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Abstract. In this paper we study the mechanical attributes of the fractal nature of fracture surfaces. The structure
of stress and strain singularity at the tip of a fractal crack, which can be self-similar or self-affine, is studied.
The three classical modes of fracture and the fourth mode of fracture are discussed for fractal cracks in two-
dimensional and three- dimensional solid bodies. It is discovered that there are six modes of fracture in fractal
fracture mechanics. The J -integral is shown to be path-dependent. It is explained that the proposed modified J -
integrals in the literature that are argued to be path-independent are only locally path-independent and have no
physical meaning. It is conjectured that a fractal J -integral should be the rate of potential energy release per unit
of a fractal measure of crack growth. The powers of stress and strain singularities at the tip of a fractal crack in a
strain-hardening material are calculated. It is shown that stresses and strains have weaker singularities at the tip of
a fractal crack than they do at the tip of a smooth crack.
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1. Introduction

Many of nature’s irregular and fragmented patterns exhibit a much greater level of complex-
ity than can be described with standard Euclidean geometry. Such features have eluded the
application of classical mathematics for a long time. The nature of fractals is reflected in
the word itself, coined by Mandelbrot (1983) from the Latin verb frangere, ‘to break,’ and
the related adjective fractus, ‘irregular and fragmented.’ Before Mandelbrot, mathematicians
believed that most of the patterns of nature were far too complex, irregular, fragmented, and
amorphous to be described mathematically. Mandelbrot found order in places where others
saw only chaos. The fractal universe has infinite precision and is infinitely complex. Usu-
ally noninteger, a fractal dimension indicates the extent to which the fractal object fills the
embedding Euclidean space.

As in many other fields of science and engineering, fractal geometry has found applications
in various branches of solid mechanics, and mainly in fracture mechanics and contact me-
chanics. Studies in fractal fracture mechanics started in the mid 1980s after the experimental
study of Mandelbrot and his coworkers (Mandelbrot et al., 1984). They did the first exper-
imental study in fractal fracture mechanics and found that the fracture surfaces of steel are
fractals. Since then many experimental investigations have been done. For example, Saouma
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et al. (1990) and Saouma and Barton (1994) showed experimentally that fracture surfaces of
concrete are fractals.

Experimentalists have observed fractality in the fracture surfaces of many engineering
materials. Like all other natural objects, cracks can be described by fractals in a finite range of
length scales, �0 ≤ r ≤ �1 (Cherepanov et al., 1995; Balankin, 1997). Here the lower cutoff
�0 is a function of the micromechanical characteristics of the material and the upper cutoff
�1 is related to the geometric size of the cracked specimen, the crack size, and so forth. To
date, most theoretical work in fracture mechanics is based on the fundamental assumption that
cracks have smooth surfaces. This assumption makes fracture mechanics problems mathemat-
ically tractable. But if experiments show that cracks are fractals within a wide range of length
scales, what are the consequences of this fractality on the behavior of cracks?

In most papers, the only difference between a fractal crack and a corresponding smooth
crack is assumed to be the difference between the actual lengths of the two cracks; it is usually
assumed that the specific surface energy is the same for fractal and smooth cracks. Borodich
(1992, 1994, 1997, 1999) noticed that this assumption leads to the contradiction that fractal
cracking is impossible because the actual length of a fractal curve is infinity. He introduced
the concept of a specific surface energy for a unit measure of fractal crack.

An interesting theoretical problem in fractal fracture mechanics is the change of the order
of stress singularity at the crack tip. Mosolov (1991a) studied this problem for the first time.
Utilizing Griffith’s criterion for a mode I self-similar fractal crack, he found the following
asymptotic stress distribution at the tip of the crack:

σ (r, θ) ∼ r
D−2

2 ,

where 1 ≤ D ≤ 2 is the fractal dimension of the crack trajectory. Gol’dshteı̌n and Mosolov
(1991, 1992) obtained the same order of stress singularity using a cascade energy transfer
method. Balankin (1997) found a similar result for self-affine cracks using a dimensional
analysis method. Self-affine fractal cracks were studied by Balankin and his coworkers (Bal-
ankin, 1996a, b, 1997; Balankin et al., 1996, 1997; Balankin and Susarey, 1996, 1999). It is
noteworthy that the upper cutoff of fractality �1 for a self-affine crack is not necessarily equal
to the crossover length εx (Balankin and Susarey, 1999). Mode II and mode III self-similar and
self-affine fractal cracks were studied by Yavari et al. (2000) and Yavari (2000), who pointed
out that stresses have the same order of singularity for all classical modes of fracture.

Mosolov and Borodich (1992) and Mosolov (1993) proposed an explanation for crack
growth in compression and found that stresses are singular at the tip of a fractal crack in
an infinite medium under a uniform state of compressive stress parallel to the axis of the
crack. While they introduced an interesting idea, unfortunately the order of stress singularity
they found was incorrect, as shown by Balankin (1997). Balankin (1997) investigated crack
growth in compression for both two-dimensional and three-dimensional cracked bodies. Un-
fortunately, his results for the power of stress singularities were not correct, as was noted by
Yavari et al. (2000). Inspired by these works (Mosolov and Borodich, 1992; Mosolov, 1993;
Balankin, 1997), Yavari et al. (2000) and Yavari (2000) introduced a fourth mode of fracture
in fractal fracture mechanics. They realized that the stress distribution around the tip of a
fractal crack in an infinite medium under a uniform (either compressive or tensile) state of
stress along the axis of the crack cannot be expressed in terms of the three classical modes
of fracture. In other words, they showed that the fractality of fracture surfaces dictates the
existence of a new mode of fractal fracture for fractal cracks. In this paper, we will show that
there are two other modes of fractal fracture.
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Recently, Yavari et al. (2002) studied fractal cracks in micropolar elastic solids. After
generalizing Griffith’s fracture theory for smooth and fractal cracks in micropolar solids,
they showed that the orders of stress and couple-stress singularity at the tip of a fractal crack
are equal. Yavari (2002) generalized Barenblatt’s cohesive fracture theory for fractal cracks.
He defined a fractal cohesive stress and showed that the fractal cohesive fracture theory is
equivalent to Borodich’s generalization of Griffith’s theory.

In this paper we study some of the ramifications of the fractality of fracture surfaces in
fracture mechanics. The order of stress singularity at the tip of a fractal crack is obtained.
Modes of fractal fracture are discussed in detail. The J -integral for fractal cracks is shown to
be path-dependent in general. It is pointed out that the proposed modified J -integrals in the
literature are only locally path-independent and have no physical meaning. Finding a fractal
J -integral remains to be an open problem.

The paper is organized as follows. Section 2 discusses traction on fractal surfaces. In
Section 3 the structure of stress distribution around the tip of a fractal crack is investigated.
Section 4 discusses modes of fractal fracture. In Section 5, three-dimensional solid bodies with
fractal cracks are studied. In Section 6, the path dependence of J -integral for fractal cracks
is studied. HRR singularity for fractal cracks in a strain-hardening material is investigated
in Section 7. Conclusions are given in Section 8. For the sake of self-containedness, in the
Appendix some basic concepts of fractal geometry are reviewed.

2. Traction on a fractal surface

Consider a two-dimensional solid body with a fractal crack. Stress vector (traction) is defined
for all points except points that lie on the crack surfaces, which are of measure (2-measure)
zero. Therefore, still we can talk about traction and stress tensor for points that do not lie on
crack surfaces. For a fractal crack, classical zero traction boundary condition on crack surfaces
is not valid because traction, in its classical sense, does not exist on a fractal surface. As was
mentioned in Yavari (2002), on a fractal crack with fractal dimension D, D-fractal traction is
zero. Here D-fractal pseudo-traction tD at a material point x is defined as

tD(x) = lim
�mD→0

�F
�mD

, (1)

where mD is a D-fractal measure. A solid body partitioned into two sub-bodies by a fractal
surface is shown in Figure 1a and the system of internal forces is shown in Figure 1b. As
was explained in Yavari (2002), Eq. (1) is a naive generalization of traction and this is why
we call it ‘D-fractal pseudo-traction’. For more details see Yavari (2002). We should mention
that there are generalizations of integral theorems for domains with fractal boundaries (see
Harrison and Norton, 1991; Harrison, 1994; Borodich and Volovikov, 2000, and references
therein). In all these works, it is assumed that the integrand is a well-defined vector field.
But here we have a more fundamental problem: there is no generalization of the concept of
stress tensor for a material point on a fractal surface. In what follows, we study the mechanics
of fractal cracks by some engineering arguments. A rigorous mathematical theory of fractal
fracture mechanics remains to be developed in future.
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Figure 1. (a) A fractal curve � that partitions a solid body B into two bodies B1 and B2, (b) the internal force
system.

3. Stress distribution around the tip of a fractal crack

In this section, we investigate the radial variation of stresses at the tip of a fractal crack. The
power of stress singularity at the tip of a fractal crack is obtained using a modified Griffith’s
criterion and dimensional analysis considerations.

For obtaining stress and displacement fields around the tip of a fractal crack an elasticity
problem with fractal boundaries should be solved. One difficulty in solving this problem is
applying stress boundary conditions on crack faces because stress vector is not defined on a
fractal surface. Because of the difficulties encountered in solving differential equations with
nonsmooth boundaries, this problem is best attacked by an indirect method. First a singular
stress field is assumed and then the order of singularity is found using an asymptotic analysis.
However, the angular variation of stresses cannot be found using this method. It should be
noted that what follows is applicable for only some very special problems; for most problems
in fractal fracture mechanics this method is not applicable and the corresponding boundary-
value problem has to be solved. However, what we present here for some special cases gives
us an understanding of the effects of the fractality of cracks.
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Figure 2. (a) An infinite uncracked solid under uniaxial tension at infinity, (b) an infinite solid with a finite fractal
crack perpendicular to the applied stresses and the crack-effect zone.

Here we assume that a fractal crack is a deterministic mathematical fractal curve (or sur-
face). It is also assumed that a single fractal with fractal dimension D (or Hurst exponent H )
models the whole crack. In a two-dimensional cracked solid, the two end points of the fractal
curve are the crack tips. The crack axis is defined to be line that connects these two points.
In the case of a three-dimensional cracked solid, the crack edge is a fractal curve with fractal
dimension between one and two.

Consider an infinite solid body � under a uniform state of stress σ∞ at infinity (Figure 2a).
Stress has a uniform distribution at all points. Now suppose that a fractal crack with apparent
length 2a and the divider (latent) fractal dimension DD is formed (a brief description of fractal
geometry and the concepts we use in this paper are given in the Appendix). For the system
shown in Figure 2b, stress distribution is almost uniform at all points except for points in a
finite region �c (crack-effect zone) around the crack. There exists a disk �c such that �c ⊆
�c.

For a smooth crack, surface energy required for crack propagation is proportional to the
length (area) of the newly created free surfaces. In the case of a fractal crack the true length
(area) of new free surfaces should be considered. Because the true length (area) of a fractal
curve (surface) is infinity, a fractal measure should be utilized. The surface energy required to
create the fractal crack is:

Us = 2tγf (DD)mDD
, (2)

where t is the plate thickness, γf = γf (DD) is the specific surface energy per unit (divider)
fractal measure and mDD

is the latent fractal measure and is proportional to aDD (see the
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Appendix). The specific surface energy per unit fractal measure was defined by Borodich
(1992, 1994, 1997, 1999) and has the dimension [γf ] = FL−DD , where F and L are di-
mensions of force and length, respectively. There are two important problems that should be
carefully explained in Borodich’s generalization of Griffith’s criterion: (1) it should be noted
that γf is not a material property. In general, it is possible to have cracks with different fractal
dimensions in the same material. Therefore, in Equation (2) γf cannot be a material property;
it depends on both the material and the fractal dimension of the fractal crack. (2) ‘fractal
measure’ is an ambiguous term. There are different definitions of dimension and consequently
these different dimensions have different corresponding measures. For self-similar fractals
all different dimensions have the same value and hence the corresponding measures they
define are identical. Therefore, for self-similar fractals ‘fractal measure’ is not an ambiguous
term. However, this is not the case for self-affine fractals; different definitions of dimension
give completely different values. Obviously, the relevant fractal dimension for calculating the
surface energy of a fractal crack is the divider (latent) fractal dimension. Therefore, specific
surface energy should be defined per unit divider fractal measure, although it can be defined
for other fractal measures as well.

It is known that the true length of a fractal crack ã is larger than its nominal length and is
proportional to aDD , i.e., ã ∝ aDD .1 Hence,

Us ∝ aDD =
{

a1/H 1
2 ≤ H < 1,

a2 0 < H ≤ 1
2 ,

(3)

where H is the Hurst (roughness) exponent of the self-affine crack. Now suppose that one of
the crack tips (for example, the right one) moves by an infinitesimal (apparent) amount δa.
The required surface energy for this infinitesimal crack growth is:

δUe ∝ δ
(
aDD

)
(4)

The strain energy of the system shown in Figure 2b can be written as:

Ue =
∫

�
1
2σij εij dA =

∫
�−�c

1
2σij εij dA +

∫
�c

1
2σij εij dA. (5)

The change in strain energy due to this virtual crack growth may be written as:

δUe = δ

∫
�

1
2σij εij dA ∼= δ

∫
�c

1
2σij εij dA, (6)

because strain energy change in �c is dominant. Suppose that � is made of an isotropic, linear
elastic material. At the crack tip the following asymptotic stresses and strains are assumed:

σij (r, θ) = K
f

I r−αfij (θ), (7a)

εij (r, θ) = K
f

I r−αCijklfkl(θ), (7b)

where KI
f is the mode I fractal stress intensity factor (with dimension [Kf

I ] = FLα−2), Cijkl

is the fourth-order elasticity tensor, and α = α (DD). The above asymptotic expressions are
valid only in a disk �s with radius rs (or more precisely, in a region with area proportional
to r2

s ). Obviously, rs = rs (a,DD), and according to dimensional analysis we must have
rs = a)(DD), i.e., rs ∝ a (rs = ka). The strain energy change in �s is much greater than
that of �c − �s and hence �c can be replaced by �s in Equation (6), i.e.:

1Actually the true length of a fractal is infinity. By ã ∝ aDD we mean that the lengths of all the prefractal cracks
are proportional to aDD .
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δUe = δ

(∫
�c−�s

1
2σij εij dA +

∫
�s

1
2σij εij dA

)
∼= δ

∫
�s

1
2σij εij dA. (8)

The strain energy release due to an infinitesimal crack growth of apparent length δa may be
expressed as:

δUe ∝ δ(r−α
s r−α

s r2
s ) ∝ δ(a2−2α). (9)

According to Griffith’s (1920, 1924) criterion δUe = δUs; and hence from (4) and (9) we
obtain:

α = 2 − DD

2
1 ≤ DD ≤ 2, (10)

in terms of DD and

α =



2H − 1

2H
1
2 ≤ H ≤ 1,

0 0 < H ≤ 1
2

(11)

in terms of the Hurst exponent. As can be seen for a self-affine crack, stresses and strains are
singular at the crack tip only if 1

2 ≤ H ≤ 1. This method is applicable to mode II and mode III
fractal cracks as well. It can easily be shown that stresses have the same order of singularity
for mode II and mode III as they do for mode I fractal cracks.

It is worth mentioning that Equation (11) has an interesting conceptual implication. There
is a stress singularity at the tip of a smooth crack; stresses are unbounded near the crack
tip. This stress singularity is pathological because in reality stresses are finite at the crack
tip. At first glance it might appear that this singularity is due to the (unrealistic) assumption
that fracture surfaces are smooth. If this is true, we must have nonsingular stresses for fractal
cracks. However, self-similar fractal cracks, although they have weaker stress singularities
than smooth cracks do, introduce the same pathological problem: stresses are again unbounded
at the tip of self-similar fractal cracks.

Sternberg and Muki (1967), with the hope of finding nonsingular stresses, analyzed the
problem of a finite crack in a linear couple-stress medium. They showed that even in the
presence of couple-stresses, stresses have an r−1/2 singularity. Similar results were obtained
by Atkinson and Leppington (1977) for smooth cracks in a micropolar medium. Yavari et al.
(2002) showed that even for self-similar fractal cracks in a micropolar solid, stresses are
singular at the crack tip, although they have a weaker singularity than stresses have at the
tip of a smooth crack.

From the results in the literature for smooth cracks, and from what others and we have
found for self-similar fractal cracks, we conclude that the singularity of stresses and strains
at the tip of a smooth or self-similar fractal crack must be caused by something else. Eringen
et al. (1977), showed that a smooth crack in a nonlocal elastic medium has no stress singularity
and the maximum stress criterion is applicable. Therefore, stress singularity at the tip of a
smooth crack appears because the constitutive equations are local. However, this does not
mean that the local theory should be ruled out. As a matter of fact, nonlocal theories are very
complicated and most problems in nonlocal elasticity can only be solved numerically.

For self-affine fractal cracks, it has been shown that for H ≤ 1
2 , stresses are not singular

at the crack tip. This interesting result implies that for very rough self-affine cracks (H ≤
1
2), even when a local theory is utilized, stresses are finite at the crack tip and hence the
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maximum stress criterion may be applied. It is worth mentioning that for self-affine cracks in
most engineering materials, H has been found to be close to 0.7. Therefore, the main cause of
stress singularity is still that the constitutive equations are local. In the following we discuss
fractal stress intensity factor and fractal driving force.

3.1. FRACTAL STRESS INTENSITY FACTOR

For a mode I fractal crack stresses have the following asymptotic distribution:

σ
f

ij (r, θ) = K
f

I r
D−2

2 fij (θ,D) + higher-order terms, (12a)

for a self-similar fractal crack and

σ
f

ij (r, θ) = K
f

I r
1−2H

2H fij (θ,H) + higher-order terms, (12b)

for a self-affine fractal crack. This is a linear elastic problem and hence K
f

I must be propor-
tional to σ∞, i.e.,

K
f

I = σ∞)(a,D) (13)

A simple dimensional analysis dictates the following dependence of the fractal stress intensity
factor on other parameters of the problem:

K
f

I = χ(D)σ∞√
πa2−D, (14)

where χ(D) is an unknown function of D(χ(D = 1) = 1). It is seen that when D tends to
zero we recover the classical relation for the stress intensity factor. Wnuk and Yavari (2002)
found an estimation for χ(D).

3.2. DRIVING FORCE FOR A FRACTAL CRACK

For a fractal crack with dimension D we define the fractal driving force Gf as the generalized
force corresponding to the generalized displacement �mD, i.e.,

�Ue = Gf�mD or Gf = �Ue

�mD

. (15)

Consider the mode I fractal crack shown in Figure 2b. The fractal driving force Gf is a
function of Kf

I , D,E, and ν. Here the effects of ‘a’ and σ∞ are hidden in K
f

I . Thus

Gf = )(K
f

I , E,D, ν). (16)

In Equation (16), independent variables are K
f

I and E. According to Buckingham’s /-theorem,
we must have

Gf

(K
f

I )2E−1
= ψ(D, ν) or Gf = ψ(D, ν)

(
K

f

I

)2

E
, (17)

which is similar to the classical equation.
Here the following question might arise: how can a crack propagate when the orders of

stress and strain singularity are not one-half? When a smooth crack propagates by an amount
δa the strain energy release may be calculated as follows (Sih and Liebowitz, 1968):
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δUe =
∫ δa

0
σyy(δa − ξ, 0)uy(ξ, π) dξ. (18)

The strain energy release rate may be written as:

G = lim
δa→0

1

δa

∫ δa

0
σyy(δa − ξ, 0)uy(ξ, π) dξ. (19)

If an asymptotic stress distribution of the form σyy(r, θ) = KIr
−αf (θ) is assumed, it can

easily be shown that δUe is nonzero for the crack growth if and only if α = 1
2 . For fractal

cracks, Equations (18) and (19) cannot be used to calculate the strain energy release. Suppose
the fractal dimension of the crack is D and that the crack propagates by an amount δmD. The
fractal strain energy release rate (per unit of D-fractal measure) is:

Gf = lim
δmD→0

1

δmD

∫ δmD

0
σD
y dmD, (20)

where σD
y is the y-component of the D-fractal pseudo stress vector. This quantity can be

nonzero even if α �= 1
2 .

4. Modes of fractal fracture

In classical linear elastic fracture mechanics there are three modes of fracture (Irwin, 1958).
These are known as mode I (opening mode), mode II (shearing mode), and mode III (tearing
mode). In the framework of linear elastic fracture mechanics, stress distribution around the tip
of any crack can be written as the superposition of mode I, II, and III stresses, i.e.,

σij (r, θ) = KIr
1/2f I

ij (θ) + KII r
−1/2f II

ij (θ) + KIIIf
−1/2f III

ij (θ). (21)

Consider the cracked plate shown in Figure 3a. The crack is in pure mode I, and a combination
of mode I and mode II for α = π/2 and 0 < α < π/2, respectively. There is a discontinuity
at α = 0 because for this value of α there is no interaction between the crack and the applied
stresses. This is physically unacceptable. We know that when the applied far field stress is
compressive we could have crack propagation. The problem of fracture in compression has
been investigated by many researchers (see Bhattacharya et al., 1998, and references therein).
This pathology in linear elastic fracture mechanics arises from the assumption that cracks
are smooth surfaces. Mosolov and Borodich (1992) and Mosolov (1993) tried to explain this
phenomenon considering fractal cracks. Now consider the same plate with a fractal crack
(Figure 3b). We can define the axis of the fractal crack as the line segment that connects
the two crack tips. Here again for α = π/2 we have a pure mode I fractal crack and for
0 < α < π/2 a combination of mode I and mode II. Because of its irregularity, even for
α = 0 the crack interacts with the applied stresses and there is a stress singularity at the
crack tip. However, this loading condition cannot be expresses in terms of classical modes of
fracture. Therefore fractality of fracture surfaces dictates the existence of at least one more
fracture mode (Yavari et al., 2000). Here we show that there are two other fractal modes of
fracture, i.e., there are six modes of fracture in fractal fracture mechanics.

Consider an infinite medium under a uniform tensile stress σ∞ at infinity. A smooth crack
parallel to the tensile stresses does not interact with applied loads and does not change the
stress and displacement of this system. In other words, the crack is not active and there is no
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Figure 3. Mixed-mode smooth and fractal cracks.

stress singularity (Figure 4a). Now suppose that this crack is a self-affine fractal with Hurst
(roughness) exponent H (0 < H < 1). In this case the crack affects the stress distribution in
a strip of width proportional to aH (see Figure 4b). Again the following singular stress and
strain fields are assumed:

σij (r, θ) = K
f

IV r
−αfij (θ), (22a)

εij (r, θ) = K
f

IV r
−αCijklfkl(θ), (22b)

where K
f

IV is the fractal mode IV stress intensity factor and α is the order of stress singularity
to be determined. The above asymptotic expressions are valid in a disk �s with radius propor-
tional to aH , i.e., rs ∝ aH . When the crack propagates by an infinitesimal (apparent) amount
δa, the strain energy is released in a zone with area proportional to aH δa. Hence the strain
energy release rate may be written as:

δUs
∼= δ

∫
�c

1
2σij εij dA ∼= δ

∫
�s

1
2σij εij dA ∝ r−α

s r−α
s aH δa. (23)

We know that rs ∝ aH , hence,

δUe ∝ a−2αH+Hδ ∝ δ(a1+H−2αH ). (24)

The surface energy required for this crack growth has the same form as the surface energy
required for growth of a mode I fractal crack does. Thus:
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Figure 4. (a) An infinite solid with a finite smooth crack parallel to the applied stresses, (b) an infinite solid with
a finite fractal crack parallel to the applied stresses and the crack-effect zone.

δUs ∝ δ(aDD) =
{

δ(a1/H ) 1
2 ≤ H < 1,

δ(a2) 0 < H ≤ 1
2 .

(25)

Applying Griffith’s criterion yields:

α =




H 2 + H − 1

2H 2

1

g
=

√
5 − 1

2
≤ H < 1,

0 0 < H ≤ 1

g
=

√
5 − 1

2
,

(26)

where g is the Golden mean. As was shown by Yavari et al. (2000) and Yavari (2000), stresses
have a weaker singularity in this mode than they do in the classical modes. However, for
self-similar fractal cracks this mode introduces the same order of stress singularity as other
modes do. As was noticed by Yavari et al. (2000) and Yavari (2000), existence of mode IV
could make some of the single-mode problems of classical fracture mechanics mixed-mode
problems in fractal fracture mechanics.

Now consider the smooth and fractal cracks shown in Figure 5. The state of stress at a
material point on the crack edges can be completely specified by six independent stress com-
ponents. For the case of a fractal crack, each of these independent stress components defines a
mode of fracture. For a crack in xy-plane (for the fractal crack xy-plane is the nominal plane
of the crack), σzz, σyz, and σxz correspond to modes I, II, and III, respectively. For the fractal
crack, σyy corresponds to mode IV or in-plane axial mode. The stress component σxx defines
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Figure 5. A crack in a three-dimensional solid and six modes of loading. Modes IV, V, and VI do not exist for
smooth cracks.

a similar mode that we call mode VI or out-of-plane axial mode. Finally, the stress component
σxy defines a new shearing mode of fractal fracture that we call mode V or distorting mode.
It can be easily shown that mode IV, V, and VI fractal cracks have the same order of stress
singularity. Figure 6a shows a circular shaft with a penny-shaped crack in uniform torsion.
This crack is in mode III for both smooth and fractal cases. The cracked shaft of Figure 6b
is in mode II for both fractal and smooth cases. The stress distribution in the cracked shaft
shown in Figure 6c is identical to that of an uncracked shaft in the case of a smooth crack. In
other words the smooth crack does not interact with the applied stresses. But if the crack is a
fractal surface it does interact with applied shearing stresses and is in mode V. All six modes
of fractal fracture are shown in Figure 7.

5. Fractal cracks in three-dimensional bodies

In this section three-dimensional solid bodies with fractal cracks are studied. A self-similar
fractal crack in a three-dimensional solid body is a fractal surface with fractal dimension D

between two and three. In the case of a self-affine crack, the crack is a surface with Hurst
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Figure 6. A circular shaft under uniform torsion with (a) a penny-shaped crack in mode III, (b) straight crack in
mode II, and (c) cylindrical crack in mode V.

exponent H(0 < H < 1) and latent fractal dimension DD (2 < DD < 3). Here we are
implicitly assuming that the x − y plane (the plane of the crack) is isotropic and hence a
Hurst exponent H can describe the roughness of the self-affine crack. In this section the radial
variations of stresses near the crack edges are obtained. Without loss of generality, a mode I
fractal crack is considered. For this crack, there is a finite ball Bc that lies inside the crack-
effect zone. The surface energy required for formation of the crack is proportional to aDD ,
where ‘a’ is a characteristic length of the crack. For example, for a disk-shaped crack it is the
radius of the disk, and for a rectangular crack it is the diameter of the rectangle. Hence,

Us ∝ aDD =
{

a2/H 2
3 ≤ H < 1,

a3 0 < h ≤ 2
3 .

(27)

Now suppose that the crack propagates and the characteristic length of the crack is increased
by an infinitesimal amount δa. Note that in this case there are infinitely many possible crack
growth forms. The surface energy needed for this infinitesimal crack growth is proportional
to:

δUs ∝ δ
(
aDD

) =
{

δ(a2/H ) 2
3 ≤ H < 1,

δ(a3) 0 < H ≤ 2
3 .

(28)

The strain energy release due to the crack growth may be written as:

δUe
∼= δ

∫
Bc

1

2
σij εij dV = δ

(∫
Bc−Bs

1

2
σij εij dV +

∫
Bs

1

2
σij εij dV

)
∼= δ

∫
Bs

1

2
σij εij dV. (29)
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Around the crack edge stresses and strains have distributions like those shown in Equa-
tions (7). As in the two-dimensional problem discussed in Section 3, strain energy release
in the ball Bs of radius rs (dominant disk of stress singularity) is much greater than it is in
Bc − Bs . Hence in Equation (29) Bc can be replaced by Bs . Therefore, strain energy release
rate due to the crack growth is proportional to:

δUe ∝ δ(r−α
s r−α

s r3
s ) = δ(a3−2α). (30)

Griffith’s criterion states that δUe = δUs; hence,

α = 3 − DD

2
2 ≤ DD ≤ 3 (31)

in terms of latent fractal dimension (for self-similar cracks DD = D). Similarly, in terms of
Hurst exponent we have:

α =




3H − 2

2H

2

3
< H ≤ 1,

0 0 < H ≤ 2
3 ,

(32)

which is valid for mode I, II, and III self-affine fractal cracks. It is seen that for very rough
self-affine fractal cracks (0 < H ≤ 2

3 ), stresses are not singular. Now suppose that a self-affine
crack (which is a self-affine surface) is under a uniform stress parallel to its plane. The order
of stress singularity is (see Yavari et al., 2000):

α =




H+2H − 1

2H 2

√
3 − 1 ≤ H < 1,

0 0 < H ≤ √
3 − 1,

(33)

It can be easily shown that this is also the order of stress singularity for mode V and VI.
Angular variations of stresses and strains at the tip of a fractal crack cannot be found using this
method. If a crack is assumed to be a mathematical fractal for all length scales, the only way
to obtain the angular variations of stresses and strains is to solve the corresponding boundary-
value problem with fractal boundaries.

6. Path-Dependence of J-integral for fractal cracks

Rice (1968a, b) introduced the following path-independent integral for smooth cracks and
called it the J -integral:

J =
∫
�

(Wn1 − σ.u,1) ds =
∫
�

(Wn1 − σijnjui,1) ds, (34)

where � is any path starting at one face of the crack and ending at the other face, W is the
strain energy density, n1 is the x component of outward unit normal vector to �, σ is the stress
(traction) vector, and u is the displacement vector. Note that the crack is parallel to the x-axis.

For a smooth crack, the J -integral is path-independent. Using Green’s theorem, it can be
shown that this integral is zero around any closed path that includes the crack tip. Because the
crack faces do not contribute to this integral, the J -integral is path-independent for any path
starting from one face of the crack and ending at the other face of the crack. A singularity
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lies at the crack tip that is dominant inside a disk with radius rs , which is proportional to the
crack half-length ‘a.’ The paths of integration do not have to lie inside this disk for the J -
integral to be path independent. In other words, the J -integral is path-independent regardless
of the length of this path (as long as the path lies within the elastic body). Another proof of
path-independence of the J -integral involves simply substituting the asymptotic expressions
of stresses and strains of Equation (7) into Equation (34). This way, it can easily be shown that
the J -integral is path-independent. However, this proof is valid only for paths of integration
inside the disk r ≤ rs .

Now consider a fractal crack. In this case the crack tip is not the only singularity point; there
are infinitely many points on the edges of the crack that all have singularities (but much weaker
singularities than those at the crack tip). For a fractal crack J -integral is not path-independent.
Rice’s argument cannot be applied in this case because, unlike in the classical case, the crack
faces are not smooth. Actually, they are nowhere differentiable and the unit normal vector
is not defined (the stress vector is not defined on a fractal surface). Path-dependence of J -
integral can be seen by simply substituting the asymptotic stresses and strains in (34). Mosolov
(1991b) and Balankin (1997) argued that for fractal cracks J -integral scales as:

J (λ�) = λ1−2αJ (�), (35)

where λ is a positive number, α is the power of stress singularity, and (x, y) ∈ λ� if and only
if (x/λ, y/λ) ∈ �. Their argument is not correct in general; the asymptotic stress and strain
fields (7) are valid only in a disk �s with radius rs proportional to the apparent half crack
length ‘a.’ Actually, each stress component could have a different �s . Here rs is the minimum
of all the radii. Scaling (35) is valid only if both � and λ� lie inside �s (see Figure 8).
Mosolov (1991b) limited himself to the case � → 0, i.e., he only considered very local paths
of integration. His Equation (1) is not the general definition of J -integral. Actually, one ad-
vantage of J -integral techniques is that we can calculate local crack parameters by calculating
a path integral over a path that is far from the crack tip. This advantage of J -integral is very
useful in computational fracture mechanics; without having a very fine discretization around
the crack tip and without utilizing special crack-tip elements very good approximate results
can be obtained for J -integral.

Now we define a modified J -integral and call it FJ -integral. Consider the following line
integral:

FJ =
∫
�

r1−D(Wn1 − σ.u,1) ds, (36)

for self-similar fractal cracks and

FJ =
∫
�

r(H−1)/H (Wn1 − σ.u,1) ds, (37)

for mode I and mode II self-affine fractal cracks. This path integral is proportional to Mosolov’s
(1991b) Jf -integral, but here we do not restrict ourselves to very local paths of integration.
The FJ -integral can be easily shown to be path independent for all paths lying in the dominant
zone of stress singularity around the crack tip (see Figure 9a). As a matter of fact, FJ -integral
is locally path-independent for fractal cracks in any linear or nonlinear elastic solid as will be
shown in sequel. All these path integrals are, in general, path dependent for paths of integration
like the ones shown in Figure 9b.
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Figure 7. The six modes of fractal fracture: mode I (opening mode), mode II (shearing mode ), mode III (tearing
mode), mode IV (in-plane axial mode), mode V (distorting mode), and mode VI (out-of-plane axial mode).

FJ -integral has an interesting dimension; its dimension is [FJ ] = L1−DFL−1 = FL−D,
which is the dimension of energy per unit latent fractal measure. But this does not necessarily
mean that FJ -integral has a physical meaning. Rice (1968a, b) demonstrated that J -integral
is the rate of potential energy release rate per unit crack length (per unit thickness), i.e.,

J = − lim
�L→0

/(L + �L) − /(�L)

�L
= −∂/

∂L
, (38)

where / is the potential energy of the system and the crack tip is located at x = L. As
was noticed earlier, J -integral is not path independent for a fractal crack and hence it cannot
have a physical meaning. In other words, potential energy release per unit crack length is not
defined for a fractal crack. Physical dimension of FJ -integral motivates us to define a fractal
J -integral as:

J fractal = − lim
�mD→0

/(mD + �mD) − /(mD)

�mD

= − ∂/

∂mD

, (39)

where mD is a fractal measure and D is the fractal dimension. A generalization of Equa-
tion (34) that leads to Equation (39) remains to be done in future.
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Figure 8. A fractal crack and two similar paths of integration inside the dominant zone of fractal stress singularity
(�s).

7. Fractal cracks in classical strain-hardening and nonlinear elastic solids

In this section structure of stress and strain distributions around the tip of a fractal crack in
a strain-hardening material is studied. Hutchinson (1968) and Rice and Rosengren (1968),
independently, found the asymptotic forms of stresses and strains at the tip of a stationary
crack in a Ramberg–Osgood-type strain hardening material. They found that stresses and
strains are singular at the crack tip and this singularity is now known as HRR singularity.
Stress-strain relations in a Ramberg–Osgood material may be written as:

ε

ε0
= σ

σ0
+ α

(
σ

σ0

)n

(40)

where ε0 and σ0 are material properties and n is the hardening exponent. Using a J2 defor-
mation plasticity theory, Hutchinson and Rice and Rosengren found the following asymptotic
stresses, strains, and displacements:

σij (r, θ) = σ0

(
J

αε0σ0Inr

)1/(n+1)

σ̃ij (θ, n) (41a)

εij (r, θ) = αε0

(
J

αε0σ0Inr

)1/(n+1)

ε̃ij (θ, n) (41b)

ui(r, θ) = αε0r

(
J

αε0σ0Inr

)1/(n+1)

ũi(θ, n) (41c)

where In, σ̃ij (r, θ), ε̃ij (r, θ), and ũi(r, θ) are tabulated functions. It is seen that stresses have an
r−1/(n+1) singularity and strains have an r−n/(n+1) singularity at the crack tip. Several caveats
should be remembered about the HRR solutions:
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Figure 9. (a) A fractal crack and two paths of integration inside the dominant zone of fractal stress singularity; (b)
a fractal crack and two paths of integration, one crossing the dominant zone of fractal stress singularity and one
outside it.

(1) Small scale yielding is assumed (plastic zones are concentrated only at the crack tip).
(2) No crack growth occurs.
(3) Infinitesimal strain theory is assumed.
(4) Loading is proportional.
It is worth mentioning that there have been investigations on the structure of stress and

strain singularity for propagating cracks. It has been shown that stresses and strains have
weaker singularities in the case of propagating cracks. In this work, we consider only station-
ary cracks.

In this section we calculate the corresponding orders of singularity for stresses and strains
at the tip of a fractal crack. Obviously, the orders of stress and strain singularity may be
functions of both hardening exponent and the fractal dimension of the crack. Now consider a
fractal crack in a power strain-hardening material with the following strain- stress relations:

εij = Aijklσkl + Bijklσ
n
ij ; n ≥ 1, (42)

where Aijkl and Bijkl are fourth-order tensors (and are mechanical properties) and n is the
hardening exponent. Therefore, if σij (r) ∝ r−α as r → 0, we will have εij (r) ∝ r−nα as
r → 0. For checking the applicability of the method proposed in Section 3, first consider a
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mode I smooth crack. Suppose that the following asymptotic stresses and strains are dominant
around the crack tip:

σij (r, θ) = K1r
−αfij (θ, n), (43a)

εij (r, θ) = K2r
−nαgij (θ, n), (43b)

where K1 and K2 are independent of r and θ . A disk of radius rs lies inside the dominant
zone of the above asymptotic expressions. It should be noted that the dominant zone of the
singularity is not necessarily a disk and it may be different for different stress and strain
components. Deng and Rosakis (1992a, b) numerically studied this interesting problem for
both linear hardening and power hardening materials. Here rs is the radius of the smallest disk
and is in general a function of crack length and strain-hardening exponent, i.e.,

rs = ψ(a, n). (44)

Both ‘a’ and rs have dimensions of length and n and H are dimensionless, hence according
to Buckingham’s / theorem, we have:

rs

a
= )(n) or rs = a)(n). (45)

The strain energy release due to an infinitesimal crack growth of length δa may be written as:

δUe
∼= δ

∫
�c

1

2
σij εij dA ∼= δ

∫
�s

1

2
σjεij dA ∝ δ

(
a−αa−nαa2

) = δ
(
a2−(n+1)α

)
. (46)

The surface energy required for the crack growth is proportional to δa, thus applying Griffith’s
criterion yields:

2 − (n + 1)α = 1 or α = 1

n + 1
, (47)

which is the correct order of stress singularity. Therefore, the method is applicable. It should
be noted that here we have utilized Orowan’s (1952) generalization of Griffith’s theory for
ductile fracture.

In this section, the radial variation of stresses and strains are found for self-affine fractal
cracks. The case of self-similar cracks can be treated similarly. First, orders of stress and
strain singularity are obtained for three classical modes of fracture. Without loss of generality,
consider an infinite medium made of the above-mentioned strain-hardening material with a
mode I finite self-affine fractal crack with apparent length 2a. The crack is assumed to be a
self-affine fractal with Hurst exponent H(0 < H < 1). Again, the method of crack-effect
zone is utilized. The following asymptotic stress and strain forms are assumed:

σij (r, θ) = K1r
−αfij (θ, n,H), (48a)

εij (r, θ) = K2r
−nαgij (θ, n,H). (48b)

The above asymptotic stresses and strains are valid in a region that covers by a disk �s of
radius rs (more precisely, the area of the dominant zone of singularity is proportional to r2

s ).
rs is, in general, a function of the apparent crack length, strain-hardening exponent, and the
Hurst exponent, i.e.,
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rs = ψ(a, n,H). (49)

Here both ‘a’ and rs have dimensions of length and n and H are dimensionless. According to
Buckingham’s / theorem, we must have:

rs

a
= )(n,H) (50a)

or

rs = a)(n,H). (50b)

Therefore, rs is again proportional to ‘a’ and this is all we need to find the asymptotic form
of the released strain energy. The strain energy release due to an infinitesimal crack growth of
apparent length δa may be written as:

δUe
∼= δ

∫
�c

1

2
σij εij dA ∼= δ

∫
�s

1

2
σij εij dA ∝ δ

(
a−αa−nαa2

) = δ
(
a2−(n+1)α

)
. (51)

The surface energy required for the crack growth is independent of the strain-stress relations
and hence:

δUs ∼ (
aDD

) =
{

δ(a1/H ) 1
2 ≤ H < 1,

δ(a2) 0 < H ≤ 1
2 .

(52)

Making use of Griffith’s criterion, from (51) and (52) we must have:

α =



(

2H − 1

H

)
1

n + 1

1

2
≤ H < 1

0 0 < H ≤ 1
2

; n ≥ 1. (53)

It is seen that the fractality of the crack makes the stress singularity weaker compared to the
stress singularity at the tip of a smooth crack. From (48) and (53), the stresses and strains have
the following asymptotic behavior near the crack tip:

σij ∝ r
−
(

2H−1
h

)
1

n+1 , εij ∝ r
−
(

2H−1
H

)
n

n+1 as r → 0. (54)

Balankin (1997) found the following asymptotic stresses and strains using a dimensional
analysis technique:

σij ∝ r− 1
n+1 + 1−H

2H , εij ∝ r− n
n+1 + n(1−H)

2H as r → 0. (55)

Balankin’s asymptotic stresses and strains are incorrect because when n tends to infinity (n →
∞), we must have σij ∝ 1 even if the crack is a fractal curve. In our stress fields, for n → ∞
we obtain:

σij ∝ r0 = 1. (56)

But for Balankin’s stress field we have:

σij ∝ rH/(1−H) �= 1. (57)



The mechanics of self-similar and self-affine fractal cracks 21

Balankin (2000) corrected his dimensional analysis and found the asymptotic form (54)2 .
Now consider a mode IV self-affine fractal crack (our conclusions are also valid for modes

V and VI). We again assume the asymptotic forms (48a) and (48b) for stresses and strains.
Similar to the argument presented for the case of a mode IV fractal crack in a linear elastic
medium, the radius of the dominant zone of stress and strain singularities is proportional to aH ,
i.e., rs ∼ aH (more precisely, the area of the dominant zone of stress and strain singularity
is proportional to aH+1). Therefore, the strain energy release due to an infinitesimal crack
growth of apparent length δa has the following asymptotic form:

δUe
∼= δ

∫
�c

σij εij dA ∼= δ

∫
�s

σij εij dA ∝ δ
(
a−αHa−nαHaaH

) = δ
(
a−(n+1)αH+1+H

)
. (58)

The asymptotic form of the surface energy is the same as that of mode I, mode II, and mode
III fractal cracks Equation (52). Now applying Griffith’s criterion yields:

α =




(
H 2 + H − 1

H 2

)
1

n + 1

1

g
≤ H < 1

0 0 < H ≤ 1

g

; n ≥ 1, (59)

where g is the Golden ratio. Therefore, stresses and strains have the following asymptotic
forms near the crack tip:

σij ∝ r
−
(

H2+H−1
H2

)
1

n+1 , εij ∝ r
−
(

H2+H−1
H2

)
1

n+1 , as r → 0
1

g
≤ H < 1, (60a)

σij ∝ r0, εij ∝ r0 as r → 0 0 < H ≤ 1

g
. (60b)

Similarly, for a self-similar fractal crack in a strain-hardening material asymptotic stresses
and strains are:

σij ∝ r
−
(

2−D
2

)
1

n+1 , εij ∝ r
−
(

2−D
2

)
n

n+1 as r → 0 1 ≤ D ≤ 2, (61)

for all modes of fractal fracture. From (36) and (59), it can be seen that FJ -integral is locally
path-independent.

7.1. FRACTAL CRACKS IN A NONLINEAR ELASTIC SOLID

Consider a nonlinear elastic material with the following stress-strain relations:

σij = f (εij ). (62)

Because the material is elastic, f has to be a single-valued and one-to-one function. Now sup-
pose that there is a self-affine fractal crack with Hurst exponent H in a solid with constitutive
equations (62). The following asymptotic stresses and strains are assumed:

2The dimensional analysis presented in Balankin (1997) gives the correct result if Balankin’s (1997) Equation (78)
is modified to read:

β = 0, if ε = 0, and β = n

n + 1
, if ε = 1.

It should be noted that Balankin’s n is 1/n in our formulation.
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σij ∝ r−α, εij ∝ r−β as r → 0, (63)

where β = β(α). Because the constitutive equations are single-valued and one-to-one, β is
a single-valued and one-to-one function of α. Without loss of generality, consider a mode I
self-affine crack. We have the following expressions for the surface energy and strain energy
release:

δUs ∝
{

δ(a1/H ) 1
2 ≤ H < 1,

δ(a2) 0 < H ≤ 1
2 ,

(64a)

δUe ∝ δ(a−αa−βa2). (64b)

Applying Griffith’s criterion yields:

α + β =




2H − 1

H
1
2 ≤ H < 1,

0 0 < H ≤ 1
2 .

(65)

Similarly for a mode IV self-affine fractal crack we have:

δUs ∝
{

δ(a1/H ) 1
2 ≤ H < 1,

δ(a2) 0 < H ≤ 1
2 ,

(66a)

δUe ∝ δ(a−αa−βa1+H ). (66b)

Thus:

α + β =




H 2 + H − 1

H

1

g
≤ H < 1,

0 0 < H ≤ 1

g
.

(67)

From (36), (37), and (67), it is seen that FJ -integral is locally path-independent even for a
fractal crack in any elastic solid.

8. Conclusions

In this paper we study some consequences of fractality of fracture surfaces. Radial variations
of stresses and strains around the tip of a fractal crack are obtained using a modified Griffith’s
criterion and dimensional analysis considerations. Both self-similar and self-affine fractals
are considered as crack trajectory models. It is observed that for some range of roughness
exponent (0 < H ≤ 1

2 ) stresses are not singular at the tip of self-affine cracks and hence the
maximum stress criterion may be utilized for these cracks. It is shown that stresses are always
less singular at the tip of a fractal crack than stresses at the tip of a smooth (or rectilinear
crack) and consequently stress intensity factors for smooth and fractal cracks have different
physical dimensions.

Three new modes of fractal fracture exist which make some single-mode problems of
classical fracture mechanics mixed-mode problems in fractal fracture mechanics. The stress
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singularity power is found for these modes using the method of crack-effect zone. All modes
of fractal fracture introduce the same order of stress singularity for self-similar fractal cracks.
However, in the case of self-affine fractal cracks modes IV, V, and VI stress singularity is
always weaker than that of classical modes.

The J -integral is shown to be path-dependent for fractal cracks. This path-dependence
implies that the potential energy release rate per unit of crack length (area) is not defined
because J -integral has different values for different paths of integration. It is conjectured that
a fractal J -integral should be equal to the rate of energy release per unit of fractal crack growth
measure.

Self-similar and self-affine fractal cracks in a power-law strain-hardening medium are
studied. The orders of stress and strain singularities are found. It is shown that stresses and
strains have weaker singularities for fractal cracks than they do for smooth cracks.
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Appendix. Fractal geometry

This appendix presents some concepts and definitions of fractal geometry. Here we discuss
only those aspects of fractal geometry that are directly relevant to our investigation.

Consider a set S ⊂ R
n. An affine transformation of real scaling ratios r1, r2, . . . , rn (0 <

ri < 1) transforms each x = (x1, x2, . . . , xn) ∈ S into r(x) = (r1x1, r2x2, . . . , rnxn) ∈ r(S).
The set S is self-affine if it is composed of N nonoverlapping subsets congruent to r(S). If the
above property holds for S when r1 = r2 = . . . = rn = r, it is called a self-similar set. A self-
similar fractal is invariant under an isotropic length-scale transformation, while a self-affine
fractal is invariant under a transformation with different length scales in different directions.

Roughly speaking, the measure of a set S ⊂ R
n tells us about the size of the set and

is denoted by µ(S). In other words, measure is a generalized size. Here, µ is a measure on
R

n if it assigns a nonnegative number (possibly +∞) to each subset of R
n and satisfies the

following requirements:

1. µ(φ) = 0,
2. µ(A) ≤ µ(B) if A ⊂ B,
3. If A1, A2, . . . is a finite or countable sequence of subsets of R

n then:

µ

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai), (A1)

with equality if the Ai’s are disjoint subsets of R
n.

Suppose that U �= φ is a subset of R
n. The diameter of U is defined as:

diam(U) = sup {|x − y| : x, y ∈ U } . (A2)
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An ε-cover of S is a countable or finite collection of sets {Ui} such that:

1. 0 < diam(Ui) ≤ ε,

2. S ⊂
∞⋃
i=1

Ui .

Now suppose that S ⊂ R
n and D ∈ R

+ ∪ {0}. The D-dimensional Hausdorff measure of S is
denoted by HD(S) and is defined as:

HD(S) = lim
ε→0

HD
ε (S), (A3)

where

HD
ε (S) = inf

{ ∞∑
i=1

diam(Ui)
D : {Ui}is and ε − c over of S

}
. (A4)

It can be shown that HD has all the properties of a measure. It can be proven that for any
set S,HD(S) has a jump from +∞ to 0 for one and only one value of D; this is called the
Hausdorff dimension of S, i.e.:

DH = inf{D : HD(S) = 0} = sup{D : HD(S) = +∞}. (A5)

Therefore:

HD(S) =
{ +∞ D < DH

0 D > DH

(A6)

Note that when D = DH , 0 ≤ HD(S) ≤ +∞. If, when D = DH , HD(S) is nonzero and
finite, the set S is called a D-set. A finite (or countable) collection of isolated points is a 0-set,
a line segment is a 1-set, a disk is a 2-set, and a cube is a 3-set.

There are many other definitions of dimension. One disadvantage of Hausdorff dimension
is the difficulty of calculating it, which makes it impractical. Here we discuss two other
important dimensions, namely the box dimension and the divider dimension. All dimensions
somehow measure the complexity of irregularity of a set. In most definitions there is a mea-
surement at scale ε. For each ε irregularities below this scale are ignored and the behavior of
measurements as ε → 0 is studied.
Box dimension: Let S �= φ be a subset of R

n and let NB
ε (S) be the smallest number of sets of

diameter at most ε which can cover S. The box dimension of S is DB if

NB
ε (S) = O(εDB ) as ε → 0 or DB = lim

ε→0

log NB
ε (S)

− log ε
, (A7)

where O is Landau’s order symbol. It can be shown that always DH ≤ DB . For self-similar
fractals the equality holds. The Box measure mDB

is defined as:

mε
DB

= NB
ε (S)εDB = inf

{∑
i

εDB : {Ui}is a finite ε − c over of S

}
, mDB

= lim
ε→0

mε
DB

.

(A8)

In calculating Hausdorff measure, different weights |Ui|s are assigned to covering sets Ui

while, in the box measure the same weight is used for all covering sets. It should be noted that
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mDB
is not a mathematical measure on subsets of R

n; it does not have all the properties of a
measure.
Divider (latent) dimension: This is the most important dimension in fractal fracture mechanics.
Consider a Jordan curve C (a curve that does not intersect itself) f : [a, b] → R

n. Here f

is a bijection (a one-to-one and onto function). For ε > 0 define ND
ε (C) to be the maximum

number of points x0, x1, x2, . . . , xm on C such that |xk − xk−1| = ε for k = 1, 2, . . . , m.
Therefore, the approximate length of the curve Lε(C) is Lε(C) = O

[(
ND

ε (C) − 1
)
ε
]
. The

divider dimension of C is DD if:

ND
ε (C) = O

(
ε−DD

)
as ε → 0 or Lε(C) = O

(
ε−DD+1

)
as ε → 0. (A9)

We know that ND
ε (C) is dimensionless, while ε has the dimension of length. Therefore, from

(A.9) we conclude that:

Nε(C) ∝
(

ε

L0

)−DD

or Nε(C) ∝ ε−DDL
DD

0 , (A10)

where L0 is the apparent length of C. It can be shown that for any Jordan curve C, DD ≥ DB .
For self-similar curves the equality holds. The divider measure mDD

is defined as:

mε
DD

= ND
ε (C)εDD , mDD

lim
ε→0

mε
DD

. (A11)

From (A.10) and (A.11) we can write:

mDD
∝ L

DD

0 . (A12)

Like the box measure, the divider measure is not a mathematical measure because it is not
σ -additive.

It can be shown that for a self-affine fractal with Hurst exponent H we locally have:

DD =




1

H

1
2 ≤ H < 1,

2 0 < H ≤ 1
2 .

(A13)

And globally DD = 1. In general, for a self-affine fractal (with Hurst exponent H ) embedded
in R

n, the divider and box dimensions are locally related to roughness exponent by:

DD =




n − 1

H

n − 1

n
≤ H < 1,

n 0 < H ≤ n − 1

n
,

(A14a)

DB = n − H. (A14b)

And globally, DD = DB = n − 1.
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