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Abstract In this paper we analyze the stress field of a solid torus made of an incompress-
ible isotropic solid with a toroidal inclusion that is concentric with the solid torus and has
a uniform distribution of pure dilatational finite eigenstrains. We use a perturbation anal-
ysis and calculate the residual stresses to the first order in the thinness ratio (the ratio of
the radius of the generating circle and the overall radius of the solid torus). In particular,
we show that the stress field inside the inclusion is not uniform. This is in contrast with
the corresponding results for infinitely-long and finite circular cylindrical bars and spher-
ical balls with cylindrical and spherical inclusions, respectively. We also show that for a
solid torus of any size made of an incompressible linear elastic solid with an inclusion with
uniform (infinitesimal) pure dilatational eigenstrains the stress inside the inclusion is not
uniform.

Keywords Finite eigenstrains · Geometric mechanics · Nonlinear elasticity · Elastic torus ·
Inclusion

Mathematics Subject Classification (2000) 74B20 · 70G45 · 70H09 · 35Q74 · 74Fxx

1 Introduction

Eigenstrains are the anelastic part of the total strain tensor and represent referential rear-
rangements, changes, distortions, etc. When deformations (more precisely displacement gra-
dients) are large different measures of strain may be considered and an eigenstrain would
explicitly depend on the choice of a strain measure. Eigenstrains model many different phe-
nomena, e.g., plasticity [2, 14], thermal strains [25, 37], swelling [26, 27], and bulk growth
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Fig. 1 A solid torus with a
toroidal inclusion that is
concentric with it

[31, 38, 39, 42]. For a detailed discussion of finite eigenstrains see Yavari and Goriely [45]
and Golgoon et al. [6].

In a seminal paper, Eshelby [4] showed that for an ellipsoidal inclusion in an infinite
linear elastic solid, for uniform eigenstrains the stress inside the inclusion is uniform as
well. There have been many investigations in recent years on the validity of this unifor-
mity property for nonlinear elastic solids and inclusions with finite eigenstrains. There are
several results in 2D in the case of harmonic solids [9–11, 32, 33]. In 3D, recently Yavari
and Goriely [45] showed that in the case of cylindrical bars (finite or infinitely-long) and
spherical balls with cylindrical and spherical inclusions, respectively, with pure dilatational
finite eigenstrains, the stress uniformity property holds for both incompressible isotropic
solids and some special classes of compressible isotropic solids. Note that these geometries
are simply-connected. Perhaps the simplest example of a non-simply connected body is a
hollow cylinder. However, in that case one can only have an annular inclusion. Another
simple example of a non-simply connected body is a solid torus. To our best knowledge,
finite (or infinitesimal) eigenstrains in a solid torus and their induced residual stresses have
not been studied in the literature. In this paper, we investigate this problem in the case of
incompressible solids (see Fig. 1).

Kydoniefs and Spencer [17] and Kydoniefs [15] studied the finite deformation of a torus
made of a homogeneous, isotropic, incompressible elastic solid under inflation by uniform
internal pressure and under inflation and rotation with a constant angular velocity, respec-
tively. They assumed that the torus in its deformed state is generated by rotating two con-
centric circles about a line in their plane. Assuming that the radii of the generating circles
are small compared to the overall radius of the torus, they obtained approximate solutions
for the stress and deformation fields in the torus. Their work was further extended to a
solid torus inflated from a torus in its undeformed state by Hill [7]. He too assumed that
the ratio of the radius of the generating circles and the overall radius of the torus (thin-
ness ratio) is small and obtained the solutions to the first order of this small ratio. Under
the same assumption, Kydoniefs and Spencer [18] explored the finite inflation of an elas-
tic toroidal membrane due to uniform internal pressure such that it has a circular cross
section in its reference configuration. They obtained the solutions to the second order in
the thinness ratio and presented some numerical results for a toroidal membrane made of
a Mooney–Rivlin material, describing the dependence of the deformation and the gener-
ated stresses on the internal pressure. Krokhmal [13] studied the displacement boundary-
value problem of a linear elastic torus. He reduced the boundary-value problem to an in-
finite system of linear algebraic equations and developed an analytical technique for solv-
ing it.

Toroidal inclusions and inhomogeneities have been observed in the microstructures of
both natural and engineered materials [29]. Onaka et al. [24] investigated the problem of
elastic toroidal inclusions in an infinite linear elastic medium using an averaged Eshelby
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tensor. They found that the averaged Eshelby tensor of toroidal inclusions on an arbitrary
plane is nearly the same as the average of the Eshelby tensors of randomly oriented rod-
like inclusions on that plane. Onaka [22] considered an infinitely extended body having
a doughnut-like inclusion with purely dilatational eigenstrains. He observed that near the
inclusion there are two points at which all the components of the strain tensor vanish.
Note that this is not the case for spherical inclusions with purely dilatational eigenstrains
placed in an infinite linear elastic medium, for which strains become null only at infinitely
far distances from the inclusion. In another paper by Onaka [23], the strain field gener-
ated by elongated toroidal inclusions were studied and compared with that of doughnut-like
and spherical inclusions. It was observed that for an infinitely elongated tubular inclusion,
all the strain tensor components in the matrix region surrounded by the inclusion vanish.
The reinforcing effects of rigid toroidal inhomogeneities in a linear elastic medium was
studied by Argatov and Sevostianov [1]. They observed that there is no noticeable dif-
ference in the reinforcing properties of toroidal and spheroidal inhomogeneities with the
same volume and diameter. Kirilyuk [12] investigated the effects of a toroidal inhomo-
geneity on the stress concentration in an infinite isotropic medium. They considered two
cases: perfect bonding and slipping at the inhomogeneity-matrix interface. As an example,
they showed that the difference in the maximum stress could differ up to 40 % for the two
cases.

In the setting of linearized elasticity, it is known that for a single inclusion with uniform
eigenstrain in an infinite domain to have a uniform stress field the inclusion must be an
ellipsoid [8, 19]. Earlier, Rodin [30] had shown that the remarkable property of ellipsoidal
inclusions is not shared by polygonal inclusions in 2D or polyhedral inclusions in 3D. In
particular, a toroidal inclusion with uniform eigenstrain in an infinite solid would have a non-
uniform stress field. One may now consider a solid torus with an inclusion whose generating
circle is concentric with the boundary circle of the solid torus (see Fig. 1). Is the stress
field inside such an inclusion with uniform and pure dilatational eigenstrain uniform? We
solve this problem for finite dilatational eigenstrains in the case of a “thin” solid torus made
of an incompressible isotropic nonlinear elastic solid. We will show that to the first order
in the thinness ratio, stress inside the inclusion is not uniform. We then study the same
problem for a solid torus made of an incompressible linear elastic solid with a toroidal
inclusion with a uniform infinitesimally small pure dilatational eigenstrain. We show that
for any size of the solid torus (not necessarily thin) the stress inside the inclusion is not
uniform.

This paper is organized as follows. In Sect. 2 we briefly review some basic concepts of
the geometric theory of nonlinear elasticity. In Sect. 3 we formulate the governing equilib-
rium equations of a solid torus with an axially-symmetric distribution of finite eigenstrains.
In Sect. 3.1 we consider a toroidal inclusion that is concentric with the solid torus and calcu-
late the residual stress field using a perturbation analysis. We then present some numerical
examples for neo-Hookean solids. Finally, we solve the corresponding problem in linear
elasticity in Sect. 3.2. Conclusions are given in Sect. 4.

2 Elements of Geometric Anelasticity

In this section, we tersely review some fundamental elements of the geometric theory of
nonlinear elasticity and anelasticity. For more detailed discussions, see [20, 43].
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118 A. Golgoon, A. Yavari

Kinematics A body B is assumed to be identified with a Riemannian manifold (B,G),
and a configuration of B is a smooth embedding ϕ : B → S , where (S,g) is also assumed
to be a Riemannian manifold. An affine connection ∇ on a smooth manifold M is a linear
map ∇ : X (M)×X (M) → X (M), where X (M) indicates the set of all smooth vector fields
on M , that has to satisfy some specific properties (see do Carmo [3] for details). It turns
out that there is a unique torsion-free and compatible affine connection associated with any
Riemannian manifold, referred to as Riemannian connection (see, for example, [3, 28]). We
denote the Levi-Civita connection associated with the Riemannian manifold (S,g) by ∇g .
The set of all configurations of B is denoted by C. A motion is a curve c :R+ → ϕt ∈ C such
that ϕt assigns a spatial point x = ϕt (X) = ϕ(X, t) ∈ S to every material point X ∈ B at any
time t . It is assumed that the body is stress-free in its reference configuration, which may
have a nontrivial geometry, e.g., in the presence of eigenstrains. The deformation gradient F
is the derivative map of ϕ defined as

F(X, t) = dϕt (X) : TXB → Tϕt (X)S. (2.1)

The adjoint of F is defined as follows

FT(X, t) : Tϕt (X)S → TXB, g(FV,v) = G
(
V,FTv

)
, ∀V ∈ TXB, v ∈ Tϕt (X). (2.2)

The Finger deformation tensor is defined as b(x, t) = F(X, t)FT(X, t) : Txϕ(B) → Txϕ(B).
In components, bab = Fa

AF b
BGAB. Another measure of strain is the Lagrangian strain ten-

sor that is defined as E = 1
2 (ϕ∗

t g−G). The Jacobian of deformation J relates the Riemannian
volume elements of the material manifold dV (X,G) and the spatial manifold dv(ϕt (X),g)

and is written as

J =
√

det g
det G

det F, dv = J dV. (2.3)

Constitutive Equations For isotropic solids the energy function W depends only on the
principal invariants of b, denoted by I1, I2, and I3. In the case of incompressible solids,
I3 = 1, and hence, W = W(X, I1, I2). We restrict our attention to isotropic incompressible
hyperelastic solids, for which the Cauchy stress has the following representation [21, 35]

σ = (−p + 2I2WI2)g
� + 2WI1 b� − 2WI2 b−1, (2.4)

where p is the Lagrange multiplier associated with the internal incompressibility condi-
tion, and WI1 := ∂W

∂I1
, WI2 := ∂W

∂I2
. Note that b and C have the same principal invariants, and

b� = ϕ∗(G�). We assume that the body in the absence of eigenstrains is isotropic. Eigen-
strains are modeled by a material metric G that explicitly depends on the distribution of
eigenstrains [5, 45, 47]. In other words, stress-free configuration of a body with a distribu-
tion of eigenstrains may not be globally realizable in the Euclidean ambient space.

Equilibrium Equations The localized spatial balance of linear momentum of a body in
static equilibrium in the absence of body forces in terms of the Cauchy stress reads divσ = 0.
In components

(divσ )a = σab |b = ∂σ ab

∂xb
+ σacγ b

cb + σ cbγ a
cb, (2.5)

where γ a
bc denotes the Christoffel symbols of the connection ∇g in the local charts {xa}, de-

fined as ∇g
∂b

∂c = γ a
bc∂a . Moreover, the Christoffel symbols of the Levi-Civita connection
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Fig. 2 A solid torus and its
toroidal coordinates in the
undeformed configuration

can be directly expressed in terms of the components of the Riemannian metric as

γ a
bc = 1

2
gak

(
∂gkb

∂xc
+ ∂gkc

∂xb
− ∂gbc

∂xk

)
. (2.6)

In this paper we model finite eigenstrains in a nonlinear elastic solid by defining a Rie-
mannian material manifold, which has a metric that explicitly depends on the distribution of
eigenstrains. This idea has been discussed in detail in our previous works [6, 45, 47, 48].

3 An Incompressible Isotropic Solid Torus with Axially-Symmetric Finite
Eigenstrains

In this section we consider a solid torus generated by rotating a circle with radius Ro about
a line in its plane such that the distance from the origin to the center of the circle is B .
Let (R,Θ,Φ) and (r, θ,φ) be the material and spatial toroidal coordinates as illustrated
in Fig. 2. In the toroidal coordinates (R,Θ,Φ), the metric of the eigenstrain-free torus is
written as

Go =
⎛

⎝
1 0 0
0 (B + R cosΦ)2 0
0 0 R2

⎞

⎠ . (3.1)

We assume an axially-symmetric (Θ-independent) eigenstrain (pre-strain) distribution in
the torus. Following the construction suggested by Yavari and Goriely [45] to model eigen-
strains, we consider the following material metric1

G = eΩ(R,Φ)Go, (3.2)

where Ω(R,Φ) is an arbitrary function describing the inhomogeneous dilatational eigen-
strain distribution in the torus. The ambient space is endowed with the Euclidean metric,

1Similar constructions have been discussed in [25, 34, 36, 42–44, 46, 48] to address problems in growth
mechanics, thermoelasticity, and the nonlinear mechanics of distributed defects.
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which in the toroidal coordinates (r, θ,φ) has the following representation

g =
⎛

⎝
1 0 0
0 (b + r cosφ)2 0
0 0 r2

⎞

⎠ . (3.3)

Let us consider an axially-symmetric class of deformations of the following form

r = r(R,Φ), θ = Θ, φ = φ(R,Φ). (3.4)

The deformation gradient for this class of deformations reads

F =
⎛

⎝
∂r
∂R

0 ∂r
∂Φ

0 1 0
∂φ

∂R
0 ∂φ

∂Φ

⎞

⎠ . (3.5)

We assume an incompressible solid, i.e., J =
√

detg
detG detF = 1, which gives us2

r,Rφ,Φ − r,Φφ,R = Re
3
2 Ω(R,Φ)(B + R cosΦ)

r(b + r cosφ)
. (3.6)

The Finger deformation tensor reads

b� = e−Ω(R,Φ)

⎛

⎜
⎝

r,R
2 + r,Φ

2

R2 0 r,Rφ,R + r,Φφ,Φ

R2

0 1
(B+R cosΦ)2 0

r,Rφ,R + r,Φφ,Φ

R2 0 φ,R
2 + φ,Φ

2

R2

⎞

⎟
⎠ . (3.7)

The first two principal invariants of b are (I3 = 1)

I1 = I + β2, I2 = β2I + 1

β2
, (3.8)

where

I = e−Ω(R,Φ)

(
r,R

2 + r2φ,R
2 + r,Φ

2 + r2φ,Φ
2

R2

)
, β = ReΩ(R,Φ)

r(r,Rφ,Φ − r,Φφ,R)
. (3.9)

The inverse of Finger tensor b−1 = c is written as

b−1 = eΩ(R,Φ)

⎛

⎜
⎜
⎝

φ,Φ
2+R2φ,R

2

(r,Rφ,Φ−r,Φφ,R)2 0 − R2r,Rφ,R+r,Φφ,Φ

r2(r,Rφ,Φ−r,Φφ,R)2

0 (B+R cosΦ)2

(b+r cosφ)4 0

− R2r,Rφ,R+r,Φφ,Φ

r2(r,Rφ,Φ−r,Φφ,R)2 0 R2r,R
2+r,Φ

2

r4(r,Rφ,Φ−r,Φφ,R)2

⎞

⎟
⎟
⎠ . (3.10)

Following (2.4), the non-zero components of the Cauchy stress read

σ rr = −p(R,Φ) + 2
(
WI1 + β2WI2

)
(

r,R
2 + r,Φ

2

R2

)
e−Ω(R,Φ) + 2WI2

β2
, (3.11a)

2We use Mathematica [41] for the symbolic computations.
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σ rφ = 2e−Ω(R,Φ)
(
WI1 + β2WI2

)(
r,Rφ,R + r,Φφ,Φ

R2

)
, (3.11b)

σ θθ = − p(R,Φ)

(b + r cosφ)2
+ 2e−Ω(R,Φ)(WI1 + IWI2)

(B + R cosΦ)2
, (3.11c)

σφφ = −p(R,Φ)

r2
+ 2

(
WI1 + β2WI2

)
(

φ,R
2 + φ,Φ

2

R2

)
e−Ω(R,Φ) + 2WI2

β2r2
. (3.11d)

The physical components of the Cauchy stress are calculated using the relation σ̂ ab =
σab√gaagbb [40]. Thus

σ̂ rr = σ rr , σ̂ rφ = rσ rφ, σ̂ θθ = (b + r cosφ)2σ θθ , σ̂ φφ = r2σφφ. (3.12)

The non-zero components of the first Piola–Kirchhoff stress tensor, i.e., P aA = J (F−1)A
bσ

ab

are written as

P rR = e−Ω(R,Φ)

[
2r,R

(
WI1 + β2WI2

) + rβφ,Φ

R

(
2WI2

β2
− p(R,Φ)

)]
, (3.13a)

P rΦ = e−Ω(R,Φ)

R2

[
2r,Φ

(
WI1 + β2WI2

) + rRβφ,R

(
p(R,Φ) − 2WI2

β2

)]
, (3.13b)

P φR = e−Ω(R,Φ)

[
2φ,R

(
WI1 + β2WI2

) + βr,Φ

rR

(
p(R,Φ) − 2WI2

β2

)]
, (3.13c)

P θΘ = σ θθ , (3.13d)

P φΦ = e−Ω(R,Φ)

rR2

[
2rφ,Φ

(
WI1 + β2WI2

) + Rβr,R

(
2WI2

β2
− p(R,Φ)

)]
. (3.13e)

The Christoffel symbol matrices of g read (cf. (2.6))

γ r = [
γ r

ab

] =
⎛

⎝
0 0 0
0 −(b + r cosφ) cosφ 0
0 0 −r

⎞

⎠ ,

γ θ = [
γ θ

ab

] =
⎛

⎜
⎝

0 cosφ

b+r cosφ
0

cosφ

b+r cosφ
0 − r sinφ

b+r cosφ

0 − r sinφ

b+r cosφ
0

⎞

⎟
⎠ ,

γ φ = [
γ φ

ab

] =
⎛

⎝
0 0 1

r

0 ( b
r
+ cosφ) sinφ 0

1
r

0 0

⎞

⎠ .

(3.14)

In the absence of body forces, the non-trivial equilibrium equations are σ rb |b = 0 and
σφb |b = 0, which after simplification read (the equilibrium equation in the θ -direction gives
p = p(R,Φ))

∂σ rr

∂r
+ ∂σ rφ

∂φ
+

(
1

r
+ cosφ

b + r cosφ

)
σ rr − cosφ(b + r cosφ)σ θθ − r sinφ

b + r cosφ
σ rφ

− rσ φφ = 0, (3.15)
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∂σ rφ

∂r
+ ∂σφφ

∂φ
+

(
3

r
+ cosφ

b + r cosφ

)
σ rφ + sinφ

r
(b + r cosφ)σ θθ − r sinφ

b + r cosφ
σφφ = 0.

(3.16)
Note that

∂

∂r
= φ,Φ

φ,Φr,R − φ,Rr,Φ

∂

∂R
+ φ,R

φ,Rr,Φ − φ,Φr,R

∂

∂Φ
,

∂

∂φ
= r,Φ

r,Φφ,R − r,Rφ,Φ

∂

∂R
+ r,R

r,Rφ,Φ − r,Φφ,R

∂

∂Φ
.

(3.17)

Boundary Conditions As we are interested in finding the residual stress field, we assume
that the boundary of the torus is traction-free, i.e.,

P rR = 0, P φR = 0, R = Ro, −π ≤ Φ ≤ π. (3.18)

Finding an exact solution of the PDEs (3.15) and (3.16) does not seem feasible. Therefore,
we seek approximate solutions assuming that the radius of the cross section generating the
torus is small compared to the radius of revolution [7, 15–18]. Hence, we find the solution
assuming that R/B and r/b, which are of the same order, are sufficiently small so that the
second and higher powers of R/B (and r/b) can be neglected. In doing so, the problem is
essentially a perturbation of the problem of finite eigenstrains in an infinitely-long circular
cylindrical bar, which was discussed in [45] for the special case of cylindrically-symmetric
distribution of eigenstrains.

3.1 A Nonlinear Solid Torus with Finite Eigenstrains and r/b � 1 and R/B � 1

In this section, we restrict our attention to the radially-symmetric dilatational eigenstrain
distributions, for which Ω = Ω(R). Moreover, we assume that r/b and R/B are sufficiently
small and find the solutions to the first order in the thinness ratio ε = Ro/B 	 1. For the
zero-order problem (ε → 0), the torus becomes a cylinder with the cylindrically-symmetric
distribution of purely dilatational eigenstrains, for which, in the cylindrical coordinates, r =
r(R), φ = Φ , z = b

B
Z, and p = p(R). Therefore, we consider the following asymptotic

expansions3

r = r(0)(R) + r(1)(R,Φ) +O
(
ε2

)
, φ = Φ + φ(1)(R,Φ) +O

(
ε2

)
,

p = p(0)(R) + p(1)(R,Φ) +O
(
ε2

)
, σ ij = σ

ij

(0)(R) + σ
ij

(1)(R,Φ) +O
(
ε2

)
.

(3.19)

Substituting (3.19) into (3.6) and equating the zero and the first-order terms on both sides
one gets

r(0) dr(0)

dR
= BR

b
e

3
2 Ω(R), (3.20)

dr(0)

dR
φ

(1)
,Φ + r

(1)
,R = BR

br(0)
e

3
2 Ω(R)

[(
R

B
− r(0)

b

)
cosΦ − r(1)

r(0)

]
. (3.21)

Similarly

I1 = I
(0)

1 (R) + I
(1)

1 (R,Φ) +O
(
ε2

)
, I2 = I

(0)

2 (R) + I
(1)

2 (R,Φ) +O
(
ε2

)
. (3.22)

3Note that σ
rφ
(0)

= 0 and σ̂ θθ = σ̂ θθ
(0)

+ σ̂ θθ
(1)

+O(ε2).
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Denoting α = dr(0)

dR
, one has

I
(0)

1 =
[
α2 + r(0)2

R2

]
e−Ω + R2e2Ω

r(0)2
α2

, I
(0)

2 =
[

1

α2
+ R2

r(0)2

]
eΩ + r(0)2

α2

R2e2Ω
, (3.23)

I
(1)

1 = 2

[
r(0)2

R2eΩ
− R2e2Ω

r(0)2
α2

](
φ

(1)
,Φ + r(1)

r(0)

)
+ 2

[
α

eΩ
− R2e2Ω

r(0)2
α3

]
r

(1)
,R , (3.24)

I
(1)

2 = 2

[
r(0)2

α2

R2e2Ω
− R2eΩ

r(0)2

](
φ

(1)
,Φ + r(1)

r(0)

)
+ 2

[
r(0)2

α

R2e2Ω
− eΩ

α3

]
r

(1)
,R . (3.25)

Assuming that the material is piecewise homogeneous4 one can write

WI1 = W
(0)
I1

+ W
(0)
I1I1

I
(1)

1 + W
(0)
I1I2

I
(1)

2 +O
(
ε2

)
,

WI2 = W
(0)
I2

+ W
(0)
I2I2

I
(1)

2 + W
(0)
I1I2

I
(1)

1 +O
(
ε2

)
,

(3.26)

where W
(0)

I1
α1 I2

α2 := ∂α1+α2 W
∂α1 I1∂α2 I2

(I
(0)

1 , I
(0)

2 ), for (α1, α2 ∈ {0,1,2}). Expanding (3.11a)–(3.11d)
one obtains the following expressions for the non-zero Cauchy stress components

σ rr
(0) = −p(0) + 2e−Ω

[
α2W

(0)
I1

+ R2e2Ω

r(0)2 W
(0)
I2

]
+ 2r(0)2

α2

R2e2Ω
W

(0)
I2

, (3.27a)

σ rr
(1) = 4r

(1)
,R e−Ωα

[
W

(0)
I1

+ r(0)2

R2eΩ
W

(0)
I2

]
+ 2

[
r(0)2

α2

R2e2Ω
+ R2eΩ

r(0)2

]
(
W

(0)

I2
2I

(1)

2 + W
(0)
I1I2

I
(1)

1

)

+ 4

(
φ

(1)
,Φ + r(1)

r(0)

)[
r(0)2

α2

R2e2Ω
− R2eΩ

r(0)2

]
W

(0)
I2

+ 2α2e−Ω
(
W

(0)

I1
2I

(1)

1 + W
(0)
I1I2

I
(1)

2

) − p(1), (3.27b)

σ
rφ

(1) = 2e−Ω

[
W

(0)
I1

+ R2e2Ω

r(0)2
α2

W
(0)
I2

](
αφ

(1)
,R + r

(1)
,Φ

R2

)
, (3.27c)

σ̂ θθ
(0) = 2b2e−Ω

B2

[
W

(0)
I1

+ e−Ω

(
α2 + r(0)2

R2

)
W

(0)
I2

]
− p(0), (3.27d)

σ̂ θθ
(1) = 2b2e−2Ω

B2

(
α2 + r(0)2

R2

)
[
W

(0)

I2
2I

(1)

2 + W
(0)
I1I2

I
(1)

1

]

+ 4b2e−2Ω

B2

[
αr

(1)
,R + r(0)2

R2

(
φ

(1)
,Φ + r(1)

r(0)

)]
W

(0)
I2

− p(1)

− 4b2e−Ω cosΦ

B2

(
R

B
− r(0)

b

)[
W

(0)
I1

+ e−Ω

(
α2 + r(0)2

R2

)
W

(0)
I2

]

+ 2b2e−Ω

B2

[
W

(0)

I1
2I

(1)

1 + W
(0)
I1I2

I
(1)

2

]
, (3.27e)

4For the sake of simplicity of calculations, here we do not consider the dependence of W on X, which would
be needed in the case of an inhomogeneity. Instead, we model inhomogeneities by assuming different energy
functions in different regions of the body.
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σ
φφ

(0) = − p(0)

r(0)2 + 2e−Ω

R2

[
W

(0)
I1

+ R2e2Ω

r(0)2
α2

W
(0)
I2

]
+ 2α2

R2e2Ω
W

(0)
I2

, (3.27f)

σ
φφ

(1) = 2e−Ω

R2

[
W

(0)

I1
2I

(1)

1 + W
(0)
I1I2

I
(1)

2

] + 2

(
eΩ

r(0)2
α2

+ α2

R2e2Ω

)
[
W

(0)

I2
2I

(1)

2 + W
(0)
I1I2

I
(1)

1

]

− 4r(1)eΩ

r(0)3
α2

W
(0)
I2

− 1

r(0)2

[
p(1) − 2r(1)

r(0)
p(0)

]

+ 4r
(1)
,R

αe2Ω

[
α2

R2
− e3Ω

r(0)2
α2

]
W

(0)
I2

+ 4φ
(1)
,Φ

R2eΩ

[
W

(0)
I1

+ α2

eΩ
W

(0)
I2

]
. (3.27g)

Using (3.17) and (3.19), the non-trivial zero and first-order equilibrium equations are derived
by expanding (3.15) and (3.16) as follows

dσ rr
(0)

dr(0)
+ σ rr

(0)

r(0)
− r(0)σ

φφ

(0) = 0, (3.28)

σ rr
(1),R

α
− r

(1)
,R

α2

dσ rr
(0)

dR
+ σ

rφ

(1) ,Φ
+ σ rr

(1)

r(0)
− r(1)

r(0)2 σ rr
(0) + cosΦ

b

(
σ rr

(0) − σ̂ θθ
(0)

)

− r(0)σ
φφ

(1) − r(1)σ
φφ

(0) = 0, (3.29)

σ
rφ

(1) ,R

α
− r

(1)
,Φ

α

dσ
φφ

(0)

dR
+ σ

φφ

(1) ,Φ
+ 3

r(0)
σ

rφ

(1) + r(0) sinΦ

b

(
σ̂ θθ

(0)

r(0)2 − σ
φφ

(0)

)
= 0. (3.30)

Assuming that r(0) = 0, (3.20) has the following solution

r(0)(R) =
(

2B

b

∫ R

0
ζe

3
2 Ω(ζ)dζ

) 1
2

. (3.31)

It follows from (3.28) that dp(0)(R)

dR
= h(R), where

h(R) = −2ReΩ(R)

kr(0)2

[{
k2R2e

3
2 Ω(R)

r(0)2 + r(0)2

R2e
3
2 Ω(R)

− 2k

}
(
k2eΩ(R)W

(0)
I1

(R) + W
(0)
I2

(R)
)

− k3ReΩ(R)W
(0)
I1

′
(R) − kΩ ′(R)R

(
2k2eΩ(R)W

(0)
I1

(R) +
(

1 + k2r(0)2

R2

)
W

(0)
I2

(R)

)

− kR

(
1 + k2r(0)2

R2

)
W

(0)
I2

′
(R)

]
, (3.32)

and k = B/b. Note that

dW
(0)
I1

(R)

dR
= dI

(0)

1

dR
W

(0)
I1I1

+ dI
(0)

2

dR
W

(0)
I1I2

,

dW
(0)
I2

(R)

dR
= dI

(0)

2

dR
W

(0)
I2I2

+ dI
(0)

1

dR
W

(0)
I1I2

.

(3.33)
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Example: A Toroidal Inclusion with Uniform Pure Dilatational Eigenstrains in a Neo-
Hookean Solid Torus Let us consider the following distribution of eigenstrains

Ω(R) =
{

Ωo, 0 ≤ R < Ri,

0, Ri < R ≤ Ro.
(3.34)

We assume that the torus is made of an incompressible homogeneous neo-Hookean solid,
i.e., W = μ

2 (I1 − 3), where μ is the shear modulus at the ground state. Therefore, it follows
from (3.31) that

r(0)(R) = k
1
2

{
e

3Ωo
4 R, 0 ≤ R ≤ Ri,

(R2 + γoR
2
i )

1
2 , Ri ≤ R ≤ Ro,

(3.35)

where γo = e
3Ωo

2 − 1. Using (3.32), we find the zero-order pressure field as5

p(0)(R) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μci, 0 ≤ R < Ri,

μco − kμ

2

[
γo

γo+ R2

R2
i

+ ln

( R2

R2
i

γo+ R2

R2
i

)]
, Ri < R ≤ Ro,

(3.36)

where co and ci are constants to be determined after enforcing the boundary conditions
(3.18) and the continuity of the traction vector on the inclusion-matrix interface. The con-
tinuity of the traction vector on the boundary of the inclusion implies that σ rr

(0) must be
continuous at R = Ri . Therefore, co and ci are computed as

co = k + k

2
ln

( R2
o

R2
i

γo + R2
o

R2
i

)
− kγo

2(γo + R2
o

R2
i

)
,

ci = co + 3kΩo

4
− k

2

(
1 + e− 3Ωo

2
) + ke

Ωo
2 .

(3.37)

The zero-order stress components are simplified to read

σ rr
(0)

μ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ke
Ωo
2 − ci, 0 ≤ R ≤ Ri,

k + k
2 ln

( R2

R2
i

γo+ R2

R2
i

)
− kγo

2
(
γo+ R2

R2
i

) − co, Ri ≤ R ≤ Ro,
(3.38a)

σ̂ θθ
(0)

μ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−Ωo

k2 − ci, 0 ≤ R < Ri,

1
k2 − co + k

2

[
γo

γo+ R2

R2
i

+ ln

( R2

R2
i

γo+ R2

R2
i

)]
, Ri < R ≤ Ro,

(3.38b)

5Here, using (3.32), we find the zero-order pressure field in the inclusion and the matrix separately. Alterna-
tively, the discontinuous eigenstrain distribution (3.34) may be treated as a step function defined in the entire
region, and the pressure field is found from (3.32). In both cases, continuity of the traction vector on the
inclusion-matrix interface is needed to find the unknown constants.
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R2σ
φφ

(0)

μ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−Ωo(1 − ci

k
e− Ωo

2 ), 0 ≤ R < Ri,

1 −
R2

R2
i

k(γo+ R2

R2
i

)

{
co − k

2

[
γo

γo+ R2

R2
i

+ ln

( R2

R2
i

γo+ R2

R2
i

)]}
, Ri < R ≤ Ro.

(3.38c)

Substituting (3.35) into (3.21), one obtains the following relations in the inclusion and the

matrix

φ
(1)
,Φ + k− 1

2 e− 3Ωo
4 r

(1)
,R

= R

B

(
1 − k

3
2 e

3Ωo
4

)
cosΦ − r(1)

k
1
2 e

3Ωo
4 R

, 0 ≤ R ≤ Ri,

φ
(1)
,Φ + k− 1

2

(
1 + γo

R2
i

R2

) 1
2

r
(1)
,R

= R

B

(
1 − k

3
2

(
1 + γo

R2
i

R2

) 1
2
)

cosΦ − r(1)

k
1
2 R(1 + γo

R2
i

R2 )
1
2

, Ri < R ≤ Ro.

(3.39)

The expressions (3.27a)–(3.27g) for the first-order stress components are simplified to read

σ rr
(1)

μ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2k
1
2 e− Ωo

4 r
(1)
,R − p(1)

μ
, 0 ≤ R ≤ Ri,

2k
1
2 r

(1)
,R

(
1+γo

R2
i

R2

) 1
2

− p(1)

μ
, Ri < R ≤ Ro,

(3.40a)

σ
rφ

(1)

μ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e−Ωo
(
k

1
2 e

3Ωo
4 φ

(1)
,R + r

(1)
,Φ

R2

)
, 0 ≤ R ≤ Ri,

k
1
2 φ

(1)
,R

(
1+γo

R2
i

R2

) 1
2

+ r
(1)
,Φ

R2 , Ri < R ≤ Ro,
(3.40b)

σ̂ θθ
(1)

μ
=

⎧
⎨

⎩

− 2Re−Ωo cosΦ

Bk2

(
1 − k

3
2 e

3Ωo
4

) − p(1)

μ
, 0 ≤ R ≤ Ri,

− 2R cosΦ

Bk2

[
1 − k

3
2
(
1 + γo

R2
i

R2

) 1
2
] − p(1)

μ
, Ri < R ≤ Ro,

(3.40c)

R2σ
φφ

(1)

μ
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2k− 3
2 cie

− 9Ωo
4 r(1)

R
+ 2e−Ωoφ

(1)
,Φ − k−1e− 3Ωo

2
p(1)

μ
, 0 ≤ R ≤ Ri,

2φ
(1)
,Φ − p(1)

kμ

(
1+γo

R2
i

R2

)

+ 2r(1)

k
3
2 R

(
1+γo

R2
i

R2

) 3
2

(
co − k

2

[
γo

γo+ R2

R2
i

+ ln

( R2

R2
i

γo+ R2

R2
i

)])
, Ri < R ≤ Ro.

(3.40d)
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We now seek a solution of the following form (see Appendix B for a proof of this represen-
tation)6

r(1) =
{

fi(R) cosΦ, 0 ≤ R ≤ Ri,

fo(R) cosΦ, Ri ≤ R ≤ Ro,

φ(1) =
{

gi(R) sinΦ, 0 ≤ R ≤ Ri,

go(R) sinΦ, Ri ≤ R ≤ Ro,

p(1)

μ
=

{
hi(R) cosΦ, 0 ≤ R < Ri,

ho(R) cosΦ, Ri < R ≤ Ro.

(3.41)

One should also note that this solution is consistent with the symmetry of the problem
and the governing equations, i.e., (3.39) and the equations found when (3.38a)–(3.38c) and
(3.40a)–(3.40d) are substituted into (3.29) and (3.30). Substituting (3.41) into (3.39) gives

gi(R) = R

B

(
1 − k

3
2 e

3Ωo
4

) − k− 1
2 e− 3Ωo

4

(
f ′

i (R) + fi(R)

R

)
, 0 ≤ R ≤ Ri, (3.42a)

go(R) = R

B

[
1 − k

3
2

(
1 + γo

R2
i

R2

) 1
2
]

− k− 1
2

(
1 + γo

R2
i

R2

) 1
2

f ′
o(R)

− fo(R)

k
1
2 R(1 + γo

R2
i

R2 )
1
2

, Ri ≤ R ≤ Ro. (3.42b)

Substituting (3.41) into (3.29) and (3.30) one obtains

f ′′
i (R) + f ′

i (R)

R
− 3fi(R)

2R2
− e

Ωo
4 h′

i (R)

2k
1
2

+ k
1
2 e

3Ωo
4

(
g′

i (R)

2
− gi(R)

R

)

+ 1

2Bk

(
k3e

3Ωo
2 − 1

) = 0, (3.43a)

2R3
(
R2 + η

)
f ′′

o (R) + (
2R4 − η2

)
f ′

o(R) − R

(
R4

R2 + η
+ 2

(
R2 + η

))
fo(R)

− k− 1
2 R2

(
R2 + η

) 3
2 h′

o(R) + k
1
2 R4

(
R2 + η

) 1
2 g′

o(R)

− 2k
1
2 R

(
R2 + η

) 3
2 go(R) + R3

Bk

((
k3 − 1

)
R2 − η

) = 0, (3.43b)

f ′
i (R) + 3fi(R)

R
− e

Ωo
4 hi(R)

k
1
2

− k
1
2 e

3Ωo
4

(
R2g′′

i (R) + 3Rg′
i (R) − 2gi(R)

)

+ R

Bk

(
k3e

3Ωo
2 − 1

) = 0, (3.44a)

6Solutions with a similar form were discussed in [15, 17].
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2R
(
R2 + η

)
go(R) − R2

(
3R2 + η

)
g′

o(R) − R3
(
R2 + η

)
g′′

o (R) − k−1R3ho(R)

+ k− 1
2
(
R2 + η

) 3
2 f ′

o(R) + k− 1
2 R

(
3
(
R2 + η

) 1
2 − η2

(R2 + η)
3
2

)
fo(R)

+ R(R2 + η)
1
2

Bk
3
2

((
k3 − 1

)
R2 + k3η

) = 0, (3.44b)

where η = R2
i γo. Using (3.42a), (3.42b), (3.43a), (3.43b), and (3.44a), (3.44b), one finds the

following third-order linear ODEs for f ′
i (R) and f ′

o(R)

f
(4)
i (R) + 6f ′′′

i (R)

R
+ 3

(
f ′′

i (R)

R2
− f ′

i (R)

R3

)
= 0, 0 ≤ R ≤ Ri, (3.45a)

(
R2 + η

)2 f (4)
o (R)

R
+ 2

(
R2 + η

)(
3R2 − η

)f ′′′
o (R)

R2
+ (

3R4 + 2η2
)f ′′

o (R)

R3
− 3f ′

o(R)

= k
1
2 η2

BR2(R2 + η)
1
2

− k2η2(R2 + 2η)

BR3(R2 + η)
, Ri ≤ R ≤ Ro. (3.45b)

It then follows that (3.45a) has the following solution

fi(R) = ci1R
2 + ci2

R2
+ ci3 lnR + ci4 . (3.46)

Enforcing fi(0) = 0 implies that ci2 = ci3 = ci4 = 0. fi(R) is now substituted into (3.42a) to
obtain gi(R), from which hi(R) is calculated using (3.44a) as

gi(R) = R

B

(
1 − k

3
2 e

3Ωo
4

) − 3ci1k
− 1

2 e− 3Ωo
4 R, (3.47)

hi(R) = 8ci1k
1
2 e− Ωo

4 R + R

B

(
2k

5
2 e

5Ωo
4 − ke

Ωo
2 − k− 1

2 e− Ωo
4

)
. (3.48)

After some simplifications, the boundary conditions (3.18) give one the following relations

fo(Ro) = k
1
2 (R2

o + η)
3
2

Ro

g′
o(Ro), (3.49)

f ′
o(Ro) = (R2

o + η)
1
2

2k
1
2 Ro

ho(Ro). (3.50)

The continuity of the displacement field at the inclusion-matrix interface implies that

fi(Ri) = fo(Ri), gi(Ri) = go(Ri). (3.51)

The traction vector is defined as t =	 σ ,n �g, which in components reads ta(x,n) =
σacgbcn

b . The unit normal vector to the inclusion-matrix interface to the first order in ε

reads n = r̂ + n
φ

(1)φ̂, where

n
φ

(1) = fi(Ri) sinΦ

k
1
2 e

3Ωo
4 Ri

. (3.52)

The continuity of the first-order terms of the traction vector on the inclusion-matrix bound-
ary implies that σ̂ rr

(1) and σ̂
rφ

(1) + n
φ

(1)σ̂
φφ

(0) must be continuous at R = Ri,−π ≤ Φ ≤ π . These
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conditions yield

ho(Ri) − hi(Ri) = 2k
1
2 e− 3Ωo

4
(
f ′

o(Ri) − e
Ωo
2 f ′

i (Ri)
)
, (3.53)

k
1
2 R2

i e
9Ωo

4
(
e

Ωo
2 g′

i (Ri) − g′
o(Ri)

) = fi(Ri)
(
e2Ωo − 1

)
. (3.54)

We first find the homogeneous solution of (3.45b) using the power series expansion of f ′
o(R)

centered at R = 0, under the assumption that f ′
o(R) can be analytically extended to the

interval [0,Ro]. Note that depending on whether η is positive or negative, or equivalently,
Ωo is positive or negative, (3.45b) has different solutions. We have the following solutions
for the homogeneous part of the differential equation, denoted by f

p

o,hom and f n
o,hom for the

positive and negative pure dilatational eigenstrain Ωo, respectively, in the interval [Ri,Ro]
as follows7

f
p

o,hom(R) = cp
o1

R

(R2 + η)
1
2

+ cp
o2

{
R

(
R2 + η

) 1
2 + η sinh−1 R

η
1
2

}

+ cp
o3

{
R2 − ηR

(R2 + η)
1
2

sinh−1 R

η
1
2

}
+ cp

o4
, (3.55)

f n
o,hom(R) = cn

o1

R

(R2 + η)
1
2

+ cn
o2

{
R

(
R2 + η

) 1
2 + η cosh−1 R

(−η)
1
2

}

+ cn
o3

{
R2 − ηR

(R2 + η)
1
2

cosh−1 R

(−η)
1
2

}
+ cn

o4
. (3.56)

We now use the method of variation of parameters to find the particular solution of (3.45b),
which is denoted by f

p
o,par and f n

o,par for the positive and negative values of Ωo, respectively.
After some calculations, the general solution of the differential equation for the positive and
negative values of the pure dilatational eigenstrain are obtained as8

f p
o (R) = cp

o1

R

(R2 + η)
1
2

+ cp
o2

{
R

(
R2 + η

) 1
2 + η sinh−1 R

η
1
2

}

+ cp
o3

{
R2 − ηR

(R2 + η)
1
2

sinh−1 R

η
1
2

}
+ cp

o4
+ k

1
2

16B

{
2η2J

p

1 (R)

− 2k
3
2 η3RJp

2 (R)

(R2 + η)
1
2

−
η sinh−1 R

η
1
2

(R2 + η)
1
2

[
k

3
2 η

R
+ (

k
3
2 R + (

R2 + η
) 1

2
)

ln
R2

R2 + η

]

− 2R
(
R2 + η

) 1
2 − 8k

3
2 R2 − Rη

(R2 + η)
1
2

ln
η

R4
+ (

k
3
2 R − (

R2 + η
) 1

2
)
R ln

R2

R2 + η

+ 2k
3
2 η ln

η

R2 + η
− 2η ln

(
R + (

R2 + η
) 1

2
)
}

= f
p

o,hom(R) + f p
o,par(R), (3.57)

7Note that one can easily verify that (3.55) and (3.56) are indeed the homogeneous solutions of (3.45b) for
R ∈ [Ri,Ro], and therefore, using the power series method is justified.

8The dilogarithm function is defined as: Li2(z) =
∞∑

n=1

zn

n2 = −∫ z
0 ln(1 − ζ )

dζ
ζ for |z| < 1.
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f n
o (R) = cn

o1

R

(R2 + η)
1
2

+ cn
o2

{
R

(
R2 + η

) 1
2 + η cosh−1 R

(−η)
1
2

}

+ cn
o3

{
R2 − ηR

(R2 + η)
1
2

cosh−1 R

(−η)
1
2

}

+ k
1
2

16B

{
2η2J n

1 (R) − 2k
3
2 η3RJn

2(R)

(R2 + η)
1
2

−
η cosh−1 R

(−η)
1
2

(R2 + η)
1
2

[
k

3
2 η

R

+ (
k

3
2 R + (

R2 + η
) 1

2
)

ln
R2

R2 + η

]
− 2R

(
R2 + η

) 1
2

− 8k
3
2 R2 − Rη

(R2 + η)
1
2

ln
−η

R4
+ (

k
3
2 R − (

R2 + η
) 1

2
)
R ln

R2

R2 + η

+ 2k
3
2 η ln

−η

R2 + η
− 2η ln

(
R + (

R2 + η
) 1

2
)} + cn

o4

= f n
o,hom(R) + f n

o,par(R), (3.58)

where

J
p

1 (R) =
∫ sinh−1 ζ

η
1
2

ζ(ζ 2 + η)
dζ

= 1

2η

[
Li2

(−u(R)
) − Li2

(
u(R)

) + ln

(
R2

R2 + η

)
sinh−1 R

η
1
2

]
, (3.59)

J
p

2 (R) =
∫ sinh−1 ζ

η
1
2

ζ 3(ζ 2 + η)
dζ

= − 1

2η2

[
(R2 + η)

1
2

R
+

(
η

R2
+ ln

R2

R2 + η

)
sinh−1 R

η
1
2

+ Li2

(−u(R)
) − Li2

(
u(R)

)]
, (3.60)

J n
1 (R) =

∫ cosh−1 ζ

(−η)
1
2

ζ(ζ 2 + η)
dζ

= 1

2η

[
Li2

(−u(R)
) − Li2

(
u(R)

) + ln

(
R2

R2 + η

)
cosh−1 R

(−η)
1
2

]
, (3.61)

J n
2 (R) =

∫ cosh−1 ζ

(−η)
1
2

ζ 3(ζ 2 + η)
dζ

= − 1

2η2

[
(R2 + η)

1
2

R
+

(
η

R2
+ ln

R2

R2 + η

)
cosh−1 R

(−η)
1
2

+ Li2

(−u(R)
) − Li2

(
u(R)

)
]
, (3.62)
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and u(R) = η

(R+(R2+η)
1
2 )2

.9 The function go(R) may now be calculated for the positive and

negative values of the eigenstrain by substituting (3.57) and (3.58) for fo, respectively, into
(3.42b). We can then find ho(R) by substituting for fo and go into (3.44b) (see Appendix A
for details). Using (3.40a)–(3.40d) and (3.41), along with the expressions (3.46), (3.47), and
(3.48), the first-order physical components of the Cauchy stress are written as

σ̂ rr
(1)

μ
=

⎧
⎪⎪⎨

⎪⎪⎩

− e
− Ωo

4

Bk
1
2

(4Bkci1 − k
3
2 e

3Ωo
4 + 2k3e

3Ωo
2 − 1)R cosΦ, 0 ≤ R ≤ Ri,

[
2k

1
2 Rf ′

o(R)

(R2+η)
1
2

− ho(R)

]
cosΦ, Ri ≤ R ≤ Ro,

(3.63a)

σ̂
rφ

(1)

μ
=

⎧
⎪⎪⎨

⎪⎪⎩

− k
1
2 e

− Ωo
4

B
(4Bci1 + k2e

3Ωo
2 − k

1
2 e

3Ωo
4 )R sinΦ, 0 ≤ R < Ri,

k
1
2

[
k

1
2 Rg′

o(R) − (R2+η)
1
2 fo(R)

R2

]
sinΦ, Ri < R ≤ Ro,

(3.63b)

σ̂ θθ
(1)

μ
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− e−Ωo

Bk2 (8Bk
5
2 ci1e

3Ωo
4 + 2k

9
2 e

9Ωo
4 − 3k

3
2 e

3Ωo
4

− k3e
3Ωo

2 + 2)R cosΦ, 0 ≤ R < Ri,

−
[

2R

Bk2

(
1 − k

3
2

(
1 + η

R2

) 1
2
)

+ ho(R)

]
cosΦ, Ri < R ≤ Ro,

(3.63c)

σ̂
φφ

(1)

μ
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− e
− Ωo

4

Bk
1
2

(
12Bkci1 − 3k

3
2 e

3Ωo
4 + 4k3e

3Ωo
2 − 1

)
R cosΦ, 0 ≤ R < Ri,

1
R2

(
2k

1
2 (R2 + η)

1
2 fo(R) + 2k(R2 + η)go(R)

− R2ho(R)
)

cosΦ, Ri < R ≤ Ro.

(3.63d)

Remark 3.1 Note that when Ri = Ro, i.e., when the entire solid torus has a uniform pure
dilatational eigenstrain, no residual stresses are generated. In this case, we recover the exact

solution, for which r/R = b/B = e
Ωo
2 . Note that this is indeed the exact solution, as it is

stress-free, and thus, the equilibrium equations are trivially satisfied. Also, it satisfies the
incompressibility condition (3.6).

Remark 3.2 One can simply check that in the first-order approximation with respect to the
thinness ratio the deformed shapes of the outer boundaries of the inclusion and the matrix
remain circular with radii equal to those of their corresponding zero-order approximations,
but they become eccentric with eccentricity E = fo(Ro) − fi(Ri). Note that the inclusion
and the matrix outer boundary points rotate with respect to one another after deformation
such that their relative rotation is �(Φ) = (go(Ro) − gi(Ri)) sinΦ for any pair of points
located at an angle Φ in the initial configuration on the outer boundaries of the inclusion
and the matrix.

9Note that |u(R)| < 1 for R ∈ [Ri,Ro], and therefore, Li2(±u(R)) is well-defined.
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Fig. 3 The radial part of the first-order normalized components of the Cauchy stress tensor for Ro
B

= 0.1,

Ωo = 0.5, and different values of Ri
Ro

Next, we proceed to numerically calculate the values of the constants k, ci1 , co1 , co2 , co3 ,
and co4 using the expressions (3.49), (3.50), (3.51), (3.53), and (3.54) for a neo-Hookean
solid torus with a given negative or positive pure dilatational eigenstrain.10

Numerical Results We now consider some numerical examples and examine the first-
order residual stress field (3.63a)–(3.63d) for inclusions with different values of pure di-
latational eigenstrains and various torus geometries. Figures 3 and 4 show the variation of
the radial part of the first-order stress components for a torus with Ro/B = 0.1, containing
inclusions with several values of Ri/Ro, and Ωo = ±0.5. Notice that all the first-order stress
components vary linearly with the material radial coordinate in the inclusion. As expected
all the stress components undergo a jump at the inclusion-matrix boundary except the ra-
dial stress component, which is continuous at the interface. For the positive eigenstrain case
(Fig. 3), the maximum shear stress in the inclusion and matrix is first increasing, then de-
creasing as Ri/Ro increases from zero (a torus without eigenstrain) such that the maximum

10Note that the system of equations for the unknown constants is nonlinear in k and linear with respect to the
other constants.
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Fig. 4 The radial part of the first-order normalized components of the Cauchy stress tensor for Ro
B

= 0.1,

Ωo = −0.5, and different values of Ri
Ro

shear stress for a torus with Ri/Ro = 0.4 is greater than that of a torus with Ri/Ro = 0.2
and Ri/Ro = 0.6 in both the inclusion and the matrix. For the case of negative eigenstrain,
the maximum shear stress in the torus increases with the increase in Ri/Ro ratio from 0
to 0.8. After that, however, as Ri/Ro increases the maximum shear stress decreases until
it becomes zero when Ri/Ro = 1 (Fig. 4). Note that Ri/Ro = 1 corresponds to the entire
torus having a uniform pure dilatational eigenstrain distribution, which is stress-free as was
discussed earlier in Remark 3.1.

The contour plots of the first-order residual stress components for a torus with Ro/B =
0.1 are depicted in Figs. 5, 6, 7. A torus with an inclusion with a negative pure dilatational
eigenstrain and Ri/Ro = 0.4 is shown in Fig. 5. One observes that the shear stress con-
centrates across the inclusion-matrix interface with its maximum attained at the top and the
bottom. For the selected parameters, the first-order circumferential stress component σ̂

φφ

(1) /μ

is negligible in the inclusion, and hence, the circumferential stress component remains uni-
form to the first order in the inclusion. This is also true for the positive eigenstrain cases
Ωo = 0.5 and Ωo = 0.7 with Ri/Ro = 0.4 and 0.2, respectively (Figs. 6, 7).

Figure 8a illustrates the dependence of b/B on the pure dilatational eigenstrain value Ωo

for different values of Ri/Ro (Note that B and b represent the distance of the center of the
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Fig. 5 The first-order physical components of the Cauchy stress in a torus having an inclusion with Ri
Ro

= 0.4,
Ro
B

= 0.1, and constant pure dilatational eigenstrain distribution Ωo = −0.5. The ratio of the deformed major

radius to the initial major radius of the torus is b
B

= 0.98676

inclusion from the origin in the initial and the deformed configurations, respectively (see
Fig. 2).) For positive eigenstrain values, b/B monotonically increases as Ωo increases, and
as expected, the higher the Ri/Ro ratio, the more rapid the increase. For negative eigen-
strains, nevertheless, b/B reaches a minimum, which decreases as Ri/Ro increases, and is
attained at lower eigenstrain values. As was mentioned earlier for both negative and positive

eigenstrains, as Ri/Ro approaches 1, the b/B curve gets closer to e
Ωo
2 (see Remark 3.1).

The variation of the eccentricity ratio E/Ro, where E = fo(Ro) − fi(Ri), with respect to
Ωo is shown in Fig. 8b for several values of Ri/Ro. As Ωo increases from 0, the eccentricity
decreases until it reaches its minimum, which increases as Ri/Ro increases, and is attained
at lower values of Ωo.11 For Ωo < 0, the eccentricity ratio is first increasing, then decreasing
as Ωo decreases starting from zero. The maximum eccentricity corresponds to the lower val-
ues of eigenstrains as Ri/Ro increases. Moreover, the maximum eccentricity first increases
as Ri/Ro increases, then it decreases. For instance, the maximum eccentricity for a torus
with Ri/Ro = 0.7 is greater than that of a torus with Ri/Ro = 0.5 and Ri/Ro = 0.9 when

11Note that positive and negative eccentricity values correspond to the inclusion moving to the left and right
relative to the matrix, respectively.
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Fig. 6 The first-order physical components of the Cauchy stress in a torus having an inclusion with Ri
Ro

= 0.4,
Ro
B

= 0.1, and constant pure dilatational eigenstrain distribution Ωo = 0.5. The ratio of the deformed major

radius to the initial major radius of the torus is b
B

= 1.0828

Ωo < 0. As Ri/Ro approaches 1, the eccentricity ratio tends to zero for any value of the
eigenstrain Ωo.

3.2 A Linear Elastic Solid Torus with Small Eigenstrains

In this section we derive the governing equations of a solid torus made of an incompressible
linear elastic material that has a distribution of small eigenstrains. In geometric elasticity,

in order to linearize one starts with a reference motion
◦
ϕ and a one-parameter family of

motions ϕε such that ϕε=0 = ◦
ϕ [20, 49]. Let us consider a one-parameter family of motions

ϕε such that ϕε(R,Θ,Φ) = (rε(R,Φ),Θ,φε(R,Φ)). We will linearize about the stress-

free configuration
◦
ϕ (R,Θ,Φ) = (R,Θ,Φ), i.e., rε=0(R,Φ) = R and φε=0(R,Φ) = Φ .

The variation field is defined as

δϕ(R,Θ,Φ) = d

dε

∣
∣∣
∣
ε=0

ϕε(R,Θ,Φ) = (
u(R,Φ),0,w(R,Φ)

)
, (3.64)

where u and w are the non-zero displacement components.
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Fig. 7 The first-order physical components of the Cauchy stress in a torus having an inclusion with Ri
Ro

= 0.2,
Ro
B

= 0.1, and constant pure dilatational eigenstrain distribution Ωo = 0.7. The ratio of the deformed major

radius to the initial major radius of the torus is b
B

= 1.0445

Linearization of the Incompressibility Constraint For any motion in the given one-
parameter family we have

Jε = rε(bε + rε cosφε)

e
3
2 Ωε(R,Φ)R(B + R cosΦ)

(
∂rε

∂R

∂φε

∂Φ
− ∂rε

∂Φ

∂φε

∂R

)
= 1. (3.65)

Taking derivative with respect to ε of both sides and evaluating at ε = 0, one obtains

u + R[δb + u cosΦ − wR sinΦ]
B + R cosΦ

+ R(u,R + w,Φ) = 3

2
RδΩ. (3.66)

Similarly, from (3.9), one obtains the variation of I and β as

δI = −2δβ = 2

(
−δΩ + u

R
+ u,R + w,Φ

)
. (3.67)

Therefore, it follows from (3.67) that δI1 = δI2 = 0. To simplify the calculations, we assume
that the material is piecewise homogeneous and use (3.11a)–(3.11d) and (3.67) to find the
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Fig. 8 Variations of b
B

and the eccentricity ratio E
Ro

as functions of Ωo for a torus with Ro
B

= 0.1 and

different values of Ri
Ro

, shown in (a) and (b), respectively

linearized components of the Cauchy stress tensor as

δσ rr = −δp + 2(WI1 + WI2)(2u,R − δΩ), (3.68a)

δσ rφ = 2(WI1 + WI2)

(
w,R + u,Φ

R2

)
, (3.68b)

δσ θθ = − δp

(B + R cosΦ)2
+ 4(WI1 + 2WI2)

(B + R cosΦ)3
[δb + u cosΦ − wR sinΦ]

+ 2

(B + R cosΦ)2

[
2WI2

(
u

R
+ u,R + w,Φ

)
− δΩ(WI1 + 4WI2)

]
, (3.68c)

δσφφ = − δp

R2
+ 4(WI1 + WI2)

R2

(
u

R
+ w,Φ − δΩ

2

)
. (3.68d)

Linearization of the Equilibrium Equations Using (3.17), linearizing the equilibrium
equations (3.15) and (3.16) one obtains

δσ rr
,R + δσ

rφ

,Φ +
(

1

R
+ cosΦ

B + R cosΦ

)
δσ rr − cosΦ(B + R cosΦ)δσ θθ

− R sinΦ

B + R cosΦ
δσ rφ − Rδσφφ = 0, (3.69)

δσ
rφ

,R + δσ
φφ

,Φ +
(

3

R
+ cosΦ

B + R cosΦ

)
δσ rφ + sinΦ

R
(B + R cosΦ)δσ θθ

− R sinΦ

B + R cosΦ
δσφφ = 0. (3.70)
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Substituting the linearized stress components given by (3.68a)–(3.68d) into the above equa-
tions one finds

δp,R + 4(WI1 + WI2)

R

[
u

R
− u,R − Ru,RR − u,ΦΦ

2R
− Rw,RΦ

2
+ w,Φ + RδΩ,R

2

]

+ cosΦ

B + R cosΦ

[
−4WI1u,R + 4WI2

(
u

R
+ w,Φ

)
− 6WI2δΩ

]

+ 2R(WI1 + WI2) sinΦ

B + R cosΦ

(
u,Φ

R2
+ w,R

)

+ 4(WI1 + 2WI2) cosΦ

(B + R cosΦ)2
(δb + u cosΦ − Rw sinΦ) = 0, (3.71)

Rδp,Φ

2
+ R sinΦ

B + R cosΦ

[
2WI1(u + Rw,Φ) + RWI2(3δΩ − 2u,R)

]

+ 2R2 sinΦ(WI1 + 2WI2)

(B + R cosΦ)2
[Rw sinΦ − u cosΦ − δb]

− (WI1 + WI2)(3B + 4R cosΦ)

B + R cosΦ

[
u,Φ + R2w,R

]

− R(WI1 + WI2)
[
u,RΦ + R2w,RR + 2w,ΦΦ − δΩ,Φ

] = 0. (3.72)

Linearization of the Boundary Conditions Similarly, boundary conditions (3.18) are
linearized and are written as

2(WI1 + WI2)(2u,R − δΩ) − δp = 0, R = Ro, −π ≤ Φ ≤ π, (3.73a)

w,R + u,Φ

R2
= 0, R = Ro, −π ≤ Φ ≤ π. (3.73b)

Example: A Toroidal Inclusion with Uniform Pure Dilatational Eigenstrains in an In-
compressible Linear Elastic Solid Torus Let us consider the following distribution of
eigenstrains in the torus

δΩ(R) =
{

δΩo, 0 ≤ R < Ri,

0, Ri < R ≤ Ro.
(3.74)

Pressure and displacement fields in the torus are written as

u(R,Φ) =
{

ui(R,Φ), 0 ≤ R < Ri,

uo(R,Φ), Ri < R ≤ Ro,

w(R,Φ) =
{

wi(R,Φ), 0 ≤ R < Ri,

wo(R,Φ), Ri < R ≤ Ro,

δp(R,Φ) =
{

δpi(R,Φ), 0 ≤ R < Ri,

δpo(R,Φ), Ri < R ≤ Ro.

(3.75)

Therefore, from (3.66) it follows that

ui + R[δb + ui cosΦ − wiR sinΦ]
B + R cosΦ

+ R(ui ,R + wi,Φ) = 3

2
RδΩo, (3.76a)
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uo(B + R cosΦ) + R[δb + uo cosΦ − woR sinΦ]
+ R(B + R cosΦ)(uo,R + wo,Φ) = 0. (3.76b)

From the continuity of the displacement field at the inclusion-matrix interface, we know that

ui(Ri,Φ) = uo(Ri,Φ), wi(Ri,Φ) = wo(Ri,Φ). (3.77)

Also, we eliminate the rigid body motion by setting ui(0,Φ) = 0 and w(R,0) = 0.
We next show that for a torus made of an isotropic incompressible linear elastic solid with

a toroidal inclusion having a non-zero uniform pure dilatational eigenstrain distribution, the
stress field inside the inclusion cannot be uniform. Let us assume that the stress field inside
the inclusion is uniform, i.e., each physical Cauchy stress component is constant. Thus

δσ rr = c1, Rδσ rφ = c2, (B + R cosΦ)2δσ θθ = c3, R2δσφφ = c4, (3.78)

where c1 to c4 are some constants. After some simplifications, it follows from (3.69) that

c1 − c4

R
+ 1

B + R cosΦ
(c1 cosΦ − c3 cosΦ − c2 sinΦ) = 0, (3.79)

which implies that c1 = c3 = c4 = C and c2 = 0. Therefore (note that the equilibrium equa-
tion (3.70) has already been satisfied)

δσ rr = (B + R cosΦ)2δσ θθ = R2δσφφ = C, 0 ≤ R < Ri, (3.80)

δσ rφ = 0, 0 ≤ R < Ri. (3.81)

From (3.68a)–(3.68d) and δσ rr − R2δσφφ = 0, one obtains

u

R
+ w,Φ = u,R. (3.82)

Using the above relation in δσ rr − (B + R cosΦ)2δσ θθ = 0, one finds

δb + u cosΦ − Rw sinΦ = (B + R cosΦ)
2u,R(WI1 − WI2) + 3WI2δΩo

2(WI1 + 2WI2)
. (3.83)

Similarly, (3.81) implies that

w,R + u,Φ

R2
= 0. (3.84)

We then use (3.83) and the incompressibility condition (3.76a), along with u(0,Φ) = 0 to
conclude that

u(R,Φ) = δΩo

2
R. (3.85)

Substituting the above relation into (3.82) and (3.84), one concludes that w = 0. Now going
back to (3.83) one finally finds that

δb = δΩo

2
B. (3.86)

This is a contradiction because δb has to depend on the radius of the inclusion Ri . In other
words, the above relation is telling us that the change in the overall radius of the solid torus
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after deformation is independent of the size of the inclusion. In particular, when Ri → 0 we
expect δb → 0, which is not what (3.86) predicts. This contradiction shows that the stress
field inside the inclusion cannot be uniform.

4 Conclusions

In this paper, we studied the residual stress and deformation fields of a solid torus containing
a toroidal inclusion with finite eigenstrains that is concentric with the solid torus. We used a
perturbation analysis and obtained the stress and displacement fields to the first order in the
thinness ratio. We showed that the stress field in the toroidal inclusion is nonuniform, un-
like cylindrical and spherical inclusions in infinitely-long and finite circular cylindrical bars
and spherical balls, respectively, in which the stress field inside the inclusion is uniform.
We presented some numerical results for a neo-Hookean solid torus having an inclusion
with a uniform pure dilatational eigenstrain distribution. In particular, we observed that all
the first-order stress components in the inclusion have a linear dependence on the referen-
tial radial coordinate. Moreover, the maximum shear stress in the torus is first increasing,
then decreasing as the relative size of the inclusion increases from zero. We observed shear
stress concentration regions across the inclusion-matrix interface for a torus with a negative
pure dilatational eigenstrain distribution. Interestingly, the torus exhibits different responses
for positive and negative eigenstrain values. It was observed that for the positive eigen-
strains, b/B monotonically increases as the eigenstrain Ωo increases, and the increase is
more rapid for inclusions with larger relative sizes. For negative eigenstrains, nonetheless,
b/B reaches a minimum, the value of which decreases as the relative size of the inclusion
becomes larger. We noticed that in the first-order approximation with respect to the thinness
ratio the deformed shapes of the outer boundaries of the matrix and the inclusion are ec-
centric circles with radii equal to those of their corresponding zero-order approximations.
Finally, we proved that the stress field inside a toroidal inclusion with nonzero uniform pure
dilatational (infinitesimal) eigenstrains in an isotropic incompressible linear elastic solid
torus is always nonuniform for any size of the solid torus.
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Appendix A: Analytical Expressions for the Functions go(R) and ho(R)

gp
o (R) = − 1

k
1
2 R(R2 + η)

1
2

[
cp
o1

(
R2 + η

) 1
2 + cp

o2

((
R2 + η

) 1
2
(
3R2 + 2η

) + Rη sinh−1 R

η
1
2

)

+ Rcp
o4

+ cp
o3

(
R

(
3R2 + η

) − η
(
R2 + η

) 1
2 sinh−1 R

η
1
2

)]

+ 1

16BR3(R2 + η)
1
2

[
k

3
2 R

(
8R4 + 2R2η + η2

) + 2R2
(
R2 + η

) 1
2
(
11R2 + η

)

+ η2k
3
2
(
R2 + η

) 1
2 sinh−1 R

η
1
2

− k
3
2 ηR3 ln

(
R2η

)

+ R2η
(
R + k

3
2
(
R2 + η

) 1
2
)

sinh−1 R

η
1
2

ln
R2

R2 + η
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Appendix B: Proof of the Separability of the First-Order Deformation
and Pressure Fields in the Form Given in (3.41)

Let us represent r(1), φ(1), and p(1)/μ by appropriate Fourier series expansions, given that
they are even, odd, and even 2π -periodic functions,12 respectively, as

r(1) = r
(1)

0 (R)

2
+

∞∑

n=1

r(1)
n (R) cos(nΦ),

φ(1) =
∞∑

n=1

φ(1)
n (R) sin(nΦ),

p(1)

μ
= p

(1)

0 (R)

2μ
+

∞∑

n=1

p(1)
n (R)

μ
cos(nΦ),

(B.1)

where for n ∈ N ∪ {0}, r(1)
n , φ(1)

n , and p(1)
n /μ are the real-valued Fourier coefficients given

by

r(1)
n (R) = 1

π

∫ π

−π

r(1)(R, ζ ) cos(nζ )dζ,

φ(1)
n (R) = 1

π

∫ π

−π

φ(1)(R, ζ ) sin(nζ )dζ,

p(1)
n

μ
= 1

π

∫ π

−π

p(1)

μ
(R, ζ ) cos(nζ )dζ.

(B.2)

We now show that all the Fourier coefficients vanish except those with n = 1, giving one
what one has in (3.41). Substituting (B.1) into (3.39), one obtains the following ODEs in the

12This immediately follows from the symmetry of the problem for radially-symmetric eigenstrain distribu-
tions.
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inclusion and the matrix
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(B.3)

where η = R2
i γo. Similarly, we substitute (B.1) into (3.29) and (3.30) to find the following

ODEs for n ≥ 2 and n = 0:
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and for n ≥ 2:
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n
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Clearly, r(1)
n = φ(1)

n = p(1)
n /μ = 0, n = 0 and n ≥ 2 is a solution of the system of linear

ordinary differential equations (B.3), (B.4a), (B.4b) and (B.5a), (B.5b) and hence it is the
unique solution satisfying the required boundary conditions (3.18) and the continuity of the
displacement and traction fields at the inclusion-matrix interface.
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