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Summary. The bending equations of the Mindlin-Reissner theory of plates laminated of transversely 
isotropic layers are reformulated in terms of the boundary-layer and transverse displacement functions. 
Analytical expressions are obtained for the primary response quantities of rectangular laminates with 
various boundary conditions. It is found that various edge conditions have boundary-layer effects on the 
primary and secondary response quantities that can be characterized as nonexistent, weak, or strong. 

1 Introduction 

Classical plate theory, which neglects transverse shear strains, results in a fourth-order equa- 
tion in the transverse deflection. On the other hand, in the past two decades numerous refined 
plate theories that include the transverse shear strains have appeared in the literature (see [1], 

[2]). The transverse shear deformation is often taken into account by the introduction of two 
rotation functions into the displacement-based theories. These functions represent rotations 
of straight lines about the z- and g-axes. Inclusion of the transverse shear strains increases the 

total order of governing equations by at least two. One such theory is known as Mindlin's 

theory [3], which is a sixth-order plate theory (see also Reissner [4]). Mindlin-Reissner theory 
is also referred to as the first-order shear deformation plate theory (FSDT). The three bending 

equations in this theory are often reformulated in terms of a potential function and the trans- 
verse displacement function for symmetric plates laminated of transversely isotropic layers 
(see [5]- [8]). When this potential function is introduced, the two rotation functions are elimi- 

nated, and, therefore, the three coupled governing equations are replaced by two uncoupled 

equations. One of these two equations is expressed in terms of the transverse deflection func- 
tion and is known as the interior equation. The second equation is expressed in terms of a 
potential function and is known as the edge-zone (or boundary-layer) equation. Irschik [9] 
developed analogies between dynamic shear deformation theories of layered beams and plates 

and classical theories for homogeneous single-layer structures. This paper studies the linear 
response of composite plates. For nonlinear plate and shell theories of laminated composites, 
the reader may refer to [6], [10], and [11]. 

In the present work, analytical solutions are obtained for the primary response quantities 
of laminated transversely isotropic rectangular plates in bending with various boundary con- 
ditions. Also, through numerical calculations the boundary-layer phenomenon existing in 
FSDT is studied. The results brought about by use of the FSDT are compared with those due 
to classical plate theory (CPT). 
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2 Governing equations 

The first-order shear deformation theory assumes that  the plane sections originally perpendi- 
cular to the longitudinal plane of the plate remain plane, but not necessarily perpendicular to 

the longitudinal plane; that is, in order to obtain the bending equations, it is assumed that  

~(x,  y, ~) = v(~, y) + ~ ( x ,  y), (1) 

where u and v are, respectively, the displacements of  the middle surface in the x- and y-direc- 

tions (see Fig. 1); ~ and Oy are known as the rotat ion functions [12]; and z is the thickness 
coordinate. The linear strains, in the Cartesian coordinates, associated with the displacement 

field (1) may be represented as 

Cll : s ~- ZX10 

2c12 = ~6 ~ q- zx6 ~ 

where 

s = ~,x 

Xl 0 = ~)2":x 

s = C20 ~- Z~20 ~ C33 = O: 
(2) 

2E13 = c5 0 + zx5 ~ , 2s = c40 + zz40 , 

e2 ~ = v y, e4 ~ = ey + w,~, cs ~ = ex + w,x, 

x20 = @y,y, ~40 = z50 = 0, ~s 0 : ~x,y q- ~y,x. 

~6 0 : '~,y q- V,x 
(3) 

In relations (3) a comma  followed by an independent variable denotes partial  differentiation 
with respect to that  variable. The equilibrium equations of  the theory are obtained f rom the 

principle of  minimum total potential energy [12]: 

6u : Nn,~ + Nm,~ = 0, (4.1) 

6v : N12,~ + N22,v = 0, (4.2) 

6 ~ x :  Mll ,z  n- M12,y -- r :- 0,  (4.3) 

6~/y : M12,z + J~//22,v - 0 2  = 0 ,  (4 .4)  

~: r + r + P~(x, y) : o, (4.5) 

Simply supported edges 

Fig. 1. The  geomet ry  o f  a rec- 
t angu la r  plate with s imple sup-  

por t s  at x = 0 and  x = a 
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where the symbol ~ represents the variational operator  and P~(z, y) denotes the transverse 

loading function. The stress and moment  resultants in Eqs. (4) are defined as: 

(NI~, x ~ ,  xl~) = / (~1~, ~2, ~1~/dz, 
-/~/2 

h/2 
(Mll, M22, M12) = f (~n, ~22, ~12) zdz, 

-t~/2 

h/2 
(01, (~2) = K2 f (O-I3, 0-23) d25, 

-h/2 

(s) 

either (Su -  0 or Nllnl + N12n2 = 0, (6.1) 

either (% = 0 or N12nl + N22n2 = 0, (6.2) 

either (5r = 0 or Mllnl +M12n2 = 0, (6.3) 

either 5~ v = 0 or M12nl ~- J~//227~2 : 0 ,  (6.4) 

either ~ = 0 or 01~1 + ~)2~ = 0. (6.5) 

be specified [12]: 

In the linear theory, when the plate is symmetrically laminated with respect to its middle 
surface, the first two equations in (4) will be written in terms of u and v and uncoupled from 
the last three equations. Equations (4 .3)-  (4.5) are expressed in terms of 0x, Cy, and w and are 

known as the bending equations of  the plate. Furthermore,  for symmetric laminates it can be 
shown that [13]: 

~i22 = D12 D22 D26[ = x2 ~ (7.1) 

~/f12 D16 D26 D60 J z60 

and 

01 LA4.5 Ass ss ~ 

I f  each layer of  the symmetric laminate is made of  transversely isotropic material,  with the 
plane of  isotropy being parallel to the plates middle surface, the rigidity terms A45, Dis, and 
D2s will vanish and the remaining ones will be (see [5] - [8]): 

N 
A44 = A55 = _4 = E(Gz)~(zt. - zk+l) , 

k=l 

N 1(  E ) (zk3--z3 
/c=1 /c 

D66 = ~ = ~ 1 (  E ) ~  ~ (Zk3--Z3_rl) and D 1 2 = / ) - 2 C .  
k=l k 

with K2(=  5/6) being the shear correction factor and h the thickness of  the plate. At any edge: 
of  the plate, with the normal  vector r~ = n1~'1 + n2~'2, the following boundary  conditions must 
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where E and v are Young's modulus and Poisson's ratio in the x-y plane, and G; is the shear 
modulus in the planes normal to the x-y plane. Also, for a single-layer transversely isotropic 
plate the non-vanishing rigidity terms are given by: 

1 Eh 3 1 Eh 3 
= , and /7)-  (9) ft G~h, C - 2 4 1 + v  12 1 - v  2 

Now upon substitution of (8) into (7) it is readily seen that: 

M l l  = /D~I 0 -H ( f )  -- 2 0 )  ~20 , (10.1) 

M22 = (D - 2 0 )  x~ ~ + s ~ , (10.2) 

M~ = O ~  ~ , (10.3) 

01 = K2 fle5 ~ and <)2 = K2As4 ~ (10.4) 

Substitution of relations (10) into the last three equations in (4) yields the bending equations 

of the plate: 

6r Dr + Or + (D - O) %#v - K2A(~x + w x) -- 0, (11.1) 

6r D%,vv + 0%,~:~ + (D - O) Cx#v - K2A(% + w,v) : 0, (11.2) 

~ :  K~A(r + %,~) + K2AV2~ + Pz(~, y) = 0, (11.8) 

where V 2 is the Laplace operator. Next by introducing a new function q5 such that: 

4~ : ~&y - %,x (12) 

and following the procedure described in [5], the three coupled equations in (11) may be 
replaced by the following two uncoupled equations: 

CV24 ) K2 ft~ -- O, (13.1) 

J~ 
DV'2V'2w = Pz - K2 ~ V2Pz. (13.2) 

Equation (13.1) is known as the edge-zone (or boundary-layer) equation of the plate, and the 
function ~ is referred to here as the boundary-layer function. Also, Eq. (13.2) is called the 
interior equation of the plate. Upon solving these equations the rotation functions g}x and r 
can be obtained from the relations [7]: 

Pz,x~ 0 (14.1) 
K 21)  + ~ 5 ]  #,v - w,x 

D 
{ \ - V 2 ~  x - _ _  

~x - K T ~  

and 

/) 
( -V2w,y  - _ _  

% - K T )  <, 
P~,~.') 0 (14.2) 

With w, ~x, and ~v derived, the stress components in the kth layer can be computed by using 

the relations: 

E E 
~ =  - 1 - ~2 (r + ~r ~,  ~ - 1 - v 2 ('%~ + ~r ~, (15.1) 

z (,r + %,~) ~. ~-= Gz(r  + ~,~) = a z ( %  + % )  (15.2) 
<7x~ - 2(1 + v) , = , ~vz , 

where N, v, and G~ are the properties of  that layer. 
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3 Application to rectangular plates 

Next the bending of a rectangular plate (a x b) with simple supports at x = 0 and x a is 
considered (see Fig. 1). If  the plate is subjected to a uniformly distributed load P~ = P0, with 

AT~ = nrc/a, the loading function may be expanded as: 

P~(x, y) ~ __4P~ sin A,,x.. (16) 
7%7i- 

n = l . 3  ... 

Also, the solution representations: 

n = l , 3 , . . .  

r = ~ e~(y) cos ; ~  (17.2) 
n=1,3, . . .  

will identically satisfy the boundary conditions at z = 0 and x = a. Solution (17) is referred to 

as the generalized Levy solution [14]. Substitution of Eqs. (16) and (17) into Eqs. (13) yields 

two ordinary differential equations whose solutions, along with (17), result in: 

w(~, y) : tAn4 sinh A~y • ATn cosh A~y + A~2y sinh A,~y + A,,sy cosh l~y 
n=l~:3 .... 

+ nTr/)A,~ 4 1 + ~ A~ 2 sin A~x 

and 

~(x, y) = f i  (A~3 sinh "Yr~Y + A~6 cosh ~/,~y) cos l~x ,  
r~=l,3,.. .  

where 

(18.1) 

(18.2) 

�9 :_b (2O) :~I22=M12= 2 = 0  at y 2 '  

and A~I through A~6 are six unknown integration constants. 
As far as boundary conditions at the edges at y = • are concerned, three cases will be 

considered. In the first case, these edges are assumed to be free, and they are denoted by F-F. 
In the second case, these edges are assumed to be clamped and will be denoted by C-C. Lastly, 
these edges are assumed to have simple supports and they are denoted by S-S. Due to the 
existing symmetry in the bending of the plate, the constants of integration A~4, A~s, and An6 
may be set equal to zero. Therefore all that is needed is to impose the boundary conditions at 

one edge of the plate, say y = +b/2. It should be noted that in symmetrical bending A~6 must 
be set equal to zero because, for such a bending, g'(x, y) = - ~ ( x ,  - y ) ,  which can be observed 
from Eq. (12). 

Now, in the F-F case the boundary conditions that must be imposed at y = b/2 are: 

K2i 
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where, from Eqs. (10) and (3): 

M22 = (D - 20) V>~# + b%,~, 

O~ = K ~ i i ( ~  + ~,~). 

(21.1) 

(21.2) 

(21.a) 

Imposition of the conditions (20) on the solutions (18) yields three non-homogeneous alge- 
braic equations in the form: 

3 
aijA~j = bi, i 1,2,3 (22) 

j = l  

whose solution will yield the integration constants A~I, A~2, and A~a. The constants aij and b/ 
are listed in Appendix A. 

When the edges of the plate at y = +b/2 are clamped (i.e., in the C-C case), the boundary 
conditions will be: 

b 
~ = ~ = > ~ = o  ~t y = + ~ .  (23) 

When these conditions are imposed on the solution (18), three equations of the form (22) will 
again be obtained. The constants a# and bi for this case are listed in Appendix B. 

Lastly, if the edges at y = --b/2 have simple supports (i.e., in the S-S case) the boundary 
conditions at y = b/2 will be: 

= o, (24.1) 

~ ,  = 0,  (24.2) 

M22 = o ,  (24.3) 

where the expression for ~x is given by Eq. (14.1) and that for M22 is given by Eq. (21.1). 
Now because of (24.1) and (24.2) it may be argued that 

w,x = w#~ = r = 0 
b 

z n . at y 2 (25) 

Substituting Eqs. (24) into (21.1) and taking (25) into account, it follows that 

M 2 2 = - D  V72w+ Pz = 0  at y 2 z - -  . (26) 

Finally, substituting (26) and (14.1) into (24.2), it follows that 

b 
4 , y = 0  at y = ~ .  (27) 

It is now readily seen from Eqs. (27) and (18.2), with A~s = 0, that 

~(x,  v) = 0.  

That is, in the S-S case there exists no boundary-layer effect. 

(2s) 
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4 Discussion of numerical results 

To study the effects of the boundary-layer equation and the shear deformation, a single-layer 
transversely isotropic plate is considered here. The material properties (in either SI or British 
units) are assumed to be: 

E = 5 x 105, Gz = 0.15E, v = 0.25. 

It is also assumed that a = b = 50 and P0 = 1. Note that for a homogeneous isotropic plate 
G~ is simply replaced by G. There are two methods for obtaining numerical results within the 
framework of classical plate theory (CPT). In the first method the bending equation of the 

plate in CPT is solved. In the second method, a large value is assumed for K2A in the results 

of FSDT. In fact, what then is done, it is readily seen from Eqs. (14): 

~ x = - w x  a~ld V)y=-w,y (29) 

which are the conditions under which plane sections remain plane and also perpendicular to 
the middle surface of the plate after deformation. On the other hand, from Eq. (I3.2) one 

obtains 

DV2V2w = P~ (30) 

which is the governing equation of plate according to CPT. Furthermore, by dividing 

Eq. (13.1) by K2A and letting K2A, approach infinity, one obtains 

= 0 (31) 

which correctly indicates that there is no boundary-layer phenomenon within the framework 
of CPT. In the present work both methods are used for obtaining the results of  CPT, 
although, for brevity, the analysis of the first method is not presented here. The transverse 
displacement of the plate at x = a/2 and along the positive y-axis according to FSDT and 

CPT is shown in Fig. 2. In all the plots presented here, the C-C and F-F cases are denoted by 
"Clamped" and "Free," respectively. As can be seen from Fig. 2, the transverse displacement 

is underestimated by CPT. The variation of ~yy at z = hi2 and along the positive y-axis is 
shown in Fig. 3. It is seen that at the free edge the stress component c~yy vanishes. This can 

0.02 
i 

0.018 1 

0 0 1 6 ~  

0 0 1 4 ~  

0 012 j 

W 0.01 

0.008 t 

0006 

- -  CPT, clamped 
-q>-- FSDT,clamped 
---o-- CPT, flee 
---o-- FSDT,ffee 

Fig. 2. Comparison of trans- 
verse displacement according to 
CPT and FSDT (h = 5) 0 5 10 15 20 25 
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Fig. 3. Variation of crvv in the 
C-C and F-F cases according 
to CPT and FSDT (x = el2 
and h = 7.5) 
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Fig. 4. Variation of the bound- 
ary-layer function atong the 
positive y-axis in the F-F case 
(x = ~/2) 

also be verified analytically. One of  the boundary conditions at the free edge is M22 = 0 (see 
Eq. (20)). For a single-layer, transversely isotropic plate, this condition from Eq. (21.1) yields 

V~x,~ + ~ , ~  = 0 .  (32) 

From Eqs. (32) and (15.1) it is seen that c~y v = 0 at the free edge. For a laminated, transversely 
isotropic plate the last two boundary conditions at the free edge in Eq. (20) are 

~ x , y + ~ , x = 0  and ~b v + w , y = 0 .  (33) 

Substituting (33) into (15.2) yields also the additional results that 

~yz = c ~  = 0. (34) 

It is to be noted that (34) holds even for laminated plates, but c~ w vanishes only at the free 
edge of  a single-layer plate. The variation of  the boundary-layer function q5 for the F-F case is 
shown in Fig. 4. Note  that the boundaw-layer effect becomes significant only near the edge 
zone of  the plate. Furthermore, the width of  the edge zone is approximately equal to the thick- 
ness of  the plate. In order to study the effect of  b (i.e., the length of  the plate in the y-direction) 
on the variation of  q~, several plots are depicted in Fig. 5 for different values of  b. It should be 
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Fig. 7. A three-dimensional 
plot of the boundary-layer 
function in the C-C case 
( a -  b - 50 and s = 2) 

noted that for small values of b the plate reduces to a beam with simple supports at z = 0 and 

z -  a. As b decreases, the boundary-layer phenomenon disappears. This disappearance 

explains why the boundary-layer  phenomenon is not observed in the Timoshenko beam 

theory. The variations of ~5 in the C-C and F-F  cases are compared in Fig. 6. There it can be 

seen that the F -F  case shows a stronger boundary-layer effect than the C-C case. A three- 

dimensional plot in the C-C case showing the variation of ~5 is also presented in Fig. 7. 
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Fig. 8. Effect of  the plate's 
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Fig. 9. Effect of the plate's 
thickness and boundary-layer 
function on 6cry,, in the F-F 
case (~z = b = ,50, and z = e /2)  

Fig. 10. Effect of the boundary 
conditions and boundary-layer 
function on 8c~x (a = b = 50, 
and h = .75) 

Next ,  in order to s tudy the effect o f , b  on  the stress c o m p o n e n t s ,  the f o l l o w i n g  quant i ty  is 

introduced: 

& r ~  = x 100 ,  (35) 
o-zx 

where by a .~(~'  = 0) is m e a n t  that in calculat ing crux the funct ion ~0 is set equal  to zero. The  

variat ion o f  6crxx in the C - C  case is s h o w n  in Fig. 8, where  the boundary- layer  effect is seen to 
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be confined to the edge zone of the plate. A similar plot is depicted for &r~:~ in Fig. 9 for the 
F-F case; the width of the boundary-layer is increased in this case. Note that the definition of 
6c~ is similar to the definition of 8c~.  Finally, a comparison is made in Fig. 10 between the 
C-C and F-F cases. Here, the F-F case shows a stronger boundary-layer effect than the C-C case. 

5 Conclusions 

The governing equations of the first-order shear deformation theory of laminated transversely 
isotropic plates are recast in terms of the boundary-layer function and the transverse displace- 
ment function. Analytical expressions are obtained for the primary response quantities of 
rectangular plates with various boundary conditions. For simply-supported, clamped, and 
free edges it is shown that there exists no boundary-layer, a weak boundary-layer, and a 
strong boundary-layer effect, respectively. The effects of the boundary-layer function on stress 
components are also studied. The width of the boundary-layer is observed to be approxi- 
mately equal to the thickness of the plate and to become larger at the free edges. It is further 
shown that when the size of a plate is reduced to that of a beam, the boundary-layer phenom- 
enon disappears, and in doing so makes clear why the boundary-layer phenomenon is not 
predicted in Timoshenko's beam theory. 

In the present work the numerical results pertain to a single-layer, transversely isotropic 
plate; however, the conclusions reached here are also valid for laminated transversely 
isotropic and homogeneous isotropic plates. For further research into this subject, it may be 
instructive to compare the results of the present work with those of Levinson's and Reddy's 

third-order shear deformation theories. 
It is worth mentioning that we have investigated this boundary-layer phenomenon for 

circular sector plates and completely circular plates. We reached the same conclusions made 
in this article for rectangular plates. These results will appear in a future communication. 

Appendix A 

When the edges of the laminate at y = • are free, the constants aij and b~ are given by-: 

al~ = 2rnAn2D cosh ( ~ )  [(C' - D) + A~2(A,~4 - 1)!, 

: + 6- 2AT/+  osh T )  j , 
k 

a13=-2mI)A~%CDcosh(~), 0,21 = -2A,~2 sinh ( ~ ) ,  

- -  , )  

bl = .~DX~ ~ [ a ~ / +  2(.~A.? ~) O + 2)] K ~ ,  b2 = 0,  b3 = 0,  
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where 

D 

K 2 A  ' 

A. Nosier et al.: Mindlin-Reissner plate theory 

p - -  KZffl , fi4~ n = ftT.cDAn 4 1 + ~ An 2 . 

Appendix B 

When the edges of  the laminate at y = •  are clamped, the constants a# and bi are given by: 

all = cosh , a12 = ~ sinh , 

a22 = - / ) A , 2  [2 cosh ( ~ ) + ~  sinh ( ~ ) ]  , 

a13 = O, a21 = --/)An3 cosh ( ~ )  , 

a23 = C%z cosh ( ~ )  , 

a32 = 2mA~ 2 sinh + sinh + ~ -  cosh , 

b l -  4P~ ( 1 +  /)  ) 
nTrDA~ 4 ~ A~ 2 , b2 = b3 = O, 

where ra and p are given in Appendix A. 
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