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On Fractal Cracks in Micropolar
Elastic Solids
In this paper we review the fracture mechanics of smooth cracks in micropolar (Coss
elastic solids. Griffith’s fracture theory is generalized for cracks in micropolar solids a
shown to have two possible forms. The effect of fractality of fracture surfaces on
powers of stress and couple-stress singularity is studied. We obtain the orders of
and couple-stress singularities at the tip of a fractal crack in a micropolar solid us
dimensional analysis and an asymptotic method that we call ‘‘method of crack-e
zone.’’ It is shown that orders of stress and couple-stress singularities are equal to
order of stress singularity at the tip of the same fractal crack in a classical solid.
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1 Introduction
Fractal geometry, which has been argued to be a better ge

etry for modeling natural objects than Euclidean geometry, w
introduced by Mandelbrot@1,2#. The term ‘‘fractal’’ was coined by
Mandelbrot@2# from the Latin verbfrangere, ‘‘to break,’’ and the
corresponding adjectivefractus, ‘‘fragmented and irregular.’’
Fractal geometry has found applications in many fields of scie
and engineering in recent years. So far fractal geometry’s m
applications to solid mechanics problems are in contact mecha
and fracture mechanics. Fractal fracture mechanics is a noncl
cal fracture mechanics in which cracks are assumed to be fra
curves~surfaces! ~Cherepanov et al.@3#, Balankin@4#!. In classi-
cal fracture mechanics it is assumed that cracks are rectifi
curves~surfaces!, i.e., curves~surfaces! with finite lengths~areas!.
Cracks are modeled by smooth curves~surfaces! with probably a
finite number of kinks. These simplifying assumptions make fr
ture mechanics problems mathematically tractable.

Mandelbort et al.@5# experimentally showed that fracture su
faces of steel are fractals. Since that pioneering work many o
experimental studies have been done~for example, Brown and
Scholz@6#; Power and Tullis@7#; Saouma et al.@8#; Saouma and
Barton @9#; Wong et al.@10#!. Now we know that cracks can b
modeled by fractals in a wide~but finite! range of length scales. A
number of theoretical studies have been conducted to date.
solov @11# and Gol’dshte�n and Mosolov@12,13# studied the sin-
gularity of stresses at the tip of a mode I self-similar fractal cra
showing that the power of stress singularity is a linear function
fractal dimension of the crack. Yavari et al.@14# calculated the
orders of stress singularity for mode I, II, and III fractal crack
Yavari @15#, Yavari et al. @16#, and Balankin@4# studied HRR
singularity for self-similar and self-affine fractal cracks.

Mosolov @17# and Balankin@4# investigated the path indepen
dence ofJ-integral for fractal cracks and modified theJ-integral
for fractal cracks. They argued that the modifiedJ-integrals are
path-independent. This problem was later discussed in Ya
et al. @16#. They mentioned that a fractalJ-integral should be
equal to the potential energy release per unit of a fractal meas
They explained that the modifiedJ-integrals defined by Mosolov
and by Balankin are only locally path-independent and have
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physical meaning. Crack growth in compression was explained
Mosolov and Borodich@18#, Mosolov @19#, and Balankin@4#.

Yavari @15# and Yavari et al.@14# introduced a new mode o
fracture in fractal fracture mechanics and called it ‘‘the four
mode’’ or ‘‘the axial mode.’’ They pointed out that the existence
this new mode of fracture could make some single-mode pr
lems of classical fracture mechanics, mixed-mode problems
fractal fracture mechanics. Later, Yavari et al.@16# showed that
there are actually three new fractal modes. Xie@20# studied crack
branching using a fractal model. Xie and Sanderson@21# ex-
plained a paradox in dynamic fracture mechanics using their f
tal model. Borodich@22,23# realized that Griffith’s criterion must
be modified for fractal cracks. He showed that in the modifi
criterion, the specific surface energy must be defined per unit
fractal measure~not length or area! of fractal crack growth. Yavari
@24# generalized Barenblatt’s cohesive fracture theory and de
oped a fractal cohesive fracture theory.

To our best knowledge, there is no investigation into frac
cracks in micropolar~Cosserat! solids. This paper aims to explor
some interesting problems of micropolar fractal fracture mech
ics. In Section 2, micropolar elasticity is reviewed and its ba
concepts and definitions are explained. Section 3 discusses
ture mechanics of rectilinear cracks in micropolar solids. The
fects of couple-stresses in fracture mechanics are reviewed
Griffith’s criterion is generalized for both smooth and fract
cracks in micropolar solids in Section 4. Section 5 studies s
similar and self-affine fractal cracks in micropolar solids. Usi
dimensional analysis and the method of crack-effect zone, i
shown that stresses and couple-stresses at the tip of a fractal
in a micropolar solid have equal orders of singularity. The Appe
dix presents some basic definitions and techniques of fractal
ometry that are directly relevant to our investigation.

2 Micropolar Elasticity
This section presents a brief introduction to generalized c

tinuum theories and their history. Here we discuss only those
pects of micropolar elasticity theory that are necessary for
investigation of fractal cracks in a micropolar solid. A literatu
review for fracture mechanics of rectilinear cracks in micropo
solids will be given in the next section.

In classical continuum mechanics, at each point only tran
tional degrees-of-freedomui ( i 51,2,3) are considered and it i
assumed that the interaction between two material points alon
arbitrary surfaceS is completely described by a stress vectors
defined onS. These assumptions lead to a mathematically con
tent theory of continuum mechanics. Experience has shown
most analytical solutions obtained in the framework of classi
continuum mechanics agree very well with the experimental
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sults. To data all engineering designs are based on the us
classical continuum mechanics and sometimes even with s
more simplifying assumptions.

The curiosity of some distinguished researchers led them
question the above-mentioned hypotheses and to develop gen
ized continuum theories. It was clear for them that consider
only translational degrees-of-freedom might not be enough
continua with microstructure~see@25–37#!.

In the original Cosserat brothers’ formulation~@26#!, rotations
f i ( i 51,2,3) were considered to be independent of displacem
componentsui ( i 51,2,3). However, later most analytical solu
tions were reported for a special case that is now known
couple-stress theory or constrained Cosserat theory. In cou
stress theory, microrotations are assumed to be equal to mac
tations, i.e.,f i51/2« i jkuk, j . This is the theory that was develope
independently by Grioli@28#, by Aero and Kuvshinskii@31#, and
by Mindlin and Tiersten@32#. Eringen and his co-workers elabo
rately studied the theory of Cosserat continua and again assu
that microrotations are independent of displacement compone
Eringen @36,37# renamed the Cosserat continuum theory a
called it micropolar continuum theory. Cowin@38–40# discovered
a continuous transition from couple-stress theory to micropo
theory by introducing a coupling numberN (0<N<1), where
N51 corresponds to the couple-stress theory,N50 corresponds
to the classical theory, andN between zero and one (0,N,1)
corresponds to the micropolar theory. It is known that in coup
stress theory of elasticity two new constants appear and on
them,l has the dimension of length and is called the character
length. On the other hand, in micropolar elasticity there are f
new material constants and two of them,l t and l b have dimen-
sions of length and are called characteristic lengths in torsion
bending, respectively. This means that in generalized continu
theories there is at least one internal length scale and there
these theories should be able to analytically predict size effec

Several authors investigated the effects of couple-stresse
different problems of solid mechanics such as stress concentr
in the presence of holes and inclusions and the change of
effect in rigidity of different structural members~see@41–62#!.
Recently, there have been some investigations into strain grad
plasticity ~see@63# and references therein!. These theories seem t
be promising in design of very small structures.

As was mentioned at the beginning of this section, generali
continuum theories attracted theoreticians because of their be
To date these theories have not been applied to practical probl
Here we have an example of a field in which experimental stud
are far behind the theory. There are several experimental inv
gations into the mechanical properties of micropolar elastic m
rials. What we have at this time are just some ranges of th
material constants~Schijve @64# and Lakes@60#!. So far we have
only some qualitative sense of the influences of couple stres
We are hopeful that future advances in experimental mecha
will make these elegant theories applicable to real enginee
problems.

It is worth mentioning that there is a recent interest in gene
ized continuum theories because of the superiority they hav
localization analyses. These studies are beyond the scope o
section and will not be mentioned here. Now we present the b
concepts, definitions, and balance equations of the theory of
cropolar elasticity. Here we mainly follow Eringen@37#.

In a continuous medium with microstructure each material e
ment contains several micromaterial elements. In micropolar c
tinuum mechanics only microrotations are considered for mic
elements. Therefore, for each material point, in addition to
three displacements, three microrotations are considered. Micr
tations are assumed to be different from macrorotations. Displ
ment components are denoted byui , microrotations byf i , and
macrorotations byr i . Macrorotations have the following relation
with displacements:
46 Õ Vol. 69, JANUARY 2002
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r i5
1

2
« i jkuk, j (1)

where« i jk is the permutation symbol. Macrostrainsei j and mi-
crostrains« i j are defined as

ei j 5
1

2
~ui , j1uj ,i ! (2a)

« i j 5ei j 1ei jk~r k2fk!. (2b)

Curvature tensor is defined by

x i j 5f j ,i . (3)

As a consequence of the assumption that each point has
degrees-of-freedom, in a micropolar continuum both stresses
couple-stresses exist and Cauchy’s theorem holds for them, i

s i5s j i nj (4a)

mi5mji nj (4b)

wheres i andmi are components of stress and couple-stress v
tors, respectively,ni is the unit normal vector to an arbitrary su
face S, and s i j and mi j are respective stress and couple-stre
tensors. Stress and couple-stress tensors are in general asym
ric. The equilibrium equations are

s j i , j50 (5a)

mji , j1« i jks j ,k50. (5b)

For a centrosymmetric isotropic micropolar material the stre
strain relations are

s i j 5lekkd i j 1~2m1k!ei j 1k« i jk~r k2fk! (6a)

mi j 5afk,kd i j 1bf i , j1gf j ,i (6b)

wherel andm are the classical Lame´ constants anda, b, g, and
k are new micropolar constants with the following dimensions

@a#5@b#5@g#5F5
M

L
and @k#5

F

L2 5
M

L3 (7)

whereF, M, andL are dimensions of force, moment, and leng
respectively. The strain energy density has the following form

W5
1

2
~s i j « i j 1mi j x i j !5

1

2
@lekkemm1~2m1k!ei j ei j #

1k~r k2fk!~r k2fk!1
1

2
~afk,kfm,m

1bf i , jf j ,i1gf i , jf i , j !. (8)

The following technical elastic constants have clearer phys
meanings~@59#!:

E5
~2m1k!~3l12m1k!

2l12m1k
, G5

2m1k

2
, n5

l

2l12m1k
(9a)

l t5A b1g

2m1k
, l b5A g

2~2m1k!
(9b)

N5A k

2~m1k!
, c5

b1g

a1b1g
(9c)

whereE, G, n, l t , l b , N, andc are Young’s modulus, Poisson’
ratio, the characteristic length in torsion, the characteristic len
in bending, coupling number, and polar ratio, respectively. Th
constants have the following dimensions:

@E#5@G#5FL22, @n#51

@ l t#5@ l b#5L (10)
Transactions of the ASME
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It is seen that two internal characteristic lengths exist. Theref
this theory is capable of analytically predicting size effects. It
worth mentioning that these characteristic lengths appear in
stress field solutions even for force control loading conditio
Therefore, in dimensional analysis formulations these charact
tic lengths must be taken into account.

3 Fracture Mechanics of Smooth Cracks in Micropo-
lar Solids

In this section, fracture mechanics of smooth cracks in a
cropolar solid is reviewed. Here, the effects of couple-stresse
the stress distribution around the tip of a smooth crack are
cussed. In 1960s and 1970s when generalized continuum the
were rediscovered and elaborately developed, several resear
became interested in examining the influence of couple-stress
problems in which classical theory predicts infinite stresses. O
such problem with great practical importance was the stress
tribution near the tip of a smooth crack. It was known that stres
and strains around the tip of a crack are unbounded and hav
r 21/2 singularity. Researchers were hopeful not to see this pa
logical problem in higher-order continuum theories. Unfort
nately, higher-order continuum theories could not solve this pa
logical problem; both stresses and couple-stresses were obs
to be unbounded at the crack tip. There is a limited numbe
investigations in micropolar fracture mechanics, which will
reviewed in this section.

The first investigation into fracture mechanics of smooth cra
in Cosserat continua was performed by Sternberg and Muki@65#.
They solved the problem of an infinite two-dimensional plan
strain linear couple-stress medium with a finite crack under a
form tensile stress state perpendicular to the crack axis at infi
They showed that both stresses and couple-stresses have anr 21/2

singularity at the crack tip. They observed that couple-stres
only change the angular variation of stresses around the crack
the form of the radial variation of stresses remains unchang
They found the following asymptotic expressions for stresses
couple-stresses:

sxx~r ,u!52~122n!
KI

A2r
Fcos

u

2
2

1

2
sinu sin

3u

2 G1O~r 0!

(11a)

syy~r ,u!5
KI

A2r
F ~322n!cos

u

2
2

1

2
~122n!sinu sin

3u

2 G
1O~r 0! (11b)

sxy~r ,u!52
KI

A2r
F4~12n!sin

u

2
1

1

2
~122n!

3sinu cos
3u

2 G1O~r 0! (11c)

syx~r ,u!52~122n!
KI

A2r
F1

2
sinu cos

3u

2 G1O~r 0! (11d)

and

mxz~r ,u!52
K̂ l

A2r
Fa

2
sin

u

2G1O~r 0! (12a)

mxz~r ,u!5
K̂ l

A2r
Fa

2
cos

u

2G1O~r 0! (12b)

wheresxx , syy , sxy , syx are ~force-! stresses andmxz andmyz
are couple-stresses and
Journal of Applied Mechanics
re,
is
the
s.
ris-

i-
on
is-
ries

chers
s in
ne

dis-
ses
e an
ho-
u-
ho-
rved
of
e

ks

e-
ni-
ity.

ses
tip;
ed.

and

KI5 f S l

a
,n Ds`Aa and K̂ l5 f̂ S l

a
,n Ds`Aa (13)

whereKI and K̂ l are stress- and couple-stress intensity factorsn
is Poisson’s ratio,l is the characteristic length of the couple-stre
material, and 2a is the crack length. Later Sih and Liebowitz@66#
found the asymptotic expressions of the displacement and rota
components as shown below:

ur~r ,u!5
KIA2r

8m F3~122n!cos
u

2
2~726n!cos

3u

2 G1O~r !

uu~r ,u!5
KIA2r

8m F2~122n!sin
u

2
1~726n!sin

3u

2 G1O~r !

(14)

vz~r ,u!5
K̂ lA2r

8m l 2 Fa sin
u

2G1O~r !.

For a crack in a Cosserat continuum, strain energy release ma
calculated as

G5 lim
da→0

1

da E0

da

@syy~da2j,0!uy~j,p!

1myz~da2j,0!vz~j,p!#dj. (15)

Using the above formula, Sih and Liebowitz@66# found the strain
energy release rate.

G5
p

2m F ~12n!~322n!KI
21

1

16 S a

l D
2

K̂ I
2G (16)

There are some other interesting investigations into fract
mechanics of cracks in micropolar solids~see@67–73#!. Now it is
known that the classical theory underestimates the value ofKI and
overestimates the energy release rateG.

Another interesting investigation into micropolar fracture m
chanics was conducted by Atkinson and Leppington@74#. They
analyzed two problems:~1! a semi-infinite crack under an interna
stress acting on the crack faces and~2! a finite crack in an infinite
solid under a uniform stress at infinity. They solved the seco
problem only for cases in whichl /a is very small (l /a!1). They
showed that both stresses and couple-stresses at the tip of a
in a couple-stress or micropolar medium have anr 21/2 singularity.
They also demonstrated that the angular variations of stresses
couple-stresses in couple-stress and micropolar continua a
little different but have a similar form. Atkinson and Leppingto
defined theJ-integral for both couple-stress and micropolar the
ries and showed thatJ-integral is path-independent. Recentl
Lubarda and Markenscoff@75# studied some conservation inte
grals for linear couple-stress elasticity.

4 Micropolar Griffith’s Criterion
For finding the orders of stress and couple-stress singularit

the tip of a fractal crack, we utilize an energy approach. T
fractal crack is in equilibrium and hence the virtual work of a
forces in a virtual displacement, which is an infinitesimal cra
growth, is zero. For a cracked body, the principle of virtual wo
must be modified to take into account the work done in a cr
propagation and strain energy release due to a crack growth. G
fith’s @76,77# criterion is actually a modified energy balance f
cracked bodies. In this section we generalized Griffith’s theory
smooth and fractal cracks in micropolar solids.

4.1 Griffith’s Theory for a Smooth Crack in a Micropolar
Solid. When a crack propagates, new free surfaces are crea
For creating these new free surfaces some amount of surface
ergy is needed to overcome the cohesive forces. This amoun
energy is provided by an equal amount of strain energy rele
This is Griffith’s criterion@76,77#, which was originally stated for
JANUARY 2002, Vol. 69 Õ 47



48 Õ V
Fig. 1 Mechanism of crack propagation in a micropolar continuum: „a… crack-tip particles withstand rotation and
separation, „b… the first step in crack propagation—crack-tip particles rotate with respect to each other, and „c…
the second step in crack propagation—crack-tip particles move apart and neighboring particles become the next
crack-tip particles
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a rectilinear crack in a classical continuum. Mosolov@11# used
this criterion for fractal cracks assuming that the specific surf
energy per unit length remains unchanged and only the lengt
the crack increases in the case of a fractal crack. Later, Boro
@22,23# noticed that Griffith’s criterion must be modified and
the modified criterion the specific surface energy must be defi
per unit of a fractal measure. To our best knowledge, there is
discussion on Griffith’s criterion for cracks in micropolar solid
This theory can be easily generalized for smooth and fra
cracks in a micropolar solid, as we show below.

In a micropolar continuum each material point can rotate a
translate independently. Now suppose that there is a finite crac
length 2a in a micropolar solid. Figure 1~a! shows a crack and
some particles~material points! on the crack surfaces. When th
crack propagates, crack-tip particles separate from each other
like a crack in a classical solid, this separation of crack-tip p
ticles is a two-step process as shown in Figs. 1~b! and 1~c!. In the
first step crack-tip particles rotate with respect to each other
do not move, i.e.,

Df5f22f1Þ0 and Du5u22u150. (17)

In the next step, crack-tip particles move apart but do not rot
i.e.,

Du5u22u1Þ0 and Df5f22f150. (18)

After this step, these particles are no longer crack-tip partic
they belong to two free surfaces~see Fig. 1~c!!. Obviously, the
surface energydUs needed for creating the new free surfaces h
two parts,dUs

f anddUs
u , wheredUs

f is the surface energy spen
on rotating particles in the path of crack growth anddUs

u is the
surface energy spent on separating these particles from each
Figure 2 shows a crack and the dashed line is the crack prop
tion path. Crack-tip particles on the path of crack propagation
shown in this figure. Similar to the surface energy release r
strain energy release rate is composed of two parts: stress
dUe

s , and couple-stress partdUe
m .
ol. 69, JANUARY 2002
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Griffith’s criterion for a crack in a micropolar solid may b
stated in two different forms, depending on whether the effects
stresses and couple-stresses are considered uncoupled or co

(I) Uncoupled Micropolar Griffith’s Criterion. This form of
Griffith’s criterion states that a crack propagates by an amountda
if the following conditions are satisfied simultaneously:

dUe
s5dUs

u2tguda (19a)

dUe
m5dUs

f52tgfda (19b)

where t, gu , and gf are thickness, displacement, and rotati
specific surface energies, respectively. Dimensions of these
surface energies are@gu#5@gf#5FL21.

(II) Coupled Micropolar Griffith’s Criterion. In this form of
the Griffith’s criterion effects of stresses and couple-stresses

Fig. 2 A crack in a micropolar solid and its propagation path.
The particles shown are the particles on the subsequent free
surfaces.
Transactions of the ASME
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assumed to be coupled. Coupled micropolar Griffith’s criter
states that the crack propagates by an amountda if

dUe5d~Ue
s1Ue

m!5dUs52tgmda52t~gu1gf!da. (20)

It should be noted that the micropolar specific surface energygm
is generally different from the classical specific energyg. Obvi-
ously, if ~19a! and ~19b! are satisfied,~20! is automatically satis-
fied. In other words, the uncoupled criterion is stronger than
coupled criterion.

4.2 Griffith’s Criterion for a Fractal Crack in a Micropo-
lar Solid. For a smooth crack, surface energy required for cra
propagation is proportional to the length~area! of the newly cre-
ated free surfaces. In the case of a fractal crack the true le
~area! of new free surfaces should be considered. Because the
length~area! of a fractal curve~surface! is infinity, a fractal mea-
sure should be utilized. The surface energy required to crea
fractal crack in a classical solid is

Us52tg f~D !mD (21)

where t is the plate thickness,g f5g f(D) is the specific surface
energy per unit of a fractal measure, andmD is the corresponding
fractal measure and is proportional toaD ~see the Appendix!. Spe-
cific surface energy per unit of a fractal measure was introdu
by Borodich@22,23# and has the dimension@g f #5FL2D, whereF
andL are dimensions of force and length, respectively. There
two important issues arising from Borodich’s generalization
Griffith’s criterion that should be explained:~1! It should be noted
thatg f is not a material property. In general, it is possible to ha
cracks with different fractal dimensions in the same mater
Therefore, in Eq.~21! g f cannot be a material property; it depen
on both the material and the fractal dimensions of the fra
crack.~2! ‘‘Fractal measure’’ is an ambiguous term; there are d
ferent definitions of dimension and consequently these diffe
dimensions have different corresponding measures. For
similar fractals all different dimensions have the same value
hence the corresponding measures they define are iden
Therefore, for self-similar fractals ‘‘fractal measure’’ is not a
ambiguous term. However, this is not the case for self-affine fr
tals; different definitions of dimension give completely differe
dimensions for the same self-affine fractal set. Obviously, the
evant fractal dimension for calculating the surface energy o
fractal crack is the divider~latent! fractal dimension. Therefore
the specific surface energy should be defined per divider fra
measure, although it can be defined for other fractal measure
well.

For a fractal crack in a micropolar solid, Griffith’s criterio
again has uncoupled and coupled forms and only the surface
ergies should be modified as

dUs
u52tgu

f ~DDD
!dmDD

and dUs
f52tgf

f ~DD!dmDD

(22a)

dUs5dUs
u1dUs

f52t@gu
f ~DD!1gf

f ~DD!#dmDD
(22b)

wheregu
f andgf

f are fractal specific surface energies per unit
latent fractal measure andmDD

is the latent fractal measure. Thu
we have the following two forms of fractal micropolar Griffith’
criterion.

(I) Uncoupled Fractal Micropolar Griffith’s Criterion. A
fractal crack with divider fractal dimensionDD propagates by an
amountdmDD

if the following two conditions are satisfied simu
taneously:

dUe
s5dUs

u52tgu
f dmDD

(23a)

dUe
m5dUs

f52tgf
f dmDD

. (23b)
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(II) Coupled Fractal Micropolar Griffith’s Criterion. A frac-
tal crack with divider fractal dimensionDD propagates by an
amountdmDD

if the following condition is satisfied:

dUe5d~Ue
s1Ue

m!5dUs52tgm
f dmDD

52t~gu
f 1gf

f !dmDD
.
(24)

In the next section we use both forms of micropolar Griffith
criterion for calculating the orders of stress and couple-stress
gularity at the tip of a fractal crack. We will show that both criter
give equal orders of stress and couple-stress singularity.

5 Fractal Cracks in Micropolar Elastic Solids
In this section radial variations of stresses and couple-stre

around the tip of a fractal crack in a micropolar solid are inves
gated. To the best of our knowledge, there is no investigation
this problem in the literature. Without loss of generality, a mod
problem is solved. Consider an infinite medium made of a m
cropolar material with a finite crack of nominal length 2a. It is
assumed that the cracked solid is under a uniform tensile stress`

perpendicular to the crack axis applied at infinity~see Fig. 3~a!!.
One major difference between this problem and the sim

problem of a fractal crack in a classical solid is that a micropo
material has two internal characteristic length scales,l b and l t .
Here l b and l t are characteristic lengths in bending and torsio
respectively. On the other hand, a couple-stress material has
one characteristic lengthl. For a micropolar material in a two
dimensional problem only one of the characteristic lengths
pears in the equilibrium equations. Therefore, it is assumed
the medium has a characteristic length and it is denoted byl. It is
known that even for a force control loading this characteris
length appears in the stress solutions in the form ofl /a, where
‘‘a’’ is a geometric characteristic length of the problem, for e
ample hole radius or crack length.

The method of crack-effect zone, which was introduced by Y
vari et al.@16#, is utilized. When the system shown in Fig. 3~a! is
uncracked, only one of stress components is nonzero and h
uniform distribution; all other stresses and all couple-stresses
identically zero. When the crack is formed, stresses and cou
stresses are perturbed. This stress perturbation is significant
in a finite zone around the crack. For the cracked system
stresses and couple-stresses are nonzero in the crack-effect
The crack-effect zone may be covered by a diskRc , as shown in
Fig. 3~a!. We assume that the micropolar material is centrosy
metric isotropic and homogeneous. The strain energy of the
tem may be written as

Ue5Ue
s1Ue

m5E
R
S 1

2
s i j « i j 1

1

2
mi j x i j DdV (25)

wheres i j , mi j , « i j , andx i j are stresses, couple-stresses, stra
and curvatures, respectively. The strain energy can be decomp
into two parts as follows:

Ue5E
R2Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV

1E
Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (26)

When the crack propagates by an infinitesimal amountda, the
change of the strain energy inRc is dominant, hence

dUe>dE
Rc

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (27)

For a centrosymmetric material stress-strain and couple-str
curvature relations are uncoupled, i.e., stresses are not func
of curvatures and couple-stresses are not functions of stra
Therefore, the constitutive equations may be written as

s i j 5Ci jkl «kl and mi j 5Ĉi jkl xkl (28)
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Fig. 3 „a… A two-dimensional micropolar solid with a finite fractal crack perpendicular to the applied stresses, „b… an infinite
micropolar solid with a finite fractal crack parallel to the applied stresses
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whereCi jkl andĈi jkl are fourth-order tensors and are mechani
properties of the material. The following asymptotic stresses
couple-stresses are assumed at the crack tip

s i j ~r ,u!5KIr
2a1f i j S u,n,

l

a
,H D (29a)

mi j ~r ,u!5K̂ l r
2a2 f̂ i j S u,n,

l

a
,H D (29b)

whereKI
f andK̂ l

f are fractal stress and couple-stress intensity f
tors, respectively, andH is the Hurst exponent~see the Appendix!.
We will calculatea1 and a2 using the method of crack-effec
zone. The above asymptotic stresses and couple-stresses are
nant forr<r s1

andr<r s2
, respectively. Therefore, Eqs.~29a! and

~29b! are valid in a diskRs with radiusr s5min(rs1
,rs2

). Here, the
method of crack-effect zone should be used very carefully.
cause the change ofUe in Rs is dominant, the change of strai
energy may be expressed as

dUe5dE
Rc2Rs

S 1

2
s i j « i j 1

1

2
mi j x i j DdV1dE

Rs

S 1

2
s i j « i j

1
1

2
mi j x i j DdV>dE

Rs

S 1

2
s i j « i j 1

1

2
mi j x i j DdV. (30)

From ~29! and ~30! we have

dUe5dUe
s1dUe

m (31a)

dUe
s}d~r s

2a1r s
2a1r s

2! and dUe
m}d~r s

2a2r s
2a2r s

2! (31b)

where ‘‘}’’ means ‘‘proportional to.’’ For a rectilinear or fracta
crack in a micropolar continuumr s is not necessarily proportiona
50 Õ Vol. 69, JANUARY 2002
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to ‘‘ a.’’ Here r s is a function of a, l, n, and H, i.e., r s
5 f (a,l ,n,H). Using Buckingham’s~@78,79#! P theorem we must
have

r s

a
5F̂S l

a
,n,H D or r s5aF̂S l

a
,n,H D . (32)

As it is seen from~32!, r s is not necessarily proportional to ‘‘a.’’
The functional form ofF̂ cannot be found using dimensiona
analysis and this makes the use of crack-effect zone method
difficult. But we know that for most engineering materialsl is
very small (l /a!1). We also know that the following limit exists

lim l /a→0 F̂S l

a
,n,H D5F̂~0,n,H !5F~n,H ! (33)

because whenl /a tends to zero for a constant ‘‘a’’ we approach
the classical theory and obviouslyF̂ is defined for the classica
theory and is finite. Thus we have a complete similarity or
similarity of the first kind~see, for example, the excellent book
Barenblatt@80#!. Therefore according to dimensional analysis f
very small l /a( l /a!1)F̂ can be considered independent ofl /a
and replaced by its limitF. Therefore,r s;a for l /a!1. As a
matter of fact, we do not need to limit ourselves to the casel /a
!1. We can show thatF̂ is not a function ofl /a as we see in the
following. We know that for a smooth crack both stresses a
couple-stresses have anr 21/2 singularity regardless of the size o
the characteristic length~s! of the cracked micropolar materia
Suppose that the radius of the dominant zone of stress and co
stress singularity isr s . Thus, dUs}d(r s

222a)5d(r s) and dUs
}d(a). Therefore, according to Griffith’s criterion we must hav
r s}a. Thus
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F̂S l

a
,n,H51D5 f ~n!. (34)

For a fractal crackH is a local parameter whilel /a is a global
parameter. The reason is thatH is defined only for the fracta
crack, which has 2-measure~area! zero butl /a is defined for all
points of the domain other than the crack. Therefore, we expecF̂
to be separable, i.e.,

F̂S l

a
,n,H D5F̂1S l

a
,n D F̂2~n,H !. (35)

From ~34! and ~35! we obtain

F̂S l

a
,n,H D5F̃~H,n!. (36)

Therefore,r s is always proportional to ‘‘a’’ regardless of the value
of l /a.

From ~31b! we have

dUe
s}d~a222a1! and dUe

m}d~a222a2!. (37)

The next thing we need is the asymptotic form of surface energ
From ~22! we have

dUs
u}dUs

f}dUs}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (38)

We use both forms of Griffith’s criterion and show that they gi
us the same result.

Using uncoupled micropolar Griffith’s criterion is easier a
yields

d~a222a1!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(39a)

d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (39b)

Thus

a15a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (40)

Using coupled Griffith’s criterion is tricky. From~20!, ~38!, and
~39! we obtain

C1d~a222a1!1C2d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(41)

whereC1 andC2 are not functions ofa. We prove by contradic-
tion thata1 anda2 must be equal. Suppose thata1Þa2 and for
examplea1.a2 . Notice that ‘‘}’’ means ‘‘proportional to’’ and
that Eq.~41! holds for an arbitrary crack length ‘‘a.’’ For a very
large ‘‘a’’ ( a@1) we can write

a222a2@a222a1. (42)

Hence
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C1d~a222a1!1C2d~a222a2!

>C2d~a222a2!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

(43)

Thus

a25H 2H21

2H

1

2
<H,1

0 0<H<
1

2

(44)

On the other hand, for a very small ‘‘a’’ ( a!1) we can write

a222a1@a222a2. (45)

Thus

C1d~a222a1!1C2d~a222a2!

>C1d~a222a1!}H d~a1/H!
1

2
<H,1

d~a2! 0,H<
1

2

. (46)

Hence

a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (47)

From ~44! and~47! we see thata15a2 , which is a contradiction.
Therefore our assumption was false anda1 anda2 must be equal,
i.e.,

a15a25H 2H21

2H

1

2
<H,1

0 0,H<
1

2

. (48)

Therefore

s i j ;r
22H21

2H
, mi j ;r

22H21

2H
as r→0

1

2
<H,1

(49a)

s i j ;r 0, mi j ;r 0 as r→0 0,H<
1

2
. (49b)

It is seen that both forms of Griffith’s criterion yield the sam
result: stresses and couple-stresses have equal orders of sin
ity and this order of singularity is the same as that of stresse
the tip of a fractal crack in a classical continuum. This result
similar to that reached by Sternberg and Muki@65#: that in a
couple-stress medium at the tip of a smooth crack both stre
and couple-stresses haver 21/2 singularities. This is also true fo
self-similar cracks; orders of stress and couple-stress singul
are equal.

A similar result can be reached for mode IV self-affine crac
A mode IV fractal crack is shown in Fig. 3~b!. This new mode of
fractal fracture was introduced by Yavari@15# and Yavari et al.
@14#. As was done for a mode I fractal crack, the orders of str
and couple-stress singularity can be calculated. The only mo
cation in the analysis is to change Eq.~37! to read~@14,16#!

dUe
s}d~a11H22a1H! and dUe

m}d~a11H22a2H! (50)
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The stresses and couple-stresses have the following asymp
forms:

s i j ;r
2H22H11

2H2 , mi j ;r
2H22H11

2H
as r→0

1

g
<H,1

(51a)

s i j ;r 0, mi j ;r 0 as r→0 0,H<
1

g
(51b)

whereg5(A511)/2 is the Golden ratio. All four modes of frac
ture are shown in Fig. 4.~Actually, there are six modes. We foun
the fifth and sixth modes very recently~@16#!!.

For three-dimensional cracked bodies made of a couple-s
material or a micropolar material a similar conclusion can
reached.

6 Conclusions
Fracture mechanics of smooth cracks in micropolar continu

reviewed. Griffith’s fracture theory is generalized for rectiline
and fractal cracks in micropolar continua. It is seen that Griffit
criterion can have two forms: uncoupled micropolar Griffith’s c
terion and coupled micropolar Griffith’s criterion. Using dime
sional analysis and the method of crack-effect zone it is sho
that both forms of Griffith’s criterion predict that stresses a
couple-stresses have the same order of singularity. This orde
stress and couple-stress singularity is shown to be equal to th
stresses at the tip of a fractal crack in a classical continuum.
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Appendix

Fractal Geometry. This Appendix presents some concep
and definitions of fractal geometry. Here we discuss only th
aspects of fractal geometry that are directly relevant to our inv
tigation. For more details the reader may refer to Mandelb
@2,81–83#, Feder@84#, Vicsek @85#, and Falconer@86,87#.

Suppose thatUÞB is a subset ofRn. The diameter ofU is
defined as

diam~U !5sup$ux2yu:x,yPU%. (A1)

An «-cover of S is a countable or finite collection of sets$Ui%
such that

1. 0,diam(Ui)<«,

Fig. 4 The four modes of fractal fracture: mode I „opening
mode …, mode II „shearing mode …, mode III „tearing mode …, and
mode IV „axial mode …
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Consider a setS,Rn. An affine transformation of real scaling
ratios r 1 ,r 2 , . . . ,r n (0,r i,1) transforms each x
5(x1 ,x2 , . . . ,xn)PS into r (x)5(r 1x1 ,r 2r 2 , . . . ,r nxn)Pr (S).
The setS is self-affine if it is composed ofN nonoverlapping
subsets congruent tor (S). If the above property holds forSwhen
r 15r 25 . . . 5r n5r , it is called a self-similar set. A self-simila
fractal is invariant under an isotropic length-scale transformat
while a self-affine fractal is invariant under a transformation w
different length scales in different directions.

Roughly speaking, measure of a setS,Rn tells us about the
size of the set and is denoted bym(S). In other words, measure i
a generalized size.m is a measure onRn if it assigns a non-
negative real number~possibly 1`! to each subset ofRn and
satisfies the following requirements:

1. m(B)50
2. m(A)<m(B) if A,B
3. If A1 ,A2 , . . . is a finite or countable sequence of subsets

Rn then

mS ø
i51

`

AiD<(
i51

`

m~Ai! (A2)

with equality if Ai ’s are disjoint subsets ofRn.

Now suppose thatS,Rn andDPR1ø$0%. TheD-dimensional
Hausdorff measure ofS is denoted byHD(S) and is defined as

HD~S!5 lim«→0 H«
D~S! (A3)

where

H«
D~S!5 infH(

i 51

`

diam~Ui !
D:$Ui% is an « – cover of SJ

(A4)

It can be shown thatHD has all the properties of a measure. It c
be proved that for any setS, HD(S) has a jump from1` to 0 for
one and only one value ofD, which is called the Hausdorff di-
mension ofS, i.e.,

DH5 inf$D:HD~S!50%5sup$D:HD~S!51`%. (A5)

Therefore

HD~S!5H 1` D,DimHS

0 D.DimHS
. (A6)

There are many other definitions of dimension. One disadv
tage of Hausdorff dimension is the difficulty of calculating
which makes it impractical. Here we discuss two other import
dimensions, namely box dimension and divider dimension.
different dimensions somehow measure the complexity of irre
larity of a set. It should be emphasized that dimension provi
only limited information about a fractal set. In most definition
there is a measurement at scale«. For each« irregularities below
this scale are ignored and the behavior of measurements«
→0 is studied.
Box dimension: Let SÞB be a subset ofRn and letN«

B(S) be the
smallest number of sets of diameter at most« which can coverS.
Box dimension ofS is DB if

N«
B~S!50~«2DB! as «→0 or DB5 lim«→0

log N«
B~S!

2 log «
(A7)

whereO is Landau’s order symbol. It can be shown that alwa
DH<DB . For self-similar fractals the equality holds. Box me
suremDB

is defined as
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mDB

« 5N«
B~S!«DB

5 infH(
i

«DB:$Ui% in a finite « – cover of SJ ,

mDB
5 lim«→0mDB

« . (A8)

In calculating Hausdorff measure different weightsuUi us are as-
signed to covering setsUi while in box measure the same weig
«DB is used for all covering sets. It should be noted thatmDB

is not

a mathematical measure on subsets ofRn because it is not
s-additive.~It is actually a ‘‘content.’’!
Divider dimension: This is the most important dimension in ap
plications to fractal fracture mechanics problems. Consider a
dan curveC ~a curve that does not intersect itself! f :@a,b#→Rn,
where f is a bijection ~a one-to-one and onto function!. For «
.0 define N«

D(C) to be the maximum number of point
x0 ,x1 ,x2 , . . . ,xm on C such that uxk2xk21u5« for k
51,2, . . . ,m. Therefore, the approximate length of the cur
L«(C) is L«(C)5O@(N«

D(C)21)«#. The divider dimension ofC
is DD if

L«~C!5O~«12DD! as «→0 or N«
D~C!5O~«2DD! as «→0.

(A9)

We know thatN«
D(C) is dimensionless while« has dimension of

length. Therefore from~A9! we conclude that

N«
D~C!;S «

L0
D 2DD

or N«
D~C!;«2DDL0

DD (A10)

whereL0 is the nominal length ofC. It can be shown that for any
Jordan curveC, DD>DB . For self-similar curves the equalit
holds. Divider measuremDD

is defined as

mDD

« 5N«
D~C!«DD, mDD

5 lim«→0 mDD

« . (A11)

From ~A10! and ~A11! we can write

mDD
;L0

DD or mDD
5hL0

DD. (A12)

Like box measure, divider measure is not a mathematical mea
because it is nots-additive.

Consider a topologically one-dimensional set. Suppose that
set can be expressed as the graph of a single-valued functionF(t)
embedded inR2. ThenF(t) is a self-affine function if

F~ t !5r 2HF~rt ! ;r ,tPR (A13)

where H(0,H,1) is the Hurst ~roughness! exponent.
Weierstrass-Mandelbrot function is an example of a self-affi
function and is defined as

WM~x!5(
2`

1`

a2nH@12cos~anx!# a.1, 0,H,1.

(A14)

This function satisfies the invariance relation~A13!. It can be
shown that for a self-affine curve locally («<«x) we have

DB522H and DD5H 1

H

1

2
<H,1

2 0,H<
1

2

(A15a)

and globally («>«x)

DB5DD51. (A15b)

The length scale«x is called the crossover length («x
H>«x). In

general, for a self-affine fractal~with Hurst exponentH! embed-
ded in Rn the divider and box dimensions are locally related
roughness exponent by
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DD5H n21

H

n21

n
<H,1

n 0,H<
n21

n

(A16a)

DB5n2H. (A16b)

And globally,DD5DB5n21.
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