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Summary. In this article, the edge-zone equation of Mindlin-Reissner plate theory, for composite plates 
laminated of transversely isotropic layers is studied. Analytical solutions are obtained for both circular 
sector and completely circular plates with various boundary conditions. The boundary-layer function and 
its effect on the stresses are numerically studied. Effects of plate thickness and boundary conditions are 
investigated, The results for circular and completely circular plates are exactly the same as those of rec- 
tangular plates in our previous work. Therefore, this boundary layer phenomenon seems to be geometry 
independent. 

1 Introduction 

The classical plate theory put forward by Kirchhoff [1] neglects transverse shear strains and 
results in a fourth-order equation for the plate transverse deflection. Kirchhoff's theory is 
plagued by inconsistency between the order of the governing equation and the number of 
boundary conditions (Stoker [2]). The physical intuition leads one to expect three edge condi- 
tions and thus to expect a sixth-order rather than a fourth-order differential equation to 
govern the plate problem. As a result of attempts to solve this paradox and also because of 
the inadequacy of classical theory when it is applied in such cases as laminated composites, 
where shear deformations are not negligible, several shear deformation theories have been 

proposed to date. 
The simplest shear deformation theory is the first-order shear deformation theory. 

Depending on whether or not the variation of displacement components or stress components 
with respect to the thickness coordinate is assumed to be known a priori, first-order theories 
are categorized into two groups: displacement-based or stress-based theories. The displace- 
ment-based theory was introduced by Mindlin [3]. Stress-based theories generally take one of 
the two approaches. In the approach first described by Reissner [4], assumptions are made 
about the variation of in-plane components of stress, while in the approach attributed to 
Ambartsumyan [5] the variation of the transverse stress components with respect to the plate 
thickness coordinate is assumed to be known at the outset. Both displacement-based and 
stress-based first-order theories result in a system of three differential equations in terms of 
three dependent variables with a total degree of six. Reissner [4], [6], [7], and [8] was the first 
to determine that his sixth-order equations can be uncoupled into two equations for a homo- 
geneous isotropic plate. He called these uncoupled equations edge-zone and interior equa- 
tions. The solution of the edge-zone equation has boundary layer characteristics. For an 
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introduction to asymptotic phenomena in mathematical physics and classical plate theory, the 
reader may refer to Friedrichs [9] and Schneider [10]. 

Nosier and Reddy [11] showed that the bending equations of many refined linear theories 
of symmetric laminated plates made of transversely isotropic layers can be uncoupled into 
two equations, one in terms of the transverse displacement, w, and the other in terms of a 
potential function, ~, called the boundary layer function. They demonstrated that all displace- 
ment-based theories except Reddy's [12] can be uncoupled to form a fourth-order interior 
equation and a second-order edge-zone equation. However, the eighth-order bending equa- 
tions of Reddy [12], when uncoupled result in a sixth-order interior equation and a second- 
order edge-zone equation. They also showed that for a simply supported plate the edge-zone 
solution is identically zero if the rotatory inertia terms are ignored. 

Nosier and Reddy [13] considered the tenth-order equations of the nonlinear first-order 
shear deformation plate theory [14] and the twelfth-order nonlinear equations of the third- 
order plate theory of Reddy [l 5] and showed that, for symmetric laminated composites with 
transversely isotropic layers, the edge-zone equations of both plate theories are second-order 
equations similar to the one obtained in [11]. Again they demonstrated that, for a simply- 
supported plate with arbitrary in-plane boundary conditions, and in the absence of rotatory 
inertia, ~ is identically zero. 

Nosier et al. [16] studied the boundary layer function ~ in bending of rectangular Mindlin- 
Reissner plates with two opposite edges simply-supported. They considered simply-supported, 
clamped, and free boundary conditions for two other opposite edges of plates. They demon- 
strated that for simply-supported, clamped, and free edges there exists no boundary layer, a 
weak boundary layer, and a strong boundary layer effect. They showed that the boundary 
layer function has boundary layer effects on the stress components. They also observed that 
the width of the boundary layer function is approximately equal to the thickness of the plate 
and is larger for free edges. For explaning why the boundary layer phenomenon is not 
observed in Timoshenko's beam theory, they showed that when the size of a rectangular plate 
is reduced to that of a beam, the boundary layer phenomenon disappears. 

This article utilizes the linear theory to consider the bending problem of a laminated circu- 
lar sector and completely circular plates with various boundary conditions and demonstrates 
analytically the contribution to the solution made by the edge-zone or boundary layer equa- 
tion. All the investigations that were done in [16] for rectangular plates are performed for a 
circular sector and completely circular plates. It is demonstrated that the boundary-layer 
function a5 has similar effects in both cases. 

2 Governing equations 

According to the first-order shear deformation theory (FSDT) in polar coordinates, the bend- 
ing equations of a plate are obtained from the following displacement fields (see [ l 7]): 

~7-(r, 0, z) = ~(~', 0) + z~( r ,  0), 

~o(~, O, ~) = ~(~, o) + z,~o(~, o), (1) 

~z(~, o, z) = ~v(r, 0), 

where z is the thickness coordinate; ~a and v are, respectively, the displacements of the 
middle surface of the plate in the r- and 0-directions; and r and r are known as the rota- 
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tion functions [18], Using the strain-displacement relations in polar coordinates [19], it may 

be shown that: 

s  ~ ~10 @ Z~l 0 ~ C00 ~ s -}- Z~20 ~ ~ z z  ~" 0 

2crO = c6  ~ -+- Z~46 ~ , 2era = s @" Z~50 , 2.COz = g40 q- Z~40 

where 

1 1 
e l  ~ u~  , e2 ~ (u + v,o) , e4 ~ = , . . . .  w,o + ~ o ,  7" Y 

1 1 
c5 ~ = w r + ~br, g6 ~ = -  u,o + v# - -  v,  ~t ~ = ~ # ,  

T r 

1 1 1 
x2 ~ = - ( ~  + ~o ,o ) ,  ~4 ~ = ~5 ~ = O, ~ o  = _  V'~,e + ~o,,. - v/o. 

r r ~' 

(2) 

(3) 

either 5u = 0 or N:,.~.n~ + iN~ono = 0, (6.1) 

either 5v = 0 or N,  onr + Noono = 0, (6.2) 

either 5'~br = 0 or _a/Z~.n~ + M~.ono = 0, (6.3) 

either &b0 = 0 or M~on~ +Meono = 0, (6.4) 

either 5w = 0 or Q~nr +(2ono = 0. (6.5) 

conditions require the specification of  [19]: 

In relation (3), a comma followed by a variable denotes partial differentiation with respect to 

that variable. Using (3) in the integral principle o f  equilibrium (i.e., the principle of  minimum 

total potential energy) yields the equilibrium equations o f  the plate and the appropriate 

boundary conditions at the edges of  the plate [19]: 

1 
& : ,%, .+~N~o,o+-(Jvr , . - tVoo)=O (4.1) 

' 7' ' r 

6v : NrO,r + 2 Nro + 1- Noo,o = O, (4.2) 
r T 

1 
5 ~  : M ~  ,, + 1 M~o.o + - ( M~T - Moo) - ~)~ = O, (4.3) 

d o :  tTfrO,~. + 22 M~o + 1 Moo,o - 0o = 0, (4.4) 
g f 

e~ : O~,~+1-O,.+~Oo,o+ Pz(~,o)=o,  (4.5) 
T 7" 

where a represents the variational symbol and P~. denotes the transverse load. The stress and 

moment  resultants in Eqs. (4) are defined as follows: 

h/2 

-h/2 

h/2 
(M~,  Moo, Iv&) = f ( ~ ,  o-oo, c~,.o) zdz,  (5) 

-h/2 
h/2 

(Or,Oo) = K ~ f (~z,~'oz) dz,  
-J~/2 

where h is the total thickness o f  the plate and K 2 is a shear correction ['actor, which is taken 

here to be equal to 5/6. At any edge of  the plate, with a normal g = n~g,, + nogo, the boundary 
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When the plate is symmetrically laminated with respect to its middle surface, the first two 
equations in (4) wilt be uncoupled from the last three equations. The former equations are 
then known as the stretching equations of the plate and the latter ones are known as the 
bending equations of the plate. Furthermore, if each layer (or lamina) is made of a transver- 
sely isotropic material, with the plane of isotropy paralM to the middle surface, then it may 
be shown that: 

, ,~r  = D~lo + ( / )  _ 2 0 )  ~2 ~ , 1h%0 = (D - 2 0 )  • + / ) ~ 2  ~ , 

~mo : 0~6  ~ , �9 = K2~ic5 ~ , 00  = .r<2As4 ~ , (7) 

where the rigidity terms in (7) are defined as: 

N 

k=l 

;~=1 k 

~ 1  ( ~ i - ~ ) ( z k  3 -  3 " 
: , Zk+l) , 

where N is the total number of layers, E and L, are Young's modulus and Poisson's ratio in 
the plane of isotropy (i.e., the r-0 plane), and G~ is the shear modulus in the plane normal to 
the plane of isotropy. Substitution of relations (7) into Eqs. (4.3) through (4.5) yields the 
governing equations of the plate in bending: 

( 1 1 1  1 ) (1  1 t ) 

- K2~]  (~,:,, + w, , )  : o ,  (9 ,1)  

( !  1 1 ) - (1  1 1 1 ) 

- K~A (~b0 + !  w~) = 0, (9.2) 

These are three coupled equations in terms of ~ ,  '00, and w with a total order of six. Now, by 
introducing a new function 4~, which will be referred to as the boundary-layer function, such 
that 

q3: l  ~_ _ 1 , 
,~-,~ ~,~o,, . . . .  ~,e (to) 

' ' F  

and following a procedure as in [11], the bending equations (9) may be recast to yield two 
uncoupled equations as follows: 

Ov2~ - K2 2{~ : o, (11,1) 

D 
.bv~2a, : ~ _ ~] ~2p~, (11.2) 
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where V ~ is the two-dimensional Laplace operator in polar coordinates. Equations (11.1) and 
(11.2) are known as the edge-zone (or boundary layer) and interior equations of the plate, 
respectively ([11], [13], [20], and [21]). Also it may be shown that (see [20] ): 

D 0 1 
r = -w~ KTA V2w'~ + ~ 7 4,e 

1 D 1 O 
r  = - - V 2 w  e (o 

r W ~  r ' - ~  ' 

D 
(K2~)2 P~,r ,  (12.1) 

t2z. o . (12.2) 
(K2~)  2 r 

Clearly the boundary conditions corresponding to Eqs. (9) are given by Eqs. (6.3), (6.4), and 
(6.5). 

3 Circular sector plates 

The bending of a laminated plate in the form of a sector subjected to a uniformly distributed 
load Pz(= P0) will be studied in this section (see. Fig. la). To this end, it is assumed that the 
edges at 0 = 0 and 0 = 00 have simple supports with boundary conditions (see Eqs. (6.3), 
(6.4), and (6.5)): 

9 ~ = M o o = w = O  at 0 = 0  and 

where Moo is given, from Eq. (7), by: 

Moo  = ( D  - 20) ~5~,,, + ~ ( ~  + ~bo,o). 
' F  

o=0o, (la) 

(14) 

Since at these two edges .~%. = ~b,.~ = 0, it can be concluded from Eq. (14) that ~b0,0 = 0. There- 
fore, the boundary conditions in Eq. (13) are equivalent to: 

~ b ~ = ~ 0 , 0 - w = 0  at 0 = 0  and 0=00 .  (15) 

As far as Eqs. (11) are concerned the boundary conditions in Eq. (15) must be restated in 
terms of # and w. With the help of Eqs. (15), (12.1), and (9.3) it can be shown that these con- 
ditions are: 

~ 5 ~ ~ 1 7 6 1 7 6  at 0 = 0  and 0 = 0 0 .  (16) 

Next with fl,~ - nrr/00, the uniformly distributed load may be represented as: 

P z ( r ,  0) = sin/5~0. (17) 
n -~i~.3, TtTr 

It is also s e e n  that the solution representations 

n=l ,3 , . .  

n=1,3,... 
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Fig. 1. a A circular sector plate with simple supports at 0 = 0 and 0 = 00; b Variation of the boundary 
layer function in a clamped circular plate (0o = 27r and 0 = ~-/2) 

satisfy identically the boundary  condit ions at 0 = 0 and 0 = 00. Substi tut ion of Eq. (18.1) into 

Eq. (11.1) yields: 

r2d2q~..(r) dqS~(r)( K2A) 
dr--r-- + ~ dr  9"2 + - U -  ~ < ' ( r )  = 0, (19) 

which is the modified Bessel equation with the general solution: 

~(~'/= cJ~,, (~) + c~2K9,, (~1, (2o1 

where I9~ and Kg,~ are the modified Bessel functions of  the first and second kinds, respec- 

tively, and 

K2A #2 _ (21)  
O 
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Since ~ must be finite at r = 0, it should be concluded that  C~2 = 0. Thus: 

~(~) = c~dgo(~)  (22) 

Also, substitution of  Eqs. (17) and (18.2) into (11.2) yields: 

( d 2 1 d  fln2"~ /'d2wn l dw~ /3~ 2 ) 4P0 
- - + -  - -  n = 1 , 3 . . .  ( 2 3 )  
,~,~ ,,,J,- ,-~ / t S  r  d,~ ,-~ ~ "  - , ~ b '  ' �9 

whose general solution may  be represented as 

w,(r) = w~(r) + wp(r), (24) 

where w~ and wp represent, respectively, the complementary and particular solutions of  
Eq. (23). When/3~ 2 r 4,/3~ 2 r 16, and 00 < 27r, these solutions are given by: 

Wc(r) = Cn37 "fl" @ Cn4 r-~3,' -}- ~n5r '8~+2 + Cn6 r-/3~+2 , (25.!) 

wp(r) = C r  4 , (25.2) 

where 

A2 )`2 4P0 
C = and -.  (26) 

(;~2 _ 4 )  (A 2 - ] 6 )  ,,~b' 

When/3~ 2 = 4 or/3~ 2 = 16, relation (25.1) still remains valid but the particular solution will 

be given by: 

)`2 
=: r4 ~r 3~r 5~ 7~ (27.1) 

wp --~-~ l n r  when 0 o - - 4 ,  4 ' 4 ' 4 ' 

)2 2~r 67c 
= r 4 In r when 00 - , (27.2) wp ~ 4 4 

For  00 = lr, wcl is given by: 

Wcl(r) == C:[3r 4- C14 ~'-1 ~1 C15r 3 _a C16r I n r .  (28) 

And for n > 2 Eq. (25.l) still holds. Also, since w and @ must be finite at r = 0, it is con- 

cluded that  C~4 = C~6 = 0. The remaining unknown constants of  integration C~1, C~.3, and 
C,~5 must be determined by imposing three boundary  conditions at r = a. For  example, when 
the edge of  the plate at r = a is simply supported, the following conditions are imposed: 

~ : :  M ; .  = ~ o  = 0 a t  ~- = a .  (29) 

Alternatively, in terms of w and <P these conditions may be shown to be: 

(30) w = w r ~ + ~ = ~ . = 0  at  r = a .  

In order to impose the boundary  conditions in (29), the general solutions for  %. and ~0 must 
be known. These solutions, on the other hand, are readily obtained by substituting the general 
solutions of  w and ~ into Eqs. (12). In either case, whether the boundary  conditions in (29) 
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or in (30) are imposed, a set of three nonhomogeneous algebraic equations of the form: 

3 
E a jC  2j< = i = 1, 2, 3 (31) 
j= l  

will be obtained whose solutions yield the integration constants C~1, C~a, Cns. Here, however, 
it should be noted that the imposition of the last condition in (30) yields: 

~(~-, 0) = 0. (32) 

That is, there is no boundary layer effect when the sector plate is completely simply sup- 
ported. This is exactly what was found in [t6] for rectangular plates. When the edge at r = a 
is clamped, the following boundary conditions will be imposed: 

w=9~.=~b0 at: r = a ,  (33) 

where, again, the expressions for the rotation functions ~b~ and r are obtained from 
Eqs. (12). When the boundary conditions in (33) are imposed, three relations will be obtained 
as was done in (31) whose solution will yield the integration constants. The expressions for aij 
and bi are given in Appendix A. Finally, when the sector plate has a free edge at r = a, the 
boundary conditions will be: 

M ~ = 0 ~ = M ; . e = 0  at r = a  (34) 

with M,,~, 0~, and M~e being given in (7). The constants a~j and bi appearing in Eqs. (31) are 
given in Appendix B. Once the expressions for w, 9~, and %be have been obtained, the stress 
components in any layer of the plate at (r, 0, z) are obtained from the relations: 

E E (~2o + v~,O)z ' 
o>~ - 1 Z v2 (~1~ + w 2 ~  c~oe - 1 - v 2 

(35) 
E ~460 z ~ Crrz : Gz~.,50 ~ CrOz = Gz~40 - 2 ( t  + 

where E and v are, respectively, Young's modulus and Poisson's ratio in the r - 0 plane, and 
G~ is the shear modulus in the plane normal to the r - 0 plane. 

4 Completely circular plates 

Here a completely circular plate (i.e., 00 = 2re) is considered. If the plate is subjected to a uni- 
formly distributed load Pz(= P0), then the bending will be axisymmetric in which case it may 
readily be shown that: 

w(r,  O) = w(r)  = A~ + A2r 2 + p~ (36.1) 
64D ' 

where A1, A2, and Aa are three unknown constants of integration. Also, from Eq. (12.2) it is 
seen that: 

r  = - K2A ( a t )  
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Now, when the edge of the plate at r = a is either simply supported or clamped, the condi- 

tions 

~ 0 = 0  at r = a  (38) 

will be one of the boundary conditions. It is clear from Eqs. (36.2) and (37) that the imposi- 
tion of the boundary conditions in (38) will yield A3 = 0; that is: 

qs(r, 0) = +(r) = 0. (39) 

Therefore, in the axisymmetric bending problem there exists no boundary layer effect. 
If the bending of the plate is no longer axisymmetric, the first boundary condition in (16) 

still holds when the plate is simply supported at the edge r = a. With this conditions it may be 
shown that, regardless of the loading function P~(r, 0), the boundary-layer function ~(r, 0) is 
identically equal to zero. Also, a free boundary at r = a is not admissible because the plate 
will not be globally in equilibrium. Thus, there remains only the case where the plate is 
clamped at r = a. In order to study the effect of the boundary-layer function on the response 
quantities of the plate it is assumed that: 

P~(r, 0) =/gor cos 0. (40) 
a 

That is, a load that has a linear variation in the r-direction and a sinusoidal in the 0-direction 
is assumed. With the loading function in (40), it may be shown that the general solutions of 

Eqs. (11) are given by: 

+(r, O) = CII1 (#r) sin 0, (41.1) 

( Por 
w(r,O) = C2r + Car a + 192aD] cos0, (41.2) 

where C1, C2, and C3 are three unknown constants of integration. By imposing the boundary 
conditions (33), these constants are found to be: 

C1 = PoD_ _ , 6'2 = (3a2 + 8m~)D1 - a202 , C3 - D2 - D1 , (42.1) 
a# K 2 A C I {  (p.a) D3 D3 

where 

Poa 3 5Po a3 3mlPoa mlPo mlPoI l (pa)  
D1 192D ' D2 192D 8D a #a2Ii~(#a) ' 

O 
D3 = 2a 2 + 8mi, m1 -- ( A ) ' K  2~'2 ' 

(42.2) 

and I11 denotes the derivative of I1 with respect to r. With w(r, O) and (li(r, 0) known, the rota- 
tion functions G and ~br are obtained from the relations (12). 

5 Numerical results 

In our numerical examples, the laminated plate is assumed to be a single-layer transversely 
isotropic plate with the following properties: 

E = 5 x  105 , G z = O . 1 5 E ,  v = 0 . 2 5 .  (43) 



158 

9.0 E-04 ] 

8.0 E-04 ] 

7.0 E-041 

aOE-041 
l 

50 E-04 ! 
I 

4.0 E-04 i 

3"0 E'04 t -'~- (~(~ Oz 

1.0E-04] _ . . . . .  . ~  . ~ =  . 

0.0 E+00 I - - ,~ ~ _ ~ . -  . . . . . .  

-1.oE-o4~ 
0 5 10 15 2s 25 30 36 40 45 50 

r 

A. Nosier et al. 

r 
0 5 10 15 20 25 30 35 40 45 50 

�9 .4 ~ C l a m p e d  

-5 

-6 

-7 

b 

Fig. 2. a Effect of boundary layer function on the interlaminar stresses in a clamped circular plate 
(h = 1, 00 = 2% and0 = ~r/4); b Effect of boundary condition at r = a on the stress components cr0z in a 
circular sector plate (h .... 1, 00 = ~r/3, and 0 = ~r/6) 

Also,  it is assumed that  K 2 = 5/6, a = 50, and P0 = 1. I t  should be noted that  the units must  

be consistent. Fo r  example, if E is given in Psi, then a will be in inches. 

The variat ion of  ~5 at 0 = ~r/2 in a completely circular plate with a clamped edge and sub- 

jected to the loading represented in (40) is depicted in Fig. lb.  By assuming different values 

for the thickness of  the plate, it  is seen that  the boundary  layer effect becomes significant only 

in the edge zone of  the plate. This is why ~ is called boundary- layer  function. It is seen that  

the width of  this boundary  layer is approximately  equal to the plate thickness. This is exactly 
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what was observed in [16] for rectangular plates. This conclusion is correct for circular sector 
plates as well. But, for the sake of brevity, we do not present any more numerical results. 

Next, the effect of the boundary layer funtion ~5 on the stress components is studied. To 
this end, the following quantity is defined: 

&e~ cre~ - o-0.(~ = 0) - ~ x 100 ,  (44) 
CrOz 

where by c~e~,(~ = 0) it is meant that in calculating erez the function q5 is set equal to zero. The 
quantities &roe, ~5o,,~., cSv~e, and 6c% are defined similar to the definition shown in (44). The 
variations of &r~ and rSooz in a clamped completly circular plate with the loading function as 
in Eq, (40) are shown in Fig. 2a. It is seen that the effect of ~ is confined to the edge zone of 
the plate. Therefore, ~ has a boundary layer effect on the stresses. The effect made by the 
boundary conditions may be studied with the help of Fig. 2b. It is seen that for a clamped sec- 
tor plate the boundary layer effect is weaker than it is when the edge is free. 

6 C o n c l u s i o n s  

The bending problem for laminated circular sector plates and completely circular plates is 
considered in the present work. It is assumed that each lamina is made of a transversely iso- 
tropic material. The theory considered is called the first-order shear deformation plate theory 
(also known as the Mindlin-Reissner plate theory). Analytical expressions are obtained for 
primary response quantities of laminated circular sector plates and completely circular plates 
with various boundary conditions and loading functions. It is analytically shown that when 
the edge of the completely circular plate and the edge of circular sector plates are simply sup- 
ported, the boundary layer effect disappears. Numerical results indicate that the boundary- 
layer function and its influence on the stress components are confined to the edge zone of the 
plate. It is also seen that the boundary layer effect is stronger in the presence of a free edge 
than it is near a clamped edge. It is seen that all the characteristics of ~5 and its influence on 
the stresses in circular sector plates are exactly the same as those in rectangular plates studied 
in [16]. Therefore, it can be concluded that the boundary layer characteristics of r are geo- 
metry independent. 

The numerical calculations consider a single-layer plate with transversely isotropic 
material; however, the conclusions drawn here are also valid both for isotropic plates and for 
laminated transversely isotropic plates. 

A p p e n d i x  A 

The constants aij and be appearing in Eq. (31) when the edge of the circular sector at r = a is 
clamped are: 

O,11 = 0 ~ 0,12 = 1 

O 9,~ t~o(#0,) a21 = K ~  a 

a 1 3  = a 2 

a 2 2  ~ ~na n-1 
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a31 = ~ 14I~,, ( l la )  , a32 = ,6~a 9"-1 , a;}3 = ,O~,.a 3" i a 2 + 4(a,, + i) ~ , 

bl = -Ca 4-& b2 := Ca (19~ 2 - 16) - 2a 2 bs ai~T,C [ ~  (Gn "~ -- 16) -- a 2 ) 

where ,~n : n~r/O0 and the constant C is as defined in Eq. (26). For  the special values of  the 
sector angle 00 discussed in Eq. (27) the a~j's remain the same as in the above; however, the 
constant bi's are given by: 

bl = - D a  4 - ~  in a,  

bz = 2 a D [ / 3 , ~ m l  - 2(8ml + a2)] l n a +  a D ( / 3 ~ m l  - 32ml - a~), 

b3 = - 8 m l a D / 3 n  + a / 3 ~ D ( ~ 2 r n l  - 16m~ - a 2) In a ,  

where ,rnL = D/(KZf~ , )  2 and 

)2 
D -  96 when 00 = ~r/4, 3~r/4, 77r/4 and 

Az 
D = 4 ~  when 00=2~r/4  and 67r/4. 

Appendix B 

The constants a~j and b~ appearing in Eq. (31) when the edge of  the circular sector at r = a is 
free are: 

m25.J rgo,(#a) al2 = a13 = a l l  = - -  , 0 ,  4m2fl ,~(f ln + 1)a 5~' 1 
a 

E 1 - V  - v ) I ~ , ( P a )  1 a22 - , ~ 9 , ~  ~ - - . z i % ( ~ , ~ )  - ~ (1  , = 9 ,~ (A  - 1) (~ 1 ) s  ,,-2 a 2 1  = a 

a23 = a~"-2 {4#~.~3ml (v - 1) +/3.2a2(v - 1) - ,5,~ [4ml(v - 1) + a2(v + 3)] - 2a2(v + 1)},  

1 
: ~ . ~  ! } ;o ( , a ) ,  ~ : - ~ , ~ ( ~  - 1) ~"-~ a a  ~ i g , , ( p a  ) _ 2 ,, 

bl = 2 C m l a ( • n  2 - 16), 

b2 : C { ~ n 4 m i v  - fir,, 2 [2m1(9v + 1) + a2v] § 4 [Smi(v -+- 1) + a2(v + 3)] }, 

b3 = -,8~C(/3,n2ml - 16ml - 3a2), 

where/3~ = .nrc/Oo, m i  = D / K 2 f t ,  m2 = C/I4"2A, and C is defined in Eq. (26). For  the special 
values of  00 discussed in Eq. (27) the a# remain the same as in the above; however, the con- 
stant bi's are given by: 

bl 2aD(/3n 2 - 16) I n a  + a D ( 5 ~  2 - 32), 

b2 = - D { / 9 ~ 4 m i v  - [3n 2 [2ml(9v § 1) + a2v] § 4[Smi(v Jr 1) + a2(v + 3)] lna}  

+ D [ g J . ~ ( 9 ~ o  + 3) - 32.~1(~ + 2) - a~(~ + 7)] ,  

b3 = - # ~ D ( ~ 2 m l  - 16ml - 3a 2) lna  -/3~D(/3~2ml - 24ral - a2), 
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where 

~2 

96 
when 00 = ~ / 4 , 3 ~ / 4 , 5 ~ / 4 ,  7~/4 and 

~2 

48 
when 00=2~r /4  and 6~r/4, 

with ~2 defined in Eq. (26). 
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