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1 Introduction physical meaning. Crack growth in compression was explained by

. Mosolov and Borodich18], Mosolov[19], and Balankin4].
Fractal geometry, which has been argued to be a better geOMG,, /i [15] and Yavari et al[14] introduced a new mode of

etry for modeling natural objects than “Euclld%an geometry, W&3cture in fractal fracture mechanics and called it “the fourth
introduced by Mandelbrc[tl,_z]. The term fra“ctal was ,?O'nEd by mode” or “the axial mode.” They pointed out that the existence of
Mandelbrot_[Z] fm”? th? Latin verl:{rangere to break,_ and the" this new mode of fracture could make some single-mode prob-
corresponding adjectiveractus “fragmented and irregular. lems of classical fracture mechanics, mixed-mode problems in

Fractal geometry _has found applications in many fields of SCienﬁ%ctaI fracture mechanics. Later, Yavari et 6] showed that
and engineering in recent years. So far fractal geometry’s majr ;

D . . ) ere are actually three new fractal modes. Xi6] studied crack
applications to solid mechanics problems are in contact mecha nching using a fractal model. Xie and Sanderfdt] ex-
and fracture mechanics. Fractal fracture mechanics is a noncla T%f"lned a paradox in dynamic frac'ture mechanics using their frac-
cal fracture mechanics in which cracks are assumed to be fra 1g

) . model. BorodicH22,23 realized that Griffith’s criterion must
curves(surfaces (Cherepanov et a[3], Balankin[4]). In classi- o mogified for fractal cracks. He showed that in the modified
cal fracture mechanics it is assumed that cracks are rectifiae

. L Vﬁerion, the specific surface energy must be defined per unit of a
curves(surface i.e., curvegsurfacegwith finite lengthsareas.  f50ta| measurénot length or areeof fractal crack growth. Yavari
Cracks are modeled by smooth curvesrfaces with probably & 124] generalized Barenblatt's cohesive fracture theory and devel-
finite number of kinks. These simplifying assumptions make fra%‘ped a fractal cohesive fracture theory.
ture mechanics problems mathematically tractable. To our best knowledge, there is no investigation into fractal
Mandelbort et al[5] experimentally showed that fracture sur- acks in micropolatCosseratsolids. This paper aims to explore
faces of steel are fractals. Since that pioneering work many othgjme interesting problems of micropolar fractal fracture mechan-
experimental studies have been ddfier example, Brown and jcs. |n Section 2, micropolar elasticity is reviewed and its basic
Scholz[6]; Power and Tullig7]; Saouma et al8]; Saouma and ¢oncepts and definitions are explained. Section 3 discusses frac-
Barton[9]; Wong et al.[10]). Now we know that cracks can beyre mechanics of rectilinear cracks in micropolar solids. The ef-
modeled by fractals in a widéut finite) range of length scales. A fects of couple-stresses in fracture mechanics are reviewed and
number of theoretical studies have been conducted to date. Mgyiffith's criterion is generalized for both smooth and fractal
solov[11] and Gol'dshten and Mosolo\[12,13 studied the sin- cracks in micropolar solids in Section 4. Section 5 studies self-
gularity of stresses at the tip of a mode | self-similar fractal craciimilar and self-affine fractal cracks in micropolar solids. Using
showing that the power of stress singularity is a linear function @fimensional analysis and the method of crack-effect zone, it is
fractal dimension of the crack. Yavari et 4ll4] calculated the shown that stresses and couple-stresses at the tip of a fractal crack
orders of stress Singularity for mode I, 11, and Il fractal CraCkSn a microp0|ar solid have equa| orders of singu|arity. The Appen_
Yavari [15], Yavari et al.[16], and Balankin[4] studied HRR dix presents some basic definitions and techniques of fractal ge-
singularity for self-similar and self-affine fractal cracks. ometry that are directly relevant to our investigation.
Mosolov [17] and Balankin[4] investigated the path indepen-
dence ofJ-integral for fractal cracks and modified tldentegral
for fractal cracks. They argued that the modifigthtegrals are . L
path-independent. This problem was later discussed in Yavari Micropolar Elasticity
et al. [16]. They mentioned that a fractakintegral should be  This section presents a brief introduction to generalized con-
equal to the potential energy release per unit of a fractal measufguum theories and their history. Here we discuss only those as-
They explained that the modifieHintegrals defined by Mosolov pects of micropolar elasticity theory that are necessary for our
and by Balankin are only locally path-independent and have nevestigation of fractal cracks in a micropolar solid. A literature
review for fracture mechanics of rectilinear cracks in micropolar
solids will be given in the next section.
c ifCurr_enltlyt_ltSrtadufa;_e I;eslearchPAssijstant,Ci\rgiligtse Aeronautical Laboratories|n classical continuum mechanics, at each point only transla-
allfornia Institute or lechnology, Pasadena, . : H— H HE
Contributed by the Applied lglilechanics Division o AMERICAN SOCIETY OF tional degrees-Of_Treedon.]i (I N 1’2’3) are con5|(.jered. and it is
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OFAPPLIEDME-  assumed that the interaction between two material points along an
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May 5.arbitrary surfaceS is completely described by a stress vector
200 el rdon i L ol St .3, e, Dicsslngfined o Thess assumptons lead 1 & mathemticaly conss
of I\/FI)e(?hanical Engineering, University of Hbuston, Houston, > 77204-'479’2), arr?gﬂt theory pf contlngum mechan|c§. Experience has shown_that
will be accepted until four months after final publication of the paper itself in Enost analytical solutions obtained in the framework of classical
ASME JOURNAL OF APPLIED MECHANICS. continuum mechanics agree very well with the experimental re-
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sults. To data all engineering designs are based on the use of 1
classical continuum mechanics and sometimes even with some ri=§8i,—kuk,,— 1)
more simplifying assumptions.

The curiosity of some distinguished researchers led them wheree;; is the permutation symbol. Macrostraieg and mi-
question the above-mentioned hypotheses and to develop genetistrainsg;; are defined as
ized continuum theories. It was clear for them that considering

only translational degrees-of-freedom might not be enough for eijzi(ui Uy (2a)
continua with microstructurésee[25—37)). 2" ’
In the original Cosserat brothers’ formulatigf26]), rotations £ =65+ e (T— bi). (2b)

¢; (i=1,2,3) were considered to be independent of displacement
componentsy; (i=1,2,3). However, later most analytical solu-Curvature tensor is defined by
tions were reported for a special case that is now known as o

; Xij ¢],| - (3)
couple-stress theory or constrained Cosserat theory. In couple- ] ) )
stress theory, microrotations are assumed to be equal to macrord®S & consequence of the assumption that each point has six
tations, i.e.g; = 1/2s;j,uy ; . This is the theory that was developeddegrees-of-freedom, in a mlcropollar continuum both stresses and
independently by Griol[28], by Aero and Kuvshinskif31], and couple-stresses exist and Cauchy’s theorem holds for them, i.e.,
by Mindlin and Tierster{32]. Eringen and his co-workers elabo- o =0 (4a)
rately studied the theory of Cosserat continua and again assumed b
that microrotations are independent of displacement components. m; = m;;n; (4b)

Erllrgdep [36,37 Ir enamed the r(]jossercz:at ccégtlnuurg. theory dar\gzhereai andm; are components of stress and couple-stress vec-
called it micropolar continuum theory. Cowi88—40 discovered (55 respectivelyp; is the unit normal vector to an arbitrary sur-
a continuous transition from couple-stress theory to mlcropolg:{ces and o;; and my; are respective stress and couple-stress

theory by introducing a coupling numbét (0=<N=1), where (ansors. Stress and couple-stress tensors are in general asymmet-
N=1 corresponds to the couple-stress thedly;0 corresponds (¢, The equilibrium equations are

to the classical theory, and between zero and one {ON<1)

corresponds to the micropolar theory. It is known that in couple- aj;,;=0 (5

stress theory of elasticity two new constants appear and one of M+ o =0 (50)

them,| has the dimension of length and is called the characteristic T T Sk

length. On the other hand, in micropolar elasticity there are fofor a centrosymmetric isotropic micropolar material the stress-

new material constants and two of thelpandl, have dimen- strain relations are

sions of length and are called characteristic lengths in torsion and

bending, regpectively. This means that in gene%alized continuum 7ij = Nedij + (2pF K)&j F wesiji( e i) (62)

theories there is at least one internal length scale and therefore mjj = ady i+ Bdi i+ vP;,i (6b)

these theories should be able to analytically predict size effects.h reX and « are the classical Lameonstants and nd

Several authors investigated the effects of couple-stresses\'vine €A andu are | € classica a_rr::ohs?”s a d,g v @ )

different problems of solid mechanics such as stress concentratfofi' ¢ "EW micropoiar constants with the following dimensions:

in the presence of holes and inclusions and the change of size M F

effect in rigidity of different structural membersee[41-62). [a]=[Bl=[y]=F=1 and [«]==z=13 (7

Recently, there have been some investigations into strain gradient

plasticity (see[63] and references thergirThese theories seem towhereF, M, andL are dimensions of force, moment, and length,

be promising in design of very small structures. respectively. The strain energy density has the following form:
As was mentioned at the beginning of this section, generalized 1

continuum theories attracted theoreticians because of their beauty= z(oijsij +myj i) = E[)\ekkemm+(2,u+ K)€i; €]

To date these theories have not been applied to practical problems.

Here we have an example of a field in which experimental studies 1

are far behind the theory. There are several experimental investi- +k(rg— ) (re—dy) + E(a¢k,k¢m,m
gations into the mechanical properties of micropolar elastic mate-

rials. What we have at this time are just some ranges of these + B b it vdi b)) (8)

material constantéSchijve[64] and Lakeqd60]). So far we have
only some qualitative sense of the influences of couple stressé . .
We are hopeful that future advances in experimental mechan[@?anmgs([Sg])'

will make these elegant theories applicable to real engineering (2u+ k)(3\+2u+ «) 2u+ K A

problems. - . . . - A+2utr 2 ' VT n+2ut«k
It is worth mentioning that there is a recent interest in general-

tge following technical elastic constants have clearer physical

. ) - . . 9a
ized continuum theories because of the superiority they have in (%)
localization analyses. These studies are beyond the scope of this Bty y
section and will not be mentioned here. Now we present the basic l= =N (9b)
il n . . 2putx 2Q2p+x)

concepts, definitions, and balance equations of the theory of mi-
cropolar elasticity. Here we mainly follow Ering¢B87]. K B+y

In a continuous medium with microstructure each material ele- N= 20t 1)’ = PRI (9)

ment contains several micromaterial elements. In micropolar con-

tinuum mechanics only microrotations are considered for micrthereE, G, », I, I, N, and¢ are Young's modulus, Poisson’s
elements. Therefore, for each material point, in addition to tHatio, the characteristic length in torsion, the characteristic length
three displacements, three microrotations are considered. Microtdending, coupling number, and polar ratio, respectively. These
tations are assumed to be different from macrorotations. Displagé@nstants have the following dimensions:

ment components are denoted oy, microrotations byg;, and [E]=[G]=FL 2 [v]=1
macrorotations by; . Macrorotations have the following relations '
with displacements: [I=[lp]=L (20)
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[N]=[¢]=1. | " . A "

. ) o ) Ki=f|=,v|]oc"Va and K;=f| =,v|o \/5 (13)
It is seen that two internal characteristic lengths exist. Therefore, a a

this theory is capable of analytically predicting size effects. It i

h tionina that th h teristic lenath . hereK, and R| are stress- and couple-stress intensity factors,
worth mentioning that these charactenistic 1engins appear In 38 ,ss0n's ratiol is the characteristic length of the couple-stress

stress field solutions even for force control loading Cond't'onﬁnaterial and 2 is the crack length. Later Sih and Liebowj6s]

Therefore, in dimensional ?“a'ys's formulations these Charaderl‘éﬂnd the asymptotic expressions of the displacement and rotation
tic lengths must be taken into account. components as shown below:

. . . Kyv2r 0 30
3 Fracture Mechanics of Smooth Cracks in Micropo- u(r,0)= i 3(1-2v)cos=—(7—6v)cos—|+O(r)
) 8u 2 2

lar Solids

In this section, fracture mechanics of smooth cracks in a mi- K Var 0 .30
cropolar solid is reviewed. Here, the effects of couple-stresses onue(r‘g)_ 8u @ ZV)S'nE +(7 6V)Sm7 +0O(r)
the stress distribution around the tip of a smooth crack are dis- (14)
cussed. In 1960s and 1970s when generalized continuum theories .
were rediscovered and elaborately developed, several researchers g) = K, Var 0 40
became interested in examining the influence of couple-stresses in wy(1,0)= 8/1'|2 asin 2 (r).

problems in which classical theory predicts infinite stresses. One . . .
such problem with great practical importance was the stress digr @ crack in a Cosserat continuum, strain energy release may be
tribution near the tip of a smooth crack. It was known that stressgdlculated as

and strains around the tip of a crack are unbounded and have an 1 (éa

r~ Y2 singularity. Researchers were hopeful not to see this patho- G= lim gj [oyy(da—E0)uy (€, m)

logical problem in higher-order continuum theories. Unfortu- 8a—0 0

nately, higher-order continuum theories could not solve this patho- +m,( 8a—£0)w,(£,m)]dE. (15)

logical problem; both stresses and couple-stresses were observed

to be unbounded at the crack tip. There is a limited number bfsing the above formula, Sih and Liebowjta6] found the strain

investigations in micropolar fracture mechanics, which will benergy release rate.

reviewed in this section. 1 (a2
The first investigation into fracture mechanics of smooth cracks (1-v)(3—2v)K2+ _(_) K?

in Cosserat continua was performed by Sternberg and 1&Hi 161\ |

They solved the problem of an infinite two-dimensional plane- there are some other interesting investigations into fracture

strain linear couple-stress medium with a finite crack under a Ujiechanics of cracks in micropolar solitee[67-73). Now it is

form tensile stress state perpendicular to the crack axis at infinigh, own that the classical theory underestimates the valég ahd

They showed that both stresses and couple-stresses havé’an gyerestimates the energy release @te

singularity at the crack tip. They observed that couple-stressesanother interesting investigation into micropolar fracture me-

only change the angular variation of stresses around the crack #Ranics was conducted by Atkinson and Leppingftd4]. They

the form of the radial variation of stresses remains unchangghalyzed two problems1) a semi-infinite crack under an internal

They found the following asymptotic expressions for stresses agfless acting on the crack faces d@yla finite crack in an infinite

(16)

G o
2

couple-stresses: solid under a uniform stress at infinity. They solved the second
K 0 1 30 problem only for cases in whidia is very small (/a< 1)._They
Oul(1,0)=—(1—2v) —L | cos=— = sin#sin—| +0(r° showed that both stresses and couple-stresses at the tip of a crack
Jar 2 2 2 in a couple-stress or micropolar medium have ai? singularity.

(11a) They also demonstrated that the angular variations of stresses and
couple-stresses in couple-stress and micropolar continua are a
aol(r,0)= ﬁ[ Iittlt_a different_ but have a similar form. Atkinson aqd Leppington
yyioe Nen defined thel-integral for both couple-stress and micropolar theo-
ries and showed thal-integral is path-independent. Recently,
+0(r°% (11b) Lubarda and Markenscoff75] studied some conservation inte-
grals for linear couple-stress elasticity.

3-2 b1 1-2v)sin@si 36
(3— V)COSE_E( —2v)sin S|n7

K .61
ny(rve):_— 4(1_V)S|n§+ 5(1—21/)

Jar

_ 30
Xsing 0057

4 Micropolar Griffith’s Criterion

For finding the orders of stress and couple-stress singularity at
+0(r% (11c) the tip of a fractal crack, we utilize an energy approach. The
fractal crack is in equilibrium and hence the virtual work of all
forces in a virtual displacement, which is an infinitesimal crack

— K|l 3¢ 0 growth, is zero. For a cracked body, the principle of virtual work
oplr.0)==(1=2v) J2ri2 singeos7r|+OT) () st be modified to take into account the work done in a crack
propagation and strain energy release due to a crack growth. Grif-
and fith’s [76,77] criterion is actually a modified energy balance for
K, P cracked bodies. In this sect_ion we generalized Griffith’s theory for
m,,(r,0)=— \/? 5 sinE +0(r9 (12a) smooth and fractal cracks in micropolar solids.
r
R 4.1 Griffith’s Theory for a Smooth Crack in a Micropolar
K, |a 0 0 Solid. When a crack propagates, new free surfaces are created.
myAr,0)= T2 cos5|+0(r%) (120)  For creating these new free surfaces some amount of surface en-

ergy is needed to overcome the cohesive forces. This amount of
whereo,y, oy, 0y, oy are(force-) stresses anth,, andm,, energy is provided by an equal amount of strain energy release.
are couple-stresses and This is Griffith’s criterion[76,77], which was originally stated for
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Crack faces

(b)

Fig. 1 Mechanism of crack propagation in a micropolar continuum: (a) crack-tip particles withstand rotation and
separation, (b) the first step in crack propagation—crack-tip particles rotate with respect to each other, and (c)
the second step in crack propagation—crack-tip particles move apart and neighboring particles become the next
crack-tip particles

a rectilinear crack in a classical continuum. Moso[d\Z] used Griffith’s criterion for a crack in a micropolar solid may be

this criterion for fractal cracks assuming that the specific surfaséated in two different forms, depending on whether the effects of
energy per unit length remains unchanged and only the lengthstfesses and couple-stresses are considered uncoupled or coupled.
the crack increases in the case of a fractal crack. Later, Borodich . el L .
[22,23 noticed that Griffith’s criterion must be modified and in_ () Uncoupled Micropolar Griffith's Criterion. This form of
the modified criterion the specific surface energy must be defin d"ff'th S criterion states that a cra_ck_ propagates by an lamﬁant
per unit of a fractal measure. To our best knowledge, there is d"e following conditions are satisfied simultaneously:
discussion on Giriffith’s criterion for cracks in micropolar solids.

o __ u
This theory can be easily generalized for smooth and fractal dUg=dUs2ty,0a (1%)
cracks in a micropolar solid, as we show below. M b
In a micropolar continuum each material point can rotate and 0Ug=06Ug=2ty,éa (1%0)

translate independently. Now suppose that there is a finite crack cﬁ hick isol .
length 2a in a micropolar solid. Figurga shows a crack and wheret, y,, and y, are thickness, displacement, and rotation

some particlesmaterial points on the crack surfaces. When thespecmc surface energies, respectively. Dimensions of these two

H — _ -1
crack propagates, crack-tip particles separate from each other. SHface energies afey,J=[y,]=FL "
like a crack in a classical solid, this separation of crack-tip par- |1y Coupled Micropolar Griffith’s Criterion. In this form of

ticles is a two-step process as shown in Figb) &nd Xc). Inthe  the Griffith’s criterion effects of stresses and couple-stresses are
first step crack-tip particles rotate with respect to each other but

do not move, i.e.,

Ap=¢,—h1#0 and Au=u,—u;=0. 17)

In the next step, crack-tip particles move apart but do not rotate
i.e.,
Crack propagation path

Au=u,—u;#0 and A¢p=¢,— ¢$,=0. (18)

After this step, these particles are no longer crack-tip particles
they belong to two free surfacdsee Fig. 1c)). Obviously, the
surface energyU; needed for creating the new free surfaces has
two parts,5U§’ andsUy¢, where&U;” is the surface energy spent
on rotating particles in the path of crack growth adldy is the
surface energy spent on separating these particles from each oth
Figure 2 shows a crack and the dashed line is the crack propag:
tion path. Crack-tip particles on the path of crack propagation ar
shoyvn in this figure. S|m|Ia_r to the surface energy release ra}_qg. 2 Acrack in a micropolar solid and its propagation path.
strain energy release rate is composed of two parts: stress B#d particles shown are the particles on the subsequent free
S8U¢, and couple-stress paftJy'. surfaces.
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assumed to be coupled. Coupled micropolar Griffith’'s criterion (Il) Coupled Fractal Micropolar Griffith's Criterion. A frac-
states that the crack propagates by an amaanif tal crack with divider fractal dimensio® propagates by an

amountémp_ if the following condition is satisfied:
8Ue=8(UZ+UD) = 8U =2ty da=2t(y,+ v4)da. (20) °

_ oM — _ o f _ fof
It should be noted that the micropolar specific surface engrgy OUe=oUet+Ue) = 0Us=2tymdMo, =28yt 7y) 5mDD'24

is generally different from the classical specific enengyObvi- (24)
ously, if (19a) and (1%) are satisfied(20) is automatically satis-  In the next section we use both forms of micropolar Griffith's
fied. In other words, the uncoupled criterion is stronger than tigiterion for calculating the orders of stress and couple-stress sin-
coupled criterion. gularity at the tip of a fractal crack. We will show that both criteria

give equal orders of stress and couple-stress singularity.

4.2 Griffith’s Criterion for a Fractal Crack in a Micropo- 5 Fractal Cracks in Micropolar Elastic Solids

lar Solid. For a smooth crack, surface energy required for crack In this section radial variations of stresses and couple-stresses
propagation is proportional to the lengthrea of the newly cre- around the tip of a fractal crack in a micropolar solid are investi-
ated free surfaces. In the case of a fractal crack the true lengthted. To the best of our knowledge, there is no investigation into
(area of new free surfaces should be considered. Because the tthis problem in the literature. Without loss of generality, a mode |
length(area of a fractal curve(surface is infinity, a fractal mea- problem is solved. Consider an infinite medium made of a mi-
sure should be utilized. The surface energy required to createrapolar material with a finite crack of nominal lengtla.2It is

fractal crack in a classical solid is assumed that the cracked solid is under a uniform tensile stfess
perpendicular to the crack axis applied at infinisge Fig. 8)).
Us=2ty;(D)mp (21) One major difference between this problem and the similar

wheret is the plate thicknessy;= y(D) is the specific surface problem of a fractal crack in a classical solid is that a micropolar
energy per unit of a fractal measure, ang is the corresponding material has two internal characteristic length scalgsandl,.

: . = Herel, andl, are characteristic lengths in bending and torsion,
fr_a_ctal measure and is proportionald8 (see the Appendb._( Spe E%spectively. On the other hand, a couple-stress material has only

one characteristic length For a micropolar material in a two-

; ; ; —F| D
by Borodich{22,23 and has the dimensidry]=FL" ", whereF ?g‘mensional problem only one of the characteristic lengths ap-

andL are dimensions of force and length, respectively. There

two important issues arising from Borodich’s generalization

Griffith’s criterion that should be explaine(t) It should be noted
that y¢ is not a material property. In general, it is possible to ha
cracks with different fractal dimensions in the same materi
Therefore, in Eq(21) y; cannot be a material property; it depend
on both the material and the fractal dimensions of the fract

crack.(2) “Fractal measure” is an ambiguous term; there are dn‘\-/ ri et al.[16], is utilized. When the system shown in FigaBis

ferent definitions of dimension and consequently these d'ﬁeren;_cracked, only one of stress components is nonzero and has a

dimensions have different corresponding measures. For self PR
similar fractals all different dimensigns ha?/e the same value aX iform distribution; all other stresses and all couple-stresses are
?ntically zero. When the crack is formed, stresses and couple-

. . . .
hence the corresponding measures they define are |dent|% resses are perturbed. This stress perturbation is significant only

Therefore, for self-similar fractals “fractal measure” is not a -
ambiguous term. However, this is not the case for self-affine fr;]n- a finite zone around the crack. For the cracked system al

tals: different definitions of dimension aive completelv differen tresses and couple-stresses are nonzero in the crack-effect zone.
dim;ansions for the same self-affine fracgtal set O%viouysl ther he crack-effect zone may be covered by a digk as shown in

. . . ' 4 ig. 3(@). We assume that the micropolar material is centrosym-
evant fractal dimension for calculating the surface energy of

fractal crack is the divideflatend fractal dimension. Therefore, rhetric isotropic and homogeneous. The strain energy of the sys-

the specific surface energy should be defined per divider fracES[n may be written as

measure, although it can be defined for other fractal measures as

well. Ue:UZ+U2“:f
For a fractal crack in a micropolar solid, Griffith’s criterion R

again has uncoupled and coupled forms and only the surface emereo;;, mj;, &;;, andy;; are stresses, couple-stresses, strains,

8ars in the equilibrium equations. Therefore, it is assumed that
e medium has a characteristic length and it is denoteld Ibys
\a/l%nown that even for a force control loading this characteristic
Iength appears in the stress solutions in the form/af where
a" is a geometric characteristic length of the problem, for ex-
[nple hole radius or crack length.
The method of crack-effect zone, which was introduced by Ya-

1 1
Ea’,]s”—t—zm,]x” dv (25)

ergies should be modified as and curvatures, respectively. The strain energy can be decomposed
" p p into two parts as follows:
8US=2ty,(Dp,)dmp_ and sUL=2ty}(Dp)omp L L
(229) Ufﬁﬂ %(E‘Tijsij"'zminij)dv
8Us=8Ug+ 8Ug=21[ y(Dp) +¥j(Dp)]omp_  (220) ‘ . .
where y}, and y}, are fractal specific surface energies per unit of + Jmc 5 Tij it Eminij)dV' (26)

latent fractal measure armDD is the latent fractal measure. Thus R
we have the following two forms of fractal micropolar Griffith’s When the crack propagates by an infinitesimal amadmt the

criterion. change of the strain energy 1. is dominant, hence
. e Lo 1 1
(I) Uncoupled Fractal Micropolar Griffith's Criterion. A SU ;5J (_ eI --)dV 27
fractal crack with divider fractal dimensidl, propagates by an € | 2 Tii®ii T MiXij G- 7

amountomp | if the following two conditions are satisfied simul-

For a centrosymmetric material stress-strain and couple-stress-
taneously:

curvature relations are uncoupled, i.e., stresses are not functions
SUT=5UY=2t ,ylfJ smp (23a) of curvatures and c_ou_ple-stress_es are not fun_ctlons of strains.
ol Therefore, the constitutive equations may be written as

m__ ¢ _ f A~
OUe = 0Ug=2ty,6mp,,. (2%) 0ij=Cijuer and my;=Ciji xk (28)
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Fig. 3 (a) A two-dimensional micropolar solid with a finite fractal crack perpendicular to the applied stresses, (b) an infinite

micropolar solid with a finite fractal crack parallel to the applied stresses

whereCij andéijk, are fourth-order tensors and are mechanicé “a.” Here rq is a function ofa, |, », and H, i.e., rg
properties of the material. The following asymptotic stresses aref(a,l,v,H). Using Buckingham'¢[78,79) 11 theorem we must

couple-stresses are assumed at the crack tip have
|
_ -« r | A
oij(r,0)=Kyr 1fn‘(9vvvg-H) (2%) S=dl=,pH| or re=ad|—,vH|. (32)
a a a
N - I o . . .
m;;(r,0)=Kr~2f;;| 6,v, —,H) (2%) As itis seen from(32), r's is not necessarily proportional tcea:”
a The functional form of® cannot be found using dimensional

whereK! andK! are fractal stress and couple-stress intensity fa@nalysis and this makes the use of crack-effect zone method very
tors, respectively, anHl is the Hurst exponerisee the Appendix difficult. But we know that for most engineering m_at_erlehls_xs

We will calculate «; and a, using the method of crack-effect VY small (/a<<1). We also know that the following limit exists:
zone. The above asymptotic stresses and couple-stresses are domi-
nant forr<rs andr=rs, respectively. Therefore, E¢&29) and

(2%) are valid in a diskRs with radiusrs=min(rs .rs). Here, the
method of crack-effect zone should be used very carefully. Be- .
cause the change df, in 9, is dominant, the change of strainbecause whelva tends to zero for a constang™we approach

Iim|,aﬁo€ll({;,v,H):ﬁD(O,V,H):(I)(v,H) (33)

energy may be expressed as the classical theory and obviously is defined for the classical
theory and is finite. Thus we have a complete similarity or a
SU.=8 e+ Em., dves (Ema similarity of the first kind(see, for example, the excellent book of
€ R\ 2 €1 o ThiXij |2 =l Barenblatt{80]). Therefore according to dimensional analysis for

very smalll/a(l/a<1)® can be considered independent!fd

1 1 1 and replaced by its limitb. Therefore,rs~a for l/a<1. As a
+5mixj |dV= 5fm (Egijsij + EmiJXiJ)dV- (30) ' matter of fact, we do not need to limit ourselves to the ddae
s <1. We can show thab is not a function of/a as we see in the
From (29) and(30) we have following. We know that for a smooth crack both stresses and
) A2 i ; ;
SU,=5U7+ sUM (313) couple-stresses have an~'“ singularity regardless of the size of

the characteristic lengty of the cracked micropolar material.
SUZ 5(r;a1r;a1r§) and sUM 6(r;a2r;a2r§) (31b) SupposcaT that the rgdlus of the domlnar;t_zzgne of stress and couple-
stress singularity igg. Thus, sUgxd(rs ““)=46(rs) and 6Ug
where “” means “proportional to.” For a rectilinear or fractal « §(a). Therefore, according to Griffith’s criterion we must have
crack in a micropolar continuumy, is not necessarily proportional rgca. Thus
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=f(v). (34)

L[
@(—,V,H=1
a

For a fractal crackH is a local parameter whil&/a is a global
parameter. The reason is thidtis defined only for the fractal
crack, which has 2-measutarea zero butl/a is defined for all

points of the domain other than the crack. Therefore, we expect

to be separable, i.e.,

L . [ -
q)(a,v,H)=®1(a,v)<D2(v,H). (35)
From (34) and (35) we obtain
L ~
@(E,V,H):(D(H,V). (36)

Thereforer g is always proportional to 4" regardless of the value
of I/a.
From (31b) we have

S8UZx8(a272%1) and SUT= 5(a2™2%2), (37)

The next thing we need is the asymptotic form of surface energies.

From (22) we have

1
S(atM) 5=H<1
SU e U L 5U o (38)

8a%) O0<Hs >

We use both forms of Griffith’s criterion and show that they give

us the same result.

Using uncoupled micropolar Griffith’s criterion is easier and

yields
1H 1
s(a’™) EsH<1
d(a 2" 1 (39)
8(a?) O<Hs§
1H 1
S(a™m) EsH<1
S(a? %)« % (3%)
5(@% O0<H==
2
Thus
2H-1 1 Het
— —<
2H 2%
a = ay= 1 (40)
0 <=
O<Hs= 5

Using coupled Griffith’s criterion is tricky. Frorf20), (38), and
(39) we obtain

1

S(at™) S=H<1
C,8(a% 241)+ C,8(a%~2%2) (41)
8(a% 0<H< 5

whereC; andC, are not functions of. We prove by contradic-
tion thata, and @, must be equal. Suppose thai# «, and for
examplea;>«a,. Notice that “<” means “proportional to” and
that Eq.(41) holds for an arbitrary crack lengtha:” For a very
large “a” (a>1) we can write
a2—2a2>a2—2al. (42)

Hence

Journal of Applied Mechanics

C,8(a% 2%1)+C,y5(a?2%2)

1

S(atM) S=H<1
=C,p8(a 2*2)x 1 (43)

3(a?) 0<Hs§

Thus
2H-1 1 Het
—<
2H 2

ay= (44)

0 O<H=-

On the other hand, for a very smald® ( a<<1) we can write

a? 2v>g?2a, (45)
Thus
C,8(a% 2%1)+C,8(a% 2%2)
1H 1
S(a™™) st<1
=C,8(a% 2*1)x % (46)
8(a?) O<Hs§
Hence
2H-1 1 Het
—<
2H 2-1°
A= (47)
0 O<H= <

From (44) and(47) we see thatv;= a,, which is a contradiction.
Therefore our assumption was false andand a, must be equal,
ie.,

2H-1 1 H<1
-<
2H 2 =
A= 0pr= 1 (48)
0 sz
O<H >
Therefore
—2H-1 —2H-1 1
i Mt Ty 8870 g=H<l
(49a)
0 0 -
ojj~r%  my~r asr—0 0<H$E- (4%)

It is seen that both forms of Griffith’s criterion yield the same
result: stresses and couple-stresses have equal orders of singular-
ity and this order of singularity is the same as that of stresses at
the tip of a fractal crack in a classical continuum. This result is
similar to that reached by Sternberg and MUJBbE]: that in a
couple-stress medium at the tip of a smooth crack both stresses
and couple-stresses have'’? singularities. This is also true for
self-similar cracks; orders of stress and couple-stress singularity
are equal.

A similar result can be reached for mode IV self-affine cracks.
A mode IV fractal crack is shown in Fig.(8). This new mode of
fractal fracture was introduced by Yavdii5] and Yavari et al.
[14]. As was done for a mode | fractal crack, the orders of stress
and couple-stress singularity can be calculated. The only modifi-
cation in the analysis is to change Eg§7) to read([14,16])

SUZx 5(altH2aH) and sUTx s(altH222H)  (50)
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2. SCU{,U;.

Consider a seBCR". An affine transformation of real scaling
Mode 1T Model ratios  rq,ro, ... r, (0<r;<1) transforms each x

l =(X1,X2, ... Xp) €S iNto r(X)=(r1Xq,Mol 2, ... [ Xy) €1(S).
The setS is self-affine if it is composed oN nonoverlapping
subsets congruent tdS). If the above property holds f@when

ri=r,=...=r,=r, itis called a self-similar set. A self-similar
fractal is invariant under an isotropic length-scale transformation
- while a self-affine fractal is invariant under a transformation with
different length scales in different directions.
ModelV. o Mode 1T Roughly speaking, measure of a ST R" tells us about the
™ size of the set and is denoted pyS). In other words, measure is
a generalized sizew is a measure ofR" if it assigns a non-
negative real numbe(possibly +=) to each subset oR" and
Fig. 4 The four mode_s of fractal fracture: mOdF_,‘ | (opening satisfies the following requirements:
mode), mode Il (shearing mode ), mode IIl (tearing mode ), and
mode IV (axial mode ) 1. u(d)=0
2. u(A)=pu(B) if ACB
3. If A,A,, ... is afinite or countable sequence of subsets of
The stresses and couple-stresses have the following asymptotic R" then
forms: P *
—H2—H+1 —H2-H+1 1 m UA&)SEMW (A2)
o~ ——gr s Myj~T——g—— asr—0 —<H<1 =1/ 1=t
(51a) with equality if A;'s are disjoint subsets di".
1 Now suppose theBC R" andD € R* U{0}. TheD-dimensional
oij~r% m;~r® asr—0 O<H= 9 (51b)  Hausdorff measure dbis denoted byH°(S) and is defined as
whereg=(5+1)/2 is the Golden ratio. All four modes of frac- HP(S)=1im,_oHY(S) (A3)
ture are shown in Fig. 4Actually, there are six modes. We found
the fifth and sixth modes very recentlj16])). where
For three-dimensional cracked bodies made of a couple-stress ®

:gztcer:leag or a micropolar material a similar conclusion can be HO(S)=inf 2 diam(U,):{U;} is an e—cover of S
. i=1

. A4
6 Conclusions (A4)

; i ; lican be shown thak® has all the properties of a measure. It can
Fracture mechanics of smooth cracks in micropolar continua fC b proper :

reviewed. Griffith’s fracture theory is generalized for rectilineaP€ proved that for any s&§ H~(S) has a jump fromt-o to 0 for
and fractal cracks in micropolar continua. It is seen that Griffitn@ne and only one value dd, which is called the Hausdorff di-
criterion can have two forms: uncoupled micropolar Griffith’s crimension ofS i.e.,
terion and coupled micropolar Griffith’s criterion. Using dimen- . D A1 D
sional analysis and the method of crack-effect zone it is shown Dy=inf{D:H"(S)=0}=sufD:H"(S)= +<}. (AS)
that both forms of Griffith’s criterion predict that stresses anql
couple-stresses have the same order of singularity. This order o
stress and couple-stress singularity is shown to be equal to that of +o  D<DimyS
stresses at the tip of a fractal crack in a classical continuum. HP(S)=

refore

. . A6
0 D=>DimyS (A6)

Acknov-vledgment.s ) There are many other definitions of dimension. One disadvan-
The first author is grateful to Prof. J. W. Hutchins@f Har- tage of Hausdorff dimension is the difficulty of calculating it,
vard University for helpful discussions on generalization of Grif-which makes it impractical. Here we discuss two other important
fith’s theory for smooth cracks in micropolar solids and to Prof. Kgimensions, namely box dimension and divider dimension. All
G. Hockett(of The George Washington Universjtyor helpful  gifferent dimensions somehow measure the complexity of irregu-

discussions on fractal geometry. larity of a set. It should be emphasized that dimension provides
di only limited information about a fractal set. In most definitions
Appendix there is a measurement at scaléFor eache irregularities below

Fractal Geometry. This Appendix presents some conceptdliS scale are ignored and the behavior of measurements as
and definitions of fractal geometry. Here we discuss only thosg© IS studied. .
aspects of fractal geometry that are directly relevant to our inve80x dimensionLet S#J be a subset ok" and letN_(S) be the
tigation. For more details the reader may refer to Mandelbr&mallest number of sets of diameter at mosthich can covelS

[2,81-83, Feder[84], Vicsek[85], and Falcone[86,87. Box dimension ofSis Dy if
S_uppose thaty # O is a subset ofR". The diameter olU is logNB(S)
defined as NE(S)=0("8) as &—0 or Dg=lim, ;———
diam(U)=sug|x—y|:x,ye U}. (A1) 9 (A7)
An e-cover of Sis a countable or finite collection of seft);}

whereO is Landau’s order symbol. It can be shown that always
Dy=<Dg. For self-similar fractals the equality holds. Box mea-
1. O<diamU;)=e, suremp_ is defined as

such that
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mp, =NE(S)sPe

=inf{ >, £P8:{U;} in a finite e—cover of S|,

I
mDleimHOmgB. (A8)

In calculating Hausdorff measure different weight|® are as-

signed to covering setd; while in box measure the same weigh

£Pe is used for all covering sets. It should be noted thg'é is not

n-1 n-1
o TsH<1
Dp= n—1 (Al6a)
n O<H=—
n
Dg=n—H. (Aleb)

tAnd globally,Dp=Dg=n—1.
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