ = 8aσY

πE′ ln

(
1

h

)
. (16)

When Barenblatt’s condition (c − a)/c � 1 is satisfied, the
expressions for the size of the cohesive zone and δ reduce to

c − a

a
= 1

2

(
πσ

2σY

)2

, δ = 8(c − a)σY

πE′ . (17)

We will denote the size of the cohesive zone (i.e. c − a) by R

throughout the paper.

3. Stress and displacement fields for fractal cracks

In the following we obtain approximate stress and
displacement fields for fractal cracks by embedding an
auxiliary smooth crack in the stress field of a fractal crack
according to the method of embedded crack (Wnuk and Yavari
2003). We will then obtain the appropriate stress functions for
this auxiliary smooth crack.

3.1. Near-tip solutions for a fractal crack

From many investigations on fractal cracks it has been found
that the order of singularity of stress around a fractal crack
tip is different from that of a smooth crack (Mosolov 1991,
Gol’dshteǐn and Mosolov 1991, 1992, Balankin 1997, Yavari
et al 2000, Yavari 2002, Yavari and Khezrzadeh 2010). The
order of stress singularity for fractal cracks depends on the
degree of roughness, which is quantified by the roughness
(Hurst) exponent H for self-affine fractal cracks. The order
of stress singularity α resulted from asymptotic analysis for
a self-affine fractal crack reads α = 2H−1

2H
( 1

2 < H � 1).
Throughout the paper we refer to α as ‘roughness index’ or
‘fractality index’.

Asymptotic analysis gives important information about
the dominant terms in the close vicinity of the crack tip;
however, it cannot give the complete field solutions. As
stated earlier, a complete field analysis requires an appropriate
choice of stress functions. A stress function must satisfy some
conditions and once it is found one can argue that it gives the
unique solution of the problem because of the uniqueness of
linear elasticity solutions. The stress function must satisfy the
following conditions: (i) stress function must be singular of
order α at the crack tip. (ii) The stress function must result
in stress components with the correct physical dimensions.
Because the order of stress singularity is different for fractal
cracks special care must be taken in choosing a stress function.
(iii) Any problem can be easily broken up into superposition
of an infinite body with a crack that is loaded on its faces and
has free boundaries and an infinite body without a crack that
is loaded on its boundaries (far-field loading). What we are
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interested in is the first problem. To satisfy the conditions
of free boundaries at infinity for this problem it is required
to have zero stresses for z → ∞. (iv) On the crack faces
traction vector must vanish. Because the stresses on the crack
faces (y = ±0 and x < 0) depend only on the real part of
Z(z) (see (3)), the stress function must have a vanishing real
part on the crack faces. (v) Because of symmetry, vertical
displacements must be symmetric with respect to the x-axis.
Therefore, for x > 0 on the x-axis the vertical displacement
resulted from the stress function must be zero. By referring
to (4) we find that this condition is satisfied if Im Z̄ = 0. (vi)
For H = 1 the stress function should be reduced to that of
the corresponding smooth crack, which is (Williams (1957),
Irwin (1958)): Z(z) = KI√

2πz
. The stress function must also be

a smooth function of roughness exponent H .
Considering the above conditions we propose the

following stress function for the dominant term of the stress
function around the tip of a fractal crack:

Z(z; α) = 1

ei( 1
2 −α)θ

K f
I

(2πz)α
. (18)

In polar coordinates this reads Z(r, θ; α) = K f
I

(2πr)αeiθ/2 . It can be
easily checked that this stress function satisfies all the above
conditions. It should be noted that what we have suggested
here is very similar to the close tip stress function proposed
earlier in Wnuk and Yavari (2003). In fact, the only difference
between the two expressions is the pre-factor 1/ei( 1

2 −α)θ . The
expression proposed by Wnuk and Yavari (2003) is real-valued
on the line (x > 0 and y = 0) and is identical to our stress
function, but elsewhere it does not satisfy some of the required
conditions of a stress function. For example, it gives both real
and imaginary parts on the crack line (x < 0 and y = 0),
which is not correct. In this new stress function the issues of
the previous stress function of Wnuk and Yavari (2003) have
been resolved by introducing a pre-factor. We will compare the
two resulting stress intensity factors at the end of this section.

To find the stress field we need the derivative of the stress
function (18), which reads

Z′(r, θ; α) = −α

r

K f
I

(2πr)αei3θ/2
. (19)

The terms that are needed to determine the stress field can be
easily extracted from the above stress functions. These are

Re Z = K f
I

(2πr)α
cos

θ

2
, Re Z′ = −α

r

K f
I

(2πr)α
cos

3θ

2
,

Im Z′ = α

r

K f
I

(2πr)α
sin

3θ

2
. (20)

Using (3), we obtain the following expressions for the
stress distribution in the close vicinity of the crack tip

σxx = K f
I

(2πr)α

[
cos

θ

2
− α sin θ sin

3θ

2

]
,

σyy = K f
I

(2πr)α

[
cos

θ

2
+ α sin θ sin

3θ

2

]
,

σxy = K f
I

(2πr)α
α sin θ cos

3θ

2
.

(21)

Figure 2. Normalized COD near the tip of a fractal crack for
different values of roughness exponent H .

The stress components in polar coordinates read

σrr = K f
I

(2πr)α
(1 + α − α cos θ) cos

θ

2
,

σθθ = K f
I

(2πr)α
(1 − α + α cos θ) cos

θ

2
,

σrθ = K f
I

(2πr)α
2α cos2 θ

2
sin

θ

2
.

(22)

In the following we will find the near-tip COD. We first
need to find the antiderivative of (18).4 To do so we rearrange
the stress function (18) as follows:

Z(r, θ; α) = K f
I eiθ/2

(2πr)α
e−iθ . (23)

Thus, Z̄(r, θ; α) reads

Z̄(r, θ; α) = r1−αK f
I eiθ/2

(1 − α)(2π)α
. (24)

By extracting the real and imaginary parts of the above equation
on the crack face (θ = π, y = 0) we obtain the following
expression for the COD:

v = 2K f
I

E′(2π)α

r1−α

1 − α
. (25)

As can be seen, the above COD reduces to its classical
counterpart for a smooth crack (α = 1

2 ). As expected a
weaker stress singularity results in smaller (normalized) close
tip displacements (see figure 2).

3.2. A semi-infinite fractal crack

In this section we estimate the stress field around a semi-
infinite fractal crack under a pair of point loads. To do so
we again use the method of embedded crack. We obtain
the stress functions for various types of loadings using this
(Green’s function) solution. The following conditions must

4 Note that stress functions are analytic and single valued in the domain of
interest (−π < θ < π ). The crack line is a branch cut in the complex plane.
This means that all the integrals in the domain of analyticity of the stress
functions are path independent.
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be satisfied by the stress function: (i) stress function must be
singular of order α at the crack tip and singular of order 1
at the loading point. (ii) Stress function must result in stress
components with the correct physical dimensions. (iii) On the
crack faces traction vector must vanish5. Because only the
real part of Z(z) contributes to stresses on the crack faces
(y = ±0 and x < 0) (see (3)), the stress function must
have a vanishing real part on the crack faces. (iv) Because
of symmetry, vertical displacements must be symmetric with
respect to the x-axis. Therefore, for x > 0 on the x-axis the
vertical displacement resulted from the stress function must be
zero. Referring to (4) we find that this condition is satisfied if
Im Z̄ = 0. (v) For H = 1 the stress function must be reduced
to that of a smooth crack, i.e. (Irwin 1957, Tada et al 1985):

Z(z) = P
π(z+s)

√
s
z
.

Considering the above conditions we propose the
following stress function for a semi-infinite fractal crack loaded
by a pair of concentrated loads of magnitude P at a distance s

from the crack tip:

Z(z; α) = 1

ei( 1
2 −α)θ

P

π(z + s)

sα

zα
. (26)

Its antiderivative Z̄ reads

Z̄(z; α) = P

π(1 − α)

1

ei( 1
2 −α)θ

×
(z

s

)1−α

f
(

1 − α, 1, 2 − α; −z

s

)
, (27)

where

f (φ, χ, ψ; x) = �(ψ)

�(χ)�(ψ − χ)

×
∫ 1

0
tχ−1(1 − t)ψ−χ−1(1 − tx)−φdt, ψ > χ > 0.

(28)

The real and imaginary parts of the above function cannot be
easily obtained; we use Mathematica®. Green’s function (26)
can be used to determine stress functions in other loading
conditions. For uniform pressure σ along the segment
−b < x < 0 the stress function reads

Ẑ(z; α) = σ

π

1

ei( 1
2 −α)θ

× 1

(1 + α)

(
b

z

)1+α

f

(
1 + α, 1, 2 + α; −b

z

)
. (29)

The resulting normalized CODs are plotted in figure 3 for
different values of roughness exponent H .

Stress functions can be used to obtain the stress intensity
factors. The fractal stress intensity factor is defined as (Wnuk
and Yavari 2003)

K f
I = lim

ξ→0
(2πξ)α Re Z. (30)

The stress intensity factor for the case of point loads of
magnitude P applied at the point x = −s of the semi-infinite

5 Note that in the close vicinity of the crack faces and at the point where the
load is applied σyy is singular.

Figure 3. COD in a semi-infinite fractal crack under uniform
pressure along the segment −1 < x/b < 0 for different values of
roughness exponent H .

fractal crack are obtained from the stress function (26) as
follows:

K f
I = lim

ξ→0
(2πξ)α Re Z = lim

ξ→0
(2πξ)α

P

π(ξ + s)

(
s

ξ

)α

= 2αP

(πs)1−α
. (31)

This serves as a Green’s function for other loading conditions,
i.e. stress intensity factor from a general loading p(x) can
be simply obtained by integrating the above Green’s function
multiplied by p(x), which gives

K f
I =

∫ 0

−∞

2αp(x)

(π |x|)1−α
dx. (32)

As an example, for the case of constant pressure loading σ∞

along the segment −b < x < 0 we obtain the following stress
intensity factor:

K f
I =

∫ 0

−b

2ασ∞ dx

(π |x|)1−α
= 2ασ∞bα

απ1−α
. (33)

3.3. A fractal crack of finite nominal length 2a

In this section we estimate the stress field around the tip of a
fractal crack of finite nominal length. The following conditions
must be satisfied by the stress function: (i) Stress function is
expected to be singular of order α at the crack tips and singular
of order 1 at the loading points (x = ±s). (ii) The stress
function should result in stress components with the correct
physical dimensions. (iii) On the crack faces traction vector
should vanish. Because only the real part of Z(z) contributes
to stresses on the crack faces (y = ±0 and −a < x < a),
the stress function must have a vanishing real part on the
crack faces (see (3)). (iv) Because of symmetry, vertical
displacements must be symmetric with respect to the x-axis.
Therefore, for (x > a and x < −a) on the x-axis the vertical
displacement resulting from the stress function must be zero.
By referring to (4) we find that this condition is satisfied when
Im Z̄ = 0. (v) For H = 1 the stress function should reduce to
that of the corresponding smooth crack, which is (Irwin 1957,

6
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1958, Erdogan 1962, Sih 1962, 1964, Paris and Sih 1965)

Z(z) = 2P

π

√
a2 − s2

(z2 − s2)
√

1 − (a/z)2
.

It is expected to be a continuous function of α or H .
Considering the above conditions we propose the

following stress function for the case of symmetric loading
by two pairs of concentrated forces P at the points ±s:

Z(z; α) = P

π

1

ei( 1
2 −α)2|π/2−θ |

(a − s)α(a + s)α

(z − a)α(z + a)α

2z

z2 − s2
.

(34)

It is easy to check that this stress function satisfies all the above
conditions. Westergaard stress functions for different loading
conditions on the finite fractal crack can be obtained using
Green’s function (34). If we denote the loading on the crack
faces by p(x), the corresponding Westergaard stress function
is obtained as

Z(z; α) = 1

ei( 1
2 −α)2|π/2−θ |

∫ a

−a

p(x)

π(z − x)

(a2 − x2)α

(z2 − a2)α
dx.

(35)

For the case of constant pressure σ∞ along the segment
(a < |x| < c) the result of integration is

Ẑ(z; α) = σ∞

ei( 1
2 −α)2|π/2−θ |

1

2(z2 − c2)α

{
1

α

[( −1

(a − z)2

)−α

×g

(
−2α, −α, −α, 1 − 2α,

z + c

z − a
,
z − c

z − a

)

−
( −1

(a + z)2

)−α

×g

(
−2α, −α, −α, 1 − 2α,

z − c

z + a
,
z + c

z + a

)]
+2(−1)α�(−2α)�(1 + α)

×
[(

1

c − z

)−2α

f

(
−2α, −α, 1 − α, 1 +

2c

z − c

)

−
(

1

c + z

)−2α

f

(
−2α, −α, 1 − α, 1 − 2c

z + c

)]}
,

(36)

where f (φ, χ, ψ; x) was defined in (28) and g(φ, χ1, χ2,

ψ; x, y) is the Appell hypergeometric function of two variables
(Weisstein 2003, Slater 2008).

By definition the stress intensity factor for a fractal crack
is related to the stress function (Wnuk and Yavari 2003):

K f
I = lim

ξ→a
[2π(ξ − a)]α Re Z. (37)

Hence, the fractal stress intensity factor is obtained from (35)
as follows:

K f
I = lim

ξ→a
[2π(ξ − a)]α

∫ a

−a

p(x)

π(ξ − x)

(a2 − x2)α

(ξ 2 − a2)α
dx

=
∫ a

−a

p(x)

π1−αaα

(a + x)α

(a − x)1−α
dx. (38)

Assuming an even distribution of pressure on the crack faces
will result in the following fractal stress intensity factor:

K f
I =

∫ 0

a

p(−x ′)
π1−αaα

(a − x ′)α

(a + x ′)1−α
(−dx ′)

+
∫ a

0

p(x)

π1−αaα

(a + x)α

(a − x)1−α
dx

=
( a

π

)1−α
∫ a

0

2p(x)

(a2 − x2)1−α
dx. (39)

It should be noted that the above relation is just an
approximation for the fractal stress intensity factor and
increasing roughness its accuracy decreases. There is another
approximation for the fractal stress intensity factor that was
proposed earlier by Wnuk and Yavari (2003). To compare
our results with the fractal stress intensity factor of Wnuk and
Yavari (2003), we first simplify (39) for the case of uniform
pressure. The resulting stress intensity factor for a fractal crack
reads

K f
I =

( a

π

)1−α
∫ a

0

2σ∞

(a2 − x2)1−α
dx = aαπα− 1

2 �(α)σ∞

�(α + 1
2 )

.

(40)

This can be rewritten as

K f
I = ξ(α)σ∞√

πa2α, (41)

where

ξ(α) = πα−1�(α)

�(α + 1
2 )

. (42)

The normalized results (with respect to σ∞aα) from the above
relation and that of Wnuk and Yavari (2003) are plotted in
figure 4. This new fractal stress intensity factor goes to infinity
for H = 0.5 but it should be noted that since there exists a
limiting roughness for a fractal crack6, reaching such a highly
irregular form is physically impossible. We should also note
that the method of embedded crack is a good approximation
only for moderately rough cracks. For moderately rough
cracks within a considerable range of the fractality index α

(0.25 < α < 0.5) the graphs in figure 4 show excellent
agreement.

The reason for the difference between the two stress intensity
factors. Let us now explain why our fractal stress intensity
factor is different from that given by Wnuk and Yavari (2003).
Wnuk and Yavari (2003) introduced a Westergaard stress
function, which for |x| > a and y = 0 is identical to our stress
function (34). Then they used an approximation to determine
the stress intensity factor, namely they defined the following
function:

K̂ f
I = 1

(πa)α

∫ a

−a

p(x)

[
a + x

a − x

]α

dx. (43)

6 There are many researchers who argue that there exists a universal roughness
for fracture surfaces. Their studies on the fracture surfaces of different
materials indicate that for both quasi-static and dynamic fracture a universal
roughness exponent (H ) of approximate value 0.8 is observed for values of ξ

(scale of observation) greater than a material-dependent scale, ξc (Bouchaud
et al 1990, Måløy et al 1992, Daguier et al 1996, 1997, Bouchaud 1997,
2003, Ponson et al 2006). Recently, Yavari and Khezrzadeh (2010) using a
branching argument showed that there is a limiting roughness and estimated
it.
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Figure 4. Comparison of fractal stress intensity factors from
equations (46) and (41).

In this paper, we have directly calculated the stresses from
a Westergaard stress function of a fractal crack with no
approximations and arrived at expression (41). Let us briefly
recall the steps taken by Wnuk and Yavari (2003) in the
evaluation of FSIF. Assuming an even distribution of traction
p(x), i.e. p(−x) = p(x), evaluation of the integral (43)
results in

K̂ f
I = 1

(πa)α

∫ a

0
p(x)

(a − x)2α + (a + x)2α

(a2 − x2)α
dx. (44)

However, the dimension of K̂ f
I is not consistent with dimension

of FSIF defined by (37). To resolve this inconsistency they
defined a pre-factor C(α, a), which was obtained from a
dimensional analysis and it reads

C(α, a) =
(

a√
π

)2α−1

. (45)

Finally, multiplying (44) by (45) gives the following relation
for the FSIF as presented in Wnuk and Yavari (2003):

K̃ f
I = aα−1

π2α−1/2

∫ a

0
p(x)

(a − x)2α + (a + x)2α

(a2 − x2)α
dx. (46)

The normalized FSIF resulting from this expression is
compared with the one defined by (41) in figure 4. In summary,
the cause of the difference between the two expressions for
the fractal stress intensity factors is that in Wnuk and Yavari
(2003) an approximate expression was used for calculating
the stress intensity factor (43), while in the present work
we have calculated stresses directly from the Westergaard
stress function. Interestingly, as mentioned earlier the two
expressions of FSIF show excellent agreement within the
physically acceptable range of roughness exponent.

4. Stability considerations for quasistatic cracks

In LEFM and the related generalizations of it there is
only one point of instability defining the transition from
a stationary to a catastrophically propagating crack. The
criteria used to determine this instability point for brittle and

quasi-brittle solids are well known and can be described as
follows: (i) Griffith’s energy criterion, resulting in the relation
between a critical stress and the length of the pre-existing
crack a of the form σcritical ∝ 1√

a
. (ii) Irwin’s criterion,

according to which the stress intensity factor K at the onset
of crack propagation is set equal to the fracture toughness:
K(σ, a, geometry) = Kc, or equivalently the crack driving
force G is set equal to its critical value: G(σ, a, geometry) =
Gc. (iii) For nonlinearly elastic or ductile solids that obey
Hencky–Ilyushin (deformation) theory of plasticity the Irwin
energy release rate G should be replaced by Eshelby–Rice’s
J -integral: J (σ, a, geometry) = Jc. (iv) For ductile materials
Wells (1963) suggested a criterion based on the crack-tip
opening (COD or δ) criterion, namely δc = δ(σ, a, geometry).
This concept, if interpreted in the framework of the cohesive
crack model, may be shown to be equivalent to Eshelby–Rice’s
criterion for the onset of fracture propagation.

It can be readily shown that for the brittle limit of material
behaviour all the above four criteria reduce to Griffith’s
equation. In the late 1960s a new concept of a ‘stable
quasi-static’ crack was introduced by McClintock (1958) and
extensively studied by various researchers. According to
these studies the critical point (onset of catastrophic crack
propagation) is preceded by propagation of a quasi-static crack
that slowly increases in length but remains in equilibrium with
the applied external load. Therefore, at any instant during this
pre-fracture phase of deformation process, the applied driving
force, measured by Kapplied, Gapplied or Japplied, equal their
respective material counterparts Kmaterial, Gmaterial or Jmaterial.
These material characteristics are no longer just single numbers
but are certain functions of the crack length a. These functions
represent material resistance to crack extension (or ‘tearing’
process) and are usually denoted by the index R. Thus, during
the quasi-static crack growth process the following equalities
are satisfied.

K(σ, a, geometry) = KR(a),

G(σ, a, geometry) = GR(a),

J (σ, a, geometry) = JR(a).

(47)

The expressions on the right-hand sides of these equations
describe the so-called material resistance curves or ‘material
signature’ curves. Since both G and J can be expressed by
the first derivatives of the potential energy of a cracked body
and the external loadings, it is noted that one may utilize this
fact to determine the transition from stable to unstable crack
growth by enforcing equalities between the second derivatives,
namely

−∂2�

∂�2
= ∂G

∂�

∣∣∣∣
constant stress (or fixed grips)

= dGR(�)

d�
,

−∂2�

∂�2
= ∂J

∂�

∣∣∣∣
constant stress (or fixed grips)

= dJR(�)

d�
. (48)

Here for a finite crack of length � = 2a. The boundary
conditions imposed on the surfaces of the solid body are
either ‘constant stress’ or ‘fixed grips’. Conditions (47) are
satisfied throughout the SCG phase. When both (47) and (48)
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are satisfied simultaneously the process of SCG ends and the
catastrophic propagation of fracture begins. The critical states
so determined are characterized by the final effective fracture
toughness attained during the slow crack growth process and
by the final crack length. In this way the critical stress level can
be determined. For ductile solids (or for very rough cracks)
this σcritical substantially exceeds the stress at the onset of crack
propagation σinitial. It will be shown that the σcritical versus
a curve, as defined in the classical studies of quasi-brittle
fracture, undergoes a separation as it splits into two distinct
curves. Therefore, instead of one curve (such as the final result
of Griffith’s theory) one obtains two curves; one serves as a
lower bound of the critical stress (onset of stable growth) and
the other one as an upper bound (onset of catastrophic fracture).
Such a phenomenon is illustrated in figure 9 in the next section.
Study of the effects of material ductility and roughness of the
crack surfaces on the slow crack growth and the attainment of
the terminal instability is the primary objective of this work.

To mathematically describe pre-fracture processes that
involve quasi-static cracks we apply Wnuk’s criterion of ‘delta
COD’ derived from the concept of ‘structured cohesive zone’
associated with a moving crack (Wnuk 1972, 1974). Quasi-
static crack extension process in ductile solids is somewhat
analogous to the time-dependent fracture in visco-elastic solids
(Wnuk 1974). For the purpose of stability considerations we
view the propagating crack as a sequence of local instability
states, while the terminal instability is considered as a global
instability tantamount to the onset of the catastrophic fracture.
It is noted that for brittle solids the phenomenon of stable
crack extension disappears altogether; this can be determined
by the initial slope of the R-curve. Positive slope means that
the slow growth is possible, while negative slope signifies
the absence of the slow crack growth process. This is the
case of perfectly brittle fracture described by Griffith (1921).
In order to determine the transition from stable to unstable
crack extension, the JR(a) material resistance curve will be
represented7 by the length of the cohesive zone R shown as
a function of the current crack length, R(a). This curve will
be described by a nonlinear differential equation, which in the
limiting case of a smooth crack reduces to the Wnuk–Rice–
Sorensen differential equation (Wnuk 1972, Rice and Sorensen
1978, Rice et al 1980).

5. Transition from stable to unstable propagation of
a quasi-static fractal crack

Stability problems for a quasi-static smooth crack have been
studied in the past by Wnuk and Knauss (1970), Wnuk
(1972, 1974), Rice and Sorensen (1978), Rice (1968), Rice
et al (1980) and Budiansky (1988). Wnuk and Budiansky
used the ‘final stretch’ (or so-called ‘delta COD’) criterion

7 When working with the cohesive crack model—and only within the small-
scale-yielding restrictions (when the Barenbaltt condition is satisfied, R � a)
it turns out that there exists a direct proportionality between the CODcohesive—
J -integral and the length of the cohesive zone R. If the Barenblatt condition
is not satisfied, this is no longer so simple. Instead one can provide certain
nonlinear equations, which connect all the three entities J , R and δ. In this
context, instead of J -integral one may focus on R, because they differ only

by a multiplicative constant, i.e. J = 8S2

πE′ R.

governing the propagation of a quasi-static crack, proposed
by Wnuk (1972), which is identical to the differential equation
describing the material R-curve derived independently by Rice
and Sorensen (1978) six years later in 1978 and by Rice et al
(1980). Their derivation was based on the analysis of the
Prandtl slip line field in a rigid-plastic solid body weakened
by a slowly propagating crack.

5.1. Final stretch criterion

Wnuk’s criterion is linked to a structured cohesive crack model
equipped with a process zone of finite size �. According to
this criterion it is not the COD, but an increment of the COD
measured at the outer edge of the process zone associated
with the propagating crack (labelled with name ‘State 1’ in
figure 5). It is postulated that this increment, denoted by û,
remains constant throughout the stable phase of the continuing
subcritical growth of the crack, see figure 5 for details. As the
cohesive crack model relates the energy release rate, measured
by the J -integral, to the COD measured at the physical tip
of the cohesive (extended) crack, say δt (alternatively to the
length of the cohesive zone R) we can write

J = Sδt = 8S2R

πE′ , (49)

where E′ is Young’s modulus adjusted for either plane stress
or plane strain, while S denotes the constant cohesive stress
or the yield point depending on the range of the considered
material ductility.

It is possible to express the first and the second derivatives
of the potential energy � associated with a solid body
weakened by a crack and subjected to external loading in terms
of the CODcohesive. It turns out that for a fractal crack the
functional relation between the CODcohesive and the distance x1

measured from the physical tip of the propagating quasi-static
crack (see figures 5 and figure 16) is remarkably similar to the
one obtained for the smooth crack, provided that Barenblatt’s
condition of small size of the cohesive zone relative to the
crack length is satisfied. In fact, our calculations show that the
CODf

cohesive is related to the smooth case by a pre-factor κ(α)

and redefining the size of the cohesive zone ahead of a fractal
crack (Rf ) (see the appendix). The end result of the solution
pertaining to the CODf

cohesive of a fractal crack obtained by an
application of the Wnuk–Yavari model reads8

vf(x1, R
f) = κ(α)

4S

πE′

[√
Rf(Rf − x1)

−x1

2
ln

(√
Rf +

√
Rf − x1√

Rf −
√

Rf − x1

)]
. (50)

Here the symbol x1 is used to denote the distance measured
from the tip of the physical crack while the fractal constraint
factor κ(α) is defined in (95) and the ratio of the length Rf

associated with a fractal crack to the length R is defined in

8 For the details on the calculation of the CODcohesive see the appendix, where
we have derived the expressions for COD for a fractal crack.
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Figure 5. Distribution of the COD within the cohesive zone corresponding to two subsequent states in the course of quasi-static crack
extension (Wnuk’s criterion of delta COD).

Figure 6. Distributions of the CODcohesive for smooth and rough cracks (α = 0.5, 0.45 and 0.4) for (a) β = 0.2, (b) β = 0.4.

(89). Combining these equations results in

vf(x1, R, α, β) = 4SN(α, β)R

πE′ κ(α)

×
[√

1 − x1

N(α, β)R

− x1

2N(α, β)R
ln




1 +
√

1 − x1

N(α, β)R

1 −
√

1 − x1

N(α, β)R



]
, (51)

or

vf(λ) = vf
tip

[√
1 − λ

N(α, β)

− λ

2N(α, β)
ln




1 +

√
1 − λ

N(α, β)

1 −
√

1 − λ

N(α, β)



]
, (52)

where
vf

tip = N(α, β)κ(α)vtip,

(53)

Rf = N(α, β)R, vtip = 4SR

πE′ .

Functions N(α, β) and κ(α) are defined in the appendix. Here
the modulus E′ = E for plane stress and E/(1 − ν2) for
plane strain, while x1 has been replaced by a non-dimensional
coordinate λ = x1/R. The entity vf

tip represents half of the
CTOD of a fractal crack, for which the degree of fractality is
quantified by the exponent α and the ratio β = σ/σY. For
any given set of (α, β) one may construct a plot of the opening
displacement associated with a fractal crack, CODcohesive . The
plots of this kind are shown in figure 6. Note that each curve
begins at a certain point on the vertical axis equal or less
than one and ends at zero at the end of the extended crack
(tantamount to the end of the cohesive zone). This means that
the plots show the ratios vf(λ)/vtip. The differences between
the curves shown in figure 6 appear significant, and we proceed
to show that they lead to substantial differences in the stability
properties of quasi-static rough cracks, as compared with a
smooth crack. To substantiate this statement we shall now
apply the delta COD criterion and determine the motion of the
subcritical crack by establishing the governing equation for the
JR–�a curve.
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While brittle materials fracture at almost no irreversible
strains, the ductile solids attain large strains prior to fracture.
Ductility as a material property describes the ability of the
material to undergo large irreversible strains before the onset
of fracture. Following Hult and McClintock (1956) and Rice
(1968), who defined ‘ductility’ in terms of the shear strains at
the onset of yield (γY) and at fracture (γ f) in mode III fracture,
and Wnuk and Mura (1981), who defined ductility for mode I
fracture in terms of strains εY and εf , we shall use the following
definition of ductility:

ρ = Rinitial

�
= εf

εY
= 1 +

εf
pl

εY
. (54)

Here εf
pl denotes the plastic component of the strain at fracture.

It is noted that when ρ 
 1 we deal with ductile materials,
while forρ approaching one we have the brittle limit of material
behaviour. In the limit of ρ = 1, the entire nonlinear theory
presented here reduces to the Griffith case, which exhibits no
slow crack growth phenomenon.

5.2. Motion of a subcritical crack

Let us first recall that potential energy of a cracked linearly
elastic solid is written as

�(σ, �) = 1

2

∫
V

σij εij dV −
∫

ST

Tiui dS − SE(�). (55)

J -integral is defined as

J = −∂�

∂�
. (56)

Symbol SE(�) in (55) denotes the surface energy due to a
crack of length � generated within a solid body. For a Griffith
crack � = 2a. Replacing the J -integral by 2vtipS, where vtip

stands for the CTOD of the cohesive crack and S denotes the
constant cohesive stress, we focus our attention on the crack-
tip opening displacement CODcohesive expressed by (52). As it
turns out, it is sufficient to use just the two quantities R and
� and the two auxiliary functions κ(α) (93) and N(α, β) (89).
These functions stem from the fractal geometry, which has
been incorporated into the structured cohesive crack model.
Here α is a measure of roughness of the crack surface and
β is the stress ratio β = σ/σY—alternatively—β = σ/S,
if the magnitude of cohesive stress S rather than the yield
point σY is chosen to represent the constant restraining stress
within the end-zone. The length characteristics involved in the
representation of the opening displacement within the cohesive
zone are R and �; the first denotes the equilibrium length of the
cohesive zone and the latter describes the inner structure of the
end-zone associated with a propagating quasi-static cohesive
crack. Once the opening displacements within the cohesive
zone are evaluated, one may proceed to apply the Wnuk’s
criterion of the final stretch governing the phenomenon of the
continuing quasi-static crack motion.

[vf
2(t − δt, 0) − vf

1(t, �)]P = û. (57)

Here P denotes the control point shown in figure 5, while the
constant û represents the ‘final stretch’, also shown in figure 5.
Using (50) and expanding the function R(x1 = 0) into a Taylor
series around the point x1 = � the two functions vf

2 and vf
1

above are evaluated as follows:

vf
2(P ) = v[0, Rf(0)] = κ(α)

4S

πE′ R
f(0)

= κ(α)
4S

πE′

[
Rf(�) +

dRf

d�
�

]
, (58)

vf
1(P ) = v[�, Rf(�)]

= κ(α)
4S

πE′

[√
Rf(�)[Rf(�) − �]

− �

2
ln

(√
Rf(�) +

√
Rf(�) − �√

Rf(�) −
√

Rf(�) − �

)]
. (59)

It is noted that for a moving crack both x1 and Rf are time
dependent, see figure 16. Using (58) and (59) we subtract vf

1
from vf

2 and apply the criterion (57) to obtain

Rf + �
dRf

da
−
√

Rf(Rf − �)

+
�

2
ln

(√
Rf +

√
Rf − �√

Rf − √
Rf − �

)
= û

πE′

4Sκ(α)
. (60)

Hence, a nonlinear ordinary differential equation follows:

dRf

da
= û

�

πE′

4Sκ(α)
− Rf

�
+

√
Rf

�

(
Rf

�
− 1

)

−1

2
ln

(√
Rf +

√
Rf − �√

Rf − √
Rf − �

)
. (61)

Denoting the group of material constants appearing as the first
term on the right-hand side of (61) by the ‘tearing modulus’
M , and using (89) to relate Rf and R, we obtain

dR

da
= 1

N(α, β)


M − N(α, β)R

�

+

√
N(α, β)R

�

(
N(α, β)R

�
− 1

)

−1

2
ln



√

N(α, β)R

�
+

√
N(α, β)R

�
− 1√

N(α, β)R

�
−
√

N(α, β)R

�
− 1




 . (62)

The initial condition needed for integrating the ODE (62) is
R(a0) = Rinitial, where Rinitial = (8/π)(Kc/S)2. The first term
in the bracket on the right side of (62) represents the tearing
modulus for the material, in which a rough quasi-static crack
is propagating. The constant M is defined as

M = û

�

πE′

4Sκ(α)
. (63)

We will show that this material constant strongly depends on
material ductility ρ = Rinitial/�. We note that for a smooth
crack the factor κ(α), and the ratio factor N(α, β) are both
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equal to one, and (62) reverts to the Wnuk (1972) equation.
The nonlinear ODE (62) can readily be solved numerically
(see the appendix for details). We will use the following
non-dimensional variables in the solution procedure of the
nonlinear ODE:

ρ = Rinitial

�
, Y = R

Rinitial
, X = a

Rinitial
,

Rf

�
= ρN(α, β)Y, (64)

where

N(α, β) = 4π
1

2α
−2

[
α�(α)

�(1/2 + α)

] 1
α

β1/α−2, β = σ

S
. (65)

Using these non-dimensional variables, one can rewrite (62)
in the following form

N(α, β)
dY

dX
= M − ρN(α, β)Y

+
√

ρN(α, β)Y [ρN(α, β)Y − 1]

−1

2
ln

(√
ρN(α, β)Y +

√
ρN(α, β)Y − 1√

ρN(α, β)Y − √
ρN(α, β)Y − 1

)
. (66)

When the non-dimensional variables are used, the initial
condition reads: Y (X0) = 1. Equation (66) can be abbreviated
as follows9

dY

dX
= F(Y, ρ, α, β(X)), (67)

where

F(Y, ρ, α, β(X)) = 1

N(α, β(X))

[
M − ρN(α, β(X))Y

+
√

ρN(α, β(X))Y [ρN(α, β(X))Y − 1]

−1

2
ln

(√
ρN(α, β(X))Y +

√
ρN(α, β(X))Y − 1√

ρN(α, β(X))Y − √
ρN(α, β(X))Y − 1

)]
.

(68)

The next step is to find the solution of (67). Since it cannot be
obtained in closed form we use Mathematica®. Solving this
equation we obtain the unknown material resistance function
Y = Y (X). Interestingly, there exists a certain threshold
for the tearing modulus M , referred to as Mminimum, below
which the phenomenon of SCG is not possible. Parametric
studies show that the influence of α on the minimum tearing
modulus is negligible. Therefore, using α = 0.5 and
requiring the slope dY/dX in (67) to be positive, we obtain
a relation between Mminimum and the ductility parameter ρ,
namely

Mminimum(ρ) = ρ −
√

ρ(ρ − 1) +
1

2
ln

(√
ρ +

√
ρ − 1√

ρ − √
ρ − 1

)
.

(69)

In the calculations that follow we assume that the actual tearing
modulus M is 10% higher than the minimum value determined
by (69), i.e.10

M(ρ) = 1.1Mminimum(ρ). (70)
9 During the subcritical growth of cracks β is a function of the crack nominal
length X. For more details see the appendix.
10 We simply assume that the tearing modulus is slightly higher than the
minimum tearing modulus Mminimum, because without such an assumption
there will be no SCG prior to catastrophic fracture.
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Figure 7. Material resistance curves obtained for X0 = 10, ductility
index ρ = 10, and three values of the fractal exponent α = 0.50,
0.45 and 0.40. It should be noted that for the rougher crack surfaces
the slope of the R-curve increases. The R-curves shown here depend
on the material properties (such as ductility) and fractal geometry
only, but the location of the terminal instability point is also
influenced by geometrical configuration of a pre-cracked specimen.
For the Griffith crack configuration the transition between stable and
unstable crack growth is defined by two coordinates: crack length at
fracture Xf , and material toughness at fracture Yf . With the ductility
index ρ = 10 and the initial crack length X0 = 10 the terminal
states were found to be: for α = 0.5, Xf = 11.764 and Yf = 1.287;
for α = 0.45, Xf = 12.542 and Yf = 1.620; for α = 0.4,
Xf = 12.862 and Yf = 2.045. These points are shown by little
circles inserted in the graphs representing the R-curves.

Now by having M(ρ) it is possible to solve (66). The details
of the solution procedure are described in the appendix. We
have plotted the solution of (66) in several different ways. In
figure 7 the non-dimensional material resistance parameter
Y (X) is plotted as a function of crack nominal length for
different values of roughness exponent when ρ = 10 and
X0 = 10. It is seen that the slope of the material resistance
curve is higher for rougher cracks, so the material resistance
to fracture for rougher cracks is higher. Further important
information that can be extracted from the solution of (66) is
the dependence of the external load on the current crack length
developed during the phase of SCG. As we have shown in the
appendix, during the SCG phase, the loading ratio β = σ/S is
a function of X. The resulting β(X) curve is shown in figure 8.
As can be seen in this figure the required applied loading for
rougher cracks is higher than that of a smooth crack. Finally,
in figure 9 we have shown the maximum and minimum values
of β attained in the process of subcritical crack growth. These
limits are important in the stability analysis, since for loadings
exceeding βinitial the SCG takes place and when β reaches
βmaximum the catastrophic failure begins. In figure 9 these
parameters are shown as functions of X0 and α. The plots show
that for cracks with higher initial length X0 the sustainable
loading is lower, but it always exceeds the catastrophic load
predicted for a smooth crack.

It is noted that the differential equation (66) can be
considerably simplified for the limiting case R 
 �, which
corresponds to a more ductile behaviour of the material during
the fracture process. When the right-hand side of (66) is
expanded into a Taylor series and the terms of the order
O((�/R)2) are neglected, the following simplified form of

12



J. Phys. D: Appl. Phys. 44 (2011) 395302 H Khezrzadeh et al

ρ =10
X  =100

α=0.4

α=0.45

α=0.5

X

β(X, )α

10 11 12 13 14 15 16

0.28

0.30

0.32

0.34

0.36

0.38

Figure 8. During SCG stage the non-dimensional loading ratio

β = σ

S
= 2

π

√
2Y (X)

X
is a monotonically increasing function of either

toughness (Y ) or the current crack length (X) up to the critical point
designated by the maximum on each curve. Maxima shown on the
loading curves correspond to the terminal instability states. For the
ductility index ρ = 10 and the initial crack length of X0 = 10, the
applied stress at the onset of crack growth is σinitial = 0.285S. The
critical stress σcritical attained at the end of the slow crack growth
process equals 0.297S when α = 0.5, then 0.324 for α = 0.45, and
0.359 for α = 0.40. For α = 0.5 we have 4.5% increase in the
applied load, for α = 0.45 this increase is 13.6%, and for α = 0.4 it
is 26.1%.

the governing equation is obtained:

dRf

da
= M(ρ) − 1

2
− 1

2
ln

(
4Rf

�

)
. (71)

Here the tearing modulus M is renamed as M(ρ) and is defined
by the following expression:

M(ρ) = 1.1[ 1
2 + 1

2 ln(4ρ)]. (72)

Thus, (71) is rewritten in the following form

dR

da
= 1

N(α, β(X))

[
M(ρ)− 1

2
− 1

2
ln

(
4ρN(α, β(X))R

�

)]
.

(73)

Non-dimensional governing ODE. Using the non-dimensional
variables defined in (64), the differential equation (73) can be
recast into a form containing only dimensionless quantities Y,
X, ρ, α and β as

dY

dX
= 1

N(α, β(X))

[
M(ρ) − 1

2
− 1

2
ln [4ρN(α, β(X))Y ]

]
.

(74)

Some further algebraic transformations allow one to reduce
this equation to a form equivalent to the Wnuk–Rice–Sorensen
equation describing motion of a stable quasi-static smooth
crack. Rewriting (74), which is valid for a fractal crack,
one obtains the following form for the governing differential
equation:

dY

dX
= 1

2N(α, β(X))
ln

[
m(ρ, α, β(X))

Y

]
, (75)
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Figure 9. Top. Loading curves corresponding to three values of
initial crack length (X0 = 10, 30 and 60). Maxima shown on the
loading curves correspond to the terminal instability states. Bottom.
The loci of βinitial and βmaximum for different values of roughness
exponent α and ρ = 10 shown as functions of X0. Note that

βinitial = 2
π

√
2

X0
, while the tearing modulus M = 1.1Mminimum.

where

m(ρ, α, β(X)) = e2M(ρ)−1

4ρN(α, β(X))
. (76)

If the right-hand side of (74) is denoted by RF(Y, ρ, α, β(X)),
the governing differential equation (74) reads dY/dX =
RF(Y, ρ, α, β(X)). The function RF defines the slope of
the R-curve and is illustrated in figure 10 (bottom). Note
that RF for ρ 
 1 very closely approximates the function
F(Y, ρ, α, β(X)) defined in (67) and valid for an arbitrary
value of the ductility index ρ.

Note that for a smooth crack the ratio factor N(0.5, β) = 1
and thus the expressions in (75) and (76) reduce to the Wnuk–
Rice–Sorensen equation describing the material R-curve that
results from considerations of the stable crack extension
phenomenon for a smooth crack. Here the function
m(ρ, α, β(X)) is a measure of the ratio of the steady-state
length of the cohesive zone attained as an asymptotic value of
an uninterrupted SCG, Rsteady state to the threshold value of R,
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Figure 10. Top. Slopes of the material resistance curves associated
with smooth crack (the lowest curve) and rough cracks. Higher
slope of the R-curve signifies more pronounced subcritical crack
propagation leading to higher values of the effective toughness and
the critical crack length attained at the end of SCG phase. Value of
the function F at Y = 1 denotes the initial slope of the R-curve and
in engineering applications it is used as a measure of ‘tearing
resistance’ of the material. For all the three curves shown the initial
crack length is X0 = 10, while the ductility index is ρ = 2. When
these slopes are negative, SCG is not possible. Bottom: Slopes of
the JR (or just R) material resistance curves shown as functions of
the effective toughness, which reflects enhancement of the initial
toughness due to the process of slow crack extension, shown for
ρ = 10 and three different values of the roughness parameter α.

labelled Rinitial. In fact, for the smooth crack, when α = 0.5
and κ = 1, the formulae given in (75) and (76) degenerate into
the simple form given by Wnuk (1972, 1974) and valid for a
smooth crack, namely

dY

dX
= 1

2
ln

[
n(ρ)

Y

]
,

n(ρ) = Rsteady state

Rinitial
= 1

4ρ
e2M(ρ)−1.

(77)

The presence of roughness not only leads to a higher
effective material toughness, but it also raises the critical
nominal crack length and the critical stress attained at the end
of the slow crack growth process. Another suitable parameter
useful for estimating material resistance to subcritical crack
propagation is the initial slope of the R-curve, namely
dY

dX

∣∣∣fractal

initial
= 1

N(α, β(X0))

×
{
M(ρ) − 1

2
− 1

2
ln [4ρN(α, β(X0))]

}

= 1

2N(α, β(X0))
ln [m(ρ, α, β(X0))] . (78)
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Figure 11. The initial slopes of the R-curve for different values of
roughness index α as a function of ductility index ρ.

And
dY

dX

∣∣∣smooth

initial
= M(ρ) − 1

2
− 1

2
ln(4ρ) = 1

2
ln [n(ρ)] . (79)

The initial slope (78) is plotted in figure 11 for different
values of α. These plots demonstrate that the initial slope
(dY/dX)initial is somewhat higher for a fractal crack, and this
suggests another observation of physical significance: A body
containing a fractal crack provides a higher effective resistance
against crack propagation.

Paris et al (1977) and Hutchinson and Paris (1977) have
connected the tearing modulus TJ present in the differential
equation defining a material R-curve in terms of JR = JR(a),
to the initial slope of the JR curve, (dJR/da)initial, as follows:

TJ = E′

σ 2
Y

(
dJR

da

)
initial

= π

8

(
dR

da

)
initial

. (80)

It is easily seen from figure 11 that an increase in the
material ductility and/or the degree of fractality (roughness of
the crack surface) substantially enhances the tearing modulus.
Physically it means appearance of a more pronounced SCG and
the ensuing reduction of the danger of the catastrophic fracture.
The parameter TJ is used in the design for residual strength in
pressure vessels and other high reliability components used in
nuclear power plants based on the R-curve approach.

6. Terminal instability state

Finding the coordinates (Xf , Yf ) characterizing the terminal
instability state is of great importance in the stability analysis.
Because of the complexity of the governing differential
equations for the fractal crack problems it is necessary to find
these points by numerical methods. We have described the
method of solution in detail in the last part of the appendix. The
method of finding the terminal instability state for two different
ductile materials is shown graphically in figure 12. The
terminal instability states can be found from the intersection
points between two sets of curves. The first curve, which is
denoted by F (RF for high material ductility), stands for the
slope of the material resistance curve and is determined either
from (68) or (74) depending on the problem, while the second
curve, which is denoted by FAP (RAP for high ductility
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Figure 12. The intersection points of the two sets of curves
(top)(F ,FAP ) and (bottom)(RF ,RAP ) define the terminal
instability states, see equation (81). The F and RF functions
represent the material resistance curve slope (dY/dX) (see (68) and
(74)) while FAP and RAP have been used for the determination of
dY/dX resulted from applied loading (see (101)). Each critical state
is determined by the final effective material toughness (Yf ) and the
critical crack length (Xf ). The curves shown are obtained for the
initial crack length X0 = 10 and three values of the roughness index
α, and the ductility parameter ρ = 2 (top) and ρ = 10 (bottom).
Tearing modulus M is assumed to be 10% higher than Mminimum.

indices) and stands for the partial derivative of the applied
energy release rate indicated by (99) and (100). Note that an
almost linear relation between dY/dX and Y seen in figure 12
was confirmed experimentally for ductile grades of steel by
Michel (1991).

Using the described procedure, we have plotted the results
predicting the coordinates of the terminal instability states
(Xf , Yf ) as functions of roughness index α (figure 13), material
ductility ρ (figure 14), initial crack length X0 (figure 15) and
the stress ratio β. It is also worth noting that while for the
quasi-brittle and brittle materials (for which � and R are
of the same order of magnitude, i.e. R ∼ �) the extent of
the SCG and the characteristics of the terminal instability
point are described by the governing equation (67). A more
frequently encountered case in materials engineering, for
which Barenblatt’s condition R 
 � holds, can be described
by the simplified equations (74) or (75). Comparison of the
results from the numerical solutions of (67) and (75) obtained
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Figure 13. Coordinates of the terminal instability point (Xf , Yf )
shown as functions of fractal roughness parameter α. Top: critical
crack length attained at the end of SCG phase. Bottom: effective
material toughness attained at the end of SCG phase.

at various values of parameters ρ, α and β shows that for a
large material ductility index ρ (say ρ > 6) the difference
between the results of the two formulae becomes negligible.
At this point it is noted that the following four variables:
(i) material ductility, ρ = Rinitial/�, (ii) roughness measure
of the crack surface, α = (2 − D)/2 or α = (2H − 1)/2H ,
where 1 < D < 2 and 1

2 < H < 1, (iii) ratio of applied
stress to the yield stress β = σ/σY and (iv) initial size of
the crack-like defect, X0 = a0/Rinitial have a pronounced
effect on the slope of the material resistance curve JR–�a

and on the ensuing characteristics determining the terminal
instability point, defined as the apparent toughness measure
by J fracture

R (or just Rfracture or the non-dimensional equivalent
entity Yf ) and the critical nominal crack length afracture (or the
non-dimensional Xf ).

The trends observed in these studies of the slope of
the material JR–�a curves are consistent with the physical
phenomena studied experimentally and described in a recent
paper by Alves et al (2010). These authors have shown that the
slopes of the JR–�a curves obtained via an energy approach
significantly increase when the roughness of the crack surface
is accounted for. We obtain a similar result in the present
work. In addition to this observation, it is shown that there
exist substantial effects due to the initial crack size and due to
the material ductility (Rinitial/�). Introduction of � (process
zone size in the context of this work) allows one to extend
the results of the previous works into the domain of discrete
(or quantized) fracture mechanics, say QFM, as suggested by
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Figure 14. Coordinates of the terminal instability point (Xf , Yf )
shown as functions of material ductility. Top: critical crack length
attained at the end of SCG phase. Bottom: effective material
toughness attained at the end of SCG phase.

Pugno and Ruoff (2004), Taylor et al (2005), and also by Wnuk
and Yavari (2009). It is only for certain ranges of the pertinent
variables such ρ, α and X0 that the effects we describe here are
visible. These effects are of particular importance in the nano-
range of the pre-existing crack sizes. Similar observations can
be made regarding the effects due to the material ductility and
the roughness parameter on the characteristics of the terminal
instability point. Interestingly, the minute variations in the
latter result in large alterations of the final value of the material
toughness and the critical crack length attained at the end of
the slow SCG process. These preliminary findings encourage
further studies of failure instability problems exploring the
QFM representation of fracture process.

During the process of the stable growth of a quasi-static
crack the rate of energy supply is always equal to the rate of
energy demand. This kind of equilibrium between the two
rates ensures the stability of the subcritical crack. However,
at the end of this stable growth phase, when the transition
to an unstable propagation occurs, it is necessary to use two
conditions involving the rates of the energy supply and energy
demand that must be simultaneously satisfied, namely

J (�, σ, geometry) = JR(�),

−∂2�

∂�2
= ∂J

∂�

∣∣∣∣
constant stress (or fixed grips)

= dJR(�)

d�
. (81)

Geometrical interpretation of these two equations consists in
a requirement that the crack driving force J–� curve touches
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Figure 15. Coordinates of the terminal instability point (Xf , Yf )
shown as functions of initial crack length. Top: critical crack length
attained at the end of SCG phase. Bottom: effective material
toughness attained at the end of SCG phase.

tangentially the material resistance curve JR(�). Calculations
underlying the design of machine elements involving the
residual strength concepts are made much less cumbersome
if the terminal instability point is determined as the point of
intersection between the curves independently representing the
left-hand sides and the right-hand sides of the expressions
given in (81) as functions of either X or Y , cf the graphs
in figure 12. The graphs shown in these figures may be
constructed only after the governing differential equation is
solved for Y = Y (X) revealing the function that determines
the material resistance curve. Using this approach one may
evaluate the coordinates of the respective intersection points,
which represent the critical states. The coordinates of a critical
state are: effective material toughness Yf , final crack length Xf

and the critical load σcritical—all of them attained at the end
of the pre-fracture slow crack extension process, figures 7,
8 and 9.

7. Conclusions

First, the stress functions for different fractal crack problems
are presented with the help of the approximate Green’s
functions. These Green’s functions are useful in the analytical
treatment of bodies with fractal cracks. Next, using these stress
functions the complete (and not asymptotic) expressions for the
stress and strain fields around fractal cracks are obtained. Also
Green’s functions needed for the evaluation of the fractal stress
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intensity factors (FSIF) in general cases are given. Then, these
functions are utilized in the classical final stretch criterion of
Wnuk (1972, 1974) applied to fractal cracks. In summarizing
the essential results of the present work on the stability
analysis the following two differential equations may be
recalled:
dY

dX
= F(Y (X), ρ, α, β(X)) (arbitrary ρ), (82)

dY

dX
= RF(Y (X), ρ, α, β(X)) (ρ 
 1). (83)

These are two forms of the governing nonlinear ODE defining
the material resistance curve in a ductile solid weakened by a
propagating rough subcritical crack when described by a self-
affine fractal curve. They reduce to the well-known equations
of the smooth case α = 0.5. The factor m(ρ, α, β), which is
defined in (76), can be interpreted as the ratio of the material
toughness developed at the steady state level, say Rsteady state, to
Rinitial—the toughness measured by the length of the cohesive
zone present at the onset of crack growth when K = Kc. It is
noted that while (82) is valid for arbitrary values of the ductility
index ρ (this includes the limiting case of brittle fracture when
ρ → 1), (83) holds for ductile materials for which ρ 
 1. All
the results obtained in this study are subject to the restriction
imposed by the Barenblatt condition, R � a. We have
demonstrated that the material ductility and/or roughness of
the crack surfaces have a significant influence on enhancement
of the characteristics pertinent to the terminal instability state.
This influence becomes even more pronounced for very short
cracks that compare in size with the characteristic length of
the material; Rinitial at the meso-level and � for the nano-
level. It is noteworthy that while for ductile solids these
two material length characteristics differ significantly, they
converge to a common value in the limit of a perfectly brittle
material. In the limiting case of perfectly brittle fracture both
� and Rinitial acquire the sense of the quantum fracture a0

(Wnuk and Yavari 2009). Higher values of the critical crack
length attained at the end of the slow crack growth process
(Xf ) are related to larger equilibrium cohesive zones ensuing
at the terminal instability state. The lengths (Rfracture or Yf )
are used in our model as the measure of the effective material
toughness developed during the pre-fracture crack extension
process is clearly seen in figure 7 and in figures 12, 13, 14 and
15. These conclusions are entirely consistent with the findings
of Wnuk and Yavari (2009).

As was mentioned earlier, analysis of (82) and (83) gives
valuable information on the contribution of the parameters
pertinent in the subcritical crack growth studies. These
parameters and their effects are briefly recalled here as follows:

(i) Roughness measure of the crack surface, α = (2−D)/2 or
α = (2H − 1)/2H , where 1 < D < 2 and 1

2 < H < 1:
our analysis shows that the slope of material resistance
curve for rougher cracks is higher. Consequently, the
loading at which catastrophic failure occurs σmaximum will
be higher for rougher cracks. Roughness of the cracks also
affects the critical crack length Xf . As is seen in figures 13
and 14, rougher cracks lead to larger critical lengths.

(ii) Material ductility, ρ = Rinitial/�: material ductility has
a significant effect on the resistance of a cracked solid to
fracture propagation. As expected the terminal instability
point is higher for materials with higher ductility.

(iii) Initial nominal crack length, X0: increasing the initial size
of the crack leads to a decrease in the stress at fracture
onset in a manner similar to the case of Griffith’s crack.

Appendix. Auxiliary expressions needed for stability
analysis of fractal cracks

In this appendix we derive some expressions that are needed
for the stability analysis of fractal cracks. It should be noted
that our stability analysis is based on the assumption of small-
scale yielding, which corresponds to R � a, where R is the
length of the yield zone ahead of the crack. First we determine
the length of the cohesive zone ahead of a fractal crack (Rf ).
The size of the cohesive zone can be determined by enforcing
the following finiteness condition at the crack tip:

K
f(applied)

I + K
f(cohesive)
I = 0. (84)

From (33) the cohesive fractal stress intensity factor is
calculated as

K
f(cohesive)
I = −2αS

(
Rf
)α

απ1−α
. (85)

A.1. Size of the fractal yield zone

The applied fractal stress intensity factor (FSIF) depending on
the problem can be calculated from either (32) or (39)11. Now
by the use of (84) the length of the plastic zone ahead of the
fractal crack (Rf ) is obtained as

Rf = (απ1−α)1/α

2

[
K

f(applied)

I

S

]1/α

. (86)

The expressions for R and Rf are given in table 1. Thus, Rf/R

reads

Rf

R
=

(απ1−α)1/α

2

[
K

f(applied)

I

S

]1/α

π
8

(
K

applied
I

S

)2 . (87)

11 A couple of remarks are in order. We assume small-scale yielding because
the size of the yield zone is very small compared with the nominal size of the
crack half-length (a). This means that we should use the semi-infinite crack
stress intensity factor formula to determine K

f(cohesive)
I and K

f(applied)

I . If load
is applied in the close vicinity of the crack tip and the length of the loaded
zone is small compared with a, using the semi-infinite crack formula (32) is
adequate. However, if load is applied along large segment(s) of the crack or
at points distant from the crack tip, the finite crack solution for fractal stress
intensity factor (39) is required.

17



J. Phys. D: Appl. Phys. 44 (2011) 395302 H Khezrzadeh et al

Table 1. Required functions and expressions for strip yield model in both smooth and fractal crack cases.

Smooth case Fractal case

Zapplied = K
applied
I√
2πζ

Zf
applied = 1

ei( 1
2 −α)θ

K
f(applied)

I

(2πζ)α

Zcohesive = −2S

π

(√
R

ζ
− tan−1

√
R

ζ

)
Zf

cohesive = − S

π(1 + α)

1

ei( 1
2 −α)θ

(
Rf

ζ

)1+α

f

(
1 + α, 1, 2 + α; −Rf

ζ

)

R = π

8

(
K

applied
I

S

)2

Rf = (απ 1−α)1/α

2

(
K

f(applied)

I

S

)1/α

vcrack = 2S

πE′ (4
√

R|ξ |) vf
crack = 2S

πE′

(
(Rf)α|ξ |1−α

α(1 − α)

)
= 2S

πE′

(
Rf

α(1 − α)

( |ξ |
Rf

)1−α
)

vcohesive = 2S

πE′

(
2
√

R|ξ | + (R + ξ) ln

∣∣∣∣∣
√|ξ | +

√
R√|ξ | − √
R

∣∣∣∣∣
)

vf
cohesive = 2S

πE′ Im

(
Rf

α(1 + α)

(
Rf

ξ

)α

f

(
1, α, 2 + α; −Rf

ξ

))

Crack front End of plastic zone

x ,1 ξ

y1
η

Process zone Control point (P)

Plastic zone

R( )t

x ( )1 t

∆

a( )t

Figure 16. Front of an advancing crack and the associated yield (or crazed) zone.

This ratio can be simplified using (39)12 to read

Rf

R
= 4α1/αS2−1/α

(∫ 1

0

2p(t)

(1 − t2)1−α
dt

)1/α

(∫ 1

0

2p(t)√
1 − t2

dt

)2 . (88)

As is seen Rf/R depends not only on α but also on S and
p(x). For uniform pressure distribution p(x) = σ this ratio is
simplified as follows:

Rf

R
= N(α, β), (89)

where β = σ
S

and

N(α, β) = 4π
1

2α
−2

[
α�(α)

�(1/2 + α)

] 1
α

β1/α−2. (90)

� stands for the Gamma function, while N(α, β) is referred to
as the ‘ratio factor’.

12 Note that

K f
I =

( a

π

)1−α
∫ a

0

2p(x)

(a2 − x2)1−α
dx

=
( a

π

)1−α
∫ 1

0

2p(t)

a2−2α(1 − t2)1−α
a dt

= aα

π1−α

∫ 1

0

2p(t)

(1 − t2)1−α
dt,

where t = x/a.

A.2. Fractal COD

After finding the length of the cohesive zone ahead of a fractal
crack, it is required to derive the expression representing the
COD within the cohesive zone. In table 1 the basic expressions
required for determination of the COD within the cohesive
zone are gathered. Vertical displacements (v or vf for the
fractal case)13 inside the cohesive zone can be calculated using
table 1 for both smooth and fractal cases. The results are as
follows:

Smooth case. (Barenblatt 1962, Irwin et al 1969)

vtotal = 2S

πE′

(
2
√

R|ξ |

−(R + ξ) ln

∣∣∣∣∣
√|ξ | +

√
R√|ξ | − √
R

∣∣∣∣∣
)

ξ < 0, (91)

where ξ is the coordinate of a point inside the cohesive zone
(at the tip of the cohesive crack ξ = 0 and at the tip of the
physical crack ξ = −R), i.e. |ξ | = R − x1 (see figure 16).

Fractal case.

vf
total = 2S

πE′

{
Rf

α(1 − α)

( |ξ |
Rf

)1−α

−Im

[
Rf

α(1 + α)

(
Rf

ξ

)α

f

(
1, α, 2 + α; −Rf

ξ

)]}
,

ξ < 0, (92)

13 Note that COD is related to the vertical displacement by COD = 2v.
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Figure 17. Graphs of the fractal constraint factor κ(α), and the ratio
factor N(α, β) for β = 0.2, 0.4 for different values of roughness
index. Functions κ(α) and N(α, β) appear in the expressions for the
opening displacement within the cohesive zone associated with a
fractal crack.

where the function f was defined in (28). The expression for
vf

total is not in the form of elementary functions, so we have
determined its values using Mathematica®. Interestingly, our
calculations show that for moderately rough cracks the fractal
vertical displacement (vf ) can be related to the classic result
for a smooth crack v as shown in (52). For conversion of
the smooth crack result (91) into the fractal crack case two
functions are needed: κ(α) and N(α, β) (see (90)). Denoting

κ(α) = vf
tip

vtip

R

Rf
, (93)

vf
total is now written as

vf
total = κ(α)

4S

πE′

{√
N(α, β)R|ξ | − N(α, β)R + ξ

2

× ln

∣∣∣∣
√|ξ | +

√
N(α, β)R√|ξ | − √
N(α, β)R

∣∣∣∣
}
, ξ < 0. (94)

Both functions κ(α) and N(α, β) are illustrated in figure 17.
There are many experimental results (Bouchaud et al

1990), Måløy et al 1992, Daguier et al 1996, 1997, Bouchaud
1997, 2003, Ponson et al 2006) that report the existence of a
limiting roughness for the fracture surfaces. Considering these
studies the practical range of fractal exponent is approximately
0.4 < α < 0.5. In the stability analysis we have used this
range. The graph of the function κ(α) (we call it ‘fractal
constraint factor’) is shown in figure 17 for the physically
acceptable range of α. After some algebraic manipulations
the following expression for κ(α) is obtained:

κ(α) = −−1 + α + (α − 1)Im ((−1)α(1 + α))

2α(α2 − 1)

= 1 + (α − 1) sin(πα)

2α(1 − α)
. (95)

As stated earlier the function κ(α) relates the COD at the tip
of a fractal crack to the COD at the tip of the corresponding
smooth crack. Our studies show that for moderately rough
cracks (H > 0.8) the COD within the whole cohesive zone

can be approximated simply by multiplying the COD of the
corresponding smooth crack by κ(α).

By moving the origin from the tip of the cohesive crack
to the tip of the real crack and denoting the distance from the
physical crack tip by x1, the vertical displacement inside the
cohesive zone of a fractal crack can be written as

vf [x1, R
f(x1)] = κ(α)

4S

πE′

[√
Rf(x1)

[
Rf(x1) − x1

]

−x1

2
ln

(√
Rf(x1) +

√
Rf(x1) − x1√

Rf(x1) −
√

Rf(x1) − x1

)]
, (96)

for 0 < x1 < Rf and Rf(x1) = N(α, β)R(x1).

A.3. Fractal loading parameter

Another important parameter in the stability analysis of fractal
cracks is the loading parameter, which we denote by Qf .
When Wnuk’s model of the structured cohesive zone is
applied to study the stability problems associated with ductile
fracture, the following relations will replace (48). First,
it is noticed that for the small-scale yielding case, when
the Barenblatt condition is satisfied, J -integral is directly
proportional to the length of the cohesive zone R associated
with a propagating crack; in the classic case when R is
multiplied by a dimensionless constant 8S2/πE′, then one
obtains J . Let us focus on Rf

applied. From the cohesive model
of Dugdale–Barenblatt for a fractal crack it follows that

Rf
applied = (απ1−α)1/α

2

[
K

f(applied)

I

S

]1/α

= (απ1−α)1/α

2

[
ξ(α)σ

√
πa2α

S

]1/α

= 1

2
a(Qf)

1
α . (97)

The symbol Qf is a non-dimensional loading parameter
defined as

Qf = α
√

π�(α)

�(1/2 + α)

σ

S
, (98)

where σ is the applied stress and S is the cohesive strength.
Because during all of the stable growth phase, according to
equations (47) one has

Rf
applied = Rf

material, (99)

we can drop the indices ‘applied’ and ‘material’, and simply
use R. The derivatives (dR/da)applied and (dR/da)material must
be computed. For the applied driving force expressed in terms
of R as in (97), we have

∂Rf
applied

∂a
= 1

2
(Qf)

1
α = Rf

applied

a
. (100)

In the non-dimensional form

∂Y f
applied

∂X
= Y f

applied

X
= Y f

X(Y f , ρ, α, β, X0)
. (101)
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For the material resistance associated with quasi-static growth
of a fractal crack the following expression was derived
(see (62))

dRf
material

da
= N(α, β)F (R, ρ, α, β), (102)

where

F(R, ρ, α, β) = 1

N(α, β)

[
M(ρ) − N(α, β)R

�

+

√
N(α, β)R

�

(
N(α, β)R

�
− 1

)

−1

2
ln

(√N(α,β)R

�
+
√

N(α,β)R

�
− 1√

N(α,β)R

�
−
√

N(α,β)R

�
− 1

)]
. (103)

In its equivalent non-dimensional form the above equation
reads

dY

dX
= F(Y, ρ, α, β(X)), (104)

in which the function F is defined in (68). The simplified
versions of this equation was obtained for ρ 
 1, and in order
to use it one only needs to replace F by RF , see (74) and (75).
The derivations of the functions F and RF are described in
section 5, while the non-dimensional length of the cohesive
zone and the non-dimensional crack length are defined as
Y = R/Rinitial and X = a/Rinitial. The material constant ρ

is defined as Rinitial/� or 1 + ε
pl
f /ε0, and it is named ‘ductility

index’ as suggested by Wnuk and Mura (1981). For brittle
materials ρ is close to one, while for ductile solids ρ 
 1.
The other parameter α denotes the fractality exponent, related
to the dimension of the fractal representing a rough crack, and
it is used here as a measure of the degree of roughness of the
crack surfaces.

The loading parameterβ = σ/S is a function of the current
crack length X during the entire process of subcritical crack
growth, and it needs to be determined. There is no restriction
on the values of β per se, but when we are studying the
subcritical growth process, the condition Rf

applied = Rf
material

should be satisfied at every instant of the process and therefore
β will become a function of X. By the use of (98), (100)
and (101) we reach the following expression for β during the
subcritical growth:

β(X) = �(1/2 + α)

α
√

π�(α)

[
2Y (X)

X

]α

N(α, β(X))α. (105)

If we substitute N(α, β(X)) from (90) in the above equation
after some algebraic manipulations, we reach the following
well-known equation for the stress ratio during the subcritical
crack growth phase under small-scale yielding restriction

β(X) = 2

π

[
2Y (X)

X

]1/2

. (106)

It is seen that β for the fractal case is identical in form to that
for the smooth case. However, it should be noted that the

nominal crack length at the end of stable crack growth phase
Xf explicitly depends on α and hence roughness of the crack
affects the results for stress ratio during the subcritical growth
of rough cracks (see figures 8 and 9). Another parameter
required in the calculations is the length of the cohesive
zone at the onset of crack growth Rinitial corresponding to the
requirement K = Kc, and used as the normalizing constant
for both R and a.

A.4. Motion of a subcritical fractal crack

To describe the slow motion of a subcritical crack, its length
X is used as a time-like variable. Therefore, all pertinent
quantities such as the applied load β (or Q) and the material
toughness Y should be viewed as certain functions of X,
namely β = β(X), Q = Q(X) and Y = Y (X). During
the stable crack extension the equalities described in (47) must
be satisfied. Consistent with notation used here conditions
(47) read

1
2Q(X)2X = D(α)2Y (X), (107)

where

D(α) = 2α�(α)√
π�(1/2 + α)

. (108)

Now with Q replaced by β, we can write

π2

8
β(X)2X = Y (X). (109)

Equations (107) and (109) are set up in such a way that the
external effort or ‘crack driving force’ is placed on the left-
hand side, while the quantity shown on the right-hand side
represents non-dimensional material resistance to fracture. As
can readily be seen, this resistance is not constant, as it is
commonly assumed in the classical formulations of fracture
mechanics; it is a certain function of the current crack length,
and it varies within the range Yinitial and Yf > Yinitial. The extent
of this interval depends on the tearing modulus of the cracked
solid. For a smooth crack the initially unknown function
Y = Y (X) can be determined from the governing differential
equation of Wnuk–Rice–Sorensen (77). For SCG to occur
the tearing modulus M has to exceed the minimum modulus
Mminimum, which is a known function of material ductility index
ρ, namely 1/2 + 1/2 ln(4ρ), cf Wnuk (1972). The material
ductility index has been related by Wnuk and Mura (1981) to
the yield strain εY and the plastic component of the strain at
fracture εf

pl; ρ = 1 + εf
pl/εY. In this study we have suggested

an extension of the governing equation (77) valid for a fractal
crack, see (82) and (83). The governing differential equation
for the case of a fractal crack reads

dY

dX
= F(X, ρ, α, β(X)), (110)

for an arbitrary value of the ductility index ρ, and

dY

dX
= RF(X, ρ, α, β(X)), (111)

for ductile materials for which ρ 
 1. Functions F and RF

have been defined in terms of the roughness measure α and the
material ductility index ρ, cf section 7.
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At the end of the SCG phase, when the terminal instability
occurs, it is required that in addition to conditions (107) or
(109) certain additional conditions are satisfied. To set up
these conditions one needs to compare the second derivatives
of the elastic potential of the cracked body and that of the
corresponding entity representing material resistance, see (48).
In terms of the non-dimensional functions this statement can
be expressed as given in (82) and (83). These equations allow
one to determine the set of critical values of crack length Xf

and material toughness Yf prevailing at the point of terminal
instability. Numerical solutions to these equations have been
found and they are best illustrated by the graphs depicted in
figure 12. To establish the state of the terminal instability a
technique of ‘intersecting curves’ has been used, see section 6
for the analysis and figure 12 for a graphical interpretation.

In closing we outline an alternative approach useful in the
analysis pertinent to predicting the terminal instability. As the
state of the terminal instability is approached, the slope of the
Q versus X (or β versus X) curves tends to zero. Using (107),
Q(X)2 = 2D(α)2Y (X)/X and differentiating both sides of
this equation (prime denotes the derivative with respect to X)
we obtain 2QdQ = D(α)2(2XY ′ − 2Y )dX/X2. Therefore,
the derivative dQ/dX (or dβ/dX) is readily determined as

dQ

dX
= D(α)2 XY ′ − Y

X2Q
. (112)

Replacing Y ′ by either F or RF provided in the governing
equations (82) and (83) and setting dQ/dX equal to zero,
yields two simple equations equivalent to (82) and (83)

F(Y (X), ρ, α, β(X))X − Y (X) = 0 (arbitrary ρ),

RF(Y (X), ρ, α, β(X))X − Y (X) = 0 (ρ 
 1).

(113)

We were unable to find closed-form solutions to these
equations and thus some numerical solutions are provided
instead. Effects of the roughness of crack surfaces, material
ductility, and the initial crack size on the characteristic
parameters describing the state of the terminal instability have
been demonstrated graphically; see figures 13, 14 and 15.
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