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Abstract In this paper we formulate a geometric theory of the mechanics of growing
solids. Bulk growth is modeled by a material manifold with an evolving metric. The
time dependence of the metric represents the evolution of the stress-free (natural) con-
figuration of the body in response to changes in mass density and “shape”. We show
that the time dependency of the material metric will affect the energy balance and the
entropy production inequality; both the energy balance and the entropy production
inequality have to be modified. We then obtain the governing equations covariantly
by postulating invariance of energy balance under time-dependent spatial diffeomor-
phisms. We use the principle of maximum entropy production in deriving an evolu-
tion equation for the material metric. In the case of isotropic growth, we find those
growth distributions that do not result in residual stresses. We then look at Lagrangian
field theory of growing elastic solids. We will use the Lagrange–d’Alembert principle
with Rayleigh’s dissipation functions to derive the governing equations. We make an
explicit connection between our geometric theory and the conventional multiplicative
decomposition of the deformation gradient, F = FeFg, into growth and elastic parts.
We linearize the nonlinear theory and derive a linearized theory of growth mechanics.
Finally, we obtain the stress-free growth distributions in the linearized theory.
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1 Introduction

In classical continuum mechanics, one usually models mass-conserving bodies. The
traditional framework of continuum mechanics is suitable for many practical appli-
cations. However, in some natural phenomena mass is added or lost in a deformation
process. This is particularly important in biological systems where growth and re-
modeling are closely linked to mechanical loads. In the case of soft tissues, elastic
deformations are large and the theory of linear elasticity is not adequate. This has
been the main motivation for extensive studies of large deformations in biomechan-
ics in recent years (see Cowin and Hegedus 1976; Skalak et al. 1982; Fung 1983;
Naumov 1994; Hoger 1997; Humphrey 2003; Klarbring et al. 2007 and references
therein).

It has been realized for a long time that mechanical forces directly affect the
growth and remodeling in biological systems (Hsu 2003). A continuum theory ca-
pable of modeling biological tissues must take into account changes of mass and
the coupling between growth/remodeling and mechanical stresses. In continuum me-
chanics, one starts by postulating that a body is made of a large number of “ma-
terial points” that can be treated as mathematical points. A material point consists
of “enough” number of particles (atoms, molecules, cells, etc.), so that it can rep-
resent the mechanical properties of the body, e.g. the density. Material points are
then identified with their positions in the so-called reference configuration. This
is called the material manifold. It is always assumed that the body is macroscop-
ically stress free in the material manifold. The material manifold is not neces-
sarily Euclidean and even not Riemannian; in general, the material manifold is
a Riemann–Cartan manifold in the case of solid bodies with distributed disloca-
tions, for example. It is relevant to mention that in most of the existing formula-
tions of finite-strain plasticity, instead of working with a Riemann–Cartan material
manifold, one assumes a multiplicative decomposition of the deformation gradient
into elastic and plastic parts, i.e. (Eckart 1948; Kröner 1960; Lee and Liu 1967;
Lee 1967)

F = T ϕ = FeFp, (1.1)

where ϕ is the deformation mapping. This means that locally the material deforms
plastically followed by elastic deformations to ensure compatibility. In other words,
one assumes that both the material and the ambient space manifolds are Euclidean
and one locally decomposes the total deformation mapping into incompatible elastic
and plastic parts. Motivated by plasticity, in the case of growth several researchers
(Kondaurov and Nikitin 1987; Takamizawa and Matsuda 1990; Takamizawa 1991;
Rodriguez et al. 1994) postulated a similar decomposition of F into elastic and growth
parts, i.e.

F = FeFg. (1.2)
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This has been the fundamental kinematical idea of all the existing models of growth
mechanics to this date (see Ben Amar and Goriely 2005; Hoger 1997; Lubarda and
Hoger 2002 and references therein).

Recently, Ozakin and Yavari (2010) introduced a geometric theory of thermoelas-
ticity in which thermal strains are buried in a temperature-dependent Riemannian
material manifold. In that theory a change of temperature leads to a rescaling of the
material metric with a clear physical meaning. In this paper we introduce a geometric
theory for growing bodies using similar ideas. We should mention that the analogy
between growth and thermal distortions was first realized by Skalak and his cowork-
ers (Skalak et al. 1996).

There are two possibilities in a growth process: (i) the number of material points
is fixed, and (ii) material points are removed or are added. Note that in a continuum
model the material points are assumed to contain several (or a large number of) par-
ticles, cells, etc. Erosion or accretion of cells corresponds to changes in volume (and
the corresponding mass) and shape of the material body. In our continuum model,
similar to many of the earlier models of bulk growth, we assume that the number of
material points is fixed. This means that we work with a fixed set B as the material
manifold and model growth by allowing B to have an evolving geometry. Consider
a two-dimensional problem, where the relaxed state of the material is described by a
surface. If the bulk of the material grows, as, for example, in a thin shell of biological
material undergoing cell division, the shape of the surface describing the relaxed state
will change. The stresses for a given configuration should be calculated in terms of
the map from the surface describing the relaxed state, to the current configuration.

While the multiplicative decomposition of the deformation gradient has been a
source of useful approaches to nonlinear problems, we believe that, in many cases,
such an approach obfuscates the underlying natural geometry. A multiplicative de-
composition seems natural if one starts with a stress-free material body and considers
processes such as plasticity which, in general, induce stresses. However, an initial
stress-free Euclidean configuration may not even exist in certain problems. Mathe-
matically, one can still consider an incompatible local deformation that brings the
material to a relaxed, Euclidean state, and measure deformations from this state, as in
the multiplicative decomposition described above. However, we believe that a more
natural way of looking at the problem involves treating the material manifold as a
non-Euclidean manifold, and giving its geometry explicitly in terms of the physics of
this problem. In passing, we should mention Miehe’s (1998) work, in which instead
of F = FeFp he introduces a “plastic metric”, although with no clear physical mean-
ing/interpretation for this metric. We will come back to a geometric interpretation of
F = FeFg in Sect. 3.

In this paper, we model growth by introducing a Riemannian material manifold
with an evolving metric. As will be seen, this formalism is very similar to the ap-
proach of Ozakin and Yavari (2010) to thermoelasticity; however, there are a few
important modifications. First, although we had a version of mass conservation in
thermoelasticity in terms of the changing material manifold, for the case of growth,
mass will in general be added to (or removed from) the material body; we will have a
mass balance. Thus, one can represent the amount of mass being added (or removed)
in terms of the changes of the differential form describing the material mass density.
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Secondly, for the case of thermal stresses, the material metric was explicitly given
in terms of the temperature, but no such simple dependence exists for the material
metric in biological growth. We will begin by exploring the consequences of various
simple modes of growth, such as a cylindrically symmetric growth represented by a
radius-dependent conformal scaling of the metric. Assuming simple constitutive re-
lations, we will write the equations for the equilibrium configurations in terms of the
time-dependent metric, much like the case in thermoelasticity. We will also establish
the connection to the formulations involving a multiplicative decomposition of the
deformation gradient.

One should note that there is in fact no guarantee that a time-dependent Rie-
mannian metric and its Levi-Civita connection is capable of modeling all kinds of
growth. We believe that at the very least one needs to consider time-dependent con-
nections with torsion; however, “Riemannian growth” is a good starting point. We
aim to investigate the case of growth with torsion, as well as non-metricity in future
communications.

Efrati et al. (2009) have recently studied similar problems in the framework of
linearized elasticity by modifying the definition of linearized strain. Here, we start
with nonlinear elasticity, and instead of modifying any definition of strain we will
work with an evolving material manifold. We should mention that the idea of using
differential geometry in elasticity goes back to more than fifty years ago in the work
of Eckart (1948) who realized that the stress-free configuration of a material body
evolves in time and an Euclidean stress-free configuration is not always possible.
Later developments are due to Kondo (1955a, 1955b) and Bilby et al. (1955, 1957).

There have been growth models in the literature using mixture theories. For growth
mechanics purposes, a mixture theory is certainly more realistic than a mono-phasic
continuum theory. However, in this paper for the sake of simplicity and clarity of
presentation, we restrict ourselves to mono-phasic continua. We should mention
that our ideas are similar, in spirit, to those of Rajagopal and Srinivasa (2004b)
who have been advocating the idea of material bodies with evolving natural con-
figurations. Here, we work in a fully geometric framework and model a grow-
ing body by a continuum that has an evolving Riemannian material metric. One
should note that this is a very special case of a possible evolving material mani-
fold that we believe is sufficient for bulk growth purposes. In particular, we work
with Levi-Civita connections that are by construction torsion-free. We should also
emphasize that we are not, by any means, questioning the usefulness of the tradi-
tionally used F = FeFg decomposition of the deformation gradient. However, we
believe that although the existing models based on this multiplicative decomposi-
tion have been very useful in growth mechanics (see Ben Amar and Goriely 2005;
Garikipati et al. 2004 for some concrete examples.) they all lack a rigorous mathe-
matical foundation.

This paper is organized as follows. In Sect. 2 we modify the existing geometric
theory of elasticity for growing solids. We show that energy balance has to be modi-
fied and then study its covariance. We study the entropy production inequality and the
restrictions it imposes on constitutive equations. We also show how the Principle of
Maximum Entropy Production can be used to obtain thermodynamically-consistent
evolution equations for the material metric. We then look at isotropic growth and
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model it by a time-dependent rescaling of an initial material metric. We solve three
examples of isotropic and non-isotropic growth analytically. We then discuss how
an evolving material manifold can be visualized using embeddings. In the last part
of this section we obtain stress-free isotropic growth distributions. We then study
growth in the Lagrangian field theory of elasticity and show how the governing equa-
tions can be obtained using the Lagrange–d’Alembert principle and using Rayleigh’s
dissipation functions. In Sect. 3, we make a connection between the exiting theories
of growth based on the decomposition F = FeFg and the present geometric theory.
The nonlinear geometric theory is linearized in Sect. 4. In particular, we obtain those
isotropic growth distributions that are stress free in the linearized setting. Conclusions
are given in Sect. 5.

2 Evolving Material Metrics and Bulk Growth

There have been previous works on the continuum mechanics formulation of bod-
ies with variable mass (see Lubarda and Hoger 2002; Ben Amar and Goriely 2005;
DiCarlo and Quiligotti 2002; Epstein and Maugin 2000, and references therein). In
these works it is assumed that the growth part of the deformation gradient is an un-
known tensor field and its evolution is governed by a kinetic equation. In writing
the energy balance, the corresponding thermodynamic forces show up. In the present
geometric theory, we work with an evolving material manifold instead of introduc-
ing new fields other than material mass density. Before going into the details of the
proposed theory, let us first briefly review the geometric theory of classical nonlinear
elasticity.

Geometric Elasticity A body B is identified with a Riemannian manifold B and a
configuration of B is a mapping ϕ : B → S , where S is another Riemannian manifold.
The set of all configurations of B is denoted by C . A motion is a curve c : R →
C; t �→ ϕt in C . It is assumed that the body is stress free in the material manifold.
For a fixed t , ϕt (X) = ϕ(X, t) and for a fixed X, ϕX(t) = ϕ(X, t), where X is the
position of material points in the undeformed configuration B. Let ϕ : B → S be a
C1 configuration of B in S , where B and S are manifolds. The deformation gradient
is the tangent map of ϕ and is denoted by F = T ϕ. Thus, at each point X ∈ B, it is a
linear map

F(X) : TX B → Tϕ(X)S. (2.1)

If {xa} and {XA} are local coordinate charts on S and B, respectively, the components
of F are

FaA(X)= ∂ϕa

∂XA
(X). (2.2)

The material velocity is the map Vt : B → Tϕt (X)S given by

Vt (X)= V(X, t)= ∂ϕ(X, t)
∂t

= d

dt
ϕX(t). (2.3)
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The material acceleration is defined by

At (X)= A(X, t)= ∂V(X, t)
∂t

= d

dt
VX(t). (2.4)

In components

Aa = ∂V a

∂t
+ γ abcV

bV c, (2.5)

where γ abc is the Christoffel symbol of the local coordinate chart {xa}. Note that
A does not depend on the connection coefficients of the material manifold. ϕt is
assumed to be invertible and regular. The spatial velocity of a regular motion ϕt is
defined as

vt : ϕt (B)→ Tϕt (X)S, vt = Vt ◦ ϕ−1
t , (2.6)

and the spatial acceleration at is defined as

a = v̇ = ∂v
∂t

+ ∇vv. (2.7)

In components

aa = ∂va

∂t
+ ∂va

∂xb
vb + γ abcv

bvc. (2.8)

Suppose B and S are Riemannian manifolds with inner products 〈〈, 〉〉G and 〈〈, 〉〉g
based at X ∈ B and x ∈ S , respectively. The transpose of F is defined by

FT : Tx S → TX B, 〈〈FV,v〉〉g = 〈〈
V,FTv

〉〉
G ∀ V ∈ TX B, v ∈ Tx S. (2.9)

In components
(
F T(X)

)A
a = gab(x)F bB(X)GAB(X). (2.10)

The right Cauchy–Green deformation tensor is defined by

C(X) : TX B → TX B, C(X)= F(X)TF(X), (2.11)

where g and G are metric tensors on S and B, respectively. In components

CAB = (
F T)A

aF
a
B. (2.12)

One can show that

C� = ϕ∗(g), i.e. CAB = (gab ◦ ϕ)F aAFbB. (2.13)

For bulk growth, we assume that the material manifold B remains unchanged but the
metric evolves, i.e. G = G(X, t).1 When mass is added or removed, the stress-free

1In mathematics, evolving metrics have been studied extensively. The most celebrated example is Ricci
flow (Hamilton 1982; Topping 2006), which was used in proving the Poincaré Conjecture by Perelman
(2002). Interestingly, for a seemingly very different application, i.e. growth mechanics, an evolving geom-
etry plays a key role.
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Fig. 1 Deformation of a
growing body as a map between
a Riemannian material manifold
with a dynamic metric and an
ambient space with a fixed
background metric

state of the body changes. Local changes in mass change the stress-free configuration
of the body. This is modeled by a time-dependent material metric that represents local
changes in volume and “shape” in the relaxed configuration (see Fig. 1). In Sect. 3,
we will make a connection between this approach and the conventional F = FeFg
decomposition of deformation gradient.

Incompressibility In growth mechanics it is usually assumed that elastic deforma-
tions are incompressible. In the classical theory in which F = FeFg is assumed, in-
compressibility implies det Fe = 1, i.e. all the volume changes are due to growth. In
the geometric theory the following relation holds between volume elements of (B,G)
and (S,g):

dv = J dV, (2.14)

where

J =
√

det g
det G

det F. (2.15)

Incompressibility of elastic deformations means that J = 1. Note that even when
J = 1, still dv is time dependent as a result of the time evolution of the material
metric that makes dV time dependent. In other words, an observer in the ambient
space sees changes in volume that are only due to volume changes in the material
manifold. We will show the equivalence of Je = 1 in the classical theory with J = 1
in the geometric theory in both some simple examples in Sect. 2.9 and in the general
case in Sect. 3.

2.1 Energy Balance

Let us look at energy balance for a growing body. The standard material balance of
energy for a subset U ⊂ B reads (Yavari et al. 2006)

d

dt

∫

U
ρ0

(
E + 1

2
〈〈V,V〉〉

)
dV =

∫

U
ρ0

(〈〈B,V〉〉 +R
)

dV +
∫

∂U

(〈〈T,V〉〉 +H
)

dA,

(2.16)
where E = E(X,N,G,F,g ◦ ϕ) is the material internal energy density, N, ρ0, B, T,
R, andH are specific entropy, material mass density, body force per unit undeformed
mass, traction vector, heat supply, and heat flux, respectively.

We first note that the energy balance should be modified in the case of grow-
ing bodies with time-dependent material metrics. Note that when the metric is time
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dependent, the material density mass form m(X, t) = ρ0(X, t)dV (X, t) is time de-
pendent even if ρ0 is not time dependent. For a subbody U ⊂ B, the rate of change of
mass reads

d

dt

∫

U
ρ0(X, t)dV (X, t)=

∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)]
dV. (2.17)

Note that if ρ0 is time independent, then the term 1
2ρ0 tr( ∂G

∂t
) represents the change in

mass due to growth. Here, we assume that a scalar field of mass source/sink Sm(X, t)
is given.2 This mass source will change the stress-free configuration of the body and
(B,G(X, t)) represents the time-dependent stress-free configuration of the body.

The rate of change of the material metric is a kinematical variable that contributes
to power. Therefore, the energy balance for a growing body with a time-dependent
material metric can be written as3

d

dt

∫

U
ρ0

(
E + 1

2
〈〈V,V〉〉

)
dV

=
∫

U

{
ρ0

(〈〈B,V〉〉 +R
) + ρ0

∂E

∂G
: ∂G
∂t

+ Sm

(
E + 1

2
〈〈V,V〉〉

)}
dV +

∫

∂U

(〈〈T,V〉〉 +H
)

dA. (2.18)

2.2 Covariance of Energy Balance

It turns out that in continuum mechanics (and even discrete systems) one can obtain
all the balance laws using energy balance and postulating its invariance under some
groups of transformations. This idea was introduced by Green and Rivlin (1964) in
the case of Euclidean ambient spaces and was extended to manifolds by Marsden and
Hughes (1983). See also Simo and Marsden (1984), Yavari et al. (2006), Yavari and
Ozakin (2008), Yavari (2008), Yavari and Marsden (2009a, 2009b) for applications
of covariance ideas in different continuous and discrete systems.

In order to covariantly obtain all the balance laws, we postulate that energy bal-
ance is form invariant under an arbitrary time-dependent spatial diffeomorphism

2Note that by definition

d

dt

∫

U
ρ0(X, t)dV =

∫

U
Sm(X, t)dV =

∫

U

◦
Sm (X, t)d

◦
V ,

where
◦
Sm (X, t) is mass source in the initial material manifold with volume element d

◦
V . Note also that

physically
◦
S is given.

3Note that in Lubarda and Hoger (2002) the term analogous to ∂ρ0
∂t

+ 1
2ρ0 tr( ∂G

∂t
) is denoted by rg. There,

instead of the term ρ0
∂E
∂G : ∂G

∂t
they introduce a term ρRgrg. One should note that even if mass is con-

served at a point, still a change in shape can contribute to energy balance and is captured in our formulation.
See also Epstein and Maugin (2000) and Lubarda and Hoger (2002).
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ξt : S → S , i.e.

d

dt

∫

U
ρ′

0

(
E′ + 1

2
〈〈V′,V′〉〉

)
dV

=
∫

U

{
ρ′

0

(〈〈B′,V′〉〉 +R′) + ρ′
0
∂E′

∂G′ : ∂G′

∂t

+ S′
m

(
E′ + 1

2
〈〈V′,V′〉〉

)}
dV +

∫

∂U

(〈〈T′,V′〉〉 +H ′)dA. (2.19)

Note that (Yavari et al. 2006)

R′ =R, H ′ =H, ρ′
0 = ρ0, T′ = ξt∗T, V′ = ξt∗V + W, (2.20)

where W = ∂
∂t
ξt ◦ ϕ. Note also that

G′ = G,
∂G′

∂t
= ∂G
∂t

and E′(X,N′,G,F′,g ◦ ϕ′)=E(X,N,G,F, ξ∗
t g ◦ ϕ).

(2.21)
Thus, at t = t0

d

dt
E′ = ∂E

∂N
: dN

dt
+ ∂E

∂G
: ∂G
∂t

+ ∂E

∂g ◦ ϕ : LWg ◦ ϕ. (2.22)

We also assume that body forces are transformed such that (Marsden and Hughes
1983) B′ − A′ = ξt∗(B − A). Therefore, (2.19) at t = t0 reads

∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)](
E + 1

2
〈〈V + W,V + W〉〉

)
dV

+
∫

U
ρ0

(
∂E

∂G
: ∂G
∂t

+ ∂E

∂g ◦ ϕ : LWg ◦ ϕ + 〈〈V + W,A〉〉
)

dV

=
∫

U

{
ρ0

(〈〈B,V + W〉〉 +R
) + ρ0

∂E

∂G
: ∂G
∂t

+ Sm

(
E + 1

2
〈〈V + W,V + W〉〉

)}
dV +

∫

∂U

(〈〈T,V + W〉〉 +H
)

dA. (2.23)

Subtracting (2.18) from (2.23), one obtains

∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)
− Sm

](
1

2
〈〈W,W〉〉 + 〈〈V,W〉〉

)
dV

+
∫

U
ρ0

(
∂E

∂g ◦ ϕ : LWg ◦ ϕ + 〈〈A,W〉〉
)

dV

=
∫

U
ρ0

(〈〈B,W〉〉)dV +
∫

∂U
〈〈T,W〉〉dA. (2.24)
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From this and the arbitrariness of U and W we conclude that (Yavari et al. 2006)

∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)
= Sm, (2.25)

Div P + ρ0B = ρ0A, (2.26)

2ρ0
∂E

∂g ◦ ϕ = τ , (2.27)

τT = τ , (2.28)

where P is the first Piola–Kirchhoff stress and τ = Jσ is the Kirchhoff stress. It is
seen that instead of conservation of mass we have a balance of mass and the remain-
ing balance laws are unchanged. Note, however, that divergence and acceleration
both explicitly depend on G, i.e. the time dependency of material metric affects the
governing balance equations. We will see examples in Sect. 2.9.

2.3 Local Form of Energy Balance

Let us now localize the energy balance. First note that

d

dt
E = LV E = ∂E

∂N

dN

dt
+ ∂E

∂G
: ∂G
∂t

+ ∂E

∂F
: LVF + ∂E

∂g
: LVg ◦ ϕ. (2.29)

Note that LVF = 0 because for an arbitrary Z ∈ TX B

LVF = ∂

∂t
ϕ∗ (F · Z)= ∂

∂t
ϕ∗ (ϕ∗Z)= ∂

∂t
Z = 0. (2.30)

Using this and also noting that because the background metric is time independent,
we have

d

dt
E = ∂E

∂N

dN

dt
+ ∂E

∂G
: ∂G
∂t

+ ∂E

∂g
: d, (2.31)

where d = 1
2LVg ◦ϕ is the rate of deformation tensor.4 We know that H = −〈〈Q, N̂〉〉

and (Yavari et al. 2006)
∫

∂U
〈〈T,V〉〉dA=

∫

U

(〈〈Div P,V〉〉 + τ : Ω + τ : d
)

dV, (2.32)

where Ωab = 1
2 (Va|b − Vb|a), and τ is Kirchhoff stress. Thus, from (2.18) and us-

ing the balances of linear and angular momenta we obtain the local form of energy
balance:

ρ0
dE

dt
+ Div Q = ρ0

∂E

∂G
: ∂G
∂t

+ τ : d + ρ0R. (2.33)

4This is the symmetric part of ∇v, i.e. the symmetric part of the so-called “velocity gradient”.
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In terms of the first Piola–Kirchhoff stress, this can be written as

ρ0
dE

dt
+ Div Q = ρ0

∂E

∂G
: ∂G
∂t

+ P : ∇0V + ρ0R, (2.34)

where P : ∇0V = PaAV a |A.

Material Metric Evolution The evolution of the material metric is assumed to be
given through a kinetic equation of the form5

∂G
∂t

= ϒ(X,G,F,g)= �(X,G,C). (2.35)

See Ambrosi and Mollica (2004), Loret and Simoes (2005), Fusi et al. (2006), Am-
brosi and Guana (2007) for some examples written in terms of the evolution of Fg.
We will come back to this problem after first discussing the Second Law of Thermo-
dynamics for a growing body.

2.4 The Second Law of Thermodynamics and Restrictions on Constitutive
Equations

In the absence of growth, the entropy production inequality in material coordinates
has the following form (Coleman and Noll 1963):

d

dt

∫

U
ρ0N dV ≥

∫

U

ρ0R

Θ
dV +

∫

∂U

H

Θ
dA, (2.36)

where N = N(X, t) is the material entropy density and Θ = Θ(X, t) is the absolute
temperature. This is called the Clausius–Duhem inequality.

When the material metric is time dependent, using balance of mass, the Clausius–
Duhem inequality is modified to read6

d

dt

∫

U
ρ0N dV ≥

∫

U

ρ0R

Θ
dV +

∫

∂U

H

Θ
dA+

∫

U
N

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)]
dV

+
∫

U
ρ0
∂E

∂G
: ∂G
∂t

dV. (2.37)

This inequality can be localized to read

ρ0
dN

dt
≥ ρ0R

Θ
− Div

(
Q
Θ

)
+ ρ0

∂E

∂G
: ∂G
∂t
. (2.38)

5A simple example that has been extensively studied is the Ricci flow (Hamilton 1982), which reads

∂G
∂t

= −2R,

where R is the Ricci curvature of the metric G. Note that this flow smooths out a distorted 3-sphere
(Topping 2006).
6See also Epstein and Maugin (2000).
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Note that E = Ψ + NΘ and hence7

d

dt
N = 1

Θ

(
dE

dt
− dΨ

dt

)
− Θ̇

Θ2
(E −Ψ ). (2.39)

Substituting this into (2.38) yields

ρ0

Θ

dE

dt
− ρ0

Θ

dΨ

dt
− ρ0

Θ̇

Θ2
(E −Ψ )≥ ρ0R

Θ
− Div

(
Q
Θ

)
+ ρ0

∂E

∂G
: ∂G
∂t
. (2.40)

Now substituting the local energy balance (2.34) into the above inequality we obtain

P : ∇0V − ρ0
dΨ

dt
− ρ0NΘ̇ ≥ 1

Θ
dΘ · Q. (2.41)

We know that Ψ = Ψ (X,Θ,G,F,g ◦ ϕ) and thus8

dΨ

dt
= ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: ∇0V. (2.42)

Therefore, (2.41) is simplified to read

ρ0

(
∂Ψ

∂Θ
+ N

)
Θ̇ +

(
ρ0
∂Ψ

∂F
− P

)
: ∇0V + 1

Θ
dΘ · Q + ρ0

∂Ψ

∂G
: Ġ ≤ 0. (2.43)

Following Coleman and Noll (1963) and Marsden and Hughes (1983) we conclude
that

∂Ψ

∂Θ
= −N and ρ0

∂Ψ

∂F
= P, (2.44)

and the entropy production inequality reduces to ρ0
∂Ψ
∂G : Ġ + 1

Θ
dΘ · Q ≤ 0.

Remark There have been objections in the literature on using the Clausius–Duhem
inequality in continuum mechanics (Green and Naghdi 1977; Marsden and Hughes
1983). Next, we show that in growth mechanics energy balance and a more general

7Note that Ψ = Ψ (X,Θ,G,F,g ◦ ϕ) and E =E(X,N,G,F,g ◦ ϕ).
8Nota that because Ψ is a scalar its time derivative is equal to its Lie derivative along the velocity vector
field, and thus when the material metric is time independent we have

d

dt
Ψ = LVΨ = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: LVF + ∂Ψ

∂g
: LVg = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂g
: LVg.

We also know that the same time derivative is equal to the covariant derivative of N with respect to velocity
vector, i.e.

d

dt
Ψ = ∂

∂t
Ψ + ∇VΨ = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: ∇VF + ∂Ψ

∂g
: ∇Vg

= ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: ∇ ∂

∂t
F = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: ∇0V,

where we used the fact that ∂
∂t
Ψ = 0 and ∇ ∂

∂t
F = ∇0V. See Nishikawa (2002) for a proof.
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notion of covariance are enough to obtain the restrictions (2.44) on the constitutive
equations. In passing we should mention that Green and Naghdi (1991) were able to
obtain their entropy balance using energy balance and invariance arguments in the
case of Euclidean ambient space. What we will show next is consistent with their
results.

2.5 Restrictions on Constitutive Equations Using a Thermomechanical Covariance
of Energy Balance

In this subsection, we follow Marsden and Hughes (1983) and obtain the restric-
tions (2.44) on the constitutive equations using the covariance of the energy balance
with no reference to the entropy production inequality. In the case of classical elas-
ticity, Marsden and Hughes (1983) started with the local form of energy balance and
postulated its covariance under the simultaneous action of time-dependent spatial dif-
feomorphisms and time-dependent monotonically increasing temperature rescalings.
Here we start with the integral form of the energy balance.

Let us consider spatial diffeomorphisms ξt : S → S and monotonically increasing
temperature rescalings ζt : R

+ → R
+. We assume that at t = t0, ζ = 1 and d

dt ζt = z.
We also assume that under these transformations, the energy balance is invariant, i.e.

d

dt

∫

U
ρ′

0

(
E′ + 1

2
〈〈V′,V′〉〉

)
dV

=
∫

U

{
ρ′

0

(〈〈B′,V′〉〉 +R′) + ρ′
0
∂E′

∂G
: ∂G
∂t

+ S′
m

(
E′ + 1

2
〈〈V′,V′〉〉

)}
dV

+
∫

∂U

(〈〈T′,V′〉〉 +H ′)dA. (2.45)

Note that E = Ψ +ΘN. In the new frame ϕ′ = ξ ◦ ϕ and Θ ′ = ζΘ . We assume that
E transforms tensorially, i.e.

E′(X,N′,G,F′,g′)=E(X,N,G, ξ∗F, ξ∗g). (2.46)

The same transformation is assumed for the free energy density, and hence

d

dt
Ψ ′ = d

dt
Ψ (X, ζΘ,G, ξ∗F, ξ∗g)= ∂Ψ

∂Θ ′ Θ̇
′ + ∂Ψ

∂G
: Ġ + ∂Ψ

∂ξ∗F
: ∇0V′, (2.47)

where (∇0V)aA = V a |A. Therefore, at t = t0

d

dt
Ψ ′ = ∂Ψ

∂Θ
(Θ̇ + zΘ)+ ∂Ψ

∂G
: Ġ + ∂Ψ

∂F
: (∇0V + ∇0W). (2.48)

Thus, at t = t0, we can write

d

dt
E′ = d

dt
E + ∂Ψ

∂F
: ∇0W + z

(
∂Ψ

∂Θ
+ N

)
Θ +

(
dN′

dt
Θ ′ − dN

dt
Θ

)

t=t0
. (2.49)
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Energy balance in the new frame at t = t0 is simplified to read
∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)](
E + 1

2
〈〈V,V〉〉 + 〈〈V,W〉〉 + 1

2
〈〈W,W〉〉

)
dV

+
∫

U
ρ0

[
d

dt
E + ∂Ψ

∂F
: ∇0W + z

(
∂Ψ

∂Θ
+ N

)
Θ +

(
dN′

dt
Θ ′ − dN

dt
Θ

)

t=t0

+ 〈〈V + W,A′|t=t0〉〉
]

dV

=
∫

U

[
ρ0

(〈〈B′|t=t0 ,V + W〉〉 +R′|t=t0
) + ρ0

∂E

∂G
: ∂G
∂t

+ Sm

(
E + 1

2
〈〈V,V〉〉 + 〈〈V,W〉〉 + 1

2
〈〈W,W〉〉

)]
dV

+
∫

∂U

(〈〈T,V + W〉〉 +H ′|t=t0
)

dA. (2.50)

Assuming that B′ −A′ = ξ∗(B−A) and subtracting the balance of energy (2.18) from
(2.45), we obtain

∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)
− Sm

](
〈〈V,W〉〉 + 1

2
〈〈W,W〉〉

)
dV

+
∫

U
ρ0

[
∂Ψ

∂F
: ∇0W + z

(
∂Ψ

∂Θ
+ N

)
Θ +

(
dN′

dt
Θ ′ − dN

dt
Θ

)

t=t0

+ 〈〈W,A〉〉
]

dV

=
∫

U
ρ0

[〈〈B,W〉〉 + (R′ −R)|t=t0
]

dV

+
∫

U

[〈〈Div P,W〉〉 + τ : (∇W)� − (Div Q′ − Div Q)t=t0
]

dV, (2.51)

where τ : (∇W)� = τabWa|b . Assuming that R and Q are transformed such that
(Marsden and Hughes 1983)

dN′

dt
Θ ′ −R′ = ζ

(
dN

dt
Θ −R

)
and Q′ = ζ ξ∗Q, (2.52)

we obtain
∫

U

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)
− Sm

](
〈〈V,W〉〉 + 1

2
〈〈W,W〉〉

)
dV

−
∫

U
〈〈Div P + ρ0B − ρ0A,W〉〉dV +

∫

U

[(
ρ0
∂Ψ

∂F
: ∇0W − τ : (∇W)�

)

+ zρ0

(
∂Ψ

∂Θ
+ N

)
Θ

]
dV = 0. (2.53)
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Note that

(∇0W)aA = gab
[
(∇W)�

]
bc
F cA. (2.54)

Therefore, the arbitrariness of U , W, and z implies that9

∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)
= Sm, (2.55)

Div P + ρ0B = ρ0A, (2.56)

τT = τ , (2.57)

ρ0
∂Ψ

∂F
= P, (2.58)

∂Ψ

∂Θ
= −N. (2.59)

Thus, we have proven the following proposition.

Proposition Covariance of energy balance under spatial diffeomorphisms and tem-
perature rescalings gives all the balance laws and the constitutive restrictions im-
posed by the Clausius–Duhem inequality.

2.6 Covariance of the Entropy Production Inequality

In this subsection we study the consequences of covariance of the Clausius–Duhem
inequality. Again, let us consider the diffeomorphisms ξt : S → S and monotonically
increasing temperature rescalings ζt : R

+ → R
+. Let us postulate that the entropy

production inequality is invariant under the simultaneous action of these two trans-

9In a previous footnote it was shown that

d

dt
Ψ = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂F
: ∇0V = ∂Ψ

∂Θ
Θ̇ + ∂Ψ

∂G
: ∂G
∂t

+ ∂Ψ

∂g
: LVg.

Thus

∂Ψ

∂F
: ∇0V = ∂Ψ

∂g
: LVg.

This holds for an arbitrary change of frame ξt : S → S as well, i.e. at t = t0:

∂Ψ

∂F
: ∇0(V + W)= ∂Ψ

∂g
: L(V+W)g.

Hence, for arbitrary W

∂Ψ

∂F
: ∇0W = ∂Ψ

∂g
: LWg.

Noting that (Marsden and Hughes 1983) ∂E
∂g◦ϕ = ∂Ψ

∂g◦ϕ , this means that ρ0
∂Ψ
∂F = P is equivalent to

2ρ0
∂E
∂g◦ϕ = τ , i.e. we have the Doyle–Ericksen formula.
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formations, i.e.

d

dt

∫

U
ρ′

0N′ dV ≥
∫

U

ρ′
0R

′

Θ ′ dV +
∫

∂U

H ′

Θ ′ dA+
∫

U
N′

[
∂ρ′

0

∂t
+ 1

2
ρ′

0 tr

(
∂G
∂t

)]
dV

+
∫

U
ρ′

0
∂E′

∂G
: ∂G
∂t

dV. (2.60)

Note that (2.52) implies that

dN′

dt
− R′

Θ ′ = dN

dt
−R and

H ′

Θ ′ = H

Θ
. (2.61)

It can easily be shown that the inequality (2.60) is identical to (2.37), i.e. assuming
the transformations (2.52), entropy production inequality is trivially covariant.

2.7 Principle of Maximum Entropy Production

In this subsection we use the so-called maximum entropy production principle to ob-
tain a kinetic equation for Ġ. This principle states that a non-equilibrium system with
some possible constraints evolves in such a way as to maximize its entropy produc-
tion (Ziegler 1983; Rajagopal and Srinivasa 2004a). This principle has found appli-
cations in many different fields of science. For a recent review see Martyushev and
Seleznev (2006). This principle has recently been used in growth mechanics for ob-
taining kinetic equations for the “growth velocity gradient” (Loret and Simoes 2005;
Ambrosi and Guana 2007; Fusi et al. 2006). Here, we use it in our geometric frame-
work.

For a growing body, entropy production in a subbody U ⊂ B is defined as

Γ (U , t) = d

dt

∫

U
ρ0N dV −

∫

U

ρ0R

Θ
dV −

∫

∂U

H

Θ
dA

−
∫

U
N

[
∂ρ0

∂t
+ 1

2
ρ0 tr

(
∂G
∂t

)]
dV −

∫

U
ρ0
∂E

∂G
: ∂G
∂t

dV

=
∫

U

[
ρ0

dN

dt
− ρ0

R

Θ
+ Div

(
Q
Θ

)
− ρ0

∂E

∂G
: ∂G
∂t

]
dV

=
∫

U

Λ

Θ
dV, (2.62)

whereΛ=Θ[ρ0
dN
dt −ρ0

R
Θ

+Div(Q
Θ
)−ρ0

∂E
∂G : ∂G

∂t
] is the rate of entropy production.

Using energy balance, we have

Λ= −ρ0
dΨ

dt
+ P : ∇0V − 1

Θ
dΘ · Q − Θ̇N. (2.63)

Note that

−ρ0
dΨ

dt
= Θ̇N − ρ0

∂Ψ

∂G
: ∂G
∂t

− P : ∇0V. (2.64)
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Thus, we can write

Λ= −ρ0
∂Ψ

∂G
: Ġ − 1

Θ
dΘ · Q. (2.65)

We now maximize Λ with respect to Ġ under the constraint (2.65). Let us define

Φ =Λ+ λ

(
Λ+ ρ0

∂Ψ

∂G
: Ġ + 1

Θ
dΘ · Q

)
, (2.66)

where λ is a Lagrange multiplier. Maximizing Φ with respect to Ġ gives

∂Λ

∂Ġ
= − λ

λ+ 1
ρ0
∂Ψ

∂G
. (2.67)

Note that part of the entropy production rate is constitutively given, i.e. Λ =
Λ̄(Θ,G, Ġ,F,g)− 1

Θ
dΘ · Q. As the simplest example let us assume that

Λ= β tr Ġ2 − 1

Θ
dΘ · Q = βĠABĠCDG

ACGBD − 1

Θ
dΘ · Q. (2.68)

Thus

∂Λ

∂ĠAB
= 2βGACGBDĠCD. (2.69)

Or

Ġ� = 1

2β

∂Λ

∂Ġ
= − λ

2β(λ+ 1)
ρ0
∂Ψ

∂G
. (2.70)

Using (2.70) and (2.68) we can write

Λ= λ2

4β(λ+ 1)2
ρ2

0
∂Ψ

∂G
: ∂Ψ
∂G

− 1

Θ
dΘ · Q. (2.71)

At the same time using (2.70) and (2.65) we have

Λ= λ

2β(λ+ 1)
ρ2

0
∂Ψ

∂G
: ∂Ψ
∂G

− 1

Θ
dΘ · Q. (2.72)

Looking at (2.71) and (2.72) we see that λ= −2 and hence

Ġ� = − 1

β
ρ0
∂Ψ

∂G
. (2.73)

2.8 Isotropic Growth

For isotropic growth, the material metric has the following time dependent form:

G(X, t)= e2Ω(X,t)G0(X), (2.74)
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i.e. a family of conformal material metrics model the growth. Thus

∂G(X, t)
∂t

= 2
∂Ω

∂t
G(X, t). (2.75)

Therefore, balance of mass is simplified to read

∂ρ0(X, t)
∂t

+ ρ0(X, t)
∂Ω(X, t)

∂t
e2Ω(X,t) tr G0(X)= Sm(X, t). (2.76)

Given G = G(X, t), one has the following relation between volume elements at t0
and t :

dV (X, t)=
√

det G(X, t)
det G(X, t0)

dV (X, t0). (2.77)

Or

dV (X, t)= eNΩ(X,t) dV0(X), (2.78)

where N = dim B. The mass form has the following representation:

m(X, t)= ρ0(X, t)dV (X, t)= eNΩ(X,t)m0(X). (2.79)

Note that ṁ(X, t)= N ∂Ω
∂t

m(X, t). The mass of a subbody U ⊂ B will have the fol-
lowing time-dependent form:

Mt (U)=
∫

U
m(X, t). (2.80)

Hence
d

dt
Mt (U)=

∫

U
N
∂Ω

∂t
m(X, t). (2.81)

In the decomposition of the deformation gradient one has

F = FeFg and Fg = g(X, t)I, (2.82)

where I is the identity map and g is a scalar field. We will discuss this decomposition
in more detail is Sect. 3. In the sequel we will obtain those isotropic growth distribu-
tions that are stress free. But let us first look at some simple examples of the evolution
of the material metric.

2.9 Examples of Bulk Growth

In this subsection we look at three examples of bulk growth and show how analytical
solutions for residual stresses can be generated for both isotropic and non-isotropic
growth.

Example 1 (Isotropic Growth of a Neo-Hookean Annulus) Let us consider a two-
dimensional, incompressible neo-Hookean material in a flat two-dimensional spatial
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manifold. The free energy density of a neo-Hookean material in two dimensions has
the form

Ψ = Ψ (X,C)= μ(tr C − 2), (2.83)

where C is the Cauchy–Green tensor, or equivalently, the pull-back of the spatial
metric, CAB = FaAF

b
Bgab , and μ is a material constant. In components

Ψ = μ
(
FaAF

b
BgabG

AB − 2
)
. (2.84)

The “2” is of no particular significance: when the material metric is fixed, it simply
shifts the free energy by a constant. When the material metric changes, its contribu-
tion to the free energy is proportional to the time-dependent material volume, which,
for a given growth distribution, is independent of the spatial configuration. We ignore
this term, and use Ψ = Ψ (X,C)= μ tr C as our definition of the free energy.

Let us assume that initially the material has a flat annular shape R1 ≤ R ≤ R2

without any stresses. We would like to calculate the stresses that occur in the new
equilibrium configuration after a rotationally symmetric growth, Ω = Ω(R, t). In
polar coordinates, the spatial metric and its inverse read

g =
(
grr grθ
gθr gθθ

)
=

(
1 0
0 r2

)
, g−1 =

(
grr grθ

gθr gθθ

)
=

(
1 0
0 1/r2

)
, (2.85)

and thus det g = r2. The only nonzero connection coefficients are γ rθθ = −r, γ θrθ =
γ θθr = 1/r . For the rotationally symmetric time-dependent material metric we have

G =
(
GRR GRΘ
GΘR GΘΘ

)
= e2Ω(R,t)

(
1 0
0 R2

)
,

G−1 =
(
GRR GRΘ

GΘR GΘΘ

)
= e−2Ω(R,t)

(
1 0
0 1/R2

)
,

(2.86)

and thus, det G = R2e4Ω(R,t). The following nonzero connection coefficients are
needed in the balance of linear momentum:

Γ RRR =Ω ′(R, t), Γ RΘΘ = −R −R2Ω ′(R, t),

Γ ΘRΘ = Γ ΘΘR = 1/R +Ω ′(R, t),
(2.87)

where Ω ′(R, t)= ∂Ω
∂R

. Given Ω =Ω(R, t), we are looking for solutions of the form

ϕ(R,Θ)= (r, θ)= (
r(R, t),Θ

)
. (2.88)
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Thus10

F =
(
r ′(R, t) 0

0 1

)
, F−1 =

(
1/r ′(R, t) 0

0 1

)
. (2.89)

This gives the Jacobian as

J = r r ′

Re2Ω(R,t)
. (2.90)

Incompressibility dictates that

rr ′ =Re2Ω(R,t). (2.91)

This differential equation has the following solution:

r2(R, t)= r2
1 (R, t)+

∫ R

R1

2ξe2Ω(ξ,t) dξ. (2.92)

Note that r1(R) is not known a priori and will be obtained after imposing the traction
boundary conditions at r1 and r2. In incompressible elasticity, PaA is replaced by
PaA − Jp(F−1)−Abgab , where p is an unknown scalar field (pressure) that will be
determined using the constraint J = 1 (Marsden and Hughes 1983), i.e.

PaA = 2μFaBG
AB − p(R)

(
F−1)A

bg
ab. (2.93)

Therefore, using (2.91), we obtain the nonzero-stress components

P rR = 2μR

r
− p(R)

r

R
e−2Ω(R,t) and P θΘ = 2μ

R2
e−2Ω(R,t) − p(R)

r2
, (2.94)

where p(R) is an unknown pressure.
Balance of linear momentum in components reads

PaA|A = ∂P aA

∂XA
+ Γ AABP

aB + PbAγ abcF
c
A = 0. (2.95)

For the radial direction, a = r , we have

P rA|A = ∂P rA

∂XA
+ Γ AABP

rB + PbAγ rbcF
c
A

= ∂P rR

∂R
+ (
Γ RRR + Γ ΘΘR

)
P rR + P θΘγ rθθF

θ
Θ

10If one does not consider the intrinsic metric and instead uses the standard metric of the Euclidean space,
F has the following representation:

F =
(
r ′(R, t) 0

0 r(R)
R

)
and Fg =

(
eΩ(R,t) 0

0 eΩ(R,t)

)
.

Thus, det Fe = rr ′
R

e−2Ω and hence Je = 1 is equivalent to (2.91), as expected.
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= ∂P rR

∂R
+

(
1

R
+ 2Ω ′(R, t)

)
P rR − rP θΘ = 0. (2.96)

This gives

p′(R)= 2μR

r2
e2Ω(R,t)

[
2(1 +RΩ ′)− R2

r2
e2Ω(R,t) − r2

R2
e−2Ω(R,t)

]
. (2.97)

Assuming that p(Ri)= 0, we obtain

p(R)=
∫ R

Ri

2μξ

r2(ξ)
e2Ω(ξ,t)

[
2
(
1 + ξΩ ′(ξ)

) − ξ2

r2(ξ)
e2Ω(ξ,t) − r2(ξ)

ξ2
e−2Ω(ξ,t)

]
dξ.

(2.98)
For a = θ , balance of momentum, (2.95), gives

P θA|A = ∂P θΘ

∂Θ
+ Γ AAΘP

θΘ + P θRγ θrrF
r
R + P θΘγ θθθF

θ
Θ

= (
Γ RRΘ + Γ ΘΘΘ

)
P θΘ = 0, (2.99)

i.e., this equilibrium equation is trivially satisfied. Note that tr( ∂G
∂t
)= 4Ω ′ and hence

balance of mass reads

∂ρ0(R, t)

∂t
+ 2Ω ′(R, t)ρ0(R, t)= Sm(R, t). (2.100)

This differential equation can be easily solved for mass density.
Note that if one considerers a cylinder with the kinematics assumptions r =

r(R, t), θ = Θ,z = kZ for a constant k, the residual stresses will be very similar
to what was just calculated.

Example 2 (Anisotropic Growth of a Neo-Hookean Annulus) Let us consider an
anisotropic growth represented by the following material metric:

G =
(

e2Ω(R,t) 0
0 R2e−2Ω(R,t)

)
, G−1 =

(
e−2Ω(R,t) 0

0 1/R2e2Ω(R,t)

)
,

(2.101)
and thus, det G = R2. The following nonzero connection coefficients are needed in
the balance of linear momentum:

Γ RRR =Ω ′(R, t), Γ RΘΘ =Re−4Ω(R,t)[Ω ′(R, t)− 1
]
,

Γ ΘRΘ = Γ ΘΘR = 1/R −Ω ′(R, t).
(2.102)

Given Ω = Ω(R, t), we are looking for solutions of the form ϕ(R,Θ) = (r, θ) =
(r(R, t),Θ). Thus, F and F−1 have the forms given in (2.89) and this gives the Ja-
cobian as J = r r ′

R
. Incompressibility dictates that rr ′ =R.11 This simple differential

equation has the following solution:

r(R, t)=
√
R2 +C(t)=

√
R2 −R2

1 + r2
1 . (2.103)

11In the classical formulation
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Note that r1(R, t) is not known a priori and will be obtained after imposing the trac-
tion boundary conditions at r1 and r2. Now, we get the nonzero-stress components,
thus:

P rR = 2μe−2Ω(R,t) R

r(R, t)
− p(R, t)

r(R, t)

R
and

P θΘ = 2μ
e2Ω(R,t)

R2
− p(R, t)

r2(R, t)
,

(2.104)

where p(R, t) is an unknown pressure.
Balance of linear momentum in components reads

PaA|A = ∂P aA

∂XA
+ Γ AABP

aB + PbAγ abcF
c
A = 0. (2.105)

For the radial direction, a = r , we have

P rA|A = ∂P rA

∂XA
+ Γ AABP

rB + PbAγ rbcF
c
A

= ∂P rR

∂R
+ (
Γ RRR + Γ ΘΘR

)
P rR + P θΘγ rθθF

θ
Θ

= ∂P rR

∂R
+ 1

R
P rR − rP θΘ = 0. (2.106)

This gives

p′(R, t)= 2μR

r2
e−2Ω(R,t)

[
2 − 2RΩ ′(R, t)− r2

R2
e4Ω(R,t) − R2

r2

]
. (2.107)

Assuming that p(R1, t)= 0, we obtain

p(R, t)=
∫ R

R1

2μξ

r2(ξ)
e−2Ω(ξ,t)

[
2 − 2ξΩ ′(ξ, t)− r2(ξ)

ξ2
e4Ω(ξ,t) − ξ2

r2(ξ)

]
dξ.

(2.108)
Note that r2 =R2 +C and thus

p(R, t)=
∫ R

R1

2μξ

ξ2 +C
e−2Ω(ξ,t)

[
2 − 2ξΩ ′(ξ, t)− ξ2 +C

ξ2
e4Ω(ξ,t) − ξ2

ξ2 +C

]
dξ.

(2.109)
Assuming that p(R2, t)= 0, C(t) can be calculated using the above equation.

F =
(
r ′(R, t) 0

0 r(R,t)
R

)
and Fg =

(
eΩ(R,t) 0

0 e−Ω(R,t)
)
.

Thus, Je = det Fe = 1 would lead to the same incompressibility constraint rr ′ =R.
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For a = θ , balance of momentum (2.95) gives

P θA|A = ∂P θΘ

∂Θ
+Γ AAΘP θΘ+P θRγ θrrF rR+P θΘγ θθθF θΘ = (

Γ RRΘ+Γ ΘΘΘ
)
P θΘ = 0,

(2.110)
i.e., this equilibrium equation is trivially satisfied. It is seen that a growth that results
in only a change in shape and no change in volume can still result in residual stresses.
Note that tr( ∂G

∂t
)= 0 and hence the balance of mass reads

∂ρ0(R, t)

∂t
= Sm(R, t). (2.111)

Example 3 (Spherical Growth of a Neo-Hookean Hollow Sphere) Let us consider a
hollow sphere with inner and outer radii Ri and Ro, initially in a coordinate system
(R,Θ,Φ). Let us denote the spatial coordinates by (r, θ,φ). The spatial metric has
the following form:

g =
⎛

⎝
1 0 0
0 r2 0
0 0 r2 sin2 φ

⎞

⎠ , (2.112)

with the nonzero connection coefficients γ rθθ = −r, γ rφφ = −r sin2 φ,γ θrθ = γ θθ =
1/r, γ φrφ = γ

φ
φr = 1/r . For isotropic growth of the hollow sphere we consider the

following material metric:

G = e2Ω(R,t)

⎛

⎝
1 0 0
0 R2 0
0 0 R2 sin2Φ

⎞

⎠ . (2.113)

The nonzero connection coefficients are

Γ RRR =Ω ′, Γ RΘΘ = −R−R2Ω ′, Γ RΦΦ = −(
R +R2Ω ′) sin2Φ,

Γ ΘRΘ = Γ ΘΘR = Γ ΦRΦ = Γ ΦΦR = 1

R
+Ω ′.

(2.114)

Under this symmetric change of material metric (growth) we look for solutions of the
form r = r(R, t), θ =Θ, φ =Φ . Thus12

F =
⎛

⎝
r ′(R) 0 0

0 1 0
0 0 1

⎞

⎠ , (2.115)

12In the classical formulation

F =
⎛

⎜
⎝

r ′(R, t) 0 0

0 r(R,t)
R

0

0 0 r(R,t)
R

⎞

⎟
⎠ and Fg =

⎛

⎝
eΩ(R,t) 0 0

0 eΩ(R,t) 0
0 0 eΩ(R,t)

⎞

⎠ .

Hence, Je = det Fe = 1 would lead to the same incompressibility constraint. See Chen and Hoger (2000)
for more details.
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and hence

J = r2

R2
e−3Ωr ′. (2.116)

Incompressibility gives us

r3(R)= r3
1 (R)+

∫ R

Ri

3ξ2e3Ω(ξ,t) dξ. (2.117)

The only nonzero stresses are

P rR = 2μ
R2

r2
eΩ − p

r2

R2
e−3Ω, P θΘ = 2μ

R2
e−2Ω − p

r2
,

P φΦ = 2μ

R2 sin2Φ
e−2Ω − p

r2 sin2Φ
.

(2.118)

Again, the equilibrium equations for P θΘ and PφΦ are trivially satisfied. The only
nontrivial equilibrium equation reads

P rA|A = ∂P rA

∂XA
+ Γ AABP

rB + PbAγ rbcF
c
A

= ∂P rR

∂R
+ (
Γ RRR + Γ ΘΘR + Γ ΦΦR

)
P rR + P θΘγ rθθF

θ
Θ + PφΦγ rφφF

φ
Φ

= ∂P rR

∂R
+

(
2

R
+ 3Ω ′

)
P rR − rP θΘ − r sin2ΦPφΦ = 0. (2.119)

This gives

p′(R, t)= 4μR4

r4
e4Ω(R,t)

[
2

R
+Ω ′(R, t)− R2

r3
e3Ω(R,t)−− r3

R4
e−3Ω(R,t)

]
. (2.120)

Assuming that p(R1)= 0, we obtain

p(R, t)=
∫ R

R1

4μξ4

r4(ξ)
e4Ω(ξ,t)

[
2

ξ
+Ω ′(ξ, t)− ξ2

r3(ξ)
e3Ω(ξ,t) − r3(ξ)

ξ4
e−3Ω(ξ,t)

]
dξ.

(2.121)
Note that tr( ∂G

∂t
)= 6Ω ′, and hence balance of mass reads

∂ρ0(R, t)

∂t
+ 3Ω ′(R, t)ρ0(R, t)= Sm(R, t). (2.122)

This differential equation can be easily solved for mass density.

2.10 Visualizing Material Manifolds with Evolving Metrics

In our geometric theory, we model growth in a fixed material manifold B. We can
visualize the evolution of G(t) by embedding B in some material ambient space
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X with a fixed metric H. For us this larger space would be the Euclidean space
with its standard metric. Consider a one-parameter family of isometric embeddings
ιt : B ↪→ X , i.e. ι∗t H = G(t). For the sake of simplicity, let us restrict ourselves to
rotationally symmetric metrics, i.e. we look at metrics of the form

G =
(
M2(R, t) 0

0 N2(R, t)

)
, (2.123)

in some coordinate patch (R,Θ), i.e. the metric has the form M2(R, t)dR2 +
N2(R, t)dΘ2, where t is the time. Note that M and N are independent of Θ . We
now look for solutions in the set of surfaces of revolution. Let us consider a time-
dependent curve γ (s, t) = (ρ(s, t), ξ(s, t)) in the plane. The surface obtained from
this curve by revolution about the z-axis has the following parametric representation:

Φ(s,Θ, t)= (
ρ(s, t) cosΘ,ρ(s, t) sinΘ,ξ(s, t)

)
. (2.124)

The induced Euclidean metric is (Peterson 1997):

Φ∗(dX2 + dY 2 + dZ2) = (
ρ̇2(s, t)+ ξ̇2(s, t)

)
ds2 + ρ(s, t)2 dΘ2, (2.125)

where a superimposed dot means differentiation with respect to s. Given
M(R, t)2 dR2 +N(R, t)2 dΘ2, let us assume that ρ(s, t)=N(s, t) and hence

ξ̇ (s, t)=
√
M2(s, t)− Ṅ2(s, t). (2.126)

Therefore

ξ(s, t)=
∫ s

s0

√
M2(�, t)− Ṅ2(�, t)d�. (2.127)

Of course, a solution may not exist. This happens whenM2 < Ṅ2. This is not surpris-
ing, as not every rotationally symmetric metric arises from a surface of revolution. In
the following we consider an initially stress-free annulus under different rotationally
symmetric growth distributions.

Example 1 Consider isotropic growth, i.e.

G =
(

e2Ω(R) 0
0 R2e2Ω(R)

)
, M = eΩ, N =ReΩ. (2.128)

Hence M2 − Ṅ2 = −RΩ ′e2Ω(RΩ ′ + 2). Let us look at two cases:

(i) Ω(R)= −R: We have M2 − Ṅ2 = e−2R(2R −R2), which for 0<R < 2 gives
the material manifold shown in Fig. 2(left).

(ii) Ω(R) = −R2: We have M2 − Ṅ2 = 4R2e−2R2
(1 − R2), which for 0 < R < 1

gives the material manifold shown in Fig. 2(right).
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Fig. 2 Visualization of the
material manifolds of two
isotropic growth distribution of
an annulus as embeddings in
R

3. Left: Ω(R)= −R. Right:
Ω(R)= −R2

Fig. 3 Visualization of the
material manifolds of two
anisotropic growth distribution
of an annulus as embeddings
in R

3.
Left:Ω(R)= cos2R, Π(R)= 0.
Right:Ω(R)= 0, Π(R)= − lnR2

Example 2 We look at anisotropic metric evolutions represented by

G =
(

e2Ω(R) 0
0 R2e2Π(R)

)
, M = eΩ, N =ReΠ. (2.129)

We look at two cases:

(i) Ω(R)= cos2R and Π(R)= 0: We have M2 − Ṅ2 = e2 cos2R − 1> 0. The ma-
terial manifold shown in Fig. 3(left).

(ii) Ω(R)= 0 and Π(R)= − lnR2: We have M2 − Ṅ2 = 1 − 1
R4 , which for R > 1

gives the material manifold shown in Fig. 3(right).

2.11 Stress-Free Isotropic Growth

In the context of growth mechanics, Takamizawa and Matsuda (1990) realized that
having a stress-free configuration is equivalent to vanishing of Riemann’s curvature
tensor, although they did not present any detailed calculations. In this subsection we
study this problem in detail and obtain stress-free isotropic growth distributions in
both two and three dimensions.

Let us first review some basic concepts in Riemannian geometry. For π :E → S a
vector bundle over a manifold S , E(S) the space of smooth sections of E, and X (S)
the space of vector fields on S , a connection on E is a map ∇ : X (S)× E(S)→ E(S)
such that ∀f,f1, f2 ∈ C∞(S),∀a1, a2 ∈ R

(a) ∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y, (2.130)

(b) ∇X(a1Y1 + a2Y2)= a1∇X(Y1)+ a2∇X(Y2), (2.131)

(c) ∇X(fY)= f∇XY + (Xf )Y. (2.132)

A linear connection on S is a connection on T S , i.e., ∇ : X (S)× X (S)→ X (S). In
a local chart {xi}

∇∂i ∂j = γ kij ∂k, (2.133)



J Nonlinear Sci (2010) 20: 781–830 807

where γ kij are the Christoffel symbols of the connection and ∂i = ∂
∂xi

. A linear con-
nection is said to be compatible with the metric of the manifold if

∇X〈〈Y,Z〉〉 = 〈〈∇XY,Z〉〉 + 〈〈Y,∇XZ〉〉. (2.134)

One can show that ∇ is compatible with g if and only if ∇g = 0. Torsion of a con-
nection is defined as

T (X,Y)= ∇XY − ∇YX − [X,Y], (2.135)

where

[X,Y](F )= X
(
Y(F )

) − Y
(
X(F )

) ∀F ∈ C∞(S), (2.136)

is the commutator of X and Y. ∇ is symmetric if it is torsion-free, i.e. ∇XY−∇YX =
[X,Y]. According to the Fundamental Lemma of Riemannian Geometry (Lee 1997)
on any Riemannian manifold (S,g) there is a unique linear connection ∇ , the Levi-
Civita connection, that is compatible with g and is torsion-free with the following
Christoffel symbols:

γ kij = 1

2
gkl

(
∂gjl

∂xi
+ ∂gil

∂xj
− ∂gij

∂xl

)
. (2.137)

The curvature tensor, R, of a Riemannian manifold (S,g) is a
(1

3

)
-tensor R :

T ∗
x S × Tx S × Tx S × Tx S → R defined as

R(α,w1,w2,w3)= α(∇w1∇w2w3 − ∇w2∇w1w3 − ∇[w1,w2]w3) (2.138)

for α ∈ T ∗
x S, w1,w2,w3 ∈ TxS. In a coordinate chart {xa}

Ra
bcd = ∂γ abd

∂xc
− ∂γ abc

∂xd
+ γ aceγ

e
bd − γ adeγ

e
bc. (2.139)

Note that for an arbitrary vector field w

wa |bc −wa |cb = Ra
bcdw

d + T d
cbw

a |d . (2.140)

An n-dimensional Riemannian manifold is flat if it is isometric to a Euclidean space.
A Riemannian manifold is flat if and only if its curvature tensor vanishes (Lee 1997;
Spivak 1999; Berger 2003). The Ricci curvature is defined as

Rab = Rc
acb. (2.141)

The trace of the Ricci curvature is called the scalar curvature:

R =Rabg
ab. (2.142)

In dimensions two and three, the Ricci curvature algebraically determines the en-
tire curvature tensor. In dimension three (Hamilton 1982):

Rabcd = gacRbd − gadRbc − gbcRad + gbdRac − 1

2
R(gacgbd − gadgbc). (2.143)
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In dimension two Rab = Rgab , and hence scalar curvature completely characterizes
the curvature tensor and is twice the Gauss curvature. Note that any one-dimensional
metric is flat. In the following we obtain the stress-free growth distributions in di-
mensions two and three.

(i) The two-dimensional case. Consider a two-dimensional shell restricted to live on a
flat planar surface between two rigid planes. We assume that with no external or body
forces, initially the shell is stress free. Can one find the growth distributions that will
result in equilibrium configurations with zero stress? Uniform growth will obviously
result in uniform expansion/contraction, and hence no stress. Are there other isotropic
growth distributions with this property?

The spatial distances between material points are measured by the ambient space
metric (the “spatial metric”), which is Euclidean. A given growth distribution will
result in a change in the material metric. A configuration will be stress free if there
is no “stretch” in the material, i.e., if the material distance between two points is the
same as the spatial distance. This can happen only if the two metric tensors (spatial
and material) give the same distance measurements between nearby material points,
i.e. if they are isometric. As the spatial metric is assumed to be Euclidean, this means
that the material metric, after the change due to a given growth distribution, must be
Euclidean.

Riemann defined the curvature tensor of the metric and proved that a metric is
flat, i.e., it can be brought into the Euclidean form δIJ locally by a coordinate
transformation, if and only if its curvature tensor is zero (Lee 1997; Spivak 1999;
Berger 2003). It turns out that in dimension two, a weaker requirement is sufficient
(Berger 2003): a metric is flat if and only if its scalar curvature (the Ricci scalar) is
zero. Let us now apply this condition to a two-dimensional metric that is obtained
from a non-uniform growth distribution on an initially stress-free, planar shell, i.e.,
GIJ = e2ΩδIJ . The Ricci scalar for a metric of this form is given by (Wald 1984)

R = −2 e−2Ω∇2Ω . (2.144)

Thus, R = 0 requires ∇2Ω = 0, i.e., Ω has to be a harmonic function. Note that here
∇2 is the spatial Laplacian. Growth is a slow process compared to elastic deforma-
tions and therefore time can be treated as a parameter and hence inertial effects can
be ignored. Hence, time in Ω is treated as a parameter.

It is worth emphasizing the distinction between local and global flatness, and the
implications for stress-free growth distributions. Although the surface of a right cir-
cular cylinder in three dimensions looks curved, it is locally, intrinsically flat. For any
given point on the cylinder, one can find a finite-sized region containing the point, and
a single-valued coordinate patch on this region, for which the metric has the Euclid-
ean form. Physically, this means that for any given point, we can cut some finite-sized
piece containing the point, and can lay the piece on a flat plane, without stretching it.
The surface of a sphere in three dimensions, on the other hand, is intrinsically curved;
it is impossible to make any finite-sized piece of the sphere, no matter how small, to
lie on a flat plane without stretching it. The curvature condition R = 0 (or ∇2Ω = 0)
is local. That making a full cylinder lie in a plane nicely (i.e., without tearing, fold-
ing, or stretching it) is impossible is due to the global topology of the cylinder; local
restrictions on curvature cannot constrain the global properties sufficiently.
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Fig. 4 (a) Zero-stress growth of an annulus to a cone. (b) Zero-stress growth of a simply-connected piece
of an annulus

Let us specialize to the case where Ω depends only on the radial coordinate R of
an initially flat annular piece of a material, R0 ≤R ≤R1. The flatness condition gives

∇2Ω = 1

R

∂

∂R

(
R
∂Ω(R, t)

∂R

)
= 0 . (2.145)

Solving this gives

e2Ω = ξ(t)R2η(t), (2.146)

where ξ > 0 and η are time-dependent constants. The metric rescaling (2.146), with
the proper identifications, is describing an annular piece from a conical surface, with
deficit angle ξ = 2π(1 − 1/|c|), where c= 1

1+η (Ozakin and Yavari 2010). Now, one
can show that it is not possible to make such a conical surface lie on the plane without
tearing, stretching, or folding it. Thus, starting with an annular shell between two
rigid planes, a growth distribution of the form (2.146) will indeed result in stresses,
although the related material metric is intrinsically flat (see Fig. 4a). However, if the
material consists only of a simply-connected piece of the annulus (say, R1 <R <R2,
0<Θ1 <Θ <Θ2 < 2π ), the growth distribution (2.146) will just cause a stress-free
expansion of the material, between the two rigid planes (see Fig. 4b).

A remark on conformally flat manifolds and growth mechanics. A Riemannian man-
ifold (B,G) is conformally flat if there exists a smooth map f : B → R such that
G = f δ, where δ is the Euclidean metric. In isothermal coordinates the conformally
flat Riemannian metric has the following local form:

G = f (X)
(
dX2

1 + · · · + dX2
n

)
. (2.147)

It is known that (Berger 2003) any two-dimensional Riemannian manifold is con-
formally flat and the map f is unique. A corollary of this theorem in our theory of
growth mechanics is that given any smooth curved 2D stress-free solid, there exists a
unique growth distribution such that in the new (grown) configuration, the 2D solid is
flat and still stress free. Equivalently, starting from a stress-free flat sheet, it is always
possible to deform it to any smooth curved shape by growth without imposing any
residual stresses.

(ii) The three-dimensional case. Let us next consider the three-dimensional case. In
three dimensions, a vanishing Ricci scalar is not sufficient to guarantee local flatness.
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However, a three-dimensional metric is flat if and only if its Ricci tensor vanishes

(Berger 2003). The Ricci tensor RIJ of the metric GIJ = e2Ω
◦
GIJ is given in terms

of the Ricci tensor
◦
RIJ of

◦
GIJ by the following relation (Wald 1984):

RIJ = ◦
RIJ −(n− 2)∇I∇JΩ− ◦

GIJ
◦
G
KL

∇K∇LΩ + (n− 2)∇IΩ∇JΩ

− (n− 2)
◦
GIJ

◦
G
KL

∇KΩ∇LΩ , (2.148)

where n= dim B. Now, once again, assume that the initial metric
◦
GIJ= δIJ ,

◦
RIJ= 0,

and n= 3, and replace the covariant derivatives with partial derivatives. This gives

RIJ = −∂I ∂JΩ − δIJ δ
KL∂K∂LΩ + ∂IΩ∂JΩ − δIJ δ

KL∂KΩ∂LΩ = 0. (2.149)

This gives the following system of nonlinear partial differential equations in terms
of Ω :

Ω,12 =Ω,1Ω,2, (2.150)

Ω,13 =Ω,1Ω,3, (2.151)

Ω,23 =Ω,2Ω,3, (2.152)

Ω,11 + ∇2Ω +Ω2
,2 +Ω2

,3 = 0, (2.153)

Ω,22 + ∇2Ω +Ω2
,1 +Ω2

,3 = 0, (2.154)

Ω,33 + ∇2Ω +Ω2
,1 +Ω2

,2 = 0. (2.155)

This system of nonlinear equations were solved in Ozakin and Yavari (2010). The
general solution is

Ω
(
X1,X2,X3, t

) = − ln
{
c0(t)

[(
X1)2 + (

X2)2 + (
X3)2] + c1(t)X

1 + c2(t)X
2

+ c3(t)X
3 + c4(t)

}
. (2.156)

In a special case if c1 = c2 = c3 = c4 = 0, we have

Ω
(
X1,X2,X3) = − ln

(
c0R

2), (2.157)

where R = √
(X1)2 + (X2)2 + (X3)2. In order to understand what this solution rep-

resents physically, let us write the metric in polar coordinates.

dS2 = e2Ω[
dR2 +R2(dΘ2 + sin2Θ dΦ2)] = 1

c2R4

[
dR2 +R2(dΘ2 + sin2Θ dΦ2)].

(2.158)
Now let us define

R̃ = 1

cR
. (2.159)
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In terms of R̃, the metric becomes

dS2 = dR̃2 + R̃2(dΘ2 + sin2Θ dφ2), (2.160)

which is precisely the flat Euclidean metric in three dimensions. Thus, after the
growth, the metric is still flat, but the radial coordinate in which it is manifestly so
is related to the old radial coordinate by (2.159) (up to a simple shift of origin). This
means that particles at the two radii R1 < R2 move to the new radii R̃1 > R̃2, after
growth, i.e., the material gets “inverted”. This may not be possible for a solid ball
without tearing it apart, but it is perfectly possible for a piece from such a ball.

If only c4 is nonzero, we recover the trivial uniform growth. If only c1 is nonzero
and assuming that the initial material metric is Euclidean for the half space X1 > 0,
we have

GIJ = λ(t)

(X1)2
δIJ , (2.161)

where λ = 1/(c1)
2. This shows that the material manifold is conformal to the

Poincaré half space.

2.12 Lagrangian Field Theory of Growing Bodies

In the Lagrangian formulation of nonlinear elasticity, one assumes the existence of a
Lagrangian density

L = L(X, t,G, ϕ, ϕ̇,F,g). (2.162)

The Lagrangian is defined in the reference configuration by

L=
∫

B
L

(
X, t,G(X), ϕ(X), ϕ̇(X),F(X),g

(
ϕ(X)

))
dV (X). (2.163)

In the case of a growing continuum, the material metric will be a dynamical variable
too. Thus, for growth of an elastic body we assume the existence of a Lagrangian
density L = L(X, t,G, ϕ, ϕ̇,F,g) and write the Lagrangian as

L=
∫

B
L

(
X, t,G(X, t), ϕ(X, t), ϕ̇(X, t),F(X, t),g ◦ ϕ(X, t))dV (X), (2.164)

where dV (X)= √
det G dX1 ∧ · · · ∧ dXn = √

det G dX. Having the Lagrangian, the
action is defined as

S =
∫ t1

t0

Ldt (2.165)

and Hamilton’s Principle of Least Action states that

δS = dS · (δϕ, δG)= 0. (2.166)

The problem with this formulation is that it assumes that the solid is a conserva-
tive system. This is obviously not correct here as growth is a dissipative process, in
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general. There have been recent works on the Lagrangian formulation of dissipative
systems. One idea is to use fractional derivatives and assume that the Lagrangian is
a function of some non-integer time derivatives of generalized coordinates (Riewe
1997). It is not clear how one can use this idea for a general field theory and even if
successful how useful that theory will be. Another way of considering dissipation in
Lagrangian mechanics is to use a Rayleigh dissipation function (Marsden and Ratiu
2003).

Assume that there exists a Rayleigh dissipation function R = R(ϕ̇, Ġ). For a
continuum with dissipative forces F, the Lagrange–d’Alembert Principle states that
(Marsden and Ratiu 2003)

δ

∫ t1

t0

∫

B
L dV dt +

∫ t1

t0

∫

B
F · δϕ dt = 0. (2.167)

Assuming the existence of a dissipation potential R for a growing body, the two
dissipative forces are represented as

F = −∂R
∂ϕ̇

and FG = −∂R
∂Ġ

. (2.168)

In this case, the Lagrange–d’Alembert Principle states that

δ

∫ t1

t0

∫

B
L(X, t,G, ϕ, ϕ̇,F,g ◦ ϕ)dV dt +

∫ t1

t0

∫

B
(F · δϕ + FG · δG)dV dt = 0.

(2.169)
For the sake of simplicity, let us consider the two variations separately.

Case 1: If only the deformation mapping is varied, one has

δS = dS · (δϕ,0)= 0. (2.170)

This can be simplified to read (Yavari et al. 2006)

∂L
∂ϕa

− d

dt

∂L
∂ϕ̇a

−
(
∂L
∂F aA

)

|A
− ∂L
∂F bA

F cAγ
b
ac + 2

∂L
∂gcd

gbdγ
b
ac = ∂R

∂ϕ̇a
. (2.171)

Or

Pa
A|A + ∂L

∂ϕa
+ (
FcAPb

A − Jσ cdgbd
)
γ bac = ρ0gabA

b + ∂R
∂ϕ̇a

. (2.172)

Case 2: In a material representation of classical nonlinear elasticity, the density is
not a dynamical variable but rather it is a parameter appearing in the Lagrangian.
It is through a reduction process (material to spatial) that the density ends up satis-
fying the continuity or advection equation (see Holm et al. 1998 for more details).
Here, we should note that unlike classical nonlinear elasticity, mass density varies,
in general, when the material metric changes. In other words, δρ0 and δG are related
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through the nonholonomic constraint of the mass balance. For a similar discussion of
the Lagrangian formulation of fluid mechanics in Eulerian (spatial) coordinates, see
Brethert (1970). We know that by definition of Sm

d

dt

∫

U
ρ0(X, t)dV =

∫

U
Sm(X, t)dV =

∫

U

◦
Sm (X, t)d

◦
V , (2.173)

where
◦
Sm (X, t) is mass source in the initial material manifold with volume element

d
◦
V . Note that

◦
S is the quantity that can be given physically. Now balance of mass can

be rewritten as
∫

U
ρ0(X, t)dV =

∫

U
ρ0(X, t0)dV +

∫ t

t0

∫

U

◦
Sm (X, t)d

◦
V dτ. (2.174)

For a fixed
◦
Sm, let us consider mass density and material metric variation fields

ρ0(X, t; ε) and G(X, t; ε). For an arbitrary ε the above integral mass balance reads
∫

U
ρ0(X, t; ε)dVε =

∫

U
ρ0(X, t0; ε)dVε +

∫ t

t0

∫

U

◦
Sm (X, τ)d

◦
V dτ. (2.175)

Let us take derivatives with respect to ε of both sides, evaluate them at ε = 0 and note
that all variations vanish at t = t0. This gives

∫

U

(
δρ0 + 1

2
ρ0 tr(δG)

)
dV = 0. (2.176)

As U is arbitrary, we obtain

δρ0 + 1

2
ρ0 tr(δG)= 0. (2.177)

We can write L = ρ0 L̄, where L̄ is Lagrangian density per unit mass. Hence

δ

∫ t1

t0

∫

B
L dV dt = δ

∫ t1

t0

∫

B
ρ0 L̄ dV dt

=
∫ t1

t0

∫

B

[
ρ0δL̄ + L̄

(
δρ0 + 1

2
ρ0 tr(δG)

)]
dV dt. (2.178)

Thus, using (2.177)

δ

∫ t1

t0

∫

B
L dV dt =

∫ t1

t0

∫

B
δL dV dt, (2.179)

where in δL the mass density is assumed to be fixed. Now substituting this in the
Lagrange–d’Alembert Principle and assuming that G varies while ϕ is fixed, we ob-
tain

∫ t1

t0

∫

B

(
∂L
∂G

− ∂R
∂Ġ

)
: δG dV dt = 0. (2.180)
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Therefore, the corresponding Euler–Lagrange equations are

∂L
∂G

= ∂R
∂Ġ

. (2.181)

Note that this is very similar to what we obtained using the principle of maximum
entropy production in Sect. 2.7.

Example Assuming that R(G, Ġ) is a quadratic function, i.e. R(G, Ġ)= ω tr Ġ2 =
ωĠAMĠBNG

ABGMN , we have

∂R
∂ĠAB

= 2ωĠMNG
AMGBN. (2.182)

Thus

Ġ� = 1

2ω

∂L
∂G

. (2.183)

Note that L = T − V , where

T = 1

2
ρ0〈〈V,V〉〉 and V = ρ0E + VB, (2.184)

where VB is the potential of body forces. Therefore, the evolution equation (2.183)
reads

Ġ� = − 1

2ω
ρ0
∂E

∂G
. (2.185)

Note that E = Ψ + NΘ and hence

∂E

∂G
=

(
∂Ψ

∂G
+ ∂Ψ

∂Θ

∂Θ

∂G

)
+ N

∂Θ

∂G
= ∂Ψ

∂G
. (2.186)

Thus

Ġ� = − 1

2ω
ρ0
∂Ψ

∂G
, (2.187)

which is identical to (2.73) if we choose ω= 1
2β .

3 Connection Between F = FeFg and the Geometric Theory

In the literature of growth mechanics the idea of multiplicative decomposition of the
deformation gradient into elastic and growth parts is usually attributed to Rodriguez
et al. (1994), although it can be seen in several earlier works, like Kondaurov and
Nikitin (1987), Takamizawa and Matsuda (1990), Takamizawa (1991). Takamizawa
and Matsuda (1990) and Takamizawa (1991) considered a local stress-free configu-
ration by using a multiplicative decomposition of the deformation gradient, although
this decomposition is implicit in their presentation. They realized that the local stress-
free configurations are not unique but a corresponding metric is unique and defined
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a global stress-free configuration by equipping the original reference configuration
with this metric, giving it a Riemannian structure. Here we look at this metric and its
rigorous connection with F = FeFg.

It should be mentioned that similar ideas were used in plasticity and ther-
moelasticity before the growth mechanics applications. For the less familiar appli-
cation in thermal stresses, the idea of decomposition of the deformation gradient
goes back to the works of Stojanović and his coworkers (Stojanović et al. 1964;
Stojanović 1969). See Vujošević and Lubarda (2002), Lubrada (2004) and Ozakin
and Yavari (2010) for a detailed discussion. These researchers extended Kondo’s
(1955a, 1955b, 1963, 1964) and Bilby’s et al. (1955, 1957) idea of local elastic relax-
ation in the continuum theory of distributed defects to the case of thermal stresses.13

We have posed the following question in this paper: which space, as opposed to
the Euclidean space, would be compatible with a relaxed state of the body? We claim
that the answer to this question is: a Riemannian manifold whose metric is related
to the nonuniform growth. This metric describes the relaxed state of the material
with respect to which the strains in a given configuration should be measured. In this
framework, the constitutive relations are given in terms of the material metric, the
(Euclidean) spatial metric, and the deformation gradient F.

Let us consider one of the above-mentioned imaginary relaxed pieces. Relaxation
of this piece corresponds to a linear deformation (linear, because the piece is small)
denoted by Fg. If this piece is deformed in some arbitrary way after the relaxation,
one can calculate the induced stresses by using the tangent map of this deformation
in the constitutive relations. In order to calculate the stresses induced for a given
deformation of the full body, we focus attention to one such particular piece. The de-
formation gradient of the full body at this piece F can be decomposed as F = FeFg,
where, by definition, Fe = FF−1

g . Thus, as far as this piece is concerned, the defor-
mation of the body consists of a relaxation, followed by a linear deformation given
by Fe. The stresses induced on this piece, for an arbitrary deformation of the body,
can be calculated by substituting Fe in the constitutive relations. One should note that
Fe and Fg are not necessarily compatible. However, as long as we have a prescription
for obtaining Fe and Fg directly for a given deformation map ϕ for the body and a
growth distribution, we can calculate the stresses by the following procedure. Note
also that if the material manifold is one-dimensional the decomposition of the defor-
mation mapping into elastic and growth parts is always possible. This is implicitly
assumed, for example, in Senan et al. (2008).

For isotropic growth, one has the following expression for Fg:

(Fg)
A
B = gδAB . (3.1)

Given this formula for Fg, we can calculate Fe = FF−1
g for a given deformation and

use a constitutive relation that gives the stresses in terms of Fe. At first glance these
two approaches seem very different; however, they are related, as we demonstrate
next. We should emphasize that the following discussion is not restricted to isotropic
growth; given any Fg our arguments can be repeated.

13Note that the idea of local elastic relaxation was first proposed in the work of Eckart (1948).
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The constitutive relations of the two approaches are formulated in terms of dif-
ferent quantities: G(X, t) and F on one side, and Fe = FF−1

g on the other. Let us
start with our approach, namely, assume that a constitutive relation is given in terms
of G(X, t) and F. This takes the form of a scalar free energy density function that
depends on G(X, t), F, as well as on the spatial metric tensor g, and possibly X
explicitly:

Ψ = Ψ
(
X,Θ,G(X, t),F,g ◦ ϕ)

. (3.2)

G, F, and g are tensors, expressed in terms of specific bases for the material and the
ambient spaces. A change of basis changes the components of these tensors, but Ψ
does not change, as it is a scalar. Let us consider a change of basis from the original
coordinate basis EA of the material space, with the following property:

〈〈EA,EB〉〉G =GAB , (3.3)

to an orthonormal basis Ê
Â

that satisfies

〈〈Ê
Â
, Ê

B̂
〉〉G = δ

ÂB̂
. (3.4)

A matrix F
Â
B represents the transformation between the two bases:

Ê
Â

= F
Â
B EB . (3.5)

The orthonormality condition gives

F
Â
CF

B̂
DGCD = δ

ÂB̂
. (3.6)

Any F
Â
C that satisfies this equation gives an orthonormal basis. Given such an F

Â
C ,

we can also obtain an orthonormal basis for the dual space by using its inverse. Defin-

ing FĈD as the inverse of the matrix F
Â
B , i.e., F

Â
BFÂC = δBC and F

Â
BFĈB = δĈ

Â
, we

obtain the dual orthonormal basis {ÊÂ} in terms of the original dual basis {EA}, thus:

ÊÂ = FÂBEB. (3.7)

For isotropic growth, GCD = e2Ω(X,t)δCD = g(X, t)2δCD gives14

F
Â
C = δC

Â
e−Ω(X,t) = δC

Â
g−1(X, t), (3.9)

as a solution to (3.6). Here, δB
Â

is 1 for A= B , and 0 otherwise, i.e., δ1
1̂

= δ2
2̂

= δ3
3̂

= 1,

etc. One should note that (3.6) has other solutions, as well, which we will comment

14This means that

e2Ω = g2 or eΩ = g, (3.8)

as g is always positive. If growth is anisotropic, having an expression for GCD all these arguments can be
repeated.
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on in the sequel. Now let us write the components of the total deformation gradient
F in the orthonormal basis {Ê

Â
}. The components are transformed by using F as

Fa
Â

= F
Â
BF aB . (3.10)

Using (3.9), (3.8), and (3.1), we can clearly see that the components Fa
Â

are given
precisely by those of Fe, the “elastic part” of the deformation gradient in the F = FeFg

approach:

Fa
Â

= F
Â
BF aB = δB

Â
e−Ω(X,t)F aB = (

g(X, t)
)−1

δB
Â
F aB = (

F−1
g

)
A
BFaB = (Fe)

a
A.

(3.11)
Thus, Fe is the original deformation gradient, written in terms of an orthonormal ba-
sis in the material space.15 We have also shown that there is no need for a mysterious
“intermediate configuration” as the target space of Fg; the latter simply gives an or-
thonormal frame in the material manifold, and as such can be treated as a linear map
from the tangent space of the material manifold to itself.

Although a coordinate basis {EA = ∂/∂XA} is not necessarily orthonormal, one
can always obtain an orthonormal basis by applying a pointwise change of basis F

Â
B .

Moreover, giving an orthonormal basis in this way is equivalent to giving a metric
tensor at each point; the inner product of any two vectors can be calculated by using
their components in the orthonormal basis. We have seen above that in the context of
growth mechanics, this means that a change in the material metric due to a growth
distribution can be given in terms of the “growth deformation gradient” of the local
relaxation approach. Given an orthonormal basis {Ê

Â
}, it is possible to obtain another

one, {Ê′
Â
}, by using an orthogonal transformation Λ

Â
B̂ :

Ê′
A =Λ

Â
B̂ Ê

B̂
, (3.12)

where Λ
Â
B̂ satisfies Λ

Â
ĈΛ

B̂
D̂δ

ĈD̂
= δ

ÂB̂
. Let the relation between the original co-

ordinate basis {EA} and the new orthonormal basis be given by the matrix F′
Â
B, as

follows:

Ê′
Â

= F′
Â

BEB. (3.13)

The relation between F and F′ is given by

F′
Â

B =Λ
Â
ĈF

Ĉ
B . (3.14)

Going in the opposite direction, one can see that F and F′ represent the same material
metric G, if and only if they are related through (3.14) for some orthogonal matrix

15Note that given F
Â
B , the material metric can be recovered as

GAB = FĈAFD̂BδĈD̂ .
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Λ
Â
B̂ . This means that there is an SO(3) ambiguity in the choice of F, and hence, in

that of Fg.
Using an orthonormal basis for the material manifold, we rewrite the constitutive

relation (3.2) as

Ψ = Ψ
(
X,Θ,GAB = δAB,F

a
B = (Fe)

a
B, gab

)
. (3.15)

Hence, given a constitutive relation Ψ Riem in our (Riemannian) approach, one can
obtain a constitutive relation Ψ LR in the “local relaxation” approach by simply going
to an orthonormal basis by (3.5) and (3.6), and ignoring the constant terms GAB =
δAB and gab = δab in the functional dependence.

Ψ LR(
X,Θ, (Fe)

a
B

) = Ψ Riem(
X,Θ,GAB = δAB,F

a
B = (Fe)

a
B, gab = δab

)
.

(3.16)
Going in the opposite direction is also possible; starting with a free energy function
for the F = FeFg approach, one can derive an equivalent free energy in the geometric
approach.16

Balance of Mass In the F = FeFg approach, the mass balance reads Sm = ∂ρ0
∂t

+
ρ0 tr Lg, where Lg = ḞgF−

g 1. Usually, it is assumed that growth is density preserving

(Lubarda and Hoger 2002). We show that the term tr Lg is equivalent to 1
2 trG(

∂G
∂t
),

where by trG we emphasize the G-dependence of the trace operator. Note that

tr

(
∂G
∂t

)
= ∂GAB

∂t
GAB = ∂

∂t

(
FÂAFB̂BδÂB̂

)(
F
Ĉ
AF

D̂
BδĈD̂

) = 2Ḟ
Â
AF

Â
A = 2 tr Lg.

Incompressibility In the F = FeFg approach, incompressibility is equivalent to
Je = 1. In the geometric theory, incompressibility means J = 1. These are equiva-
lent as is shown below:

1 = J =
√

det g
det G

det F = 1
√

det(FÂAFB̂B δÂB̂ )
det

(
Fa

Ĉ
FĈC

) = detFa
Ĉ

= Je.

(3.17)

Absolutely Parallelizable Manifolds and Their Connection with Growth Mechan-
ics Whenever deformation is coupled with other phenomena, e.g. plasticity,
growth/remodeling, thermal expansion/contraction, etc., all one can hope for is to
locally decouple the elastic deformations from the inelastic deformations. Many re-
lated works start from a decomposition of the deformation gradient F = FeFa, where

16A simple example can make this clearer. Let us assume that free energy density in the classical approach
is μ tr Ce . In components this reads

Ψ = μ(Ce)ÂB̂ δ
ÂB̂ = μ

(
F
Â
AFaA

)(
F
B̂
BFbB

)
δabδ

ÂB̂ = μ
(
FaAF

b
Bδab

)(
F
Â
AF

B̂
BδÂB̂

)

= μFaAF
b
BδabG

AB.

Thus, Ψ = μ trG C.
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Fe is the elastic deformation gradient and Fa is the remaining local deformation or
anelastic deformation gradient. Given an (inelastic) growth deformation gradient,
a vector in the tangent space of X ∈ B, i.e. W ∈ TX B is mapped to another vec-
tor, Ŵ = FaW. Traditionally, these vectors are assumed to lie in the tangent bundle
of an “intermediate configuration.” In the literature, the intermediate configuration
is not clearly defined and at first glance it seems to be more or less mysterious.
These vectors are closely related to parallelizable manifolds (or absolutely paral-
lelizable (AP) manifolds) (Eisenhart 1926, 1927; Youssef and Sid-Ahmed 2007;
Wanas 2008). In an n-dimensional AP-manifold M , one starts with a field of n lin-
early independent vectors {E(A)} that span the tangent space at each point. We denote
the components of E(A) by EI

(A)
. The dual vectors, i.e. the corresponding basis vec-

tors for the cotangent space are denoted by {E(A)} with components {E(A)I }. Note
that

E(A)I EI(B) = δAB and E(A)I EJ(A) = δIJ . (3.18)

One can equip M with a connection Γ IJK such that the basis vectors {E(A)} are co-
variantly constant, i.e.17

EI(A)|J = 0. (3.19)

Note that

EI(A)|JK − EI(A)|KJ = RI
LJKEL(A) + T L

KJEI(A)|L. (3.20)

Therefore, (3.19) implies that

RI
LJK = 0, (3.21)

i.e., M is flat with respect to the connection Γ IJK . Note that

EI(A)|J = ∂EI(A)
∂XJ

+ Γ IJKEK(A). (3.22)

Thus

E(A)L

∂EI(A)
∂XJ

+ Γ ILK = 0. (3.23)

Hence

Γ IJK = −E(A)J

∂EI(A)
∂XK

= E(A)I

∂E(A)J

∂XK
. (3.24)

This connection has been used by many authors, e.g. by Bilby et al. (1955) and Kondo
(1955a) for dislocations, by Epstein and Elżanowski (2007) for material inhomo-
geneities, and by Stojanović et al. (1964) for thermal stresses. This connection is
curvature free by construction, but it has a non-vanishing torsion.

17Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear
frames has a section on M .
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For a growing body, in the local charts {XA} and {UI } for the reference and inter-
mediate configurations, we have

dUI = (Fg)
I
A dXA. (3.25)

(Fg)
I
A can be identified with EI(A), and hence

Γ IJK = (Fg)
I
A

∂(F−1
g )AJ

∂XK
. (3.26)

Note that this (growth) connection is curvature free but has a non-vanishing torsion. In
plasticity it is shown that torsion of this connection has a physical meaning; it can be
identified with the dislocation density tensor. For a growing body such a quantity does
not seem to have a physical interpretation and we prefer to work with a Riemannian
material manifold, whose curvature quantifies the tendency of the growth distribution
in causing residual stresses.

In summary, our geometric approach has a concrete connection with that of
F = FeFg: in the geometric approach we use a Riemannian manifold with a time-
dependent metric as the material manifold, while F = FeFg implicitly uses the same
metric but in an absolutely parallelizable manifold that is not Riemannian. We believe
that our approach is more straightforward as we do not introduce an unnecessary tor-
sion in the material manifold but of course the Riemannian material manifold has a
non-vanishing curvature tensor, in general.

4 Linearized Theory of Growth Mechanics

The geometric linearization of elasticity was first introduced by Marsden and Hughes
(1983) and was further developed by Yavari and Ozakin (2008). See also Mazzucato
and Rachele (2006). In this section, we start with a body with a time-dependent mate-
rial manifold and its motion in an ambient space, which is assumed to be Euclidean.
Suppose a given body with a material metric G is in a static equilibrium configura-
tion, ϕ. The balance of linear momentum for this material body reads18

Div P + ρ0B = 0. (4.1)

Now suppose the body grows by a small amount represented by a small change in
the material metric δG. ϕ will no longer describe a static equilibrium configuration.
Stress in this new equilibrium configuration ϕ′ = ϕ + δϕ will be P′ = P + δP. We
are interested in calculating the change in the stress (or the configuration), for a given
small amount of growth.

The linearization procedure can be formulated rigorously if instead of thinking
about two nearby configurations and the differences between various quantities for
these configurations, we describe the situation in terms of a one-parameter family

18Growth is a “slow” process compared to elastic deformations and hence inertial effects can be ignored.
Throughout this paper, time is treated as a parameter.
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of configurations around a reference motion, and calculate the derivatives of vari-
ous quantities with respect to the parameter. Let Gε(X) be a one-parameter family
of material metrics, and let ϕε be the corresponding equilibrium configurations and
Pε the corresponding stresses. Let ε = 0 describe the reference configuration. Now,
for a fixed point X in the material manifold, ϕε(X) describes a curve in the spatial
manifold, and its derivative at ε = 0 gives a vector U(X) at ϕ(X) (Yavari and Ozakin
2008):

U(X)= dϕε(X)
dε

∣∣∣∣
ε=0
. (4.2)

Considering δϕ ≈ ε
dϕε
dε , we see that a more rigorous version of δϕ is the vector

field U. U is the geometric analog of what is called displacement field in classical
linear elasticity.

The first variation (or linearization) of the deformation gradient is defined as

L(F) := ∇ ∂
∂ε

Fε
∣∣
ε=0 = ∇ ∂

∂ε

(
∂ϕt,ε

∂X

)∣∣∣∣
ε=0

= ∇U. (4.3)

Or, in components

L(F)aA =Ua |A = ∂Ua

∂XA
+ γ abcF

b
AU

c, (4.4)

where the γ abc are the connection coefficients of the Riemannian manifold (S,g). Note
that for different values of ε, the spatial leg of Fε lies in different tangent spaces,
and this is why a covariant derivative with respect to ∂

∂ε
should be used. The right

Cauchy–Green strain tensor for the perturbed motion ϕt,ε is defined as

CAB(ε)= FaA(ε)F
b
B(ε)gab(ε). (4.5)

Note that Cε lies in the same linear space for all ε ∈ I , and the first variation of C can
be calculated as

d

dε
CAB(ε)= ∇ ∂

∂ε
F aA(ε)F

b
B(ε)gab(ε)+ FaA(ε)∇ ∂

∂ε
F bB(ε)gab(ε). (4.6)

Therefore,

L(C)AB := d

dε

∣∣∣∣
ε=0
CAB(ε)= FbB gab U

a |A + FaA gab U
b|B. (4.7)

The transpose of the deformation gradient has the following linearization (Yavari
and Ozakin 2008): L(FT) = (∇U)T. Spatial and material strain tensors are defined,
respectively, by (Marsden and Hughes 1983)

e = 1

2
(g − ϕt∗G) and E = 1

2
(ϕ∗
t g − G). (4.8)

Or, in components

eab = 1

2

(
gab −GAB

(
F−1)A

a(F
−1)B

b

)
, EAB = 1

2
(CAB −GAB). (4.9)
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We now show that linearization of E is related to ε = 1
2Lug, where u = U ◦ ϕ−1. We

know that

L(C)AB = gabF
a
AF

c
B u

b|c + gabF
b
BF

c
A u

a |c = FaAF
c
B ua |c + FbBF

c
A ub |c

= 2FaAF
b
B εab, (4.10)

where εab = 1
2 (ua |b + ub |a) is the linearized strain. Therefore

L(C)= 2ϕ∗
t ε. (4.11)

Thus

ε = ϕt∗L(E). (4.12)

In other words, the linearized strain is the push-forward of the linearized Lagrangian
strain. Obviously, if the ambient space is Euclidean and the coordinates are Carte-
sian, then the covariant derivatives reduce to partial derivatives and one recovers the
classical definition of linear strain in terms of partial derivatives, i.e.

εab = 1

2

(
∂ua

∂xb
+ ∂ub

∂xa

)
. (4.13)

Note that when the linearized strain is zero the variation field is a Killing vector field
for the spatial metric g. In other words, this shows that this definition of linearized
strain is consistent when the variation field generates an isometry of the ambient
space.

For the one-parameter family of material metrics Gε , the variation of the material
metric is defined as

δG ≈ ε
d

dε

∣∣∣∣
ε=0

Gε. (4.14)

In the case of isotropic growth

d

dε

∣∣∣∣
ε=0

Gε = d

dε
e2ΩεG0 = 2

dΩε
dε

∣∣∣∣
ε=0

G = βG, (4.15)

where β = 2δΩ . Now consider, in the absence of body forces, the equilibrium equa-
tions Div P = 0 for the family of material metrics parametrized by ε: Divε Pε = 0.
Linearization of the equilibrium equations is defined as (Yavari and Ozakin 2008)

d

dε

∣∣∣∣
ε=0
(Divε Pε)= 0. (4.16)

Once again, one should note that since the equilibrium configuration is different for
each ε, Pε is based at different points in the ambient space for different values of ε,
and in order to calculate the derivative with respect to ε, one in general needs to use
the connection (parallel transport) in the ambient space. For the case of Euclidean
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ambient space that we are considering and for a Cartesian coordinate system {xa},
(4.16) is simplified and in components reads

∂P aA(ε)

∂XA
+ Γ AAB(ε)P

aB(ε)= 0. (4.17)

Thus, the linearized balance of linear momentum can be written as

∂

∂XA

d

dε

∣∣∣∣
ε=0
PaA(ε)+

[
d

dε

∣∣∣∣
ε=0
Γ AAB(ε)

]
PaB + Γ AAB

d

dε

∣∣∣∣
ε=0
PaB(ε)= 0. (4.18)

Note that

PaA = gac
∂Ψ

∂F cA
, (4.19)

where Ψ = Ψ (X,Θ,F,G,g) is the material free energy density. In calculating
dPaA(ε)

dε , we need to consider the changes in both F and G:

dPaA(ε)

dε
= ∂P aA

∂FbB

dFbB
dε

+ ∂P aA

∂GCD

dGCD
dε

. (4.20)

Let us define

A
aA
b
B = ∂P aA

∂FbB
= gac

∂2Ψ

∂FbB∂F cA
and B

aACD = PaA

GCD
= gac

∂2Ψ

∂GCD∂F cA
,

(4.21)

where the derivatives are to be evaluated at the reference motion ε = 0. Noting that
for the case of an Euclidean ambient space (see (4.4))

dFaA
dε

∣∣∣∣
ε=0

= ∂Ua

∂XA
(4.22)

we obtain

d

dε

∣∣∣∣
ε=0
PaA(ε)= A

aA
b
BUb,B + B

aACDδGCD. (4.23)

Using

Γ ABC = 1

2
GAD

(
∂GBD

∂XC
+ ∂GCD

∂XB
− ∂GBC

∂XD

)
(4.24)

and

dGAB

dε
= −GACGBD dGCD

dε
, (4.25)

we obtain

δΓ AAB = d

dε

∣∣∣∣
ε=0
Γ AAB(ε)
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= −GCDδGCDΓ AAB + 1

2
GAD

[
∂δGBD

∂XC
+ ∂δGCD

∂XB
− ∂δGBC

∂XD

]
. (4.26)

In the case of isotropic growth, this is reduced to

d

dε

∣∣∣∣
ε=0
Γ AAB(ε)=

3

2

∂β

∂XB
. (4.27)

With these results, the linearized balance of linear momentum (4.16) becomes

(
A
aA
b
BUb,B

)
,A

+ (
B
aACDδGCD

)
,A

+ 3

2

∂β

∂XB
P aB = 0. (4.28)

Assuming that AAA and BBB are independent of X, the linearized equilibrium equations
are simplified and read

A
aA
b
B ∂2Ub

∂XA∂XB
+ B

aACDGCD
∂β

∂XA
+ 3

2

∂β

∂XB
P aB = 0. (4.29)

If the initial configuration is stress free, we have

A
aA
b
B ∂2Ub

∂XA∂XB
= −B

aACDGCD
∂β

∂XA
. (4.30)

Let us now simplify the above linearized equations for a specific class of elastic
materials.

Saint-Venant–Kirchhoff Materials Saint-Venant–Kirchhoff materials have a consti-
tutive relation that is analogous to the linear isotropic materials, namely, the second
Piola–Kirchhoff stress S is given in terms of the Lagrangian strain E = 1

2 (C − G) as
(Marsden and Hughes 1983) S = λ(tr E)G−1 + 2μE or, in components

SCD = λEABG
ABGCD + 2μECD = λ

2

(
CABG

AB − 3
)
GCD

+μ
(
CABG

ACGBD −GCD
)
, (4.31)

where λ= λ(X) and μ= μ(X) are two scalars characterizing the material properties.
We can obtain the tensor B

aCAB from S as follows:

B
aCAB = ∂

∂GAB

(
gab

∂ψ

∂FbC

)
= ∂P aC

∂GAB
= FaD

∂SCD

∂GAB
. (4.32)

Using

∂GAB

∂GMN
= −GAMGBN (4.33)

we obtain

B
aACDGCD = −2CMNF

a
B

(
λGABGMN + 2μGAMGBN

) + (3λ+ 2μ)FaBG
AB.

(4.34)
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The initial metric is Euclidean; in Cartesian coordinates,GAB = δAB . Since the ambi-
ent space is also Euclidean, we can choose a Cartesian coordinate system whose axes
coincide with the initial location of the material points along the material Cartesian
axis. This will give, FaA = δaA, where a and A both range over 1,2,3. Hence

B
aACDGCD = −3λ+ 2μ

2
δaA. (4.35)

Similarly, for an initially stress-free material manifold, we obtain

A
aA
b
B = FaMF

c
Ngbc

[
λGAMGBN +μ

(
GABGMN +GANGBM

)]
. (4.36)

For the case of an initially Euclidean material manifold with Cartesian coordinates
we have

A
aA
b
B ∂2Ub

∂XA∂XB
= (λ+μ)Ub,ab +μUa,bb. (4.37)

Therefore, (4.30) reads

(λ+μ)Ub,ab +μUa,bb = 3λ+ 2μ

2

∂β

∂xa
, (4.38)

where we have identified the indices a and A. In analogy with thermal stresses, βδab
can be thought of as an eigenstrain. See Goriely et al. (2008) for a review of the
existing linearized growth models.

Stress-Free Growth Distributions in the Linearized Theory In this paragraph we
show that in dimension three, if β is linear in {XA}, i.e. if β = a ·X for some constant
vector a, then a stress-free body remains stress free after growth. This is very similar
to what is already known in classical linear thermoelasticity: temperature distribu-
tions linear in Cartesian coordinates leave a stress-free body stress free (Boley and
Weiner 1997; Ozakin and Yavari 2010).

Let us consider a one-parameter family of material metrics Gε and assume that
the initial material metric is Euclidean, i.e. Gε=0 = δ. The corresponding curvature
tensor is Rε . We need to calculate the linearized curvature, i.e.

δR = d

dε

∣∣∣∣
ε=0

Rε. (4.39)

This will give the solution to stress-free growth distributions. Note that δG =
d
dε |ε=0Gε corresponds to a linearized growth and is stress free if and only if δR
vanishes. To calculate the curvature variation, we follow Hamilton (1982) and denote
the derivative with respect to ε by ′. Following the definition of the curvature tensor,
we can write

R′
ABCD = −1

2

(
∂2G′

BD

∂XA∂XC
− ∂2G′

BC

∂XA∂XD
− ∂2G′

AD

∂XB∂XC
+ ∂2G′

AC

∂XB∂XD

)

+ 1

2
GPQ

(
RABCPG

′
QD + RABPDG

′
QC

)
. (4.40)
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In the case of Ricci curvature

R′
AB =GCDR′

ACBD + (G′)CDRACBD =GCDR′
ACBD −GCPGDQG′

PQRACBD.

(4.41)
Similarly, for the scalar curvature we have

R′ = gABR′
AB + (G′)ABRAB =GABR′

AB −GAPGBQG′
PQRAB. (4.42)

If the initial material manifold is Euclidean, i.e. if RACBD = 0 and RAB = 0, we
have

δRABCD = −1

2

(
∂2δGBD

∂XA∂XC
− ∂2δGBC

∂XA∂XD
− ∂2δGAD

∂XB∂XC
+ ∂2δGAC

∂XB∂XD

)
, (4.43)

δRAB = −1

2

(
∂2δGCD

∂XA∂XB
− ∂2δGBC

∂XA∂XD
− ∂2δGAD

∂XB∂XC
+ ∂2δGAB

∂XC∂XD

)
δCD, (4.44)

δR = ∂2δGBC

∂XA∂XD
δABδCD − ∂2δGAB

∂XC∂XD
δABδCD. (4.45)

In the case of isotropic growth we have δGAB = βδAB . In dimension three, van-
ishing of the Ricci curvature is equivalent to vanishing of the curvature tensor. Thus,
δRAB = 0 reduces to

∂2β

∂XA∂XB
+ ∂2β

∂XC∂XD
δCDδAB = 0. (4.46)

This is equivalent to

β,12 = β,13 = β,23 = 0, (4.47)

2β,11 + β,22 + β,33 = 0, (4.48)

β,11 + 2β,22 + β,33 = 0, (4.49)

β,11 + β,22 + 2β,33 = 0. (4.50)

The three relations (4.47) imply that β = f (X1)+ g(X2)+h(X3) for arbitrary func-
tions f,g, and h. The next three relations, (4.48)–(4.50), imply that β,11 = β,22 =
β,33 = 0 and therefore f ′′(X1) = g′′(X2) = h′′(X3) = 0; and hence β is linear in
Cartesian coordinates of the initial material manifold.

In dimension two, δR = 0 reduces to

∂2β

∂XA∂XB
δAB = 0. (4.51)

This means that β has to be a harmonic function to represent a stress-free growth
distribution. Again, this is very similar to what we know from classical linear ther-
moelasticity (Boley and Weiner 1997; Ozakin and Yavari 2010).
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5 Concluding Remarks

In this paper, we presented a geometric theory of elastic solids with bulk growth.
We assumed that the material points are preserved but density and “shape” are time
dependent. We modeled a body with bulk growth by a Riemannian material manifold
with an evolving metric tensor. The time dependency of material metric is such that
the growing body is always stress free in the material manifold. We showed that
the energy balance needs to be modified when the material metric is time dependent.
Covariance of the energy balance then gives all the balance laws. We also showed that
entropy production inequality has a non-standard form when the material manifold
has an evolving metric. We showed that a more general notion of covariance of energy
balance that includes temperature rescalings, in addition to giving all the balance
laws, gives the constitutive restrictions imposed by the Clausius–Duhem inequality.
We then showed how the principle of maximum entropy production can be used to
obtain thermodynamically-consistent evolution equations for the material metric.

We showed how analytical solutions for the residual stress field can be obtained
in three examples of growing bodies with radial symmetries. We showed that even
if mass is conserved, i.e. when growth results in only shape changes, still one may
see residual stresses. In the case of isotropic growth, we studied stress-free growth
distributions using the material curvature tensor in both two and three dimensions.

A concrete connection was made between our geometric theory and the conven-
tional decomposition of the deformation gradient into elastic and growth parts. We
showed that, in a special coordinate basis, Fe is our F. The present geometric theory
is more natural and does not introduce a mysterious intermediate configuration. We
linearized the nonlinear theory about a reference motion. Assuming that both the am-
bient space and the initial material manifold are Euclidean, we showed that growth
results in eigenstrains very similar to those of classical linear thermoelasticity. We
found those growth distributions that are stress free in the linearized framework in
both dimensions two and three.
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Stojanović, R., Djurić, S., Vujošević, L.: On finite thermal deformations. Arch. Mech. Stosow. 16, 103–108
(1964)

Takamizawa, K.: Stress-free configuration of a thick-walled cylindrical model of the artery—an application
of Riemann geometry to the biomechanics of soft tissues. J. Appl. Mech. 58, 840–842 (1991)

Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the
left ventricle. J. Appl. Mech. 57, 321–329 (1990)

Topping, P.: Lectures on the Ricci Flow. Cambridge University Press, New York (2006)
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