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Abstract This paper develops a theory of anharmonic lattice statics for the analysis
of defective complex lattices. This theory differs from the classical treatments of
defects in lattice statics in that it does not rely on harmonic and homogenous force
constants. Instead, it starts with an interatomic potential, possibly with infinite range
as appropriate for situations with electrostatics, and calculates the equilibrium states
of defects. In particular, the present theory accounts for the differences in the force
constants near defects and in the bulk. The present formulation reduces the analysis
of defective crystals to the solution of a system of nonlinear difference equations with
appropriate boundary conditions. A harmonic problem is obtained by linearizing the
nonlinear equations, and a method for obtaining analytical solutions is described in
situations where one can exploit symmetry. It is then extended to the anharmonic
problem using modified Newton–Raphson iteration. The method is demonstrated
for model problems motivated by domain walls in ferroelectric materials.
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1 Introduction

The method of lattice statics introduced by Born and his co-workers (see [5]) has
been widely used to study various aspects of atomistic solids. In particular, it has
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been widely used to study equilibrium structure of defects. Based on a formulation
in [23] and [30], this version of lattice statics has been used for point defects in [15]
and [18], for interstitial in [17], for cracks in [12] and [22], for surfaces in [16] and for
dislocations by [6, 12, 13, 28, 35] and [37]. Further reviews can be found in [6, 8, 18–
20, 25, 29, 33–36, 38] and references therein. This method considers a harmonic
defect-free crystal subjected to an eigendeformation chosen to represent the defect.
The advantages of the method are that they provide analytic solutions and that they
do not require any ad hoc cut-off or periodicity assumptions. However, they are
harmonic and homogeneous, and importantly do not account for the strong nonlinear
and heterogeneous behavior near the defect core. It should also be mentioned that
none of the above-mentioned works solve the defect problem as a discrete boundary-
value problem. In contrast, nonlinear treatments of defects are overwhelmingly
computational and restrict themselves to finite domains or periodicity assumptions.

This paper is concerned with the formulation of a semi-analytical method of
solution of fully nonlinear lattice statics problems for defective crystals. In particular,
the method of solution takes as input an arbitrary interatomic potential, and is not
restricted to interactions based on harmonic force constants. The solutions obtained
represent equilibrium configurations for the input interatomic potential. The method
of solution is based on a modified Newton–Raphson iteration. Each step in the
iteration requires the solution of a harmonic problem with uniform force constants.
The uniformity of the force constants ensures that methods of solution for difference
equations, such as the discrete Fourier transform, can be applied to the linearized
problem. The out-of-balance forces are computed from the full interatomic potential,
thus ensuring that converged solutions represent equilibrium configurations of the
anharmonic crystal. The iteration starts from a nominal configuration of the defective
crystal. This initial configuration is not in equilibrium in general and the correspond-
ing out-of-balance forces are not zero. The main purpose of the initial configuration is
to place the crystal in the energy well corresponding to the defect of interest. General
results then ensure that if the equilibrium defect is stable, i.e., if the corresponding
force constants are coercive, and the initial nominal defect is sufficiently close to the
equilibrium defect, the modified Newton–Raphson iteration converges linearly.

We demonstrate our methodology using a model problem motivated by the study
of domain walls in ferroelectric perovskites. Elsewhere we present detailed results of
domain walls and defects on domain walls using more widely accepted potentials.

This paper is organized as follows. Section 1 reviews harmonic lattice statics. We
reformulate lattice statics in a language as close to continuum mechanics as possible.
In Section 2 the idea of symmetry reduction for defective crystals is presented
and some subtleties in the linearized discrete governing equations are explained.
Section 3 presents the idea of anharmonic lattice statics. Solution techniques for
solving the linearized discrete governing equations are explained in Section 4. In
Section 5 our formulation of lattice statics is generalized to a system of dipoles in
which interactions are pairwise but not isotropic and atom position vectors are not
the only degrees of freedom. The method of solution is illustrated by means of several
examples concerned with the equilibrium structure of 180◦ and 90◦ domain walls
in a two-dimensional lattice of dipoles. Conclusions are given in Section 6. In the
Appendix we show that with little modification our approach can be applied to three-
body interactions.
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2 Discrete Governing Equations

Consider a collection of atoms L and assume that they interact through some
interatomic potentials. Let xi denote the position of atom i ∈ L and Si the set (list)
of other atoms that it interacts with. We prohibit self interaction by assuming i /∈ Si.
The total energy is a function of the atomic positions,

E = E
({x j} j∈L

)
, (1)

and we assume that this may be written as the sum of the energy per atom

E =
∑

i∈L
E i (xi, {x j} j∈Si

)
. (2)

Note that this partitioning of energy cannot be done unambiguously in general.
However, this is unambiguous in the case of pairwise interactions. Assuming that
there are no discrete body forces, equilibrium requires1

∂E
∂xi

= 0 ∀i ∈ L. (4)

It can be easily shown that this is equivalent to equilibrating energy of the atom E i

with respect to xi, i.e.,

∂E i

∂xi

(
xi, {x j} j∈Si

) = 0. (5)

These Eqs. 4 and 5 embody the main idea behind lattice or molecular statics. We

seek a solution to Eq. 5 close to a given reference configuration B0 =
(

xi
0, {x j

0} j∈Si

)
.

Therefore we expand the governing Eq. 5 about this reference configuration:

∂E i

∂xi
= ∂E i

∂xi
(B0) + ∂2E i

∂xi∂xi
(B0) (xi − xi

0) +
∑

j∈Si

∂2E i

∂x j∂xi
(B0) (x j − x j

0) + ... = 0. (6)

We obtain the harmonic approximation by dropping the higher order terms.
It can be easily shown that because of translation invariance of the potential

∂2E i

∂xi∂xi
(B0) = −

∑

j∈Si

∂2E i

∂x j∂xi
(B0) . (7)

This is trivially verified for pair-wise interactions and shown in the Appendix to
hold for three-body interactions. Using this, we rewrite the harmonic lattice statics
equations to be

∑

j∈Si

∂2E i

∂x j∂xi
(B0) (x j − x j

0) −
∑

j∈Si

∂2E i

∂x j∂xi
(B0) (xi − xi

0) = −∂E i

∂xi
(B0) . (8)

1When there is a discrete field of body forces this is written as

− ∂E i

∂xi

(
xi, {x j} j∈Si

)
+ Fi = 0. (3)
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Setting

fi = −∂E i

∂xi
(B0) ,

ui = xi − xi
0,

Kij = ∂2E i

∂xi∂x j
(B0) , (9)

the harmonic lattice statics governing equations may be written as

∑

j∈Si

Kij
(
u j − ui) = fi ∀ i ∈ L. (10)

A couple of remarks are in order. The matrix of force constants Kij are derived
from a potential about some reference configuration, and thus they depend on the
reference configuration. In particular, they may depend explicitly on the indices i
and j. In the classical formulation of harmonic lattice statics, the governing equations
would be written for some periodic lattice and the force constants would depend only
on the reference distance between atoms i and j.

The unbalanced force field f = {fi}i∈L can be written as

fi =
∑

j∈L
Kij�u j

e ∀ i ∈ L. (11)

Or

f = T (�ue), (12)

where the field of eigen-deformations �ue = {�ui
e}i∈L is formally defined as

�ue = T −1(f). (13)

Thus we can rewrite Eq. 10 as

∑

j∈L
Kij

(
u j − �u j

e

) = 0 ∀ i ∈ L (14)

and recognize it to be exactly that as the classical equation of harmonic lattice stat-
ics [34].

2.1 Linearized Discrete Governing Equations for Defective Crystals
with No Symmetry Reduction

We now specialize to a (defective) complex lattice with a unit cell consisting of N
atoms. Here by “defective” lattice we mean a collection of atoms that is locally like a
perfect complex lattice. We index the unit cells using integers (m, n, p) ∈ Z

3. Let
Iαβγ denote the Ith atom in the (α, β, γ ) unit cell. Given an atom i, any other
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atom j can be specified uniquely by the unit cell it belongs to and its type, i.e.,
j = Iαβγ . The discrete harmonic governing equations (10) can now be written as

∞∑

α,β,γ=−∞
′

N∑

I=1

KiIαβγ

(
uI

αβγ − ui) = fi ∀ i ∈ L, (15)

where the prime on the summation means that the self-interaction term has been
excluded.

Let us define unit cell displacement vectors as

Umnp =
⎛

⎜
⎝

u1
mnp
...

uN
mnp

⎞

⎟
⎠ (m, n, p) ∈ Z

3. (16)

Now the discrete governing equations can be written in terms of interaction of unit
cells as

∞∑

α,β,γ=−∞
Aαβγ (m, n, p)Um+α,n+β,p+γ = Fmnp (m, n, p) ∈ Z

3, (17)

where

Aαβγ (m, n, p) ∈ R
3N×3N, Um+α,n+β,p+γ , Fmnp ∈ R

3N . (18)

This is a linear vector-valued partial difference equation with variable coefficient
matrices of infinite order. The unit cell force vectors and the unit cell stiffness
matrices are defined as

Fmnp =
⎛

⎜
⎝

F1mnp
...

FNmnp

⎞

⎟
⎠ ,

Aαβγ (m, n, p) =

⎛

⎜
⎜⎜
⎝

K11αβγ K12αβγ · · · K1Nαβγ

K21αβγ K22αβγ · · · K2Nαβγ

...
... · · · ...

KN1αβγ KN2αβγ · · · KNNαβγ

⎞

⎟
⎟⎟
⎠

. (19)

To be able to solve such a difference equation one needs to assume a finite range
of interaction and then numerically study the effect of the range of interaction.
Assuming ranges of interaction r1, r2 and r3 in m, n and p directions, respectively,
we have

r1∑

α=−r1

r2∑

β=−r2

r3∑

γ=−r3

Aαβγ (m, n, p)Um+α,n+β,p+γ = Fmnp (m, n, p) ∈ Z
3, (20)

which is a linear partial difference equation of order r = max(2r1, 2r2, 2r3).
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2.2 Linearized Discrete Governing Equations for Defective Crystals
with 2-D Symmetry Reduction

Let us now consider a complex lattice with a defect that is extended in one dimension
so that we can reduce the problem to two dimensions. In other words, we study a
collection of atoms which have translation invariance in only one direction. In order
to do so, we note that such a complex lattice may be written as the disjoint union of
one dimensional complex lattices:

Ld
2 =

⊔

α,β∈Z

Ld
2(α, β), (21)

where Ld
2(α, β) is a one-dimensional lattice or mathematically an equivalence class

of atoms. Each one-dimensional complex lattice is a chain of unit cells. Because
each unit cell is equivalent to any other unit cell in the chain, the decomposition
(21) can be thought of as a partitioning of the defective complex lattice into some
equivalence classes (chains). Choosing a representative from each equivalence class
Ld

2(α, β), the resulting two-dimensional lattice is called the reduced lattice and is
denoted by Ld2 . Further the neighboring set Si can be partitioned as

Si =
⊔

α,β∈Z

N⊔

I=1

SIαβ(i), (22)

where SIαβ(i) is an equivalence class of equivalent atoms which all would have the
same displacement with respect to a given reference configuration. In other words,
SIαβ(i) is the set of atoms of type I in the chain Ld

2(α, β) that interact with atom i. An
example would be a lattice with broken atomic bonds on a half plane, i.e., a crack. In
this example equivalence classes are sets of atoms lying on lines parallel to the crack
edge (front). With this partitioning one can write

∑

j∈Si

Kiju j =
∞∑

α,β=−∞
′

N∑

I=1

KiIαβ uI
αβ, (23)

where

KiIαβ =
∑

j∈SIαβ (i)

∂2E i

∂xIαβ∂xi
(B0) , (24)

and prime on the summation means that the self-interaction term has been excluded.
It is seen that in a defective lattice there is a partial symmetry and a given atom i
interacts with equivalence classes and this is why each substiffness matrix is defined
in terms of a lattice sum. Thus the discrete governing equations can now be written as

∞∑

α,β=−∞
′

N∑

I=1

KiIαβ

(
uI

αβ − ui) = fi ∀ i ∈ L. (25)



J Elasticity (2007) 86:41–83 47

Let us define unit cell displacement vectors as

Umn =
⎛

⎜
⎝

u1
mn
...

uN
mn

⎞

⎟
⎠ . (26)

Now the governing equations can be written in terms of interaction of unit cells as

∞∑

α,β=−∞
Aαβ(m, n)Um+α,n+β = Fmn (m, n) ∈ Z

2, (27)

where

Aαβ(m, n) ∈ R
3N×3N, Um+α,n+β, Fmn ∈ R

3N . (28)

This is a linear vector-valued partial difference equation with variable coefficient
matrices in two independent variables. The unit cell force vectors and the unit cell
stiffness matrices are defined as

Fmn =
⎛

⎜
⎝

F1mn
...

FNmn

⎞

⎟
⎠ ,

Aαβ(m, n) =

⎛

⎜
⎜⎜
⎝

K11αβ K12αβ · · · K1Nαβ

K21αβ K22αβ · · · K2Nαβ

...
... · · · ...

KN1αβ KN2αβ · · · KNNαβ

⎞

⎟
⎟⎟
⎠

. (29)

2.3 Linearized Discrete Governing Equations for Defective Crystals
with 1-D Symmetry Reduction

We now consider a collection of atoms that has translation invariance in two
directions. In other words, L is a collection of two-dimensional perfect lattices. Thus
let us assume that L can be partitioned into two-dimensional equivalence classes:

Ld
1 =

⊔

α∈Z

Ld
1(α) (30)

or infinite sets of atoms Ld
1(α) that lie on some planes. Each Ld

1(α) is a two-
dimensional periodic collection of unit cells, i.e., a perfect two-dimensional complex
lattice. Choosing a representative from each equivalence class,the resulting chain is
called the reduced lattice Ld1 . The neighboring set Si can be partitioned as

Si =
⊔

α∈Z

N⊔

I=1

SIα(i), (31)

where SIα(i) is the equivalence class of all the atoms of type I and index α with
respect to atom i. In other words, SIα(i) is the set of all atoms of type I in the two
dimensional lattice Ld

1(α) that interact with atom i. For a domain wall, for example,
each equivalence class is a set of atoms lying on a plane parallel to the domain wall.
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With this partitioning one can write the linearized discrete governing equations as

∞∑

α=−∞
′

N∑

I=1

KiIαuI
α +

(

−
∞∑

α=−∞
′

N∑

I=1

KiIα

)

ui = fi, (32)

where the prime on the first sum means that the term α = 0, I = i is excluded to avoid
self-interaction and

KiIα =
∑

j∈SIα(i)

∂2E i

∂x j∂xi
(B0),

fi = −∂E i

∂xi
(B0),

uI
α = xIα − xIα

0 = x j − x j
0 ∀ j ∈ SIα(i). (33)

Let us define unit cell displacement vectors as

Um =
⎛

⎜
⎝

u1
m
...

uN
m

⎞

⎟
⎠ . (34)

Now the governing equations can be written in terms of interaction of unit cells as

∞∑

α=−∞
Aα(m)Um+α = Fm m ∈ Z, (35)

where

Aα(m) ∈ R
3N×3N, Uα, Fm ∈ R

3N . (36)

This is a linear vector-valued ordinary difference equation with variable coefficient
matrices. The unit cell force vectors and the unit cell stiffness matrices are defined as

Fm =
⎛

⎜
⎝

F1m
...

FNm

⎞

⎟
⎠ , Aα(m) =

⎛

⎜⎜⎜
⎝

K11α K12α · · · K1Nα

K21α K22α · · · K2Nα

...
... · · · ...

KN1α KN2α · · · KNNα

⎞

⎟⎟⎟
⎠

. (37)

Note that, in general, Aα(m) need not be symmetric as will be explained shortly. The
above system of difference equations is a Volterra system of difference equations
(see [11]).2

2Lattice statics analysis of defective crystals with 1-D symmetry reduction leads to the solution of
vector-valued ordinary difference equations with variable coefficient matrices. Inhomogeneities are
localized and the idea is to treat the inhomogeneous region as boundary and transition regions.
This will result in two vector-valued difference equations with constant coefficient matrices one
forward and one backward. In the end, the original difference equation will be solved by matching
the solutions of these two ordinary difference equations.
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The above governing equations can be written in terms of a discrete convolution
operator as3

AX = F, (38)

where X = {Xn}, F = {Fn} and the discrete convolution operator is defined as

AX = {(
AX

)
n

}
, (39)

and

(AX)n =
∞∑

m=−∞
An−mXm. (40)

2.4 Some Remarks

For the case of N ≥ 2, there are some subtleties in calculating the Aα matrices.
This is also the case for defective crystals with 2-D and no symmetry reductions but
for the sake of simplicity we explain this subtlety only for defective crystals with a
1-D symmetry reduction. One subtlety is that some interactions should be ignored.
One is the interaction of an atom of type I and index n with all atoms of type I
and index n, i.e., there are no interactions within a given equivalence class (this is a
consequence of Eq. 7). This means that A0 has a special structure. When position
of atom i of type I changes, all its equivalent atoms, i.e., those with α = 0 undergo
the same perturbation. Atoms of the same type as i do not contribute to energy of
i because the potential is pairwise and their relative distances from the atom i are
always the same. This means that

KI I0 = −
∞∑

α=−∞
′

N∑

J=1
J �=I

KI Jα. (41)

The same thing is true for forcing terms. The reason for this is that the distance
between the equivalent atoms is fixed and atoms in the equivalence class of i do not
contribute to − ∂E i

∂xi and its derivatives. For a defective crystal with a 2-D symmetry
reduction the above property implies that

KI I00 = −
∞∑

α,β=−∞
′

N∑

J=1
J �=I

KI Jαβ . (42)

The other subtlety is when a finite number of interactions is considered for
representative unit cells. Consider atoms with index n and project the whole defective
crystal on a line perpendicular to the two-dimensional defect. This would be the
reduced lattice Ld1. As an example, we have the picture shown in Figure 1 for A
and O2 atoms in a perovskite mutilattice ABO3. Suppose a given representative
unit cell interacts with its first mth nearest neighbor (representative) unit cells. We

3This is the approach that [2] chooses in his treatment of difference equations. We do not use this
notation in this paper but it would be useful to know that the discrete governing equations have a
discrete convolution form.
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Figure 1 Nearest neighbors of
A and O2 atoms and their
indices in an ABO3 defective
crystal with a 1-D symmetry
reduction.

consider the interaction of A and O2 atoms with other A and O2 atoms of indices
{n − m, ..., n + m} (except the ones that have already been excluded). Looking at
Figure 1, one can see that symmetry of interactions dictates that interactions of A
and O2 atoms with O1, O2 and O3 atoms with index n + m should be ignored.
Similarly, consider atoms B, O2 or O3 with index n and their nearest neighbors as
shown in Figure 2. Every atom B (O1 or O3) interacts with B, O1 and O3 atoms with
index {n − m, ..., n + m} (except the ones that have already been excluded). Again,
symmetry implies that the interactions of B, O1 and O3 atoms with A and O2 atoms
with index n − m should be ignored.

Another interesting subtlety is the symmetry of Aα matrices. It should be noted
that each KiIα is symmetric but the matrices Aα (α = −m, ..., m) are not symmetric,
in general. This can be seen more clearly in a simple 2-D model. Consider a 2-D
rectangular multi-lattice composed of two simple lattices each with lattice parameters
a and c and the shift vector p = (p1, p2). This system has three coefficient matrices
A-1,A0,A1 ∈ R

4×4. We now compare K12-1 and K21-1 to see if A-1 is symmetric. It
can be easily shown that

K12-1 =
∑

Y{n−1}

∂2 E
∂xn−1∂yn−1

(B0) , (43)

K21-1 =
∑

X{n−1}

∂2 E
∂yn−1∂xn−1

(B0) , (44)

where X{n − 1} is the set of atoms of type 1 which have index n − 1 relative to the
atom n of type 2 (these are the circles in Figure 3). Similarly, Y{n − 1} is the set of
atoms of type 2 which have index n − 1 relative to the atom n of type 1 (these are the
squares in Figure 3). xn−1 and yn−1 are position vectors of atoms of types 1 and 2 with
index n − 1, respectively.

Figure 2 Nearest neighbors of
B, O1 and O3 atoms and their
indices in an ABO3 defective
crystal with a 1-D symmetry
reduction.
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Figure 3 Non-symmetry of Ai
matrices.

As it is seen in Figure 3, these two matrices are not equal as the length of the
corresponding relative position vectors are not equal. It should be noted that the lose
of symmetry in the reduced 1-D system is just a consequence of symmetry reduction
and still the underlying 3-D physical system is symmetric.

Suppose all the atoms in the lattice have the same displacements, i.e.,

Xn = C = (c, ..., c︸ ︷︷ ︸
N copies

)T, c ∈ R
3. (45)

Using Eq. 41, it can be easily shown that

∞∑

α=−∞
AαC = 0 ∀c ∈ R

3, (46)

i.e.,

N
( ∞∑

α=−∞
Aα

)

= 3 (47)

as was expected, where N (A) is the nullity of the linear transformation represented
by the matrix A. Note that the above statement is formal because there is an infinite
sum and in general one should worry about convergence. This is not an issue for
short-range interactions but long-range interactions should be treated carefully. We
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will come back to the convergence issue in the sequel. For the case of a defective
crystal with a 2-D symmetry reduction the above property states that

N

⎛

⎝
∞∑

α,β=−∞
Aαβ

⎞

⎠ = 3. (48)

There is another symmetry relating A−γ to Aγ . It can be easily shown that
reciprocity implies that

KI J−γ = KJIγ . (49)

This means that

A−γ = AT
γ . (50)

Convergence of infinite sums raise their own delicate issues. In the analysis of
defective crystals with 1-D and 2-D symmetry reductions, we need to calculate
stiffness matrices that are defined in terms of lattice sums of square matrices. Discrete
field of unbalanced forces is also defined in terms of lattice sums. Since we will be
interested in dipole–dipole interactions, we will find that substiffness matrices for
defective crystals with 1-D and 2-D symmetry reductions are absolutely convergent.
However, the forces are obtained as conditionally convergent sums and thus require
care. In our examples, we look at systems of dipoles lying on a plane and thus force
is also defined in terms of absolutely convergent lattice sums.

Finally, our lattice statics model forces are always calculated exactly. However, to
be able to solve the governing discrete equations for an infinite lattice we need to
have a system of difference equations of finite order. It would be interesting to know
how sensitive the solutions are to the range of interaction of representative unit cells.
This is problem dependent and should be carefully studied for a given interatomic
potential.

In all the existing lattice statics calculations a fixed number of nearest neighbor
interactions (usually only the first and second nearest-neighbor interactions) are
considered. Our formulation of lattice statics can consider any number of nearest-
neighbor interactions and this enables us to numerically study the effect of range
of interactions with no difficulty. In Section 5 we present a numerical study of the
effect of range of interaction for a lattice of dipoles. It will be seen that the effective
potential is highly localized and increasing the range of interaction does not change
the displacements, i.e., the displacements are independent of the range of interaction.

Our formulation of anharmonic lattice statics starts with choosing a reference
configuration. Here a comment is in order regarding the choice of reference con-
figuration. For a given defect, reference configuration is chosen to be a nominal
defect. By ‘nominal’ defect, we mean a configuration that is locally like the bulk
crystal but in some region(s) is close to the relaxed configuration of the defect.
Of course, a nominal defect is not unique. An example is shown in Figure 4 for
an edge dislocation. In this figure we show the reduced lattice, i.e., representative
atoms of lines of atoms perpendicular to the plane. We know that a dislocation can
be understood as an extra half plane of atoms inserted in the bulk lattice (in the
reduced lattice a half line of extra atoms). Figure 4a shows a nominal defect that has
been obtained by inserting a half plane of extra atoms between two crystallographic
planes. In Figure 4b the configuration (a) has been modified to make it exactly like
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Figure 4 Two possible reference configurations for a dislocation.

the bulk crystal except in the region bounded by the broken lines. These two nominal
defect reference configurations are both acceptable choices but configuration (b)
is preferable because its unbalanced force field is localized and this makes the
numerical calculations more efficient.

In the previous lattice statics models of dislocations [6, 20, 28] always some cutting
and pasting process is used. In the present formulation all is needed is a reference
configuration. The unit cell numbering for an edge dislocation is shown in Figure 5.
Note that the n-axis is ‘curved’ but still the governing linearized equations are

∑

α,β

Aαβ(m, n)Xm+α,n+β = Fmn (m, n) ∈ Z
2. (51)

We close this section by stating our harmonic lattice statics algorithm:

Input data: defective crystal geometry, interatomic potential
� Initialization

� Construct B0, calculate force and substiffness matrix moduli
� Do for all α ∈ K

s

� Assemble substiffness matrices and construct Aα

� End Do

� Calculate unbalanced forces F0 = F(B0)

� Solve the governing linear difference equations
� End
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Figure 5 Unit cell numbering
for the reference configuration
of an edge dislocation.

3 Anharmonic Lattice Statics

The classical harmonic lattice statics is not appropriate where displacements from the
initial configuration are large. There have been modifications of the harmonic lattice
statics in the past [12, 13, 20]. The idea of these and similar works is to consider
the fully nonlinear equations close to defects. These works, however, do not solve a
nonlinear defect problem as a discrete boundary-value problem; instead all these and
similar works are more or less heuristic. In this section we present a formulation of
anharmonic lattice statics in which one solves a nonlinear discrete defect problem by
solving discrete linear boundary-value problems. Anharmonic lattice statics is based
on Newton–Raphson (NR) method for solving nonlinear equations. The basic idea
of NR method is to look at a quadratic approximation to the nonlinear equations in
each step. Suppose f : R

n → R
n is continuously differentiable and that f(x∗) = 0 for

some x∗ ∈ D ⊂ R
n. We know that derivative of f is a linear map defined as

f(x + u) = f(x) + Df(x)u + o(‖u‖). (52)

Let us start from an initial guess x0 ∈ D. The linear approximation of f about x0

calculated at a point x1 ∈ D is

f(x1) ≈ f(x0) + Df(x0)(x1 − x0). (53)

Assuming that f(x1) ≈ 0 we have

x1 = x0 − Df(x0)
−1f(x0). (54)

Similarly, in the kth step

xk+1 = xk − Df(xk)
−1f(xk). (55)

It can be shown that this algorithm has a quadratic convergence (see [10]), i.e.,

‖xk+1 − x∗‖ ≤ C‖xk − x∗‖2 for some positive number C. (56)

The modified NR method is based on a similar idea. In the kth iteration one defines

xk+1 = xk − Df(x0)
−1f(xk), (57)

i.e., the only difference is that in all the steps the derivative of the initial guess is used.
This is however slower than the usual NR iteration.
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By modifying the proof presented in [10], it can be shown that the convergence of
modified NR method is linear, i.e.,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ for some c ∈ (0, 1). (58)

The idea of anharmonic lattice statics is to find the nonlinear solutions by a
modified Newton–Raphson iteration. In modified Newton–Raphson method the
Hessian matrix is not updated in each iteration and the initial Hessian is used.
Modified Newton–Raphson method is slowly and linearly convergent and a large
number of iterations should be performed to get good results. In our lattice statics
calculations this is an efficient method as the most expensive part of the calculations
is the computation of substiffness matrices (very slowly converging lattice sums). It
is important to note that the Hessian at x = x0 should be positive–definite for the
modified NR to converge to a local minimum of the energy.

Here we explain the idea for all three types of defective crystals. Let α ∈ Z
3, Z

2, Z

for defective crystals with no symmetry reduction, with a 2-D symmetry reduction
and with a 1-D symmetry reduction, respectively. The linearized governing equations
have the following form

∑

α∈Zs

AαUn+α = Fn n ∈ Z
s (s = 1, 2, or 3). (59)

Note that in general Aα = Aα(n) and are evaluated with respect to a given reference
configuration B0. Given a reference configuration B0, we calculate the discrete
field of unbalanced forces exactly. Let us denote this by F0 = {F0

n}n∈Zs . Note that
F0 : Lds → R

3, where Lds is the reduced defective lattice.4 Having F0, one has the
following discrete boundary value problem (DBVP)

∑

α∈Zs

AαU0
n+α = F0

n n ∈ Z
s

Boundary Conditions (B.C.) (60)

The boundary conditions are problem dependent. For infinite defective crystals we
require boundedness of displacements at infinity. Solving the above DBVP one
obtains U0 = {U0

n}n∈Zs . Now the reference configuration is updated as follows.

B1
0 = B0 + U0. (61)

In the case of a system with B0 = {X0
n}n∈Zs , i.e., when the only degrees of freedom are

position vectors of the lattice points, this means that
{
X1

n

}
n∈Zs = {

X0
n + U0

n

}
n∈Zs . (62)

Now having a new reference configuration one can calculate the discrete field of
unbalanced forces F1 = {F1

n}n∈Zs . In the second step one has the following DBVP
∑

α∈Zs

AαU1
n+α = F1

n n ∈ Z
s

B.C. (63)

4In the case of a defective crystal with no symmetry reduction Ld3 = L.
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Note that the stiffness matrices are not updated and in all the steps the original
stiffness matrices are used. Solving the above DBVP one obtains U1 = {U1

n}n∈Zs and
B2

0 = B1
0 + U1. This process at step k requires solving the following BVP

∑

α∈Zs

AαUk−1
n+α = Fk−1

n n ∈ Z
s

B.C. (64)

where

Fk−1 = F(Bk−1
0 ) and Bk−1

0 = Bk−2
0 + Uk−2. (65)

Depending on the problem the fields Uk are localized or localized modulo some
rigid translation fields. This means that the fields Fk are localized. This is problem
dependent and one should carefully study the rate of decay of unbalanced forces for
a given defective crystal. The following is our anharmonic lattice statics algorithm:

Input data: B0,Aα, U0

� Initialization

� B1
0 = B0 + U0

� Do until convergence is achieved

� Fk = F(Bk
0 )

� Calculate Uk by solving the harmonic problem
� Bk+1

0 = Bk
0 + Uk

� End Do
� End

4 Solution Methods for the Linearized Discrete Governing Equations

In this section we present analytic methods for solving the discrete governing
equations for defective crystals with 1-D, 2-D and no symmetry reductions. In
anharmonic lattice statics the first step in solving a nonlinear problem is to solve
the linearized governing equations. Linearized governing equations with respect to a
given reference configuration are vector-valued partial difference equations. In this
section we briefly review the theory of ordinary and partial difference equations.

4.1 Theory of Difference Equations

Difference equations arise in many problems of mathematical physics. They also
appear in discretization of boundary value problems and also in combinatorics.
In this subsection we review a few facts and theorems from theory of difference
equations. For more details see [1, 11, 26] and references therein.
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4.1.1 Ordinary Difference Equations

An ordinary difference equation is the discrete analogue of an ordinary differential
equation. Difference equations can be defined on bounded or unbounded discrete
domains. For us all difference equations are defined on unbounded domains. Con-
sider a sequence {un}n∈N ⊂ R. A difference equation in the independent variable n is
an equation of the form

f (n, un, ..., un+p) = 0. (66)

The order of a difference equation is the difference between the largest and smallest
arguments explicitly involved in the equation. A linear (scalar-valued) difference
equation has the following form

p∑

j=0

K j(n)un+ j = bn n ∈ N. (67)

Here, we are interested in linear difference equations with constant coefficients.
These equations show up in discrete systems with uniform physical properties.
Consider a pth order difference equation with constant coefficients

un+p + a1un+p−1 + a2un+p−2 + ... + apun = bn. (68)

Similar to differential equations, one first solves the corresponding homogeneous
equation. Assuming that solutions are of the form λn, λ ∈ C, one obtains

λp + a1λ
p−1 + ... + ap = 0. (69)

This is the characteristic polynomial of the difference equation (68). There are
several possibilities for characteristic roots. If all the roots are real and distinct, for
example, the general solution is of the form

uc
n = c1λ

n
1 + c2λ

n
2 + ... + c1λ

n
p. (70)

For details on other possibilities see [11]. The general solution of Eq. 68 can be
written as

un = uc
n + up

n , (71)

where up
n is a particular solution of the nonhomogeneous equation.
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A system of linear difference equations of first order has the following form5

un+1 = A(n)un + bn, un, bn ∈ R
p, A(n) ∈ R

p×p, n ∈ N ∪ {0}. (73)

If A does not depend on n the system (73) is called a system with constant
coefficients.

un+1 = Aun + bn. (74)

For the homogeneous system with constant coefficients corresponding to Eq. 74, i.e.,

un+1 = Aun (75)

the general solution is

un = Anc, c ∈ R
p, ∀n ∈ N. (76)

Here, An is called the fundamental matrix of the system (74). This is the analogue of
eAt in a linear system of differential equations. System of difference equations (74)
has p linearly independent solutions and the general solution can be written as

un = Anc + up
n , (77)

where up
n is a particular solution. Using the method of variation of constants the

general solution can be expressed as

un = Anc +
n−1∑

j=0

An− j−1b j. (78)

Note that a system of difference equations can be thought of as a vector-valued
ordinary difference equation.

4.1.2 Partial Difference Equations

Partial difference equations are discrete analogues of partial differential equations.
Let Z

p be the set of all p-tuples of integers (p ≥ 2). A linear partial difference
equation has the following form

LXα =
∑

β∈�

A(β)Xα+β = Fα, (79)

where � ⊂ Z
p, α, β ∈ Z

p and

X, F : � → R
q, A : � → R

q × R
q. (80)

5It should be noted that this is not the most general form of a linear vector-valued difference equa-
tion. The most general first-order linear vector-valued difference equation has the following form

A1(n)un+1 + A2(n)un = bn, un, bn ∈ R
p, A1(n),A2(n) ∈ R

p×p, n ∈ N ∪ {0}. (72)

The matrix A1 can be singular in general. A direct solution of this equation in the case of constant
coefficient matrices can be found in [42].
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For p = 2, a linear partial difference equation has the following form

∑

(r,s)∈Z2

ArsXm+r,n+s = Fmn (m, n) ∈ �. (81)

It is known that [21] solution space of a partial difference equation is, in general,
infinite dimensional. This means that explicit solutions of partial difference equations
cannot be as simple as those of ordinary difference equations. The most common
techniques for solving linear partial difference equations are integral transforms.
For solving partial difference equations on bounded rectangular domains there are
direct methods using matrix tensor product methods [27]. However, these methods
are not applicable to the problems we have in mind for defective crystals. There
are also some direct methods for solving simple partial difference equations (see
[32]). However, these methods are not applicable for general vector-valued partial
difference equations.

4.1.3 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a powerful technique for solving systems of
linear difference equations. In the literature there are two different types of discrete
Fourier transform both known as DFT. The first type, which is the one we use in
this paper, transforms a sequence (or more precisely a lattice function) to a function
of a continuous variable(s). This is sometimes called continuous discrete Fourier
transform (CDFT). Theory of CDFT was developed in [2, 3, 41]. The other type
of DFT, which we call discrete DFT (DDFT), transforms a sequence to another
sequence [4, 7] and is usually useful for solving periodic difference equations or
difference equations on bounded domains. We will briefly review DDFT and its
applications in solving difference equations with periodic boundary conditions at the
end of this section. In this work by DFT we mean CDFT, i.e., the one that maps a
lattice function to a continuous function in k-space.

Consider a lattice L and a lattice function f : L → R
3. The discrete Fourier

transform of f is defined formally as

f̂ (k) = V
∑

j∈L
f ( j )eik·x j

k ∈ B, (82)

where V is the volume of the unit cell and B is the first Brillouin zone. For a chain
of atoms of unit lattice spacing this definition reduces to the usual definition of DFT
of a sequence in R, where V = 1, B = [−π, π ]. Let us denote by U the set of all
discrete Fourier transformable lattice functions. Let us also denote by R the set of
those lattice functions such that

| f (x)| ≤ C
3∏

i=1

(
1 + |xi|p) ∀ x = (x1, x2, x3) ∈ L, (83)

for some integer p ≥ 0 and constant C ≥ 0. It can be shown [41] that there is a one-
to-one correspondence between the spaces R and U . It should be noted that in the
definition of DFT the convergence should be understood in the sense of distributions.
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Inverse DFT is defined as

f ( j) = 1

(2π)3

∫

B
f̂ (k)e−ik·x j

d3k. (84)

DFT has many nice properties and here we mention a few of them. DFT is a linear
operator, i.e.,

(α f + βg)
∧ = α f̂ + β ĝ ∀α, β ∈ R, ∀ f, g ∈ U . (85)

Shifting property of DFT is essential in solving difference equations. Suppose

X̂n = Y(k). (86)

Then

X̂n+m = e−im·k Y(k). (87)

Discrete convolution of two lattice functions f and g is defined as

( f ∗ g)(i) = V
∑

j∈L
f (i − j )g( j ). (88)

Note that the multiplication f (i − j)g( j) is defined componentwise. If f, g ∈ U ,
then

(
f̂ ∗ g

)
(k) = f̂ (k)ĝ(k). (89)

Discrete Fourier Transform is a powerful tool in solving partial difference equations
but should be used carefully in numerical calculations as the integrands in inverse
DFT may be extremely oscillatory.

4.1.4 DFT and Difference Equations

Consider the following ordinary difference equation.

xp+1 − 2xp + xp−1 = fp p ∈ Z. (90)

Note that this difference equation is translation invariant, i.e., if the sequence {xp}p∈Z

is a solution so is the sequence {xp + c}p∈Z, ∀ c ∈ R. Applying DFT to this difference
equation we obtain

(
e−ik − 2 + eik) x̂p(k) = f̂p(k). (91)

Or

x̂p(k) = 1

2(cos k − 1)
f̂p(k). (92)

Thus formally

xp = 1

2π

∫ π

−π

e−ipk 1

2(cos k − 1)
f̂p(k)dk. (93)
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Note that this integral is not convergent in general because there is a singularity at
k = 0, i.e.,

1

2(cos k − 1)
= − 1

k2
+ O(1). (94)

This is a consequence of translation invariance of the difference equation. In other
words for this difference equation the solution can be obtained up to a rigid transla-
tion and this shows up in the inverse discrete Fourier transform as a singularity. One
can make the integral convergent by adding a suitable rigid translation. The following
would be a rigid translation that removes the singularity.

xp = 1

2π

∫ π

−π

e−ipk
[

1

2(cos k − 1)
f̂p(k) − eipk

2(cos k − 1)

]
dk. (95)

For R-valued difference equations there are rigorous treatments of this problem
in the literature (see [9] and [40]). In a special case when the loading sequence
is symmetric about p = 0 the inverse DFT is convergent. An example would be
the following.

f−p = fp ∀ p ∈ N, f0 = 0. (96)

In this case f̂p(0) = 0 and the inverse DFT is convergent.
Consider the following linear vector-valued partial difference equation with con-

stant coefficient matrices.
r1∑

α=−r1

r2∑

β=−r2

r3∑

γ=−r3

Aαβγ Um+α,n+β,p+γ = Fmnp (m, n, p) ∈ Z
3. (97)

Taking DFT from both sides of the above equation, we obtain

Z(k)Ûmnp(k) = F̂mnp(k) k ∈ B = [−π, π ]3, (98)

where

Z(k) =
r1∑

α=−r1

r2∑

β=−r2

r3∑

γ=−r3

e−i(αk1+βk2+γ k3)Aαβγ (99)

is the symbol of the difference equation. Assuming that Z(k) is invertible in B the
solution can be written as

Umnp = 1

(2π)3

∫

B
e−im·kZ−1(k)F̂mnp(k) dk, (100)

where m = (m, n, p). Symbol of a difference equation is not invertible, in general.
An example would be singularity of the symbol at k = 0 for a translation-invariant
difference equation. Assuming that origin is the only singularity point, solution of
the difference equation can be obtained by imposing a suitable rigid translation. The
following is a suitable choice.

Umnp = 1

(2π)3

∫

B
e−im·k [Z−1(k) − eim·kD(k)

]
F̂nmp(k) dk, (101)
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where

D(k) =
⎛

⎜
⎝

U(k) . . . U(k)
...

...

U(k) . . . U(k)

⎞

⎟
⎠ , U(k) =

⎛

⎝
d1(k) 0 0

0 d2(k) 0
0 0 d3(k)

⎞

⎠ ,

d1(k) = (
Z−1(k)

)
11 , d2(k) = (

Z−1(k)
)

22 , d3(k) = (
Z−1(k)

)
33 . (102)

An alternative approach to remove the singularity is as follows. Let us first
introduce the following change of variables

Umnp = (−1)m+n+p Umnp, Fmnp = (−1)m+n+p Fmnp, Aαβγ = (−1)α+β+γ Aαβγ . (103)

The governing equations in terms of the new variables are

r1∑

α=−r1

r2∑

β=−r2

r3∑

γ=−r3

Aαβγ Um+α,n+β,p+γ = Fmnp (m, n, p) ∈ Z
3. (104)

The above system of difference equations is not translation invariant. As an example,
let us look at the difference equation (90). Defining x̄p = (−1)pxp and f̄p = (−1)p fp,
the difference equation is rewritten as

−x̄p+1 − 2x̄p − x̄p−1 = (−1)p f̄p p ∈ Z. (105)

It is seen that this equation is not translation invariant. The solution of the original
difference equation can be written as

xp = (−1)p

2π

∫ π

−π

e−ipk

2(i sin k − 1)

̂̄fp(k)dk. (106)

4.1.5 Difference Equations on Finite Domains: Periodic Boundary Conditions

In any numerical treatment of defects in crystals, e.g., molecular dynamics, ab initio
calculations, etc., one takes a supercell large enough to be a representative of the
defective crystal and then extends it to the whole space periodically. A useful tool for
solving difference equations with periodic boundary conditions is the discrete DFT.
Here we explain some of its details for applications to ordinary difference equations.
But the results can be extended to partial difference equations with no difficulty.

Consider a function f : I → R, where I = {0, 1, ..., N − 1}, N ∈ N and f is peri-
odic, i.e.,

f (m + kN) = f (m) ∀ k ∈ Z. (107)

f can be thought of as a finite sequence with N elements. Discrete DFT of f is
defined as

f̂ (k) =
N−1∑

m=0

f (m)ωmk
N ∀ k ∈ I, (108)
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where ωN = e− 2π i
N . The inverse of discrete DFT has the following representation

f (n) = 1

N

N−1∑

n=0

f̂ (k)ω−nk
N ∀ n ∈ I. (109)

For a sequence {xn}N−1
n=1 it can be easily shown that

x̂n+1(k) = ω−k
N x̂n(k) + ω−k

N (xn − x0) . (110)

Similarly

x̂n−1(k) = ωk
N x̂n(k) + x−1 − xN−1. (111)

Let us consider the following discrete boundary-value problem

xn+1 − αxn + xn−1 = fn n = 0, 1, ..., N − 1,

x0 = xN (x−1 = xN−1). (112)

Taking DFT from both sides one obtains

Z (k)x̂n(k) = f̂n(k), (113)

where Z (k) = ωk
N + ω−k

N − α. Thus

x̂n(k) = Z (k)−1 f̂n(k) (114)

and hence

xn = 1

N

N−1∑

k=0

Z (k)−1 f̂n(k)ω−nk
N n ∈ I. (115)

This would be the solution sequence as long as Z (k) �= 0. Suppose α = 2, e.g., the
governing equation of a chain of atoms with harmonic interactions between nearest
neighbors. In this case the difference equation is translation invariant and hence
Z (0) = 0. In Eq. 115 let us remove the k = 0 term and define

x̄n = 1

N

N−1∑

k=1

Z (k)−1 f̂n(k)ω−nk
N n ∈ I. (116)

Note that

xn − x̄n = 1

N
Z (0)−1

N−1∑

m=0

fm, (117)

which is a constant, i.e., x̄n is equal to xn up to a rigid translation. Note also that if the
system is self-equilibrated, i.e., if

∑N−1
m=0 fm = 0 then the singularity of Z (k) at k = 0

causes no problem.
Let us now consider a vector-valued difference equation and define DFT compo-

nentwise. Thus for Xn ∈ R
d define

X̂n(k) =
N−1∑

m=0

ωmk
N Xm n ∈ I. (118)
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Therefore one can show the following two relations easily.

X̂n+1(k) = ω−k
N X̂n(k) + ω−k

N (XN − X0) , (119)

X̂n−1(k) = ωk
NX̂n(k) + X−1 − XN−1. (120)

Consider the following discrete boundary-value problem with a periodic boundary
condition.

A−1Xn−1 + A0Xn + A1Xn+1 = Fn n = 0, ..., N − 1,

XN = X0, X−1 = XN−1. (121)

Taking DFT from both sides and using the boundary conditions, formally one has

X̂n(k) = Z(k)−1F̂n(k) (122)

and hence

Xn = 1

N

N−1∑

k=0

Z(k)−1F̂n(k)ω−nk
N n = 0, ..., N − 1, (123)

where Z(k) = ωk
NA−1 + A0 + ω−k

N A1. Note that for a translation-invariant difference
equation Z(0) is singular and the solution is obtained by removing the term k = 0.

5 Lattice Statics Analysis of a Defective Lattice of Point Dipoles

In this section we consider a two-dimensional defective lattice of dipoles with lattice
parameter a. Each lattice point represents a unit cell and the corresponding dipole
is somehow a measure of the distortion of the unit cell with respect to the high
symmetry phase. This system is interesting in the sense that its potential energy is not
only a function of atom (unit cell) positions; it depends on polarization vectors too.
This means that the potential energy is partially translation invariant. Total energy
of the lattice is assumed to have the following three parts

E
({xi}i∈L, {Pi}i∈L

) = Ed ({xi, Pi}i∈L
)+ E short ({xi}i∈L

)+ Ea ({Pi}i∈L
)
, (124)

where Ed, E short and Ea are the dipole energy, short-range energy and anisotropy
energy, respectively. These energies have the following forms. The first term is

Ed = 1

2

∑

i, j∈L
j�=i

[
Pi · P j

|xi − x j|3 − 3Pi · (xi − x j) P j · (xi − x j)

|xi − x j|5
]

+
∑

i∈L

1

2α
Pi · Pi, (125)
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where α is the electric polarizability and is assumed to be the same for all the
lattice points (molecules).6 The short-range energy is modelled by a Lennard–Jones
potential with the following form

E short = 1

2

∑

i, j∈L
j�=i

4ε

[(
a

|xi − x j|
)12

−
(

a
|xi − x j|

)6
]

. (126)

The anisotropy energy quantifies the tendency of the lattice to remain in some energy
wells. We assume the following form for this energy

Ea =
∑

i∈L
KA|Pi − P1|2 ...|Pi − Ps|2. (127)

This means that the dipoles prefer to have values in the set {P1, ..., Ps}. Note that this
is a self-energy.

Let S = ({xi}i∈L, {Pi}i∈L
)

be the equilibrium configuration (a local minimum of the
energy), i.e.,

∂E
∂xi

= ∂E
∂Pi

= 0 ∀ i ∈ L. (128)

Linearizing the governing equations (128) about a reference configuration B0 =({xi
0}i∈L, {Pi

0}i∈L
)

we obtain

∂E
∂xi

(B0) + ∂2E
∂xi∂xi

(B0) (xi − xi
0) +

∑

j∈Si

∂2E
∂x j∂xi

(B0) (x j − x j
0)

+ ∂2E
∂Pi∂xi

(B0) (Pi − Pi
0) +

∑

j∈Si

∂2E
∂P j∂xi

(B0) (P j − P j
0) + ... = 0, (129)

∂E
∂Pi

(B0) + ∂2E
∂xi∂Pi

(B0) (xi − xi
0) +

∑

j∈Si

∂2E
∂x j∂Pi

(B0) (x j − x j
0)

+ ∂2E
∂Pi∂Pi

(B0) (Pi − Pi
0) +

∑

j∈Si

∂2E
∂P j∂Pi

(B0) (P j − P j
0) + ... = 0, (130)

where Si is the neighboring set of atom i. Note that the only contribution to the
term ∂2E

∂Pi∂Pi (B0) comes from the anisotropy energy and the polarizability part of the
dipole–dipole energy and has the following form for the case of s = 27

Kpp
0 := ∂2E

∂Pi∂Pi
(B0)

= 2KA
(|Pi

0 − P1|2 + |Pi
0 − P2|2

)
I + 4KA

(
Pi

0 − P1
)⊗ (

Pi
0 − P2

)

+ 4KA
(
Pi

0 − P2
)⊗ (

Pi
0 − P1

)+ 1

α
I, (131)

6Note that the last part of this energy is a self-energy.
7But note that Kpp

0 has contributions from dipole–dipole interactions.
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where I is the 2 × 2 identity matrix and ⊗ denotes tensor product. Assuming
interactions of order m, for a defective crystal with a 1-D symmetry reduction the
set Si can be partitioned as follows

Si =
m⊔

α=−m

N⊔

I=1

SIα(i), (132)

where SIα(i) is the set of atoms of type I lying on the line parallel to the y-axis and
αa away from the atom i.8 Let us define

ui = xi − xi
0, qi = Pi − Pi

0, (133)

fx
i = − ∂E

∂xi
(B0) , fp

i = − ∂E
∂Pi

(B0) , (134)

and

Kxx
iIα = δα0

∂2E
∂xi∂xi

(B0) +
∑

j∈SIα(i)

∂2E
∂x j∂xi

(B0) ,

Kxp
iIα = δα0

∂2E
∂Pi∂xi

(B0) +
∑

j∈SIα(i)

∂2E
∂P j∂xi

(B0) ,

Kpx
iIα = δα0

∂2E
∂xi∂Pi

(B0) +
∑

j∈SIα(i)

∂2E
∂x j∂Pi

(B0) ,

Kpp
iIα = δα0Kpp

0 +
∑

j∈SIα(i)

∂2E
∂P j∂Pi

(B0) . (135)

With the above definitions the linearized governing equations can be written as

m∑

α=−m

N∑

I=1

Kxx
iIαuI

α +
m∑

α=−m

N∑

I=1

Kxp
iIαqI

α = fx
i , (136)

m∑

α=−m

N∑

I=1

Kpx
iIαuI

α +
m∑

α=−m

N∑

I=1

Kpp
iIαqI

α = fp
i . (137)

Now by simply looking at the linearized equations, one would expect to see
translation-invariance for the variable uI

α . This means that the sum of matrices that
act on uI

α cannot be full rank, i.e., in R
2

N
(

m∑

α=−m

N∑

I=1

Kxx
iIα

)

= N
(

m∑

α=−m

N∑

I=1

Kpx
iIα

)

= 2 (138)

Note that this is not the case for matrices that act on qI
α variables.

One should note that dipole–dipole energy is pairwise but not isotropic. In other
words, the energy is the sum of pairwise interaction of dipoles but for each pair

8Here we have assumed that each unit cell has N dipoles and the defect lies on the line x = 0.
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the energy is not only a function of the relative distance of dipoles; in addition to
relative distances it depends on the dot product of the relative position vectors and
the polarization vectors of the two dipoles.

It is easy to show that for dipole–dipole energy the following holds (as a conse-
quence of translation invariance)

∂2E
∂xi∂xi

(B0) = −
∑

j∈Si

∂2E
∂x j∂xi

(B0) . (139)

Note also that

∑

j∈Si

∂2E
∂x j∂xi

(B0) =
∑

j∈Si0

∂2E
∂x j∂xi

(B0) +
∑

j∈Si\Si0

∂2E
∂x j∂xi

(B0) , (140)

where Si0 is the equivalence class with i as its representative. Thus

∂2E
∂xi∂xi

(B0) +
∑

j∈Si0

∂2E
∂x j∂xi

(B0) = −
∑

j∈Si\Si0

∂2E
∂x j∂xi

(B0) . (141)

It should be noted that only the dipole–dipole energy contributes to ∂2E
∂x j∂Pi .

It is an easy exercise to show that for dipole–dipole energy the following holds

∂2E
∂xi∂Pi

= ∂2E
∂Pi∂xi

= −
∑

j∈Si

∂2E
∂x j∂Pi

. (142)

This can be restated as

∂2E
∂xi∂Pi

+
∑

j∈Si0

∂2E
∂x j∂Pi

= −
∑

j∈Si\Si0

∂2E
∂x j∂Pi

. (143)

As a consequence of Eqs. 141 and 143 we have

Kxx
II0 = −

m∑

α=−m

N∑

J=1
J �=I

Kxx
I Jα and Kpx

II0 = −
m∑

α=−m

N∑

J=1
J �=I

Kpx
I Jα. (144)

The substiffness matrix Kxp
II0 has a more complicated structure. Note that

Kxp
II0 = ∂2E

∂Pi∂xi
+
∑

j∈Si0

∂2E
∂P j∂xi

= −
∑

j∈Si

∂2E
∂x j∂Pi

+
∑

j∈Si0

∂2E
∂P j∂xi

= −
∑

j∈Si\Si0

∂2E
∂x j∂Pi

−
∑

j∈Si0

∂2E
∂x j∂Pi

+
∑

j∈Si0

∂2E
∂P j∂xi

= Kpx
II0 +

∑

j∈Si0

(
∂2E

∂P j∂xi
− ∂2E

∂x j∂Pi

)
. (145)
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The linearized governing equations can be written in a more compact form in
terms of interaction of unit cells as

m∑

α=−m

AαUn+α = Fn, (146)

where

Aα =
(

Axx
α Axp

α

Apx
α App

α

)
∈ R

4N×4N, Um = {u1
m...uN

m q1
m...qN

m}T,

Fm = {fx
m1...f

x
mN fp

m1...f
p
mN}T,

A∗

α =

⎛

⎜
⎝

K∗

11α . . . K∗


1Nα

...
...

K∗

N1α . . . K∗


NNα

⎞

⎟
⎠ ∈ R

N×N ∗, 
 = x, p. (147)

For a defective crystal with a 2-D symmetry reduction discrete governing equations
can be obtained similarly.

5.1 Hessian for the Bulk Lattice

The linearized governing equations in the bulk can be written as

N∑

J=1

Kxx
I JuJ +

N∑

J=1

Kxp
I JqJ = fx

I I = 1, ..., N, (148)

N∑

J=1

Kpx
I J uJ +

N∑

J=1

Kpp
I J qJ = fp

I I = 1, ..., N, (149)

where

fx
I = − ∂E

∂xI
(B0) , fp

I = − ∂E
∂PI

(B0) ,

Kxx
I J = δI J

∂2E
∂xI∂xJ

(B0) +
∑

j∈LI\{I}

∂2E
∂x j∂xI

(B0) ,

Kxp
I J = δI J

∂2E
∂PJ∂xI

(B0) +
∑

j∈LI\{I}

∂2E
∂P j∂xI

(B0) ,

Kpx
I J = δI J

∂2E
∂xJ∂PI

(B0) +
∑

j∈LI\{I}

∂2E
∂x j∂PI

(B0) ,

Kpp
I J = δI JKpp

0 +
∑

j∈LI\{I}

∂2E
∂P j∂PI

(B0) I, J = 1, ..., N. (150)
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Assuming that s = 2(number of proffered polarizations), P1 = −P2 = P0, one has
Kpp

0 = (
8KA P2

0 + 1
α

)
I. Now the Hessian is written as

H =
⎛

⎜
⎝

K11 . . . K1N
...

...

KN1 . . . KNN

⎞

⎟
⎠ , KI J =

(
Kxx

I J Kxp
I J

Kpx
I J Kpp

I J

)

, I, J = 1, ..., N (151)

Note that H has a zero eigenvalue of multiplicity two that represents the x-translation
invariance of the governing equations.

It is known that [14, 39] point dipole model does not describe the true physics of
polarizable molecules, especially in small distances. One example of breakdown of
this model is ‘polarization catastrophe’ which is an instability in energy minimization
of systems governed by point-dipole interactions. In our calculations, we observed
that the Hessian of the dipole–dipole potential is not positive–definite. However,
by adding a short-range energy and an anisotropy energy the total Hessian can be
positive–definite. We do not argue that our model potential represents any physical
system. Our goal here is to demonstrate the power of our theory of anharmonic
lattice statics for analysis of a defective crystal governed by a stable potential.

5.2 Example 1: A 180◦ Domain Wall in a 2-D Lattice of Dipoles

Let us look at a 180◦ domain wall and consider the reference configuration shown
in Figure 6. In a 180◦ domain wall, polarization vector changes from −P0 on the left
side of the domain wall to P0 on the right side of the domain wall. We are interested
in understanding the structure of the defective lattice close to the domain wall. In
this example, each equivalent class is a set of atoms lying on a line parallel to the
domain wall, i.e., we have a defective crystal with a 1-D symmetry reduction. As we
will see shortly, this is a simple but rich example. For index n in the reduced lattice
(see Figure 6), the vector of unknowns is

Un = {un, qn}T ∈ R
4. (152)

Consider a square lattice with lattice vectors e1 = {a, 0}T and e2 = {0, a}T with
polarization vectors P = P0{0, 1}T. In the bulk, because of symmetry fx = 0. It can
be easily shown that

fp = −
∑

j∈L
j�=i

{
P

|xi − x j|3 − 3
P · (xi − x j)(xi − x j)

|xi − x j|5
}

− 1

α
P. (153)

Multiplying both sides by P and enforcing fp = 0 we obtain

P2
0

α
= −

∑

j∈L
j�=i

{
P2

0

|xi − x j|3 − 3

[
P · (xi − x j)

]2

|xi − x j|5
}

. (154)
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Figure 6 Reference configuration for a 180◦ domain wall in the 2-D lattice of dipoles, its symmetry
reduction and its reduced lattice. Note that domain wall is not a crystallographic plane.

Thus for the bulk polarization P = P0{0, 1}T we have

α =

⎡

⎢
⎢
⎣

∑

(m,n)∈Z
2

(m,n) �=(0,0)

1

a3

{
3n2

(m2 + n2)
5
2

− 1

(m2 + n2)
3
2

}
⎤

⎥
⎥
⎦

−1

. (155)

Given the lattice parameter a and the bulk polarization P0, polarizability α is
uniquely determined for the bulk lattice. We can now check positive–definiteness
of the Hessian for a the bulk lattice.

5.2.1 Solution of The Governing Difference Equation

Let us assume that m = 1, i.e., a given unit cell interacts only with its nearest neighbor
equivalence classes. Solution for an arbitrary m can be found similarly. Because of
symmetry it is possible to work with only one half of the lattice. Bulk equations for
the right half lattice are

A−1Un−1 + A0Un + A1Un+1 = Fn n ≥ 1. (156)
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Governing equations for n = 0 are boundary equations. These can be written as (note
that U−1 = −U0)

(
Ab

0 − Ab
−1

)
U0 + Ab

1 U1 = F0, (157)

where the superscript b is to emphasize that the boundary stiffness matrices are in
general different from the bulk ones. Let us define the following variable

Xn =
(

Un−1

Un

)
n ≥ 1. (158)

Now the governing equation for Xn is

Xn+1 = AXn + Gn n ≥ 1, (159)

where

A =
(

0 1
−A−1

1 A−1 −A−1
1 A0

)
∈ R

8×8, Gn =
(

0
A−1

1 Fn

)
∈ R

8. (160)

Note that because of symmetry

Un = −U−n−1 n ≤ −1, (161)

Assuming that Fn = 0 for n > M we have

X2 = Ac + G1,

X3 = A2c + AG1 + G2,

...

XM+1 = AMc + AM−1G1 + ... + GM = AMc + d,

XM+2 = A
(
AMc + d

)
,

...

Xn = An−(M+2)
(
AMc + d

)
n ≥ M + 1, (162)

where c = X1 = {U0, U1}T and d = AM−1G1 + ... + GM. For the potential we use it
turns out that M = 5 (see Figure 7).

A physically meaningful solution should be bounded at infinity. The matrix A
is not diagonalizable because of translation invariance of the governing equations.9

However, it has the following Jordan decomposition

A = X�X−1, (163)

where X is the matrix of generalized eigenvectors and � has the following form

� =
⎛

⎝
�1

J
�2

⎞

⎠ ∈ R
8, �1, �2 ∈ R

2. (164)

9This is the case only for un.



72 J Elasticity (2007) 86:41–83

Figure 7 Unbalanced forces in
the reference configuration of
a 180◦ domain wall in the 2-D
lattice of dipoles. Fx is the
component of fx perpendicular
to the domain wall and Fp is
the component of fp parallel to
the domain wall. Other force
components are zero because
of symmetry.

Here �1 and �2 are diagonal matrices of eigenvalues of modulus greater than and
smaller than 1, respectively and J ∈ R

4×4 is the Jordan block corresponding to the
eigenvalue λ = 1 with multiplicity four. Now for n ≥ M + 1

Xn = X�n−(M+2)
(
�MX−1c + X−1d

)
. (165)

Boundedness equations can be written as

(
�MX−1c

)
{1,...,4} = − (

X−1d
)
{1,...,4} , (166)

where (.){1,...,4} means the first four rows of the matrix (.). Boundary and boundedness
equations give us the vector of unknowns c.

The harmonic and anharmonic solution for the numerical values of a = 1.0, P0 =
1.0, ε = 1.0

8 , KA = 2.0 are shown in Figure 8. Note that because of symmetry for
a given unit cell number n, Un = {ux 0 0 qy}T. Anharmonic lattice statics iterations
converged after almost 10 iterations. For convergence tolerance for displacement and
polarization unbalanced forces are 10−4 ε

a and 10−4 P0
α

, respectively. The harmonic so-
lution for the range of interaction m = 2 differs from that of the range of interaction
m = 1 by less than 0.5% and the anharmonic displacements are the same. This means
that the effective potential is highly localized and considering m = 1 is enough.10

However, in each step unbalanced forces are calculated exactly. It is seen that a 180◦
domain wall is two lattice spacings thick. Interestingly, this is in qualitative agreement
with our calculations with shell potentials for BaTiO3 and PbTiO3 [42] and also with

10In all the following numerical examples m = 1 is chosen.
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Figure 8 Harmonic and
anharmonic displacements in
180◦ domain wall in the 2-D
lattice of dipoles.
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ab initio calculations [31]. To understand the effect of different parameters of the
potential on the domain wall structure, we consider the following four systems

S1 : a = 1.0, P0 = 1.0, ε = 10.0

8
, KA = 2.0 (167)

S2 : a = 1.0, P0 = 1.0, ε = 1.0

8
, KA = 2.0 (168)

S3 : a = 1.0, P0 = 1.0, ε = 1.0

8
, KA = 10.0 (169)

S4 : a = 1.0, P0 = 0.5, ε = 1.0

8
, KA = 2.0 (170)

Figure 9 Harmonic and
anharmonic displacements for
four different choices of the
interatomic potential.
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S2 is the system we just discussed. S1 has a short energy 10 times larger than that
of S2 and S3 has an anisotropic energy five times larger than that of S1. S4 has a
polarization with half of the magnitude of that of S1. The anharmonic displacements
of these four systems are compared in Figure 9. It is seen that S1 has the smallest ux

displacements and the other three systems have almost the same ux displacements.
This shows that the x displacements are controlled by short-range energy and the
more dominant the short-range energy the smaller the x displacements. S1 and S2
have the same uq and this is not surprising as they have the same polarizations and
the same anisotropic energies. S3, which has the largest anisotropic energy, has the
smallest uq. S4 has the largest uq which means that the smaller the dipole–dipole
contribution the larger the polarization displacements. An important observation is
that all the four systems have the same domain wall thickness. This is not surprising
as a simple dimensional analysis shows that the domain wall thickness is proportional
to lattice spacing a.

Remark In this example, we presented the exact harmonic solutions. One can
solve an approximate harmonic problem by using a homogenized system in terms
of the stiffness matrices. In general, stiffness matrices on the left and right sides
of the wall (and also stiffness matrices for the unit cells close to the wall) are
different. One can average the stiffness matrices and then use DFT for solving the
resulting homogeneous vector-valued difference equation. The harmonic solutions

Figure 10 a A one-parameter family of reference configurations for the 180◦ domain wall. b A two-
parameter family of reference configurations for the same 180◦ domain wall.
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are different from the exact solutions but as the unbalanced forces are calculated
exactly both exact and approximate harmonic solutions lead to the same anharmonic
solutions.

5.2.2 Sensitivity of Solutions to the Choice of Reference Configuration:
One and Two-parameter Families of Reference Configurations

Now one may wonder what would happen if one starts with a different reference
configuration. We studied the effect of choice of reference configuration on the so-
lutions by looking at the one and two-parameter families of reference configurations
shown in Figure 10. In Figure 10a, we assume that polarization vectors in the two
layers adjacent to the wall have magnitude KP0. We solved the governing equations
for different K values (K ∈ [0.25, 1.75]) and did not observe any new equilibrium
configuration for any of these large perturbations form the original nominal defect.
In Figure 10b a two-parameter family of reference configurations is shown. In this
case, polarization vectors in the two layers adjacent to the wall have magnitudes
K1 P0 or K2 P0. To be able to reduce the governing partial difference equations to
an ordinary difference equation one needs to choose a larger unit cell as shown

Figure 11 Reference
configuration for a 180◦
domain wall in the 2-D lattice
of dipoles, its symmetry
reduction and its reduced
lattice. In this example domain
wall passes through some
atoms, i.e., it is a
crystallographic line.
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in the figure. Again for any choice of K1, K2 ∈ [0.25, 1.75], we obtained the same
equilibrium configuration for the domain wall.

5.3 Example 2: A Second Type of 180◦ Domain Wall

The reference configuration for this type of 180◦ domain wall is shown in Figure 11.
In this case lattice vectors are e1 = { a√

2
,− a√

2
}T and e2 = { a√

2
, a√

2
}T with polarization

vectors P = P0{0, 1}T. In the bulk, again because of symmetry fx = 0 and one can
show that

α =

⎡

⎢
⎢
⎣

1

a3

∑

(m,n)∈Z
2

(m,n) �=(0,0)

{
3(m − n)2

2(m2 + n2)
5
2

− 1

(m2 + n2)
3
2

}
⎤

⎥
⎥
⎦

−1

. (171)

The form of governing equations are exactly similar to the previous example and
again because of symmetry we can reduce the problem to a half lattice. In this

Figure 12 Harmonic and
anharmonic displacements in
180◦ domain wall in the 2-D
lattice of dipoles.
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example equivalence classes are lines of atoms parallel to the domain wall and a√
2

apart from one another. Unbalanced forces are again highly localized. Figure 12
shows the harmonic and anharmonic solutions for both position vectors and po-
larization for the numerical values of a = 1.0, P0 = 0.5, ε = 1.0, KA = 2.0. Again,
displacements are perpendicular to the domain wall and polarization displacements
are parallel to the wall, i.e., for unit cell number n, Un = {ux 0 0 qy}T. It is seen that
the first harmonic solution is dramatically different from the next iterations and the
anharmonic solutions. This is, in general, not surprising and shows the inadequacy of
harmonic solutions for a chosen reference configuration.

5.4 Example 3: A 90◦ Domain Wall in a 2-D Lattice of Dipoles

In this example a 90◦ domain wall is considered. The reference configuration is shown
in Figure 13. Governing equations have a form similar to that of 180◦ domain walls.
Symmetry of the domain wall implies that polarization force is nonzero only parallel
to the domain wall, i.e., because of symmetry for the nth unit cell Un = {ux uy 0 qy}T.
We also have the following symmetry

U−n = RU−n−1, R =

⎛

⎜
⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ n ≥ 1. (172)

Figure 13 Reference
configuration for a 90◦ domain
wall in the 2-D lattice of
dipoles, its symmetry
reduction and its reduced
lattice. Note that domain wall
is not a crystallographic line.
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Figure 14 Unit cell displacements in a 90◦ domain wall in the 2-D lattice of dipoles.

This reduces the problem to a half lattice similar to what we saw for 180◦ domain
walls. For the numerical values of a = 1.0, P0 = 1.0, ε = 1.0, KA = 2.0 displace-
ments are shown in Figure 14. Polarization displacements are shown in Figure 15. It
is seen that the domain wall is very sharp and its thickness is comparable to those of
180◦ domain walls. Interestingly, this is similar to what has been seen for ferroelectric
180 and 90◦ domain walls in tetragonal PbTiO3 using shell potentials [42] and ab
initio calculations [31].

Figure 15 Polarization
displacement in a 90◦ domain
wall in the 2-D lattice of
dipoles.
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6 Conclusions

In this paper we developed a general theory of anharmonic lattice statics that can
be used in systematic analysis of a defective crystal given an interatomic potential.
This differs from all the existing treatments in that it does not apply only to Bravais
lattices and does not rely on a knowledge of force constants. Instead, it can be used
for arbitrary defective lattices and all is needed is an interatomic potential describing
the interaction of atoms. We started by looking at deformation of a crystal from a
given reference configuration as a discrete deformation mapping and presented all
the developments in a language very similar to continuum mechanics.

We explained how one should construct the discrete governing equations for a
given complex lattice. The discrete governing equations are linearized about a refer-
ence configuration. The reference configuration is arbitrary and problem dependent
and in general not force-free and perhaps not translation invariant. Our experience
shows that a nominal defect structure could be a good reference configuration. Lin-
earizing the (nonlinear) discrete governing equations about the reference configura-
tion leads to a nonhomogeneous system of linear difference equations with variable
coefficient matrices. The forcing terms are a result of the fact that the reference
configuration is not a local minimum of the energy, in general. We call these forces
the unbalanced forces. We classified defective complex lattices into three groups,
namely defective crystals with 1-D, 2-D and no symmetry reductions. Exploiting a
symmetry reduces the dimensionality of the discrete governing equations and this
leads to numerically more efficient solution techniques. Having analytic solutions for
linearized governing equations, the anharmonic solution can be obtained by modified
Newton–Raphson iterations. The idea is to keep the initial stiffness matrices and
update the reference configuration by calculating the unbalanced forces in each step.
We explained the convergence issue for long range interactions and our presentation
is not just formal.

For solving the harmonic displacements we used methods from theory of differ-
ence equations. Our solution technique for an infinite defective crystal with a 1-D
symmetry reduction is novel. For more complicated defective crystals with 2-D and
no symmetry reductions we use discrete Fourier transform (DFT) for solving the
governing partial difference equations. We explained the subtleties in using DFT for
translation-invariant difference equations.

As an example of a non-isotropic pairwise potential in which atom position vectors
are not the only degrees of freedom, we considered a lattice of point dipoles. Dipole–
dipole interactions are pairwise but anisotropic as the potential energy of two dipoles
depends on the dot product of the relative position vector and the polarization
vectors in addition to the relative distance of the two dipoles. It was shown that our
general formulation of lattice statics can easily handle such a system. We were able
to solve two types of 180◦ domain wall problems. It was observed that the domain
wall thickness is about two lattice spacings. Interestingly, this is in quantitative
agreement with our calculations with shell potentials for the ferroelectric tetragonal
PbTiO3 and also ab initio calculations. In one domain wall problem, it was observed
that harmonic and anharmonic solutions are dramatically different. This shows the
importance of anharmonic effects close to defects. We also solved a 90◦ domain
wall problem. It was observed that domain wall thickness is again about two lattice
spacings. This is again similar to what has been observed for ferroelectric domain
walls in PbTiO3 using shell potentials and ab initio calculations.
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We believe this method can be useful in generating semi-analytical solutions for
many different systems with defects. The semi-analytical solutions can be very useful
for validating numerical techniques. Semi-analytical solutions can also be useful
in studying different interatomic potentials. We believe this development is a step
forward in rationalizing lattice scale calculations.
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Appendix: Three-body Interactions

In this appendix we consider three-body interactions and discuss some of the
modifications that should be made in the theory that we developed in the bulk of this
paper. As the effect of pairwise interactions can be studied separately, let us assume
that a collection of atomsL is governed by only three-body interactions. Generalizing
the results of this appendix to arbitrary N-body interactions is straightforward. The
energy of the system can be written as

E = 1

6

∑

i, j,k∈L
( j,k) �=(i,i)

φ(xi, x j, xk). (173)

Note that φ is invariant under permutations of i, j, k. For example, φ(xk, x j, xi) =
φ(xi, x j, xk). Because of material-frame-indifference φ has the following dependence
on the position vectors [24]

φ(xi, x j, xk) = ψ
(
rij, r jk, rki, ωijk, ω jik, ωkij) , (174)

where

r pq = |xp − xq|, ωpqs = (xp − xq) · (xp − xs). (175)

Force on an atom i comes from interactions of i with paris of atoms j, k. Contribution
of the triplet (i, j, k) to this force is

fi(i, j, k) = −∂φ(xi, x j, xk)

∂xi
. (176)

f j(i, j, k) and fk(i, j, k) are defined similarly. It is an easy exercise to show that

fi(i, j, k) + f j(i, j, k) + fk(i, j, k) = 0. (177)

This is the analogue of the relation f ji = −fij for pairwise interactions. It is easy to
show that balance of angular momentum is trivially satisfied provided that balance
of linear momentum is already satisfied.

Neighboring set Si of atom i ∈ L is the set of all the atoms that interact with i.
By definition, i /∈ Si. Neighboring set Sij of the pair of atoms (i, j), i �= j is the set
of atoms in L that interact with the pair (i, j). By definition, i, j /∈ Sij. Note also that
Sij = Si \ { j}.

Atom energy E i can be defined as one sixth of the energy of all the triplets of
atoms adjacent to i. Pair-atom energy E ij is one half of the energy of all the triplets
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of atoms adjacent to the pair (i, j). Note that energy of the triplet (i, j, k) is trivially
defined as

E ijk = φ(xi, x j, xk). (178)

Let us consider a discrete system of atoms without any external body forces.
Linearization of the governing equations about a reference configuration B0 can be
expressed as

∂2E i

∂xi∂xi
(B0) ui +

∑

j∈Si

∂2E i

∂x j∂xi
(B0) u j = −∂E i

∂xi
(B0) . (179)

This can be simplified to read

∂2E i

∂xi∂xi
(B0) ui +

∑

j∈Si

∑

k∈Sij

∂2φ(xi, x j, xk)

∂x j∂xi
(B0) u j = −∂E i

∂xi
(B0) . (180)

Now suppose the defective crystal has a 1-D symmetry reduction, i.e.,

Si =
∞⊔

α=−∞

N⊔

I=1

SIα(i). (181)

Thus

∑

j∈Si

∂2E i

∂x j∂xi
(B0) u j =

∞∑

α=−∞
′

N∑

I=1

∑

j∈SIα(i)

∑

k∈Sij

∂2φ(xi, x j, xk)

∂x j∂xi
(B0) uIα

=
∞∑

α=−∞
′

N∑

I=1

KiIαuIα, (182)

where

KiIα =
∑

j∈SIα(i)

∑

k∈Sij

∂2φ(xi, x j, xk)

∂x j∂xi
(B0) . (183)

For three-body interactions the following relation holds (as a consequence of trans-
lation invariance)

∂2E i

∂xi∂xi
= −

∑

j∈Si

∂2E i

∂x j∂xi
. (184)

This means that for a defective crystals with 1-D and 2-D symmetry reductions,
respectively, we have

KI I0 = −
∞∑

α=−∞
′

N∑

J=1
J �=I

KI Jα, (185)

KI I0 = −
∞∑

α,β=−∞
′

N∑

J=1
J �=I

KI Jαβ, (186)
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which is exactly what we had for pairwise interactions. This is not surprising as the
above relations are a consequence of translation invariance of the lattice irrespective
of the form of interactions. In conclusion, it is seen that in our formulation of lattice
statics, the only modification needed for three-body interactions is in the definition
of substiffness matrices.
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