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SUMMARY

The meshless element-free Galerkin method (EFGM) is considered and compared to the 9nite-element
method (FEM). In particular, topological aspects of meshless methods as the nodal connectivity and
invertibility of matrices are studied and compared to those of the FE method. We de9ne four associated
graphs for meshless discretizations of EFGM and investigate their connectivity. The ways that the
associated graphs for coupled FE-EFG models might be de9ned are recommended. The associated graphs
are used for nodal ordering of meshless models in order to reduce the bandwidth, pro9le, maximum
frontwidth, and root-mean-square wavefront of the corresponding matrices. Finally, the associated graphs
are numerically compared. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 9nite-element method (FEM) is a numerical method that has been most widely used in
solid mechanics for the last three decades. Nowadays most analysis softwares are based on
this numerical technique. Yet, this method, while being very e@cient, has some drawbacks. For
one, mesh generation is very time-consuming and expensive especially for three-dimensional
problems. The 9nite-element method is not e@cient for solving problems such as crack
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propagation or large deformations for which remeshing is required in each step of the analysis.
Numerical methods for which data preparation is less expensive, are more attractive for these
classes of problems.

In recent years several meshless methods have appeared in the literature. These methods
do not require any 9xed connectivity information such as mesh. In these methods the dis-
crete model is completely represented by nodes and a description of the boundary. DiFerent
meshless methods have diFerent interpolation constructions, but they have many properties in
common.

Lucy [1] in 1977 introduced the 9rst meshless method. Calling it the smooth particle
hydrodynamics method, he used it to model astrophysical phenomena without boundaries. In
the literature, meshless methods have also been referred to as gridless, element-free, clouds,
point element, and diFuse elements. Among the many meshless methods we can mention are:
particle-in-cell methods [2], diFuse-element methods [3], h–p clouds [4], the particle-of-unity-
9nite element method [5], wavelet particle methods [6; 7], and reproducing-kernel-particle
methods [6–8].

It is worth mentioning that one of the disadvantages of meshless methods is the di@culty
of applying essential boundary conditions. Belytschko et al. [9], enforced essential boundary
conditions for their element-free Galerkin method by using Lagrange multipliers. Lu et al. [10],
applied geometric boundary conditions using a modi9ed variational principle. Krongauz and
Belytschko [11] enforced the essential boundary conditions by inserting a string of 9nite
elements along the essential boundary.

Using meshless methods leads, as do other numerical techniques, to solving a very large
system of linear equations:

Kx= f

Traditional methods of solving systems of linear equations are not e@cient for practical
engineering problems; the matrix K is highly sparse and special numerical techniques should
be used to solve these equations. For an e@cient analysis, band, pro9le, and frontal methods
are widely used. There have been many investigations into ordering nodes and elements so
as to yield optimal or near-optimal banded matrices or matrices with the lowest possible pro-
9les. There is a variety of procedures for optimally analysing structures using displacement
or force methods. Some of these ordering methods are graph theoretical. When using graph
theory in these classes of methods, connectivity properties of a 9nite-element model or those
of a skeletal structure are transformed into the topological properties of graphs.

Cuthill and McKee [12] were the 9rst to use graph theory to reduce the bandwidth of
stiFness matrices for skeletal structures. Kaveh [13; 14] oFered a two-step method for nodal
ordering using a shortest route tree. For ordering 9nite-element nodes, diFerent methods have
been developed to date. The corner node method was introduced by Cassell et al. [15], and
by Kaveh and Rahimi Bondarabadi [16]. Kaveh [13; 14] and Fenves and Law [17] applied a
natural associated graph in a two-step approach. Sloan [18] and Livesley and Sabin [19] used
an element clique graph. Kaveh [20] de9ned a connectivity co-ordinate system for node and
element ordering. Kaveh and Behfar [21] de9ned 9ve diFerent graphs for the connectivity
of FE models for 9nite-element nodal ordering and compared them. Kaveh and Roosta [22]
presented nine diFerent graphs for representing the connectivity of FE models and compared
them numerically.
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As for existing numerical methods, having e@cient solution procedures for meshless
methods is crucial. These methods seem to be practically useful and in the near future
they will be used in practical applications. Therefore, an investigation of nodal ordering
for meshless discretizations is of great practical importance. In this article, we study some
topological aspects of meshless methods and de9ne some associated graphs for nodal order-
ing. It should be noted that if we have a good understanding of the topology of a mesh-
less model, appropriate associated graphs can be de9ned. Having an appropriate associated
graph that describes the topology of the model correctly, any of the excising nodal or-
dering algorithms can be utilized. In this paper, we will not discuss those nodal ordering
algorithms.

This article is organized as follows. In Section 2 the element-free Galerkin method (EFGM)
is reviewed and its nodal connectivity is discussed and compared with that of the 9nite-element
method (FEM). Section 3 addresses some issues regarding the invertibility of the relevant
matrices. In Section 4, four associated graphs are de9ned for meshless discretizations and the
possible ways of de9ning graphs for coupled FE-EFGM are discussed. In Section 5 nodal
ordering methods for meshless discretizations are introduced. In Section 6 some numerical
examples are solved and the associated graphs are numerically compared. Conclusions are
given in Section 7.

2. THE ELEMENT-FREE GALERKIN METHOD

The element-free Galerkin method is a meshless method that uses a moving least-squares
approximation. Nayroles et al. [3], the 9rst to use a moving least-squares approximation in a
Galerkin method, called it the diFuse-element method. The interpolants used in this method
had been introduced and investigated earlier by Lancaster and Salkauskas [23]. Later the
method was modi9ed by Belytschko et al. [9], and called the element-free Galerkin method.
The concepts we introduce in the present section follow Belytschko et al. [9], and Belytschko
et al. [24].

2.1. Moving least-squares approximation

The element-free Galerkin method uses moving least-squares interpolants. Moving least-
squares require only nodes for constructing shape functions. Here, our goal is to approxi-
mate a function u(x) in the domain L. According to the moving least-squares method, u(x)
is approximated by uh(x) as

uh(x)=
m∑
i=1
pi(x)ai(x)= pT(x)a(x) (1)

where pi(x) are monomial basis functions, ai(x) are some coe@cients which are functions
of x, and m is the number of terms in the basis. For example,

pT(x) = (1; x; x2; : : : ; xm) in 1D (2a)

pT(x) = (1; x; y; x2; xy; y2; : : : ; ym) in 2D (2b)
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We can obtain the unknown coe@cients ai(x) at any point x by performing a weighted
least-squares 9t; i.e., by minimizing the following discrete L2 norm:

J =
n∑
I=1

w(x − xI)
[
pT(xI)a(x)− uI

]2
(3)

where xI and uI are the respective nodal co-ordinates and nodal values of u; w(x − xI)
are weight functions, and n is the number of nodes in the neighbourhood of x for which the
weight function w(x−xI) is non-zero. The weight functions w(x−xI) have compact supports;
i.e., w(x − xI) is non-zero only in a subdomain LI of L. The subdomain LI is called the
domain of inMuence of the node I .

Minimizing J with respect to a(x) yields:

a(x)=A−1(x)B(x)u (4)

where

A(x) =
n∑
I=1

w(x − xI)p(xI)pT(xI) (5a)

B(x) = (w(x − x1)p(x1); w(x − x2)p(x2); : : : ; w(x − xn)p(xn)) (5b)

uT = (u1; u2; : : : ; un) (5c)

Obviously, for (4) to be meaningful, A(x) must be invertible. Substituting (4) into (1), we
obtain

uh(x)=
n∑
I=1

m∑
i=1
pi(x)(A−1(x)B(x))iI uI =

n∑
I=1

NI (x)uI (6)

where shape functions are de9ned as

NI (x)=
m∑
I=1

pj(x)(A−1(x)B(x))jI (7)

It should be noted that these shape functions, generally, do not satisfy the Kronecker delta
criterion, i.e., NI (xJ ) �= �IJ . Generalization of the above idea for obtaining continuous moving
least-squares approximations is straightforward.

As was shown by Belytschko et al. [9], for the two-dimensional elasto-static problem

∇:�+ b= 0 in L (8a)

�:n= Pt on @Lt (8b)

u= Pu on @Lu (8c)

the element-free Galerkin method yields the following discrete equations:[
K G
GT 0

]{
u
�

}
=

{
f
q

}
(9)
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where � are Lagrange multipliers for satisfying essential boundary conditions, and f and q are
force terms. The matrix G results from the use of Lagrange multipliers method. Here, only
the explicit form of K is important for our purposes. The matrix K may be expressed as

KIJ =
∫
L
BT
I DB

I
J dL (10)

where

BI =



NI; x 0
0 NI; y

NI; y NI; x


 (11a)

and

D=
E

1− �2



1 � 0
0 1 0
0 0 (1− �)=2


 (plane stress) (11b)

2.2. Node connectivity in EFGM

For the sake of simplicity, consider a 2-D elastic body. By de9nition, we know that

NI (x) �=0 ⇔ x∈LI (12)

Hence from (11a):

BI (x) �= 0 ⇔ x∈LI (13)

Now considering two nodes I and J , we have

BI �= 0 ⇔ x∈LI and BJ �= 0 ⇔ x∈LJ (14a)

Hence

BT
I DBJ �= 0 ⇔ LI ∩LJ �= ∅ (14b)

Comparing (10) and (14b), we have

KIJ �= 0 ⇔ LI ∩LJ �= ∅ (15)

In summary, nodes I and J are connected if and only if their domains of inMuence have a
non-empty intersection with non-zero area. It should be noted that it is possible that I =∈LJ or
J =∈LI when I and J are connected, as is shown in Figure 1. Here we consider disk-shaped
domains of inMuence.

In a 9nite-element mesh the domain of inMuence of a node I may be expressed by

LI =
M⋃
j=1

Ej (16)

where the Ej’s are elements that contain node I , and M is the number of such elements. An
example is shown in Figure 2. In a 9nite-element mesh two nodes I and J are connected
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Figure 1. Two nodes and their domains of inMuence (LI ∩LJ �= ∅): (a) I �∈LJ ; J �∈LI ;
(b) I �∈LJ ; J ∈LI ; (c) I ∈LJ ; J ∈LI .

Figure 2. Domain of inMuence of a typical node in a 9nite element mesh.

if and only if both belong to at least one element, or in other words, if their domains of
inMuence have a non-empty intersection with non-zero area. Note that in this case:

I ∈LJ ⇔ J ∈LI (17)

Therefore, the connectivity of nodes is similar in the two methods. However, (17) holds only
for the 9nite-element method. As is depicted in Figure 1, (17) is not generally valid for
meshless models. This creates some new problems, which will be discussed in later sections.

Usually, in a meshless model all domains of inMuence have the same shape; for example,
they are all disk-shaped or rectangular. But in a 9nite-element model, the shapes of the
domains of inMuence diFer for diFerent nodes.
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3. THE INVERTIBILITY OF STRUCTURAL MATRICES

Suppose that q is the number of non-zero weights at a point x, and m is the number of terms
in the basis. For A(x) to be invertible we must have, q¿m [11]. Practically, domains of
inMuence of the nodes are chosen large enough to have non-singular A matrix at any point
x. Clearly, the only parameter that can be controlled for a meshless model is the size of the
domains of inMuence. Now consider a 2-D meshless discretization.

We want to have at least m non-zero weights at any point and in particular at any node.
A bipartite graph is de9ned as follows: The sets A and B are sets of nodes and corresponding
domains of inMuence. A node I ∈A is adjacent to a node J ∈B if and only if I ∈LJ . Thus,
we want each node in A to be adjacent to at least m nodes in B. If each domain of inMuence
contains at least m nodes, or in other words if each node in B is adjacent to at least m
nodes in A, we cannot conclude that each node in A is also adjacent to at least m nodes
in B. Hence, we cannot conclude that there are at least m non-zero weights at each node, and
consequently nothing can be said about an arbitrary point. The problem is that, in addition to
the topological properties, the geometry of the discretized system must be taken into account.
This dependence on the geometric con9guration of the discretization makes meshless methods
more complicated than the 9nite-element method; however, practically, domains of inMuence
are chosen large enough and the distribution of nodes is almost uniform. For such models all
the relevant matrices are invertible.

Now consider a system of uniformly spaced nodes as shown in Figure 3. Using the sym-
metry of the domain, it is enough to consider the square ABCD in Figure 3. First, assume
that the sizes of the domains of inMuence are a little larger than the smallest distance between
neighbouring nodes. Assume that the domains of inMuence are disk-shaped. Considering this
size for domains of inMuence, each domain of inMuence contains 9ve nodes. Also assume that
a linear basis is used (m=3).

As is shown in Figure 3, the square ABCD is partitioned into three subdomains, La, Lb,
and Lc. For any point in La there are four non-zero weights, for any point in Lb there are
three non-zero weights, and for any point in Lc there are two non-zero weights. Therefore,
the matrix A is singular for all points in Lc. Each domain of inMuence contains 9ve nodes
but there are points for which there are only two non-zero weights. Suppose that cI is the
distance between I and the nearest-neighbouring node, and dmax is the size of the domain of
inMuence of node I . All investigators have considered the following relation:

dmax =dmcI (18)

where 26dm64. Clearly, for the uniformly spaced nodes, with dm =2 at any point there will
be more than three non-zero weights, and hence the basis is satis9ed.

Now consider meshless discretization in one dimension. In this case the domain is a line
segment. Assume that a linear basis is used (m=2). For A to be invertible, at any point
of the domain we must have n¿m non-zero weights (n¿2). Dolbow and Belytschko [25]
mention that if a given node has only one neighbouring node in its domain of inMuence, A
will be singular, and so each node must have at least two neighbouring nodes in its domain
of inMuence for A to be invertible.

Suppose that each node has two neighbouring nodes in its domain of inMuence. Hence, any
node I belongs to LI−1, LI and LI+1. If I is a boundary point, it belongs to LI and LI+1 or
LI−1 and LI . Consider nodes I and I + 1. If neither of them is a boundary point, for each
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Figure 3. A uniformly spaced system of nodes.

point in the interval (I , I + 1) there are four non-zero weights. If I or I + 1 is a boundary
point, for any point in the interval (I , I +1) there are three non-zero weights. Therefore, the
simplicity of the 1-D discretizations allows us to reach the following conclusion: if a kth-order
basis is used (m= k + 1), A is invertible if each node has at least k + 1 neighbouring nodes
in its domain of inMuence.

As was mentioned earlier in this section, nothing conclusive can be said about the required
sizes of the domains of inMuence for a general meshless model. The only thing that can
be done is to choose large domains of inMuence. However, when meshless nodes are non-
uniformly distributed in the domain non-uniform sizes for the domains of inMuence can be
used. This way we will have a more e@cient discretization than a discretization with uniform
domains of inMuence. Experience has shown that for practical purposes, with linear bases,
26dm64 is enough. Another interesting qualitative conclusion is that for this reason, usually
matrices resulting from 9nite-element discretizations are sparser. Hence, the 9nite-element
method is more attractive from this point of view.
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Figure 4. (a) A meshless model with seven nodes; (b) SCAG; (c) PCAG; (d) WCAG; (e) ABG.

4. ASSOCIATED GRAPHS FOR A MESHLESS MODEL

In this section we de9ne four associated graphs for an EFGM discretization. These graphs
represent the connectivity of a meshless model. Consider the domain shown in Figure 4a. The
meshless model consists of seven nodes with the domains of inMuence as shown. For the sake
of clarity, the associated graphs are shown for this example model. The associated graphs are
de9ned as follows:

1. Strongly Connected Associated Graph (SCAG): The SCAG of a meshless model is a graph
whose nodes are the same as those of the meshless model; two nodes ni and nj of SCAG are
connected with a member if and only if LI ∩LJ �= ∅ in the meshless model. Figure 4b shows
the strongly connected associated graph for the meshless model of Figure 4a.
2. Partially Connected Associated Graph (PCAG): The PCAG of a meshless model is a
graph whose nodes are also the same as those of the meshless model; here two nodes ni and
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nj of PCAG are connected with a member if and only if I ∈LJ or J ∈LI in the meshless
model. Figure 4c shows the partially connected associated graph for the meshless model of
Figure 4a.
3. Weakly Connected Associated Graph (WCAG): The WCAG of a meshless model is a
graph whose nodes are again the same as those of the meshless model; in this case two nodes
ni and nj of WCAG are connected with a member if and only if I ∈LJ and J ∈LI in the
meshless model. Figure 4d shows the weakly connected associated graph for the meshless
model of Figure 4a.
4. Associated Bipartite Graph (ABG): The ABG has two sets, A and B, corresponding to
nodes and domain of inMuence, respectively. A node ni ∈A is connected to nj ∈B by a member
if and only if I ∈LJ . Figure 4e shows the associated bipartite graph for the meshless model
of Figure 4a. This graph was de9ned earlier in Section 3.

We now prove that the strongly connected associated graph de9ned above is always a
connected graph.

Lemma. If a meshless model satis9es the basis, i.e., at any point there are at least m
non-zero weights, the strongly connected associated graph SCAG is connected.

Proof. The lemma is proved by contradiction. Assume that SCAG is disconnected; for
example, it is composed of two disjoint subgraphs SCAG1 and SCAG2. This means that
L can be partitioned into three subdomains, L1, L2, and L3, such that there are points
in L3 with no non-zero weight. This contradiction shows that SCAG must be
connected.

It is to be noted that this lemma is not generally valid for the other three associated
graphs. Suppose that the domain L can be partitioned into three subdomains, L1, L2, and
L3, such that there is no node in L3. However, we can have m non-zero weights at each
point of L3 such that no node in L2 belongs to any domain of inMuence of the nodes of L1,
and vice versa. This model can generally satisfy the basis, i.e., all the relevant matrices are
invertible. However, the corresponding PCAG, WCAG, and ABG are not connected graphs.
Even if the associated graphs are disconnected, we can make them connected graphs by
adding some members. Obviously, for such cases SCAG gives a better nodal ordering. The
possible disconnectedness of these associated graphs does not mean that we should rule them
out. In practical problems, the meshless model consists of an almost uniform distribution of
nodes. Such a meshless model usually has connected associated graphs. PCAG and WCAG
usually have fewer elements compared to SCAG, which makes them more attractive for our
purposes.

4.1. Associated graphs for a coupled FE-EFGM model

It is known that, generally, the 9nite-element method is more e@cient than meshless methods.
Meshless methods are more e@cient only for problems in which remeshing is needed if
they are analysed by the 9nite-element method. Usually remeshing is needed only for a
subdomain of the problem. Therefore, a more economical analysis is to solve the problem
by a combination of 9nite-element and meshless methods. Belytschko et al. [26], developed
a coupled 9nite-element element-free Galerkin method and applied it to crack propagation
problems. They used meshless discretizations around cracks and 9nite elements for the rest of
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Figure 5. A coupled 9nite-element meshless model.

the domain. By this method the domain L is partitioned into three subdomains, L1, L2, and
L3. In L1 and L3 9nite elements and meshless approximations are used, respectively, and L2

is the transition domain with interface elements (Figure 5).
For 9nite-element nodes in L1, any of the nine associated graphs de9ned in Reference [22]

can be considered. For the meshless discretized subdomain L2 we can consider the strongly,
weakly, or partially connected associated graphs. Interface elements in L3 are treated like
9nite elements; a meshless node is connected to a 9nite-element node if they belong to the
same interface element. An example is shown in Figure 6.

5. NODAL ORDERING FOR MESHLESS DISCRETIZATION

Meshless methods seem to be very promising for future engineering applications. Therefore
appropriate node ordering for these methods is very important in practice. In Belytschko
et al. [9], we read: “If the nodes are numbered judiciously, for example, by sorting the x-co-
ordinates, the K part of the matrix in Equation (28) will be banded”. Their Equation (28) is
the same as Equation (9) in this paper. In this section we propose techniques for answering
this question more precisely.

For ordering a meshless discretization, 9rst an associated graph is de9ned to describe the
topology of the meshless model. Then ordering is performed for this graph using any of
the algorithms in the literature. If SCAG, PCAG, or WCAG are ordered, the 9nal node
ordering is found simply by assigning the same numbering to the corresponding nodes of the
meshless model. And if ABG is used, after ordering the nodes of the graph we omit all the
nodes of the set B (corresponding to the domains of inMuence). This way nodes in A are
numbered n1; n2; n3; : : : ; where n1¡n2¡n3¡: : : : Then the nodes are renumbered according
to n1 → 1; n2; → 2; n3 → 3; : : : : Finally, the same numbering is assigned to the corresponding
nodes of the meshless model.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 52:921–938
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Figure 6. (a) Transition subdomain; and (b) its associated graph.

In the next section nodal ordering is performed for some meshless models and the four
associated graphs are compared numerically.

6. NUMERICAL EXAMPLES

Here the four associated graphs are used for the nodal ordering of four diFerent meshless
models. In all these examples Sloan’s algorithm [27] is utilized for ordering. The bandwidth
(B), pro9le (P), maximum frontwidth (Fmax), and the root-mean-square wavefront (Frms) are
calculated for each model. For two of the examples, four-noded 9nite elements with the same
nodal points are considered and the results are compared with those of meshless discretizations.
For the sake of self-containedness, a few de9nitions are given here. For more details the reader
may refer to References [28; 29].

The half bandwidth of the ith row of an N ×N matrix K is de9ned as

bi = i − jmin(i) + 1 (19)

where jmin(i) is the smallest index j in the ith row for which kij �=0. The half bandwidth of
matrix K is de9ned as

B= max
i
bi (20)

and

P=
N∑
i=1
bi (21)
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Table I. Minimum dm values for having connected graph models.

Graph model SCAG PCAG WCAG ABG

Example 1 1.5 2.5 4.1 2.5
Example 2 1.0 1.0 3.0 1.0
Example 3 1.0 1.5 2.5 1.5
Example 4 1.0 1.0 1.0 1.0

is the pro7le of the matrix K. The column j is said to be active at stage i, if j¿i and
there is a non-zero entry in column j with a row index k such that k¿i. Let fi denote
the number of columns that are active at stage i, then the maximum frontwidth of k is
de9ned as

Fmax = max
i
fi (22)

The root-mean-square wavefront is de9ned as

Frms =

√
1
N

N∑
i=1
f2
i (23)

For each example, dm is assumed to be the same for all the nodes of the model. A small
dm value can lead to disconnected graph models, which is not desirable. The minimum dm
values for each example and each graph model are shown in Table I. As can be seen, WCAG
has the weakest connectivity and always needs larger dm’s than the other graph models do in
order to stay connected. Also, SCAG has the strongest connectivity and thus needs smaller
dm’s than other graph models do in order to stay connected.

For each example, we chose the same value of dm for all graph models so as to com-
pare them. Therefore, for each example, we must choose the maximum dm to make sure
that all the graph models are connected. We choose dm =4:1, 3.0, 2.5, and 2.0 for ex-
amples 1, 2, 3, and 4, respectively. In practical problems, we might be required to per-
form a nodal ordering for a meshless model that has some disconnected graph models. In
that case, we can make the disconnected graphs connected graphs by adding some new
members.

Example 1. This example considers one-fourth of a rectangular plate with a circular hole
[9]. The meshless model is shown in Figure 7. This model contains 54 nodes, and dm =4:1 is
selected. The bandwidths, pro9les, maximum frontwidths, and the root-mean-square wavefronts
calculated using the four associated graphs are shown in Table II(a). It may be seen that the
four graphs give almost the same B; P; Fmax, and Frms. This is because a large dm (=4:1)
has been used for this example and all the graph models are nearly complete.

Example 2. This example considers one-half of an edge-cracked plate [9]. The meshless
model is shown in Figure 8. This model contains 154 nodes, and dm =3:0 is selected. The
bandwidths, pro9les, maximum frontwidths, and the root-mean-square wavefronts are given
in Table II(b). It may be seen that for this con9guration WCAG gives the smallest B and
SCAG gives the smallest P; Fmax; and Frms.
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Figure 7. Meshless discretization of a square plate with a circular hole with
54 nodes (after Belytschko et al. [9]).

Table II.

Graph model SCAG PCAG WCAG ABG

(a) Results of Example 1 (dm =4:1)
No. of members 1343 1325 404 867
B 49 51 51 51
P 1428 1456 1423 1430
Fmax 45 49 45 46
Frms 30.1 30.8 29.9 30.1

(b) Results of Example 2 (dm =3:0)
No. of elements 5084 3715 1428 2133
B 121 101 96 117
P 6606 8017 7458 8547
Fmax 63 82 75 89
Frms 46.0 56.4 52.2 61.1

(c) Results of Example 3 (dm =2:5)
No. of elements 20228 12603 5688 6176
B 449 450 422 430
P 58279 61208 61384 58514
Fmax 130 144 138 136
Frms 83.4 88.5 88.2 84.0

(d) Results of Example 4 (dm =2:0)
No. of elements 18028 10648 4884 4884
B 267 169 161 161
P 69576 75862 75924 75924
Fmax 110 113 113 113
Frms 82.1 82.9 90.0 90.0
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Figure 8. Meshless discretization of an edge-cracked plate with 154 nodes (after Belytschko et al. [9]).

Figure 9. Meshless discretization for the problem of a crack path propagation from a 9llet for the case
of a thin I-beam with 739 nodes (after Belytschko et al. [24]).

Example 3. In this example, the meshless discretization for the problem of a crack path
propagation from a 9llet for the case of a thin I-beam [24] is considered. The meshless model
of this example is shown in Figure 9. This model contains 739 nodes, and the value for dm
is 2.5. The bandwidths, pro9les, maximum frontwidths, and the root-mean-square wavefronts
are given in Table II(c), where WCAG shows the smallest B while SCAG gives the smallest
P; Fmax, and Frms.

Example 4. This example considers a square plate with a square hole. The meshless model
is shown in Figure 10. This model contains 880 nodes, and dm =2:0 is selected. Table II(d)
shows the bandwidths, pro9les, maximum frontwidths, and the root-mean-square wavefronts.
For this con9guration WCAG and ABG give the smallest value for B and SCAG gives the
smallest P; Fmax, and Frms.
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Figure 10. Meshless discretization of a square plate with a square hole with 880 nodes.

Table III.

Model B P Fmax Frms

(a) Comparison between EFGM and EF for Example 1

Meshless (avg) 50.50 1434.25 46.25 30.22
Finite element 15.00 37.60 9.00 7.20
MLS=FE 3.37 3.81 5.14 4.20

(b) Comparison between EFGM and EF for Example 4

Meshless (avg) 189.50 74321.50 112.25 86.25
Finite element 138.00 24980.00 56.00 30.70
MLS=FE 1.37 2.97 2.00 2.81

Comparison with FE: For comparing Meshless and 9nite-element discretizations, in Exam-
ples 1 and 4 rectangular four-noded 9nite elements are considered and B; P; Fmax, and Frms are
calculated. For Example 1, considering four-noded 9nite elements with the same nodal points
as in Figure 7, the magnitudes of B; P; Fmax, and Frms of the stiFness matrix are obtained as
15, 376, 9, and 7.2, respectively. Similarly, for Example 4 considering rectangular four-noded
9nite elements with the same nodal points as in Figure 10, the magnitude of B; P; Fmax; and
Frms of the stiFness matrix are obtained as 138, 24980, 56, and 30.7, respectively. The results
are compared with those of meshless discretizations in Tables III(a) and III(b). In these tables
the average values of B; P; Fmax, and Frms obtained from the four diFerent associated graphs
are considered for the meshless discretizations. It is seen that meshless models have larger
bandwidths, pro9les, maximum frontwidths, and the root-mean-square wavefronts. Therefore,
structural matrices resulting from FE discretizations are sparser.
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7. CONCLUSIONS

In this article nodal connectivity and invertibility of matrices for element-free Galerkin method
are studied. The node connectivity of meshless models is compared with that of the 9nite-
element method. Similarities and diFerences are pointed out. It is explained that, in contrast to
the 9nite-element method, we cannot be sure about the invertibility of structural matrices. In a
9nite-element model, as long as the essential boundary conditions of the structure are enough,
the structural matrices are mathematically invertible. However, for meshless models, we have
to choose domains of inMuence large enough to satisfy the basis. The appropriate sizes of the
domains of inMuence are con9guration dependent. For practical problems this is not an issue
and we can have non-singular structural matrices by choosing 26dm64. Structural matrices
resulting from 9nite-element discretizations are sparser than matrices resulting from meshless
discretizations as is con9rmed by our numerical analysis.

Some associated graphs are de9ned for meshless models and it is shown that one of them is
always a connected graph while the others may be disconnected graphs. Associated graphs are
de9ned for coupled 9nite-element meshless methods. Using the associated graphs, algorithms
are proposed for nodal ordering of meshless models and coupled 9nite-element meshless mod-
els. The associated graphs are compared numerically. Like most ordering problems, ordering
for meshless models is con9guration-dependent and nothing conclusive can be said about the
superiority of a speci9c associated graph.
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