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Abstract

The ‘kern’ of a cross-section is the convex region within which any point load applied will produce stresses of the same sign as that of the
load throughout the entire cross-section. Based on theorems of Mofid and Yavari [Int. J. Solids Struct. 31 (1998) 2377], an algorithm is
presented that can compute the kern of any cross-section numerically. We have developed a program based on this algorithm. A few
examples are solved using this program. The results are compared with those of Wilson and Turcotte [Adv. Engng Software 17 (1993) 113]
and Mofid and Yavari and excellent agreement is observed. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a compressive point load is exerted on a section,
various points of that section may be set in compression or
tension. If this load acts in a special region of a section, the
whole section may be set in compression. This special
region is called ‘the kern’ of a section. This concept is
widely used in different fields of civil and mechanical
engineering. Design of base plates, concrete footings,
concrete dams, non-reinforced shells and composite
sections often require that tensile stress be prevented and/
or controlled. Therefore, the introduction of this zone, the
kern, in a general section, in which an axial arbitrary load
can be applied, without inducing tensile stress, is very
important. The history of kern and the relevant references
can be found in Wilson and Turcote [1] and Mofid and
Yavari [2].

In this paper, the theorems of Mofid and Yavari [2] are
reviewed. These theorems are implemented in a powerful
computer program. The program can easily compute the
kern of a general cross section and present a graphical
demonstration tool. Several examples are solved and some
of the results are compared with those of Wilson and
Turcotte [1]. The algorithm and the flowchart of this
efficient program are given. The paper is organized as
follows. Section 2 reviews the theorems of Mofid and
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Yavari [2]. The algorithm of the program is given in Section
3. A few example problems are presented in Section 4.
Conclusions are given in Section 5.

2. Theorems characterizing the kern of a general cross-
section

An arbitrary cross-section is shown in Fig. 1; x and y are
principle axes and point C is the centroid of this section. The
boundary and the domain of this section are denoted by B
and D. If a compressive point load, P, is exerted at point
A(u, v), the stress at a point M(x, y) is expressed as

P vy ux

X

where A is the area of cross-section and r, and r, are the radii
of gyration, with respect to the principal axes. If M(x, y) is a
point of the kern, o(x, y) is negative, B* and D" show the
boundary and domain of the kern, respectively. Thus,

1+ 2+ 2 >0

2
T'x X

(x,y) ED* Y(u,v) €D

It means that if a compressive point load, P, is applied at
any point of D”, the stress at all points of D is always
compressive. It is another definition of the kern, which is
easier to work with. In this part, some theorems, which are
directly propounded from Ref. [2], qualify the characteris-
tics of the kern. For the sake of simplicity, it is assumed that
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Fig. 1. A general cross-section.

the section is ‘simply connected’ and for other groups of
sections, the following theorems are generally extended:

Theorem 1. The centroid of any cross-section belongs to
the kern.

Theorem 2. If stress at an arbitrary point M, due to a
point load, P, exerted to any point of domain B, is always
compressive, then the stress at point M, due to a point load,
P, applied at any point of D, is also compressive.

Corollary 1. If the stress at point M is always zero due to
a point load, P, exerted at each point load, P, point M
belongs to B”.

Definition 1. The smallest convex region of a section with
domain D is called ‘convex hulls’ and is distinguished by
CH(D). For any convex section, CH(D) = D, it is clear that
in general D C CH(D).

In Fig. 2, convex hulls of the section is the shaded region.
The boundary of the general cross-section can be divided

Dex

B

Fig. 2. A non-convex cross-section and its convex hulls.
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Fig. 3. A cross-section with a cusp.

into two sets — the convex part D, and the concave part
D...

Theorem 3. In Theorem 2, D can be replaced by D,.,.

Corollary 2. For a concave cross-section, we can
consider an auxiliary convex cross-section, whose domain
is D' = CH(D) with the same area and principal axes as the
cross-section. The added area is virtual and A, r, and r,
remain unchanged. The kern of this auxiliary convex
cross-section is the kern of the original cross-section, i.e.
D" =D".

Definition 2. If a compressive point load is applied at
point A, the stress at point M is denoted by o-f,‘[.

Definition 3. If oy = 0 and A € B, M € B*, point M is
called the conjugate of point A and the conjugacy is denoted
by M = A.

Definition 4. Each line segment of the boundary of cross-
section is called a flat segment of the boundary. The convex
part of the boundary B, can be divided into two parts — the
flat part and the non-flat part. The non-flat part is named B, .

Theorem 4. Each point of B” is the conjugate of only one
point of B.

Fig. 4. A multiply connected cross-section.
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Fig. 5. A disconnected cross-section.

Corollary 3. All points of every flat segment of the bound-
ary have only one conjugate point on B”.

Corollary 4. Suppose that M € B* and M = A. If a point
load is applied at point M, the neutral axis of bending due to
this load is tangent to B.

Theorem 5. The kern of a general cross-section is always
a convex region.

Corollary 5. For a convex cross-section without any flat
segment, ‘conjugacy’ is a one-to-one relation.

In Fig. 3, a cross-section with a cusp is shown. Most of the
sections, which are used, have many cusp, and therefore,
this case is important. Suppose that two lines (d;) and (d,)
are tangent to the boundary of the cross-section at point A,
and these lines are the neutral axes of bending due to a point
load applied at points M; and M,, respectively.

Theorem 6. The line segment M\M, belongs to B”.

Theorem 7. The area of the kern of the general cross-
section is always nonzero.

Definition 5. The auxiliary simply connected cross-

section of a multiply connected cross-section has the same
boundary but all the holes are virtually filled (Fig. 4). The

The next vertex

The current vertexi

The previous vertex

The cross-section nodes

Fig. 6. The previous, current and the next vertex.

principal axes, the centroid and important values (A, I, 1,) of
this auxiliary simply connected cross-section are the same
as those of the multiply connected cross-section.

Theorem 8. The kern of the auxiliary simply cross-section

D' is the same as the kern of a multiply connected cross-
. E Y I *

section D", 1.e. D" = D".

Definition 6. An auxiliary simply connected cross-section
of a disconnected cross-section has the same boundary as
the convex hulls of the cross-section (Fig. 5). The geome-
trical properties of the auxiliary cross-section are the same
as the disconnected cross-section.

Theorem 9. The kern of the auxiliary simply connected
cross-section of a multiply connected or disconnected cross-
section is the same as the kern of the cross-section.

Definition 7. The kern ratio of a cross-section is
distinguished by KR and it is defined as KR = A"/A,
where, A and A" are areas of the cross-section and the
kern, respectively. In many conditions, it is possible to
encounter moving loads. If the region of the kern is
extensive, the cross-section has less possibility of the
occurrence of tension.

Corollary 6. For concave sections, kern ratio (KR) has no
maximum value.

Start

Define convex hulls polygon as a zero triangle
with three points having the centroid coordinates.

v

Add/Delete/Move a node

Node is outside the
convex hulls polygon.

Expand the present convex hulls polygon
to include this node as a new vertex

Yes

Continue?

Fig. 7. The working flowchart of the algorithm presented.
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Fig. 8. Example problem (1), Partial section 270° sectorial circular cross-section.

3. Algorithm of the program

Each vertex of the convex hulls has two neighboring
vertices which from now on can be called ‘the next’
and ‘the previous’ vertices of the current vertex. This is
shown in Fig. 6, where all the convex hulls vertices are
concurrent with one or more node(s) of the cross-
section polygon. All the other nodes of the cross-section
reside in the same side of the line, connecting that node to
the current vertex. It is important to note that no direction is
defined for distinction between the next and the previous
vertices.

When the convex hull is found, the rest of the process of

finding the kern is straightforward. Therefore, the kern
vertices can be directly found from the intersection of the
neutral axes of the successive convex hulls vertices. The
step-by-step procedure to find the convex hulls can be
outlined as follows:

Find one of the convex hulls vertices. As a matter of fact,
this phase may be the most time-consuming part of the
algorithm.

Find the next vertex of the convex hulls and call it V.
Compare V with the other known vertices in the list. If it
does not exist, add it to the list and repeat the above
phase.

Fig. 9. Example problem (2), I-shaped cross-section.
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¥ KERN Program - C:\My Doc:r;ents\exp18.krn1 3

Fig. 10. Example problem (3), hollow-rectangular cross-section.

If V exists in the list, find the previous vertex and It should be noted that finding the convex hulls of a
compare it with the list. If it exists, the convex hull is cross-section, although fairly complicated, does not
found and the procedure can be stopped. Otherwise, involve huge computations. Fig. 7 shows an appropriate
the above phases shall be repeated. working flowchart of the above-presented algorithm.

Stages of this algorithm are as follows:
4. Example problems

. create/load/edit a section, Example 1. To show the capabilities of the program and
. find the convex hulls of the cross-section, the method presented, the kern of a partial 270° sectorial
. find kerns polygon vertices using the convex hulls circle, which is a relatively complex section and may be of

and calculate the kern ratio, and interest in some special structural cases, such as cracked
. display/save/print the results. circular column, is shown in Fig. 8. Comparison of the

" KERN Program - C:\My Documentsiexp19 km
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i

Fig. 11. Example problem (4), U-shaped cross-section.
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Fig. 12. Example problem (5), Z-shaped cross-section.

results with the solution of the same example problem,
presented by Wilson and Turcotte [1], reveals perfect agree-
ment.

Examples 2-7. Kerns of a few cross sections with various
geometries are computed in these examples. These cross
sections are shown in Figs. 9—-14. Some of these cross
sections were considered in [1] and [2]. Our results agree
with those of [1] and [2].

5. Conclusions

This article explains the algorithm of a computer program
that can compute the kern of an arbitrary cross section. The
algorithm of this program is based on the theoretical results
of Mofid and Yavari [2]. This program has various facilities/
tools and is very easy to use. A few examples are solved to
show the efficiency of the program. These examples are
compared to those of Wilson and Turcotte [1] and Mofid
and Yavari [2]. Instead of direct calculation of the kern, our

% KERN Program - C:\WIND OWSDesktop'My Documents'exps.Jan

Fig. 13. Example problem (6), flower-shaped cross-section.
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Fig. 14. Example problem (7), a general disconnected shape cross-section.

algorithm uses convex hulls of the cross section. This
program is more efficient than that of Wilson and Turcotte.
In Wilson and Turcotte’s computer program, many coordi-
nates of the boundary of the cross section should be
inputted. For example, in the case of the ‘flower shape’ or
the ‘KERN shape’ hundreds of coordinates should be given
to the program as input. However, the present algorithm
based on the theorems of Mofid and Yavari [2] does not
need to go through this tedious step and is obviously more
efficient than that of Wilson and Turcotte. We believe that

the program introduced in this paper is very efficient and can
help design engineers to find the kern of any cross section.
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