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Abstract Many thin three-dimensional elastic bodies can be reduced to elastic shells:
two-dimensional elastic bodies whose reference shape is not necessarily flat. More gen-
erally, morphoelastic shells are elastic shells that can remodel and grow in time. These
idealized objects are suitable models for many physical, engineering, and biological
systems. Here, we formulate a general geometric theory of nonlinear morphoelastic
shells that describes both the evolution of the body shape, viewed as an orientable
surface, as well as its intrinsic material properties such as its reference curvatures. In
this geometric theory, bulk growth is modeled using an evolving referential configura-
tion for the shell, the so-called material manifold. Geometric quantities attached to the
surface, such as the first and second fundamental forms, are obtained from the metric
of the three-dimensional body and its evolution. The governing dynamical equations
for the body are obtained from variational consideration by assuming that both fun-
damental forms on the material manifold are dynamical variables in a Lagrangian
field theory. In the case where growth can be modeled by a Rayleigh potential, we
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also obtain the governing equations for growth in the form of kinetic equations cou-
pling the evolution of the first and the second fundamental forms with the state of
stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar
sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-
dependent internal pressure, and the residual stress of a morphoelastic planar circular
shell.

Keywords Bulk growth - Morphoelasticity - Shell - Nonlinear elasticity - Geometric
mechanics - Residual stress

Mathematics Subject Classification 74Axx - 74Fxx - 74Lxx

1 Introduction

Growth and remodeling are particularly important processes in many physical and bio-
logical systems (Hori et al. 1986; Silberberg et al. 1989; Pollack et al. 1996; Delsanto
et al. 2004; Geitmann and Ortega 2009), and their interplay with mechanical stress is
a well-established fact (Hsu 1968; Skalak 1982; Skalak et al. 1982; Fung 1983, 1991,
1995; Taber 1995; Helmlinger et al. 1997; Humphrey 2002). Growth and remodeling
of a body can happen in such a way (non-uniformly) that a relaxed state may not exist
in the physical space, and since the body is constrained to deform in the Euclidean
space, this leads to a state of residual stresses. Such stresses are in fact residual as they
persist even when all the external loads are removed (Skalak et al. 1996; Takamizawa
and Matsuda 1990). Note that the presence of residual stresses in certain biological
tissues has been experimentally verified (Chuong and Fung 1986; Omens and Fung
1990; Han and Fung 1991). Also, as highlighted by Fung (1991), residual stresses are
of crucial importance to the working conditions and physiological functions of living
organs.

In continuum mechanics, stress is related to a measure of strain, e.g., the deformation
gradient, with respect to a stress-free reference configuration. However, in some cases,
such a configuration may not be realized in the Euclidean three-dimensional space,
i.e., the material manifold is not necessarily Euclidean. This issue has been tradition-
ally addressed by assuming a decomposition of the deformation gradient F = F . F,
into an elastic part F,. and a non-elastic part F , thus, performing a conceptual local
release of stress to a locally stress-free intermediate configuration followed by an elas-
tic deformation to a configuration in the physical space where residual stresses occur
(Eckart 1948; Kroner 1959; Stojanovic et al. 1964). In the context of growth mechan-
ics, most of the existing formulations rely on this multiplicative decomposition. The
non-elastic part of the deformation gradient F, = F, characterizes the growth of
the reference configuration and transforms it to a locally relaxed intermediate con-
figuration (Kondaurov and Nikitin 1987; Rodriguez et al. 1994; Lubarda and Hoger
2002; Ben Amar and Goriely 2005). See (Lubarda 2004; Ambrosi et al. 2011) for
an extensive review and a comprehensive bibliography on the subject and Sadik and
Yavari (2016) for a historical perspective on the decomposition of deformation gradi-
ent in anelasticity. Recently, Yavari (2010) introduced a geometric theory of growing
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nonlinear elastic solids in which the stress-free material configuration is a Riemannian
manifold with an evolving geometry. This geometrical approach provides a mathemat-
ically precise framework to study bulk growth and the induced residual stresses, and
leads to a systematic method to find the stress-free growth distributions in nonlinear
elasticity.

Research interest in elastic shells was mainly triggered by the experimental work
of Chladni (1830) on the tones of vibrating plates, which led to several attempts to lay
down a theoretical framework to explain his findings. In 1809, the French Académie
des sciences sponsored a prize on the theoretical investigation of the vibration of
elastic surfaces and it was won by Germain (1821) whose work proved later on to be
partially incorrect (see the historical introduction by Love (1892)). The first attempts
to formulate a general theory and obtain the governing equations for the deformation
of elastic shells are attributed to Aron (1874) and Mathieu (1882). However, it was
Love (1888) who first obtained a consistent general theory for small strains of linear
elastic shells based on the work of Kirchhoff (1850) on the vibrations of plates.

The governing equations of elastic shells in terms of stress and couple-stress ten-
sors were first derived in rectangular Cartesian coordinates by Cosserat and Cosserat
(1909) (see (Ericksen and Truesdell 1958) for an extension of Cosserats’ work). The
coordinate-free expression of these equations was, however, presented in its full gen-
erality by Synge and Chien (1941). They localized the integral balance laws of shells
valid in a Cartesian coordinate chart to obtain the governing differential equations and
then obtained the coordinate-free expressions of these differential equations. Alter-
native derivations for the governing equations of elastic shells in terms of stress and
couple-stress tensors were later proposed by Novozhilov (1964); Green and Zerna
(1950); Naghdi (1963) starting from the general three-dimensional equations of equi-
librium and by (Koiter 1966) by means of the principle of virtual work.

While considerable progress has been made in the modeling of three-dimensional
growing elastic bodies, a complete continuum theory for morphoelastic shells is not yet
available. In particular, there is no general formulation for the computation of residual
stresses and couple stresses due to bulk growth in shells. All the aforementioned shell
theories are restricted to model shells in the context of mass-conserving elasticity. It
is worthwhile, however, to mention the work by Goriely and Ben Amar (2005) on
a growing shell embedded in an elastic medium and the ongoing effort on modeling
morphoelastic plates (Efrati et al. 2009; Dervaux et al. 2009; McMahon et al. 2011a, b).

More recently, Pezzulla et al. (2015a,b) investigated geometry-driven growth-like
morphing of thin bilayer shells. Remarkably, they were able to predict and experimen-
tally obtain domes or a saddle surface in a shrink-fit problem in thin circular disks
(Pezzulla et al. 2015a). They also showed that a large isotropic expansion of one layer
with respect to the other leads to a cylindrical bending of the bilayer sheet (Pezzulla
et al. 2015b).

In this paper, following Yavari (2010)’s approach of an evolving material manifold
to model bulk growth, we develop a geometric nonlinear theory of morphoelastic
shells. We model bulk growth in orientable surfaces using evolving first and second
fundamental forms in the material manifold. In Sect. 2, we discuss the idealization of
a thin body to a shell and its evolving referential geometry as an embedded hyperplane
to model growth through evolving first and second fundamental forms. In Sect. 3, we
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present the kinematics of shells, include a discussion on the compatibility equations,
and introduce a systematic method to find those growth fields that leave a stress-free
shell stress-free. In Sect. 4, we derive the balance of mass for morphoelastic shells.
Following a Lagrangian field theory, we also derive the balance laws for morphoelastic
shells and the kinetic equations for the evolution of growth such that the evolution of
the first and the second fundamental forms is coupled with the state of stress of the
shell. In Sect. 5, we look at a few examples to demonstrate the capability of the
proposed geometric theory in the calculation of the time evolution of residual stresses
induced by growth. First, we consider a planar shell and look for a family of growth
fields that leave the shell stress-free. We numerically find embeddings of the evolving
surfaces in R3. We find that these stress-free growth distributions of the initially planar
shell can force it to evolve to either another flat sheet (e.g., cylindrical sheets), sheets
with positive curvature (e.g., spherical sheets), or sheets with negative curvature (e.g.,
saddle-like sheets). Next we look at the problems of a morphoelastic infinitely long
circular cylindrical shell subject to a time-dependent internal pressure and that of a
morphoelastic initially planar circular disk. We numerically solve the kinetic equations
for the evolution of growth and observe the coupling between the state of stress of the
shell and the evolution of its curvature. We consequently obtain the evolution of the
geometry of the shells and the induced residual stress and couple-stress fields.

2 Differential Geometry of Shells

In this section, we review a few elements of the differential geometry of shells as
embedded surfaces in three-dimensional manifold and discuss the idealization of a
thin body as a shell and the evolving geometry of a morphoelastic shell.

2.1 Geometry of an embedded surface

In this section, we tersely review some elements of the geometry of two-dimensional
embedded surfaces in three-dimensional manifolds (see for example (Hicks 1965;
do Carmo 1992) for a detailed account on the subject). Let (B, G) be an ori-
entable three-dimensional Riemannian manifold and let (*{, G) be an orientable
two-dimensional Riemannian submanifold of (B, G), i.e., G = G|3. Let X(H) be
the space of smooth tangent vector fields on H. Using the decomposition Tx 3 =
TxH & (TXH)J‘, VX € 'H, we define the space of smooth normal vector fields
X(H)t ¢ X(B). Let N € X(H)™ be the smooth unit normal vector field of H.
The orientation of the unit normal vector field N is chosen such that the orientation
induced by the local coordinate chart of the surface H and the unit normal vector
field as the last coordinate on B is consistent with the orientation of B. Let V** and
V be the Levi-Civita connections of (M, G) and (B, G), respectively. Note that the
Levi-Civita connection V** of the metric G is precisely the connection induced by
the Levi—Civita connection V of the metric G. The connection V7t in terms of the
connection V is given by
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VY = VY — G (VxgY,N)N, V¥X.Y € X(H),
where X € X(B) and Y € X(B) are any local extensions of X and Y, respectively,

ie., X(X) = X(X), VX € H. The second fundamental form of  is defined as the
symmetric tensor B € I'(S2T*H) given by

B(X,Y)=G (VgY,N) =—-G (VgN.Y), VX, Y € X(H).  (2.1)
The connection V on T'H induces a connection on S>T*H defined by
(VxA)(Y,Z) =X (A(Y, Z)) — A(VxY,Z) — A(Y,VxZ), VA €T (S’T*H).
The curvature tensor R of a Riemannian manifold (M, G) is defined as
RX,Y,Z,W)=GRX,Y)Z, W), VX, Y, Z W eXM),
where R is given in terms of the Levi-Civita connection V¥ by
RX.V)Z=V}yZ-VY¥VWZ+VyVYZ.

In components, the curvature tensor reads

Rapcp = R(da, 9B, dc, dp)

= (aBFKAC — 9T X ge + 1L ycT k5, — FLBCFKAL) Gkp.

Given the symmetries of the curvature tensor, if 7 is the dimension of the manifold
M, its curvature tensor R has n?(n*> — 1)/12 independent components. In particular,
for a two-dimensional surface (n = 2), the curvature tensor has one independent
component R22].

We denote the Riemann curvature tensors of H and 5 by RMand R, respectively.
The Gauss equation gives a relation between the Riemann curvature tensor and the
second fundamental form of 7/, and the Riemann curvature tensor of 3 as

RX.Y,ZW)=R"(X,Y,Z, W)—B(X,Z)B(Y,W)+ B(X,W)B(Y, Z).
(2.2)
The second fundamental form also satisfies the Codazzi-Mainardi equation that can
be written as

R(X.Y.Z.N) = (V#B) (X.Z)— (v};‘B) Y. 7). 2.3)

Let (X', X2, X3) be a local coordinate chart for B such that at any point of the
hypersurface H, {X!, X?} is a local coordinate chart for  and the normal vector field
N to H is tangent to the coordinate curve X . We say that such a chart is compatible with
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Fig. 1 The mid-surface (H, G, B) as a Riemannian submanifold of (B, G)

‘H. Note that given the symmetries of the curvature tensor and the second fundamental
form, the Gauss and Codazzi—Mainardi equations reduce in components to

Riain — Rﬁlz = B11Bx — B12By2, (2.4a)
Ri213 = Biip — Baui, (2.4b)
Ra123 = Boj1 — B, (2.4¢)

where we denote by a stroke | the covariant derivative corresponding to the Levi—Civita
connection of (X, G),i.e., Bapic = Bap,c— IKcaBxkp—TXcpBag, where € 45
is the Christoffel symbol of the connection V™ in the local chart {x!, x2.

The fundamental theorem of surface theory, first proved by Bonnet (1865), implies
that the geometry of a surface is fully described by its metric and its second fundamental
form (do Carmo 1976; Ivey and Landsberg 2003).

2.2 Idealization of a Thin Body

Let B be a three-dimensional thin body (i.e., its thickness is negligible compared to
the other two dimensions) identified with an orientable three-dimensional Riemannian
manifold B endowed with the metric G. Let H— the mid-surface of B—be identified
with (H, G, B), a two-dimensional Riemannian submanifold of (B , G) with first and
second fundamental forms G and B (see Fig. 1). We assume in the following that 7 is
an orientable hypersurface of 3. We show that the natural isometric embedding of H
in B induces independent in-plane and out-of-plane geometries for the hypersurface
H.

Let (X!, X2, X3) be alocal coordinate chart compatible with . In this coordinate
chart, at any point X € B, the metric G of B has the following representation:

) Gi(X) GnX) GiX)
GX)=| GnX) GnlX) G3(X)
Gi(X) GnX) Gxn(X)
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If X € 'H, we have _ ~
) GnX) GnXx) 0
GX)=|GnX) GnX) O
0 0 1

Thus, the metric G of H, referred to as the first fundamental form, has the following
representation B B
G (X) GnX)

GX) = (élzoo G (X)

) , VX eH, (2.5)
and the second fundamental form of H has the following components
Bap(X) =T745(X), A,B=1,2, VX€H,

where ['C 45 = % Dk GCK (BAGKB + 005Gk — Ok (_}AB) is the Christoffel symbol
of the Levi-Civita connection of (B, G). Therefore

1 3Gap
Bap(X) = —5 —=3
H

(X), A,B=12, VXeH, (2.6)

3G A |

ax3 1M
is evaluated at the point where the curve X3 meets the hypersurface H. Since G 43
and 8;;;33 can be prescribed independently, Egs. (2.5) and (2.6) demonstrate that the
independent first and second fundamental forms G and B of the hypersurface H can
be obtained from the metric G of the embedding space B. Therefore, we only need to
specify the components G 45 for A, B = 1, 2 to characterize the geometry of H. We

introduce the following notation

where G 45 should be thou ght of as a function on the coordinate curve X 3 and

Gu(X) GpnX)

Gn(X) = (Glz(X) G (X)

) , VX eB. 2.7)

Remark 2.1 In the local coordinate chart (X 1 x2 x 3), note that the components
G 43, A = 1,2, 3 of the metric G do not affect the geometry of H. Indeed, from
Egs. (2.5) and (2.6), the geometry of H depends only on the restriction of the metric
GtoH (i.e.,_ Gag |7, A, B = 1,2) and its first-order derivative along the normal

to H (i.e., 83GX/‘33 ’H’ A, B = 1, 2). Therefore, higher-order variations of GH along
the thickness of B are not captured by the geometry of H. As an example, let B be
a thin body in R? with the coordinate chart (X', X2, X?) such that the hypersurface

X3 = 0 contains the mid-surface H. Two different metrics for B such that GL g(X) =
eX’5,45. and Gip(X) = (14 X3) 845, VX € B, A, B = 1,2, correspond to the
same geometry for H givenby Gap = Sap and Bap = —%(SAB, A, B =1,2. Also, if
we consider an evolving metric such that G 45(X, 1) = (1 + (X3)2f(t)) daB, VX €
B, A, B =1,2, where f is a given function of time, we find that the geometry of H

does not capture this evolution as it remains unchanged both in-plane and out-of-plane
(G=4dand B =0).
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2.3 Evolving Geometry of a Morphoelastic Shell

In order to model bulk growth of the body B, we assume, following Yavari (2010), an
evolving metric for the material manifold (B , G), i.e., we leave the manifold B fixed
and endow it with an evolving metric! G, i.e., G = G(X, t), such that at t = 0, we
have (_}(X ,0) = GO(X ) the metric of a natural stress-free configuration of B. In this
paper, however, we are interested in growth of thin bodies, and hence, we consider
the manifold (B, (_;) with an evolving metric such that, in a local coordinate chart
(X 1 x2 x 3) as introduced in Sect. 2.2, only GH is e:volving.2 Now, we leave the
mid-surface manifold H fixed and let its evolving first and second fundamental forms
G and B be induced from its natural isometric embedding in B. Therefore, in the local
coordinate chart (X 1 x2 x 3), the metric reads

GuX.t) Gn(X,1)

G0 = (Gu(x, B Gon(X.1)

) , VX eH, (2.8)

and the second fundamental form of H is written as

1 3G ap

BAB(Xat)Z_E 8X3

(X,1), A,B=1,2, VX eH. (2.9)
H

We will discuss, in Sect. 4.2, the governing equations for the evolution of the first
and the second fundamental forms of shells and see how the evolving geometry of
the material manifold, i.e., the growth of the morphoelastic shell, is coupled with
its current state of stress. Note that the evolving fundamental forms G and B are
compatible in the manifold (B , G) ,1.e., they satisfy the Gauss and Codazzi—Mainardi
equations (2.2) and (2.3).

To illustrate the evolving geometry of a surface, we consider a flat thin body that can
be represented by a planar surface (H, G) in (R3, G). Let (X', X2, X3) be the standard
coordinate chart for R? such that the hyperplane X* = 0 contains the surface . If
we assume that the body undergoes a growth that is uniform through its thickness,
then we can model this growth by an evolving metric G3¢ such that G4 (X, 1) =
Gap(X', X%,1), VX € B, A,B = 1,2 (i.e., G4ps do not depend on X?3), and
then we obtain an evolving geometry for H with an evolving metric Gop(X,t) =
Ga p(X,1t), VX € 'H, and a vanishing second fundamental form. As an example
Gap(X!, Xz,t) = f(t)dap, A, B = 1,2, for some function f of time, models
a uniform in-plane growth with no out-of-plane geometry change (i.e., a vanishing
second fundamental form). However, if we assume that the body undergoes a growth
that is not uniform through its thickness, we obtain an evolving geometry for H such

that the second fundamental form evolves with time: Bog (X, 1) = —% agg‘f | (X, 1).

As an example, we let Gap(X, 1) = f(X3,1)8a5, A, B = 1,2, for some function

I Other examples of evolving material metrics in mechanics have been introduced in (Ozakin and Yavari
2010; Yavari and Goriely 2012a,b, 2013a, 2015, 2013b, 2014; Sadik and Yavari 2015).

2 ¢f. (2.7) where the notation G4y was introduced.
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f of time and X3 such that f@O,1) =1, ax* 0,0) =0, and (O t) #O0fort #0

(e.g., f(X3,1) =eX * ). Then we have an evolving geometry for H such that the metric
of H remains unchanged G ap = 84p, while its out-of-plane geometry evolves with
time: Bag = Zaxg 0,1)648.-

Remark 2.2 Given the fact (discussed in Remark 2.1) that the geometry of H depends
only on the restriction of the metric G to  and its first-order derivative along the
normal to H, we are bound to model a restrictive class of material evolutions. We
assume that the evolving material manifold (H, G) at time ¢ is diffeomorphic to the
reference manifold (H, GO) attime t = 0, so that this diffeomorphism can be extended
to aneighborhood of H in B in such a way that the push-forward of the reference normal

vector field N° of H in (B , GO) is precisely the evolving normal vector field N of H

in (B, GO). Note that this implies that during the material evolution of the shell, at
any point of H, the normal to A remains normal.

We can write the evolving metric G4y in the form
Gr(X.1) = Gy (X)e®XD VX e B,

where @ is a smooth (} )-rank tensor characterizing growth of the thin body B such that
®(X, 0) = 0. Following (2.8), the evolving first fundamental form of H is given by

G(X.1) = Gy (X)X VX e H,

where v = c?)|H. Following (2.9), for X € H, the evolving second fundamental form
of H is given by
1 BGH
B(X,t) = ———F(X,t
(X.1) = =3 R (X 1)

- 2ax3 [Ghe] X0
199G :
— 2 aX']:;l (X)eZw(X,t) GH(X) (X t) 20(X, l)

For X € 'H, we introduce the following notations:

~0
_ 190G
G'(X) := G1y(X), B°(X):= —axs X @0 = a0,

3@
and K(X.1) = “5(X.0).

and hence we write the evolving first and second fundamental forms of H as

G(X,1) = G'(X)e** XD B(X,1) = BO(X)e**™ ) — GO (X)K (X, 1)e** X)),
(2.10)
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such that w(X,0) = 0 and K(X,0) = 0,sothatatt = 0, Gt = 0) = G° and
B(t=0) = BY. For isotropic growth, we assume w| = wy = w and K1 = K» = K,
recalling that for A = {1, 2}, K4 = g“’T’g. Therefore, we have
G(X,1) = GO(X)ezw(X‘l), B(X,t) = BO(X)eZw(X,t) — K(X, l‘)GO(X)ezw(X’t),
(2.11)
such that w(X,0) = 0 and K (X, 0) =0.

Remark 2.3 The Riemannian surface form—i.e., the volume form of the surface H—
associated with the metric G is written as

dS(X, G) = Vdet G dX'AdX? =V det G " @ETNgx I AdX? = " @XD) g5, (X),

where dS is the Riemannian surface form associated with the metric G°. Using the
identity det e4 = e, the rate of change of the volume element due to the evolving
metric is given by

;—tdS(X, G) = d [tr(w(X, 1))]dS(X, G). (2.12)

dr
Alternatively, by using the identity 3 [det A(1)] = det A1) r [A’l(t)%A(t)], we
find that

d 1 dG
—dS(X,G) = —tr (—) dsS(X, G).
dr 2 dr

3 Kinematics of Shells

Let the ambient space be S = R3 endowed with the standard Euclidean metric g.
Recall that the Riemannian surface (H, G, B) is an orientable two-dimensional Rie-
mannian submanifold of (B , G) A configuration of H in § is a smooth embedding
¢ : H — S. We denote the set of all configurations of H in S by C.

As shown in Fig. 2, the Riemannian manifold (¢ (H), g, B), where g := g|, (1) and
B € I'(S2T*p(H)) is the second fundamental form of ¢ (H), is a hypersurface in S. Let

Fig. 2 A configuration ¢ : H — S of a Riemannian surface (, G) in the ambient space (S, g). The
vector fields NV and n are the unit normal vector fields of H and ¢ (), respectively
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V and V be the Levi—Civita connections of g and g, respectively. Letn € 3€(90(H))L
be the smooth unit normal vector field of ¢(H) and R € T'(S2(A%T*¢(H))) be the
Riemannian curvature of the surface ¢ (). Since the ambient space S = R3 is flat,
the Gauss and Codazzi—Mainardi equations for the Riemannian manifold (¢(H), g)
read

Rx,y,z,w) = B(x,2)B(y, w) — B(x,w)B(y, 2), (3.1a)
(ViB) (¥, 2) = (VyB) (x,2). (3.1b)

We denote objects and indices by uppercase characters in the material manifold (e.g.,
X € 'H for a material point) and by lowercase characters in the spatial manifold (e.g.,
x € ¢(H) for a spatial point). In the remainder of the paper, unless stated otherwise,
all indices (material and spatial) take values in the range 1, 2. We adopt the standard
Einstein convention of summation over repeated indices.

3.1 Strain Measures

We define the deformation gradient F as the tangent map of ¢ : H — ¢ (H), i.e.,
F(X) :=Txo : TxH — Tyx)¢ (H). The right Cauchy—Green deformation tensor
C e I'(S2T*H) is defined as the pull-back of the spatial metric (Marsden and Hughes
1983), C(X) == ¢*g(X) : TxH — TxH,ie., C(X,Y) = g(p:X, ¢, Y),VX,Y €
X(H). Incomponents, Caop = Fi4 F bp gab- The Jacobian of the motion J relates the
material and spatial Riemannian surface forms dS(X, G) and ds(¢(X), g) by

p*ds = JdS.

It can be shown that (Marsden and Hughes 1983)

detp*g

"=V g6 G2
The material strain tensor E € I'(S?T*H) is given by E = % (C — G). The spatial
strain tensor e € ['(S2T*@(H)) is defined as e = % (g — ¢), where ¢ = ¢, G. Note
that e = ¢, E. The material and spatial strain tensors are intrinsic in the sense that
they are determined by the metrics of the reference and the final configurations of
the surface. We introduce extrinsic strain tensors for configurations of surfaces that
depend on the second fundamental form as follows. The extrinsic deformation ten-

sor @ € I'(S?T*H) is defined as the pull-back of the spatial second fundamental
form

0 :=¢*B.

In components, @ g3 = F%4F?B,5. We define the extrinsic material strain tensor
as H := % (® — B) and the extrinsic spatial strain tensor as n := % (B — 0), where
0 := ¢, B. Note that n = ¢, H. As an example, consider two different configurations
of a sheet shown in Fig. 3. The configuration ¢ is an isometry between the sheet and
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Fig. 3 Strains of two different
configurations of a sheet: i The
configuration ¢ maps the sheet
to a section of a cylinder with

E =0,and H # 0, ii the

configuration ¢ is an in-plane

extension of the sheet with

E#0,and H=0 %

a section of a cylinder, and therefore, E = 0. However, note that since the out-of-
plane geometry has changed, we have H # 0. On the other hand, ¢, is an in-plane
deformation of the sheet with E # 0, and H = 0.

3.2 Compatibility Equations of Shells

The pull-back of the Gauss and the Codazzi equations (3.1) of the surface (¢ (H), g)
by ¢ read (Angoshtari and Yavari 2015)

REX,Y,Z, W) = OX, Z)OY, W) — (X, W)O(Y, Z), (3.3a)
(vge) (Y, Z) = (v?@) X, 2), (3.3b)

where V€ and R€ are, respectively, the Levi—Civita connection and the Riemannian
curvature of the Riemannian manifold (H, C). Given a metric C € I'(S>T*H) and
a symmetric tensor @ € I'(S2T*H), the relations (3.3) express the compatibility
equations for these tensors when H is simply connected, i.e., they are the necessary
and locally sufficient conditions for the existence of a configuration of H with the
given deformation tensors that is unique up to isometries of S = R? when H is
simply connected (Ivey and Landsberg 2003; Angoshtari and Yavari 2015). Hence,
we observe that if ¢; and ¢ are different configurations of the surface H C R with
the same deformation tensors, then ¢1 0 ¢, !and @ o (pl_l are rigid body motions of H
in R3. Note that similar to (2.4), given the symmetries of the curvature tensor RE and
the extrinsic deformation tensor, the compatibility equations reduce in components to

c
R = 011022 — 012013,
O1y2 = O1y1,
Oxn)1 = O1y)2,

where we denote by a double stroke || the covariant derivative corresponding to the
Levi—Civita connection of C.
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3.3 Stress-Free Shell Growth

Given a thin body B and its idealization, the mid-surface H, we want to find those
growth fields that leave the shell “stress-free”, by which we mean both stress- and
couple-stress-free. As introduced earlier, given the smooth embedding ¢ of the surface
(H, G, B) into the Euclidean space S to form a surface (¢(H), g, B), the tensors
2E = ¢p*g — G and 2H = ¢*f — B, respectively, provide measures of in-plane and
out-of-plane strains. Therefore, the surface is stress-free when these two measures are
identically zero, i.e., p*g = G and ¢*B = B. Noting that C = ¢*g and © := ¢*f
are uniquely specified by (3.3) when H is simply connected, it follows that a simply
connected shell H is stress-free if and only if G and B are specified by (3.3), i.e., we
have

RM(X.Y.Z, W)= B(X.Z)B(Y,W)— B(X,W)B(Y. Z), (3.42)
(V;fB) (X.Z) = (v}}B) (Y. Z). (3.4b)

These are precisely the necessary and sufficient conditions for the simply-connected
surface (H, G, B) to be isometrically embeddable in R3. In components, Eq. (3.4)
reduce to

R1%, = Bi1Bx — BiaBa,
Biij2 = B,

By = Bigp.

3.4 Velocity and Acceleration

We define a motion to be a smooth curve t +— ¢; € C, ie., ¢ : H — S and
denote ¢(.,1) := ¢;(.) and px(.) := ¢(X,.). At time 7, the surface ¢; () has the
metric g := g, (H). the Levi-Civita connection V, the unit normal vector field
n e X(¢; (H))+, and the second fundamental form B e F(SZT*(p, (H)). The material
velocity is the mapping V : HxR — TS, (X, t) — V(X,t) := T1px [0;], VX € H.
We denote for each X € H, Vx := V(X, ) the vector field along the curve ¢y,
ie., Vx € X(px). Using the decomposition of 7S, the material velocity can be
decomposed as Vx (1) = V!((t) + V&(t), where Vﬂ((t) € Ty, x)¢: (H) and V&(r) €
(sz,(X)fﬂt (H))J‘, ie., Vlis parallel to ¢; (H) and V- is normal to ¢;(H), see Fig. 4.

The spatial velocity at a fixed time ¢ is a vector field along ¢;(H) defined

as v(x,t) =V ((p,_ Y, t). Note that even though for a fixed ¢, the mapping

¢ + H — S is a smooth embedding, the mapping ¢ : H x R — S is, in gen-
eral, not even an immersion. In fact, it can be seen that T(x ;)¢ is not necessarily
injective. In {X*} and {x“}, in some local coordinate charts for  and S, respectively,
T(x .1 ¢ reads as follows
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Fig. 4 The decomposition of
the material velocity
V=vl4+vel The component
vl (X, t) is an element of
Tyx)@(H), and V(X 1) is
normal to Ty x)@(H)

Tpy(x)pt(H)

(T )00 ()

Wl

dgl gl gl

X! ax2 ot

_ 6(,02 8(,02 8(;72
Tne = | 3¢ a2 o
3<p3 8(/)3 3<p3

t

axT  ax2  Tor
Now, if V(X,t) = 0(.e.,d¢?/dt = 0fora = 1, 2, 3), or ¢ is an in-plane motion (i.e.,
in some coordinate chart for S such that 93 = n on ¢, (H) we have g03 =0), T(x,neis
clearly notinjective. However, if T x )¢ is injective, the implicit function theorem tells
us that ¢ is a local diffeomorphism at (X, ), and one can construct a local vector field
'V on S in a neighborhood of ¢ (X, ) such that V(¢ (X, 1)) = V(X, 1) = v(p(X, 1), 1).
Hence, the material acceleration can be in this case unambiguously defined as

A(X,1) = Dy, Vx := VyV(p(X, 1)),

where D, is the covariant derivative along ¢x. Using the decomposition of the
material velocity into parallel and normal components V = vl 4+ v+ and assuming
that ¢ is a local diffeomorphism at (X, ¢), one can write

AX, 1) = VyWI + v = vVl 4+ vy vt

Since V is the Levi—Civita connection on 7 ¢ (H) induced by g, it is torsion-free and

hence 5 ; 5 B
GVl = [V, V1] + 95V = [V, V1] 4+ 9 V1 4 00

Note that since ¥V = V(¢ (X, t)) does not explicitly depend on time, hence, denoting
the Lie derivative by L, one can write [V, V”] = L\;V”, which is tangent to S, 3
Following the definition of the second fundamental form, we have 6\7\\ vl = Vyl Vi
/3(\7”, V”)n. We let V' = g(V, n), ie., VL1 = Vu. The metric compatibility of v

*
3 The Lie derivative along the vector field V is defined as Ly, Vil = %) [(wt oy 1) VH:|, where
A}

t=
@ o (ﬂs_] is the flow of V.
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and the fact that g(n, n) = 1 imply that for any vector W along ¢;(H) in S, we have
i(é(n, n)) =2g(Vwn.n) =0,
dr
ie., Viwn € X (p(H)). Thus Vyn = —g* - B - VI Therefore
%V”VJ‘ = %V” (V”n) = 6\7\\ (V") n -+ V"@V\\n = (d\?” . V”) n — ’\7ngIj . ﬂ . VH.

On the other hand, we have

n

V'Vyn.
ar n -+ vh

6\;\)1‘ = 6\; (V"n) =

However, as observed earlier, @vn € X (p(H)), then, it follows that at ¢ (X, t), one

can write L gy
v vL) — .
( v dr "

~ I
Let us now compute (VVVL) . We consider an arbitrary vector field U in S such
that U is tangent to H in a neighborhood of ¢(X, 1), i.e., g (VL, U) = 0. Hence,
g (in, U) =—-g (VJ‘, @\;U). However, at ¢ (X, t), we have

VyU = [V, U1+ VgV = [V, U]+ VgV + vy v+
=V U1+ VoV 4+ B (VI,U)n+ @V U)n+v"Syn.

Hence?

g (V5 9U) = VBVl o)+ v (av ).

Thus, it follows from g (@VVL, U) =—-g (VL, @VU) and by arbitrariness of U
that |
(Wvl) = Vgt g VI —yr (avn)

Therefore, the parallel and normal components of the material acceleration read
Al = [V, V”:I + VV” 7 2V"gIj B - vl _yn (dvn)ﬁ ,

%
1 Iyl n_ yl
A _[dt +ﬂ(V,V)+d\7 V]n.

4 Note that since the vector U is tangent to H at (X, ), the vectors [V, U] = Ly, U and @Un are tangent
to H as well.
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4 The Governing Equations of Motion

In this section, we derive the governing equations of motion for morphoelastic shells
that include: balance of mass, balance of linear and angular momenta, and the kinetic
equations of growth.

4.1 Balance of Mass

We denote the material and spatial surface mass densities (mass per unit area) by p
and o, respectively, and let ¢/ be any open set in H with a smooth boundary. For a
growing body, the balance of mass for a motion ¢ can be written as

d
—/pdS:/ SndS, “.1)
dt u Uu

where S, = S, (X, t) is a given scalar field characterizing the material rate of change
of mass per unit area. We postulate that the motion ¢ conserves the mass of the system,

ie.
/ st:/ pdS. 4.2)
o (U) u

Recalling that dS = +/det G dX' A dX?2, it follows from (4.1) that p = p(X, G, 1),

and we find 1 d
———— (VdetGp) = S, 4.3
mdt( Gp) (4.3)

which, using the identity % [det A(t)] = det A(¢) tr [A*1 (1) E%A(t)] , gives the mate-
rial local form of the balance of mass for a growing body as

R
P+ EptrG = S, 4.4)

where the dot denotes total time differentiation. Note that if we write the evolving
metric as in (2.10), i.e, G(X, 1) = G*(X)e>**:) and use the identity det (e4) =
e"(4) then (4.3) reads

. d
o+ P3; [tr(@)] = Sp-

Now, since J = \/% = J(X,p,G,g),and p = Jo, it follows from (4.4) that
0 =0(X,¢,G,g,t),and we find®

CJ 1 dG
o+ 97 + EQU' (5) = Sm, 4.5)

5 Note that (4.5) can also be obtained from (4.2) and (4.1) by writing

d
— ods = / smds.
dr Jo, ) o U)
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where 5, (X, t) = %Sm (X, t) is the spatial rate of change of mass per unit area. Using
(3.2), one can write

j 1d (dt * ) 1 ld(dtG) detp*g
= —— (de —_— — ——(de —r =,
20 Y8 GeiGdetgrg 24t (et G)>

Therefore .
J 1 do*g 1 dG
= =—tr¢ ——tr|{—),
J 2 dr 2 dt

where trc is the trace taken with respect to the metric C. Recalling the decomposition
v = vl + v'n, we have (Marsden and Hughes 1983; Verpoort 2008; Kadianakis and
Travlopanos 2013)

*

do*g
dr

(p* = ng = Lv”g - 2vnﬂ7

and it follows that

d *
tre ( (fhg ) = 2divel — 20",

where div denotes the divergence on the surface ¢; (). Therefore, (4.5) gives the
spatial local form of the balance of mass for a growing shell as ¢ + odivov! — pv"tr =

S

4.2 Balance Laws

Given the right Cauchy—Green deformation tensor C and the extrinsic deformation
tensor O, the geometry of the deformed surface is uniquely defined (See Sect. 3.2).
However, in order to specify the evolution of an element of the deformed surface, we
need to know its position ¢ and its orientation by means of the normal vector field
N = n o ¢. Therefore, in the classical theory of nonlinear elasticity of shells, we
define the action functional as the map S : C — R

n
S(e) = / /H LOX, (X, 1), N (X, 1), §(X. 1), & 0 (X, 1), C(X, 1),
to

O(X, 1), G(X))dS(X)dz,
where £ = L(X, 9o, N, ¢, g,C, ®, G) is the Lagrangian density per unit surface
area.® The governing equations of motion follow from Hamilton’s principle of least

action, which states that the physical motion ¢ of H between fy and #; is a critical
point for the action functional, i.e.,

8S(p) = 0.

6 Since the Lagrangian density is a scalar, it depends on the metrics G and g.
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In the present geometric theory of morphoelastic shells, the material first and second
fundamental forms are dynamical variables that vary independently of the motion.
Therefore, the action functional is modified to read

1
S(¢,G,B)=/ / LX, (X, 0), N(X, 1), 9(X, 1), g 0 9(X, 1), C(X, 1),
o H
OX,1),G(X,t), B(X,1))dS(X, t)dr.

We recall that dS(X, 1) = /det G(X, 1) dX' AdX 2 and define the Lagrangian density
L by

. - 1 ...
LX,9,N,¢,.8.C,0,G,B) = 7P89.9) — WX, C,
0,.G,B) - VX, 9o, N, 8),

where W = W(X, C, O, G, B) is the elastic energy density per unit surface area
(related to the elastic deformation of a surface element), and ¥V = V(X, ¢, N, g) is
the potential energy density per unit surface area (related to the position—respectively
orientation—of a surface element in the body force— respectively moment—fields).
Similar to the coordinate chart (X!, X2, X3) previously defined for B, let (x ', x2, x3)
be a local coordinate chart for S such that at any point of the hypersurface ¢(H),
{x!, x2} is a local coordinate chart for ¢(7{) and the normal vector field n to ¢(H) is
tangent to the coordinate curve x>. Therefore, the Lagrangian density in this coordinate
chart reads

1 1
LX,9,N,¢,.8.C,0,G,B) = 3 P8ab9" ¢ +2,0() - W(X,C,0,G,B)

—V(X, o, N, 8. (4.6)

Also, because growth is, in general, a non-conservative process, we use the Lagrange-
d’ Alembert’s principle for non conservative processes. Given non-conservative forces
Fy, F s, Fg,and F g associated with the variations of the position, the orientation,
and the first and second fundamental forms, respectively, the Lagrange-d’ Alembert’s
principle states that (Marsden and Ratiu 1994)

1
8S(¢, G, B) +/ / (Fy.8¢0 + FArSN + Fg:8G + Fg:5B) dSdt = 0.
Io H

The sources of these forces depend on the particular underlying biological, biochem-
ical, or physical processes leading to growth. Here, we assume the existence of a
Rayleigh potential R = R(¢, N, g, G, B, G) such that

IR IR IR IR
Fo=——, Fy=———, Fg=——, and Fp=——.

AN’ G B

@ Springer



J Nonlinear Sci (2016) 26:929-978 947

In the context of our theory, we disregard non-conservative forces due to the variations
of position and orientation and assume that it is only due to growth, i.e., we assume
that R = R(G, B, G).

In order to take variations, we let ¢, be a 1-parameter family of motions such that
0ot = (p,.7 For fixed X and ¢, we consider the curve ¢; x : € = ¢ x(€) := @c 1 (X)
and define the variation of motion as the spatial vector field given by

8o(X, 1) = Teqpr x [0c] € Ty, ,(x)S.

e=0

Similarly, we let G be a 1-parameter family of material metrics such that G.—o = G

and for fixed X and ¢, we define the variation of the metric by the material tensor given
by

dG.
8G(X,1) = dGG (X, 1).

e=0

Also, let B, be a 1-parameter family of second fundamental forms such that B.—o = B
and for fixed X and ¢, we define the variation of the second fundamental form by the
material tensor given by

B

SB(X,1) =

(X, 1).
e=0

It follows from Lagrange—d’ Alembert’s principle that

Y oL oL L L
+ 2= 5 So+Zs s+ 22 s
//( NN+3 0+ 5g080¢ 500t gg°
9/det GL oL
5G + 2= 5B )dsdr
JaetG  0G 9B )

/ / (— 8G+% SB) dSdz.
B

Remark 4.1 Note that in taking the variation of the action, the variations of C and
© must be such that they satisfy the compatibility Eq. (3.3). Since the variation of
the action is taken by considering the variation of the deformation mapping ¢, the
resulting variations of C and ® (cf. (4.10) and (4.11)) are trivially compatible, i.e.,
they trivially satisfy the compatibility Eq. (3.3). Hence these compatibility equations
are not constraints.

4.7

If we vary €, for fixed time ¢ and X € H, the material velocity ¢ and the unit normal
N lie in T, ,(x)S. Therefore, their variations are given by their covariant derivatives
along the curve ¢, y in S evaluated at ¢ = 0. By the symmetry lemma (see (do Carmo

7 For fixed X and 1, we let Vet (X) == e (X, 1).
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1992; Nishikawa 2002)), we find the variation of the velocity as

8¢ = Dy, x(©%e|._g = Do x(© [T10ex [3:]],_y] = Doy [ Tegr,x [9:1]| _,
~Dég

= Dyy ¢ =1 ——

5 (4.8)

Following (Kadianakis and Travlopanos 2013), the variation of the unit normal vector
field is given by

SN = Dy, yoNe|._o= %B(p”'/\/‘_ (d(awn))t,

where # denotes the operation of raising indices (sharp operator). In components

am:&p”%,w—%g“baa— (5 By + — 5 (‘W) “”)aa. 4.9)

For any fixed time  and X € 'H, the right Cauchy—Green deformation tensor C lies
in §2 Ty'H. Therefore, the variation of C is given by its total derivative with respect to
€ evaluated at e = 0:

dcC.
de e=0

8C =

=¢"Lsyg.

d
= (0 p:078.)
e=0

— d *
- &(‘pege) o d

Note that (Marsden and Hughes 1983; Verpoort 2008; Kadianakis and Travlopanos
2013) Ls,g = L&pug — 28¢" B. Hence, we have

8C = ¢ Ls,18 —28¢" 0" B.
In components, it reads
8Cap = F484c0¢° |5 + F”Bgucd9c 14 — 280" F* \F g ap. (4.10)
The extrinsic deformation tensor ®, lies in the same space S° Ty'H for fixed time ¢

and X € H. Hence, the variation of ® is given by its total derivative with respect to €
evaluated at € = O:

80O =

d@e _ ¢ % _ i . . .
de -0 T de (goGﬂf) =0 T de ((ﬂ (p*(peﬂe) o =@ L(S(pﬂ.

€

The variation in terms of the Lie derivative of the second fundamental form is given
by (Verpoort 2008; Kadianakis and Travlopanos 2013)

LsyB = L5, B — 5¢"C + Hesssyn,

where C denotes the third fundamental form of the surface ¢; () and is defined for
x,y € X(¢(H)) by
Cx,y) =g (Vxn, Vyn) ,
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and Hessy denotes the Hessian of the scalar-valued function f and is defined for
x,y € X(¢/(H)) by
Hess; (v, y) == g (Vx (@/)* . y).

Therefore, we have
80 = ¢" Ly, 1B — 8¢" 9" C + ¢ Hesssyn,
or, in components
80ap = FUAF" 5Bupcd9 + F 4Bacd¢ |5 + F' 5 Ppcd¢ |a

08"
—8¢" F* s F" pBacPpag™ + F'a ( ) . (4.11)
|B

axb

The variation of the ambient space metric vanishes identically since it is compatible
with the connection, i.e.,

8809 =Dy y8op="Vs8=0. (4.12)

In order to obtain the balance laws, we fix the first and the second fundamental
forms, i.e., §G = 0 and §B = 0 and vary ¢. Therefore, following (4.7) and by
arbitrariness of 8¢ and V8", we find the following Euler—Lagrange equations

L (LY I d [ agde oL,
— = - ———— [JdetG -2 F
dp¢ (3N)bﬁ ¢ JdetG di [ © 3¢“] [3CAB ASab

|B
L L
— Fb — Fb = 07 4.13
[BG)AB AﬁablB [BG)AB A]Bﬂab (4.13a)
a LN o 1 d oL i,
— — F — — [ vdet G -2 F° 4, F¢
dgn * ((aN)b § ‘) VaerGa [V g aCap’ AT P
L d 0L -D
— F’,F¢ ¢ F F =0, 4.13b
30,50 A BBacPrag™ + [(3®AB A , b » ( )

along with the following equations prescribing a vanishing initial velocity vector field
and vanishing boundary conditions for the loading on the boundary oH

oL
— =0, (4.14a)
8§0 =ty
oL oL
2—F€ 4+ 2—F€ )T =0, 4.14b
( 9Caz A8ac + N A,Bac) B ( )
L b -B 9L .
F F — @wE Tg =0, 4.14
[(a@Ac A)lc b+(w)bg o (4140

8 We denote by F —4, the components of F —1, the inverse of F. See Appendix 7 for the details of the
derivation of (4.13) and (4.14) following (4.7).
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Fig. 5 Shell boundary loads: Y,

#, and Q are the surface

traction, the moment, and the

shear, respectively. T denotes the T
outward in-plane normal T

oL

F,Tgp =0, 4.14d
3015 AlB ( )

where T is the outward in-plane vector field normal to the boundary d7H.

Remark 4.2 Note that we can modify the Lagrange—d’ Alembert’s principle in order to
prescribe non-vanishing initial and boundary conditions on 9. Let Y be the boundary
surface traction, ¥ be the boundary moment, Q be the boundary shear, and V;, be the
initial velocity vector field (see Fig. 5). We write the Lagrange—d’ Alembert’s principle
as

4
6S(<p,G,B)+/ /(ng(SG—i—FB:(SB)det
) H
n
+/ / (JT“gabéwb—l—Jﬁ“&p",AF*Aa+JQ8</)") dLds
to oH

+ / th0.8¢[0dS = O,
H

and from (4.14) we have

oL v
N . = p )
8@ t=ty o
oL oL
2 FCpgac +2———F aPac )| Tz = JIgap Y7,
( 9Cap A8ac + I A,Bac) B 8ab
F F + | — @wE Tg =10,
|:(a@AC A)IC b (BN)bg a|TB=J0
oL
Fé,Tp =I0°.
004p
We introduce the following surface tensors:
ow N4%
Second Piola-Kirchhoff stress tensor: S =2——, in components, S AB — 9 ;
oC 0Cap
. . . oWw .
First Piola-Kirchhoff stress tensor: P = 2Fﬁ’ in components,
ow
PPB =2 Fb 4
0CaB
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2 W 2 W
Cauchy stress tensor: o = ZF—FT, in components, ot == Fé Fbg;
I aC JoCup
ow

004B°

Material couple-stress tensor: M = R in components, M AB —

4% ow
Two-point couple-stress tensor: M = F ——, in components, MbPB — — b Al
00 004p
. 1 oW 1 .
Spatial couple-stress tensor: g = EF %F , in components,
ab — l 8W FaAFbB-
J 0O

We further introduce the following notations for the external loads

19V
External body forces : B = ———,
p dg
10
External body moments : £ = ———V.
p N

Recalling the balance of mass (4.3), we have for the Lagrangian density (4.6)

1 d
Vdet G dt

Therefore, the Euler—Lagrange equations (4.13) read

oL
|:\/ detGa—i| = ,OgA + SmgV
¢

(PaB +13athB)|B +ﬂab (MhB\B) —i—,OBa _ pﬁabLh _ Sm¢a = pA?,

(4.15a)

aB a bB c bB -D n ap—A sn__ n

(P 4 B MP) Fnpuc = (M2 15 FP0) o B4 (p£1F40) | = S = pA”,
(4.15b)

and the vanishing initial and boundary conditions

V=, =0, (4.16a)
(gabeB + 2,3abeB) Ts =0, (4.16b)
[MbC‘CF*Bb + pL“F*Ba] T =0, (4.16¢)
M BT =0. (4.16d)

We apply the Piola transform® to (4.15) and (4.16) and obtain the spatial version of
the balance of linear momenta as

(o BUi™) B + 0B — 0B — s = oA, (417a)

9 Recall the Piola identity (/ F_Aa)lA —0.
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(07 + B*61") Bac = 1 1ap + 0B" + (@L")ja — sng" = 0A",  (4.17b)

and the vanishing initial and boundary conditions

Vi, =0, (4.182)

(aac + 2;3“,,#’6) t. =0, (4.18b)
(;ﬂ’ﬂb + QL“) t, =0, (4.18¢)
wt, =0, (4.18d)

where t is the outward in-plane vector field normal to the boundary d¢; (H). By pulling
back the system of Eq. (4.17) with the mapping ¢, we obtain the Euler—Lagrange
equations in the convected manifold (H, C )10 in terms of the convected stress tensor
¥ = ¢*o = §/J and the convected couple-stress tensor A = ¢*u = M /J. If we
denote by a double stroke || the covariant derivative corresponding to the Levi—Civita
connection of (H, C), the convected Euler—Lagrange equation reads!!

(EAB + C*ACGCDADB)”B + C*ACGCDADB”B + QFanBl/l

—0C ACOcpFP L4 — 5, F4,0% = oF 4, A%, (4.19a)

(B4 +CT4COcn APE) O5 — Y| +0B" + (gL“F*Aa)HA — " = 0A",

(4.19b)
and the vanishing initial and boundary conditions
V=, =0, (4.20a)
(zAB + 2C*AC®CDADB) Tp =0, (4.20b)
(AAB”B + QF_AaLa) Ty=0, (4.20¢)
AT =0. (4.20d)

Recall that in terms of the deformation mapping ¢ : H — R3, we can write the
components of C and © in a local chart {X, Y} of H as follow

10" We define the convected manifold to be the material manifold H equipped with the right Cauchy—Green
deformation tensor C.

11 The components of C -1 , the inverse of C, are denoted by C —AB,
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CaB=¢.A-¢.B,

X XQy
OaB=¢AB  —————,
lo.x x @yl
where -, x, and |.||, respectively, denote the dot product, the cross product, and the

standard norm in R3.

Given a constitutive relation, the stress and the couple-stress tensors can be written
in terms of the first and the second fundamental forms of the deformed surface. On the
other hand, the first and the second fundamental forms of the deformed surface can
be written in terms of the motion ¢ such that the compatibility Eq. (3.3) are trivially
satisfied. Therefore, the system of Eq. (4.15) (or (4.17), or (4.19)) is a set of three
equations for three unknowns (the three components of the motion), and together with
the initial and boundary conditions (4.16) (or (4.18), or (4.20)), they form the complete
set of governing equations for the morphoelastic shell problem.

Remark 4.3 Note that both systems of Egs. (4.15) and (4.17) reduce to the elastic
shell equilibrium equations for a zero-acceleration motion in the absence of growth
(s;m = 0) and dissipation (R = 0). See (Chien 1943) (Equations 2.8), (Sanders Jr
1961) (Equations 55 and 56), (Naghdi 1963) (Equations 5.36), and (Koiter 1966)
(Equations 6.3 and 6.4) where the shell problem is described by a system of three
equations involving six stress and couple-stress components. Note that an alternative
description is provided by a system of six equations involving ten stress and couple-
stress components, see (Green and Zerna 1950) (Equations 3.6 and 3.11) and (Ericksen
and Truesdell 1958) (Equations 26.6, 26.7 and 26.10).

Remark 4.4 Following the definitions of the surface tensors and based on the symme-
try of the right Cauchy—Green tensor and the extrinsic deformation tensor, we have the
following symmetries for the stress tensors, which are the local forms of the balance
of angular momenta

sT =8, sT=3%, PF'=P'F, ol =0,
M =M, AT =A, MFT=M'F, w'=pn.  @21)

4.3 Kinetic Equations of Growth

To obtain the kinetic equations governing the evolution of growth, we fix the motion,
i.e.,8¢ = 0, and vary the first and the second fundamental forms. From the arbitrariness
of G and § B, we obtain from (4.7) the following kinetic equations for the evolution
of the first and the second fundamental forms of H:

1 9(VdetGL) IR

Jdet G G 9G]
9L IR

aB ~ B’
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Therefore, we find the following for the Lagrangian density (4.6)

R1(1 AW
(e —w—v)ai -2 4.2
5G 2 (2/08((0,(0) w V) G G’ (4.22a)
R0

R __W (4.22b)
9B 9B

Assuming the existence of a Rayleigh potential R = R(G, B , G), we introduce a
variational characterization for the variation of energy in the shell due to growth.
The system of Eq. (4.22) provides a coupling of the rate of change of the first and
the second fundamental forms of H with its current state of deformation through the
elastic energy density W of the material. Therefore, the evolution of the geometry of
the shell, i.e., the growth of the morphoelastic shell, is governed by (4.22).

Remark 4.5 Yavari (2010) discussed the kinetic equation for the evolving metric in
the case of bulk growth for three-dimensional nonlinear elasticity. Note, however, that
there was a missing term in equation (2.179), which should be corrected to read

1 1
a/ /cavm:/ /|:8£+l£tr(8G)] dvdr.
In) B 1o B 2

The kinetic equation (2.181) in (Yavari 2010) should also be corrected to read

R AL 1
6=t ELGﬁ. (4.23)

Ignoring inertial forces and in the absence of body forces, (4.23) reads

R oW 1
aG G 2

Following the material covariance of nonlinear elasticity, Lu and Papadopoulos (2000);
Yavari et al. (2006) proved the following relation:

where S, is a stress-like tensor conjugate to G. S, is associated with the material
evolution and is a measure of anisotropy of the medium: S, = 0 for an isotropic
material. Therefore, (4.23) can be rewritten as

IR 1 1 1
26 = —-WG'G + -SC — -S,G. 4.24
0= 3 WG G+ 35C 35,6 (4.24)

In the context of the multiplicative decomposition of the deformation gradient F =
FF g, the kinetic equation coupling the evolution of growth and stress is written in
terms of the growth tensor F ;. Fusi et al. (2006) derived it using the so-called principle
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of maximum entropy production rate, and Ambrosi and Guana (2007); Olsson and
Klarbring (2008) used the Clausius-Duhem inequality. Note that these equations are
both equivalent and similar in form to (4.24).

Example 4.1 As an example, we consider the following Rayleigh potential
R(G, B, G) = aitr(G) + axtr(G) + Biir(B) + fote(BY). (425
In components

R(G, B, G) = 01GapG*® + 02GapGcpGAGPE + B1BApGAP
+ B2BapBcpGEAGPE.

Therefore, if we assume a static shell in the absence of body forces and moments, the
kinetic equations (4.22) read

. o1 1 1 8W
G=—66—-—WG - —G—@G, 4.26
20 dan 20 0G ( 2)
. 1 oW
B _Prg_ L goW (4.26b)
2B 2B, 9B
In components
o] ow
Gap=—— — —WGpp— —G GpB,
AB ) AB =7 S AB =5 CBGD DB
B1 1 ow
Byp = — Gap — G
AB 28 AB 25 AC 9Bp DB

We assume a Saint Venant—Kirchhoff constitutive model, for which the strain energy
density W is given by!?

—ﬁ — G)? '“_’\ _ 2
W—4[utr[(C G)]+2M+A[tr(C G)]]

3

+ }11—2 [mr [(@ - 3)2] +

A
2+ A

[tr (© — B)]Z]
4.27)

. Eh 5 % 5

_—8(1 3 ’tr[(C—G)]—i—1 U[tr(C—G)]]

+—3 tr| (® — B)?| + v tr (® — B)]?
24(1+v)[r[( )] l—v[r( )]]’

12 For details on the derivation of the Saint Venant—Kirchhoff shell model, see (Fox et al. 1993; Le Dret and
Raoult 1993; Lods and Miara 1995; Miara 1998; Lods and Miara 1998; Friesecke et al. 2002a,b, 2003).
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where A and p are, respectively, Lamé’s first and second parameters, E is Young’s
modulus, and v is Poisson’s ratio. Therefore, for a Saint Venant—Kirchhoff constitutive
model, the kinetic equations (4.26) read

Gag = _%GAB - %ocz [IL (Cxkr — GkL) (CKL - GKL) + ZMM—T-A (CKK - 2)2] Gasp
-
- 4;172 _M (®krL — BkL) (®KL - BKL) + 72:_)’\_ 3 (®KK - BKK)z] Gas
h KL K
+ i |:MCAK (CLp—Grp)G 2 +)» (C K — 2) CAB]
Ror KL A K K
@ 1 (©ak = Bak) ©rs — Bup) KL + m (6%k = BXk) ©an - BAB)] ,

3

h
Bap = ——1 | (©a5—B
AB 2/3 Gap + 126, [/A( AB AB)+

+A (@KK—BKK)GAB].

5 Examples

As applications of the proposed geometric theory of morphoelastic shells, we study in
this section some examples of growth and the induced residual stress fields. We look
at the stress-free growth of an initially planar sheet and study the residual stress and
geometry evolution of a morphoelastic infinitely long circular cylindrical shell subject
to an internal pressure and a morphoelastic initially planar circular disk.

5.1 Stress-Free Growth Fields for an Initially Flat Simply Connected Shell

We consider an initially flat thin shell B such that its mid-surface H is simply connected.
Let (X, Y, Z) be the standard coordinate chart for R? such that the hyperplane X3 = 0
contains H. We assume that the morphoelastic shell is undergoing a growth field that
is modeled by the following evolving metric for /5:

Q20x (XY, Z,1) 0 0
G = 0 20y (X.Y.Z,1)
0 0 1

which corresponds to the following evolving first and second fundamental forms for
the mid-surface H:

e20x (X.Y.1) 0
G = 0 20y (X.Y,0) |

B — —Kx(X, Y, 1)e2ex(X.Y.0) 0
. 0 —Ky(X, Y, t)e?or (X0

where wa (X, Y, 1) = wa(X,Y,0,¢) and K5(X,Y,t) = "‘”A (X,Y,0,1) for A =
X, Y. Following Sect. 3.3, the growth of a simply-connected shell is stress-free if and
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(a) (b) (c)

Fig. 6 Visualization of a few stress-free material evolutions of an initially planar sheet with the prescribed
evolving fundamental forms such that the in-plane growth is uniform, i.e., w4 = wa(t) for A = X, Y,
the Gaussian curvature is vanishing, i.e., Kx Ky = 0, and the nonzero principal curvature is such that
Ky = Kx(X,t) or Ky = Ky (Y, t). We assume for these figures that Ky = 0anda Ky = Kx(¢) to
grow to a cylindrical portion, b Kx (X, t) = k1 (¢) sin(k2 () X), where k| = k1 (¢) and kp = kp(t) are some
arbitrary functions of time resulting in a sheet with sinusoidal rippling, and ¢ Kx (X, 1) = k(t)~/X, for
X > 0, where k = k(¢) is some arbitrary function of time

only if the relations (3.4) hold. In the case of an initially flat morphoelastic simply-
connected shell, the growth is stress-free if and only if

ezwx awy _ an aa)x . 3260)(
Y Yy ) ay Y2

w Jw ow 9w
2wy X Y Y Y | _ 2wy 2wy
e — — = Kx Kye““Xe ",
+ |:( 0X BX) 0X X2 i| XY

Ky dwx
IOX Ky — Kyx) 22X,
57 (Ky x) 57
0Ky Jwy
— = (Kx — Ky)——.
3% (Kx Y) 3%

Now we consider the following simplifying assumptions:

o If we assume that the in-plane growth is uniform, i.e., wg = wa(t) for A =X, Y,
we find that the growth is stress-free if and only if Ky = Kx(X,?), Ky =
Ky(Y,t), and Kx Ky = 0. This case includes the stress-free growth of a planar
sheet into a cylindrical portion. See Fig. 6 for examples of evolutions of planar
sheets into flat surfaces with stress-free growth.

o If we assume that the evolving curvatures Kx and Ky are uniform, i.e., K4 =
Ka(t) for A = X, Y, we distinguish the following cases:

- If Kx # Ky, then the growth is stress-free if and only if wyx and wy are
uniform and Kx Ky = 0. This is precisely the case of a planar sheet evolving
to a cylindrical portion with a stress-free growth (see Fig. 6a).

- If K = Kx = Ky, then the growth is stress-free if and only if

e2wX 3a)y _ aa)X 360)( . 32(1))(
aY aY aY Y2

2
1 elor dox dwy\dwy 0wy | 2 0x 2oy
0X 0X ) 0X X2 '

e If we assume that the in-plane growth is isotropic, i.e., v = wy = wy, we
distinguish the following cases:
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t=0 t=

Fig.7 Example 5.1: Visualization of the stress-free material evolution of an initially planar sheet with the
prescribed evolving fundamental forms (5.2) and (5.3), shown, respectively, in a, b, at different times. Note
that the change of shape of the shell is due to growth and not stretch; such an evolution is stress-free

- If K = Kx = Ky, then the growth is stress-free if and only if K is uniform

and 227“2’ + 327‘3 = —K22 In particular, if Kx = Ky = 0, then the growth
is stress-free if and only if @ is harmonic. See Example 5.1 and Fig. 7 for
examples of such a stress-free growth.

- If Kx # Ky, then the growth is stress-free if and only if

9w 2w

m‘i‘—axz :_KXKYezwy
0K x — (K % )30)
ay T ey
0Ky

— (K Ky) w

ox T T axe
See Example 5.2 and Fig. 8 for examples of such a stress-free growth assuming
that Ky = —Ky.

Example 5.1 Inthisexample, we consider a morphoelastic initially planar square sheet
in the XY -plane such that center of the shell coincides with the origin of the coordinate
system and the sides of the shell are parallel to the X and Y axes. We assume that
both the in-plane and the out-of-plane growths are isotropic, i.e., » = wy = wy, and
K = Kx = Ky. Therefore, the growth is stress-free if and only if K = K(¢) is a
uniform arbitrary function of time and w is such that

9w 9w

4 —— = —K?%?, 5.1
a2 T ax2 ¢ -1

Following Polyanin and Zaitsev (2004), a solution of (5.1) is given by

A2(1) + B%(1) )

(X, Y, 1) = l1n(
2 K2(t) cosh? [C(1) + A(H)X + B(1)Y]
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Fig. 8 Example 5.2: Visualization of the stress-free material evolution of an initially planar sheet with the
prescribed evolving fundamental forms (5.6) and (5.7), shown, respectively, in a, b at different times. Note
that the change of shape of the shell is due to growth and not stretch; such an evolution is stress-free

for some arbitrary functions of time A = A(¢), B = B(t), C = C(t),and K = K (¢).
Therefore, the first and the second fundamental forms read

A%(t) + B%(1) (1 0)
G = ,
K2(t)cosh? [C(1) + A)X + B(H)Y] \0 1
A%(1) + B%(1) 10
0o 1)

T K@) cosh’[C(1) + A()X + B(H)Y]

It is readily seen that every point of the surface is an umbilical point (the principal
curvatures are equal to K (¢)). Therefore, at a given time ¢, we have a surface of constant
nonnegative curvature K2(¢), and hence it is either a planar (K = 0) or a spherical
(K > 0) surface of radius 1/K (¢) (see Figure 7).

The functions A = A(¢), B = B(t), C = C(t),and K = K (¢) define the time evo-
lution of the first and the second fundamental forms. Given a constitutive equation for
the material, their evolution can subsequently be obtained from the kinetic equations
(4.22) governing the evolution of growth. As an example, and for the purpose of illus-
trating the non-trivial evolution of the initially planar shell as a result of a stress-free
growth, we consider the following cases:

e We assume that A(t) = t/t, B(t) = t/t, C(t) = 0, and Ko(t) = ﬁt/r,
where 7 is some growth characteristic time. It follows that w(X,Y,t) =
—In{cosh[(X + Y)t/t]}, such that at t = O they satisfy w(X, Y,0) = 0 and
K (0) = 0. Therefore, we have the following evolving first and second fundamen-
tal forms:
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G 1 (1 o) B _ V2t/7 (1 0)
~ cosh? [(X +Y)t/7] 0 1)’ ~ cosh? [(X + Y)t/7] 0 )-
5.2)

e We assume that A(¢) = 2t/7, B(t) = 0, C(t) = 0 and Ko(z) = 2t/7. It
follows that w (X, Y,#) = —In{cosh[2X¢/7]}, such that at r = O they satisfy
w(X,Y,0) =0and K(X, Y, 0) = 0. Therefore, we have the following evolving
first and second fundamental forms:

1 1 0 2t/t 1 0
— - B=——"" . .
¢ cosh? [2Xt/7] (0 1)’ cosh? [2Xt/7] (0 1) >3)

We visualize in Fig. 7, the evolution of the initially planar sheet with the prescribed
fundamental forms (5.2) and (5.3).

Example 5.2 In this example, we consider a morphoelastic initially flat square sheet
in the XY-plane such that the center of the shell coincides with the origin of the
coordinate system and the sides of the shell are parallel to the X and Y axes. We
assume that the in-plane growth is isotropic, i.e., ® = wx = wy, and assume that
K = Kx = —Ky # 0. We look for w and K such that the growth is stress-free, i.e.,
such that

Po o 29

= K, (5.4a)
IK do
2 - k%% (5.4b)
3% oY
9K 9
LY Gy (5.4¢)
9X 9X

It follows from (5.4b) and (5.4¢) that K (X, Y, 1) = K,(t)e 22&X-Y-0) for some arbi-
trary function of time K, = K, (¢). Therefore, (5.4a) now reads
o 3w 2 o
m—i_W:K"e @, (5.5)

Following Polyanin and Zaitsev (2004), a solution for (5.5) is given by

2 2
CU(X,Y,I):-%]H< A=(r) + B(?) )

K2(t) cosh? (C(t) + A(H)X + B(1)Y)

for some arbitrary functions of time A = A(t), B = B(t), C = C(t), and K,(t). As
an example, and for the purpose of illustrating the non-trivial form the initially flat
shell could adopt as a result of a stress-free growth, we consider the following cases:
e We assume that A(t) = t/t, B(t) = t/t, C(t) = 0, and Ko(¢) = ﬁt/r. It
follows that

ﬁt/t
cosh? [(X + Y)t/t]’

o(X,Y,t)=In{cosh[(X + Y)t/t]}, K(X,Y,t) =
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such that at t = 0 they satisfy w(X, Y, 0) = 0 and K (X, Y, 0) = 0. Therefore, we
have the following evolving first and second fundamental forms:

G=cosh2[(X+Y)t/r]<(1) ?) Bzﬁt/r(_ol ?) (5.6)

e We assume that A(t) = 2t/7, B(t) = 0, C(¢) = 0, and Ko(¢) = 2¢/7. It follows

that
2t/t

cosh? [2Xt/r]’

such that at + = 0 they satisfy w(X, Y, 0) = 0and K (X, Y, 0) = 0. Therefore, we
have the following evolving first and second fundamental forms:

o(X,Y,t) =In{cosh[2Xt/7]}, K(X,Y,t)=

_ 2 1 0 _ -1 0
G = cosh [2Xt/r](0 1), B—2t/t(0 1). 5.7

We visualize in Fig. 8, the evolution of the initially planar sheet with the prescribed
fundamental forms (5.6) and (5.7).

Remark 5.1 In the previous examples, we obtained the first and the second funda-
mental forms for stress-free growth fields. Recall that a growth field leaves the surface
stress-free if and only if it is embeddable in R3. Therefore, given a surface (H, G, B)
with a stress-free growth field, we can find an isometric embedding of it in R by
integrating for the R3-valued function f the following system of partial differential
equations written in a local chart {X, Y} of H:

S aB =FCABf,c+BABN, (5.8)

where N = %, x and ||.||, respectively, denote the cross product and the

standard norm in R3, ' 4 5 is the Christoffel symbol of the Levi—Civita connection
V™ in the local chart {X!, X2}. The integrability conditions for (5.8) are the equality
of the mixed partial for f, i.e., f xy = f yx, which is equivalent to the stress-free
growth compatibility conditions (or the embeddability conditions) (3.4). Figures 6, 7,
and 8 are obtained by plotting f in R following the numerical integration of (5.8).
We fix the rigid body motion of the surface by assuming f(0,0) = 0, f x(0,0) =
(v/G11(0,0),0, O)T,and f’Y(O, 0) = (0, /G22(0,0), O)T,whererenotes transpose

of a vector in R3.

5.2 An Infinitely Long Morphoelastic Circular Cylindrical Shell

We consider an infinitely long morphoelastic thin hollow circular cylinder B under
uniform internal pressure p; = p;(¢), with thickness & and mid-radius R,, made of a
homogeneous isotropic material. Let B undergo a circumferential radially symmetric
but non-uniform growth through its thickness. In the cylindrical coordinates (R, ®, Z),
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suchthat R > 0,0 < ® < 27, and Z € R, we represent growth by the following
evolving material metric

1 0 0
G=|0 RX¥RD 0
0 0 1

which corresponds to the following evolving first and second fundamental forms for
the mid-cylinder ‘H of radius R, in the coordinate system (¥, Z):

G = (Roe® 0)  p_ (114 RK®IRe*® 0
- 0 1)’ - 0 0/’

where w (1) = &(R,. 1) and K (1) = J2(R,, 1).

Let (7, ¢, z) be the cylindrical coordinate system for the Euclidean ambient space.
Based on the symmetry of the problem, and in order to find the growth-induced residual
stress field, we embed the material manifold into the Euclidean ambient space to form a
circular cylindrical shell of radius r = r(¢) such that (¢, z) = (®, Z). The spatial first
and second fundamental forms for the cylindrical shell in the cylindrical coordinate
system (¢, £) can be written as

(@) 0 _(-r@®) ©
e= (70" 1) 8=(70" 5):

Therefore, the deformation tensors read

I AEGER _(-r@) 0
C‘( 0 1)’ 9_( 0 0)'

Note that since the cylinder is made of a homogeneous and isotropic material, and

because of the radial symmetry of the problem, we have

o (0) =0 (r(1), w(1), K1), o (1) =0, o) =% 1), o), K1),
(5.9a)

p @0 = @), 0@, K@), @) =0, pF@) =pF o), o), K@)
(5.9b)

It follows that the only non-trivial equilibrium equation is (4.17b), which is simplified

to read!3 |
(0¢¢ _ ;M"”) r—pi =0, (5.11)

13 Following (4.17b), there are three equilibrium equations

(U“C + ,Bahubﬁ)lc + ﬁ“hubc|c =0, fora=r, ¢, (5.10a)
(o 4+ B*on") Bac = niab + pi = 0. (5.10b)
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We assume a Saint Venant—Kirchhoff constitutive model, for which the strain energy
density W is given by (4.27). Therefore, the nonzero components of the material stress
and couple stress tensors read

2
] G P
R

2(1 —v?) r2(t)’ (5.12)
12a
gy BV rz(t)e_zw(l) )
2(1 —v?) 2 r2()’
56 h?a 20(0) e—Zw(t)
= 1+ RoK (1)) Roe™"") —r(t ]—,
W = s [+ RoK (1)) Roe®® — r(1) 0 ;
h3  Ev 200(1) g2 (5-120)
T= ——— (14 RoK (@) Rpe™®'" — r(t ] .
= s [+ RoK (1)) Roe®® — r(1) 0
Then, it follows from (5.11) that
P pi®Re”” @) L S
R3e3e® Ych  RZe>® 6 R2e20(®) Rye®
1
_EWG + RoK(t)) =0, (5.13)
where Y, = 30 vz) = p+5t om H . We introduce the following dimensionless quantities:
N h A i
h=-, R=RK, i=—, p=2,
R, R, Ye

and rewrite (5.13) as

~3 A~ w(t) 22 12 o L2 ~
P piee? P2 +( W 1) AN 1+ R®) =0. 5.14)

eSw(z) ;l eZw(t) 662‘” (1) e () 6e@ () (

Equation (5.14) is a cubic equation in 7(r)e~“® that has at least one real solution,
which is calculated in closed form using the method of Cardano—Tartaglia (See (Cox
2012) for more details on the method). To obtain closed form solutions for (5.14), we
use the following change of variable

R pi(ne”®
T 3p

Footnote 13 continued

Because of the symmetry of the problem and the isotropy of the material, the stresses take the form (5.9).
This implies that Eq. (5.10a) are trivially satisfied and the terms containing derivatives in (5.10b) vanish.
Therefore, we are left with Eq. (5.11) as the only non-trivial equilibrium equation.
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In terms of ¢, (5.14) reads

£+ mg+n=0, (5.15)
A 22\ a20(t) A NP
i pi (e _ p.([)ew(t) 2pi(1)%e w(t) 32
where m = somm — 1 — 75— Ev andn = —& o : 7z — 302w T 9

o (1+K®).
The discriminant of (5.15) reads A = —4m3 — 27n>. We distinguish three cases:

(i) When A > 0, (5.13) has three real solutions, of which we pick the positive one
(the physically meaningful one). For i € {0, 1, 2}, these three solutions are

. pi(0)e?>® ® 1 f-n [27 2im
r(t)_T+2‘” TCOS gCOS 7 _—’n3 +T .

(5.16)
(ii) When A = 0, (5.13) has two real solutions, of which we pick the positive one.
These two solutions are

poy =2 (t;fw(t) + 3”?:;0), poy =2 (t;e;w(l) = 3”;:(0. (5.17)
(iii)) When A < 0, (5.13) has a unique real solution, which reads
%
hine*® "t \/> i [TV 7\ . (5.18)

Pty = —————+
3h 2

Now we only need to find the evolution of the first and the second fundamental
forms of the material manifold to characterize the growth of the cylindrical shell. We
assume the following Rayleigh potential

R(G, B, G) = a1t1(G) + awrtr(GF) + Brte(B) + potr(BY). (5.19)

Therefore, Eq. (4.22) yield the following kinetic equations for w and K

2
d) = al YCh ﬁe_zw — 1 + YCh ﬁe_zw — 1 ﬁe_zw
4oy 320 Rg 8an Rg Rg
Y h? 1 s\
K4+ —— —e2) | 5.20
20 ( + Ro R%e (5.20a)
. . B Y.h? 1 r
K=-20lK+—)+— - (K+— - —e&"20 (5.20b)
R, 28, 12B> R, R2

The system of ordinary differential Eq. (5.20) along with the initial conditions w (0) =
0 and K(0) = 0 (see (2.11)) is an initial-value problem. Following the existence and
uniqueness theorems of the initial-value problems (Coddington and Levinson 1955),
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3 T > 0 such that (5.20) has a unique solution (w, K) for t € [0, T] with w(0) = 0
and K(0) = 0.

Example 5.3 In this example, we assume that the growth through the thickness of
the hollow cylinder B is non-uniform and symmetric with respect to the mid-cylinder
‘H. In particular, we assume that K () = g—‘g(Ro, t) #0and w(t) = o(R,,t) = 0.
Therefore, the kinetic equations reduce to (5.20b),14 giving the evolution of K, which
further simplifies to read'>

. B Y 1
K=2L4 — —K-——). (5.21)
26, 122 \ R? R,

We define the following characteristic time

126

= —. 5.22

e (5.22)

We differentiate with respect to f = ¢/t and rewrite (5.21) using dimensionless quan-
tities K and 7 ) 681 R

K@) = Ylh; + (f@ —R@®) - 1) , (5.23)

¢

where 7 is given by (5.16), (5.17), or (5.18) depending on the sign of the discriminant
A. Following (5.12), the physical components of the residual stresses read

5% — ny, (f2(,) _ 1) 6% = hy, (ﬂ(z) - 1) :

~ ~

h . h .
Apd 12y oA nzz 2y A
u? =nh YC6[1+K(t) r(t)], W =nh YA6[1+K(t) r(t)],

where Yy = ﬁ and recall that Y. = p + %

In the linear theory of elasticity, it can be shown that the circumferential stress in a
thin-walled cylinder of radius R, and thickness %, subject to an internal pressure p;,
is given by

. PR
Ul?r? ===
h
Starting from our circumferential shell stress 5%?, we want to prove that for p and
small, 5?9 approaches h&]?n‘p. For p and h small enough, the discriminant A > 0 and

the dimensionless radius is written as
2
D R; [—m 1 f 27
r(p,h,t)—m+2R0 TCOS [5 COS 7 —_rn3 R

14 When w = 0, the first fundamental form G is not a dynamical variable anymore, and hence, the kinetic
equation (5.20a) should be discarded.

15 Recall that r depends on K as can be seen in (5.16), (5.17), or (5.18) depending on the value of the
discriminant A.

@ Springer



966 J Nonlinear Sci (2016) 26:929-978

2 p2 2 p2
— PR — _piRo (2PiRy 3n2 _
wherem = oR? 1 3202 andn = 770 \ Vo R +9 R (1 4+ R,K(1)).

For small p and &, we have the following asymptotic expansion

RZ p 2
r(p,h,t)=R0+|:E+0(h):|76+0(h)+0(p )

It follows that

@: C(%—l):p:O—i-o(h)vao(hz)—i—o(pz).

h

For a shell of thickness 7 = 0.1R,, a growth such that ; = Ych3/(l2R0), and
for different values of a constant internal pressure p;, we numerically solve (5.23)
for the evolution of K (see Fig. 9 for the evolution of the material curvature B®¢ =
— Rl,, — K ()). We consequently obtain the evolution of its radius and the corresponding
circumferential stress and couple stress (see Figs. 10, 11, 12). We also consider a time-
dependent internal pressure and numerically solve (5.23) for the evolution of K. We
assume in particular a time-dependent profile of internal pressure given in Fig. 13. We
show in Fig. 14 the evolution of the material curvature B® ¢ and the resulting couple
stress induced by the time-dependent internal pressure shown in Fig. 13.

We note that the cylindrical shell expands and contracts following the internal
pressure level, through the explicit dependence of the spatial radius  on the internal
pressure p;. Also, the circumferential stress follows the profile of expansion and con-
traction of the cylinder and has a value close to that of the thin-walled cylinders, i.e.,
%. Note that we have omitted the plots of evolution of the radius and the circumfer-
ential stress as their profiles are similarﬁto that of the internal pressure. We note that
A% = g — hZYC%Ie(f) = B1 + thC%Bq)@(i), and we can hence interpret, in this
case, the circumferential couple stress as the rate of change of the material curvature
augmented by the growth-induced residual couple stress f;. We observe that at large

times, the rate of change of the curvature K tends to zero (suggesting that the system
(5.23) asymptotically tends to its attracting fixed point). Therefore, in the case of the

Fig. 9 The evolution of the R B®
. o) 0 ]
material curvature B ) ofa e
morphoelastic circular 24F //”'
cylindrical shell with 7 = 0.1R,, aof e
for different values of the ’ I/ [
. -
constant internal pressure p; 20F :" Vs
;7
180 [/ —_ -
A e
Ll -
1.6 ’1 / /
i/ /
Larli/
i/
1214
, , , , /T
' 2 4 6 8 10 /
pi=0 =—=—=— p; =0.05Y, ——-— p; =0.10Y, ===== p; = 0.15Y,
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T/RO

1.6182

1.6181

1.6180

1.6179

1.6178

= pi/Ye
o.sp/

C
10 /T

0.1

0.2 0.3 0.4

(i)

Fig. 10 The evolution of the radius r of a morphoelastic circular cylindrical shell with 2 = 0.1R,. i shows
the time evolution for a constant internal pressure p; = 0.1Y,, and ii shows the internal pressure dependence

attime t = 107

5% /(Y.)
1.6185
1.6180 1
1.6175
2 A‘t 6 lb

570/ (hY,)

251

20

0.1

‘ ‘ ‘ < /Y.
0.2 0.3 04 0.5

(if)

Fig. 11 The evolution of the circumferential stress of a morphoelastic circular cylindrical shell with 7 =
0.1R,. i shows the time evolution for a constant internal pressure p; = 0.1Y,, and ii shows the internal

pressure dependence at time 1 = 10t

Fig. 12 The evolution of the
circumferential couple stress of
a morphoelastic circular
cylindrical shell with 7 = 0.1R,
for different values of the
constant internal pressure p;

0.005

‘ — t/T

0.005

0.010

0.0157

4 6 8 10

constant internal pressure, the circumferential stress tends to the residual couple stress
B1, and in the case of a time-dependent pressure, the mean value of the circumferen-
tial stress tends to the residual couple stress 81. Note that the plots of the longitudinal
stress and couple stress are omitted because they are, respectively, proportional to the

circumferential stress and couple stress by a factor of Y /Y, = v.
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Fig. 13 Th'e time-dependent pi/Ye
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Fig. 14 The evolution of i the material curvature B® ¢, and ii the circumferential couple stress of a
morphoelastic circular cylindrical shell with 2 = 0.1R,, for the time-dependent internal pressure plotted in

Fig. 13

5.3 A Morphoelastic Circular Shell

In the absence of body forces, we consider an initially planar thin morphoelastic
circular disk B with vanishing boundary loads. We assume that the disk is undergoing
radially symmetric but non-uniform growth through its thickness such that the radial
and circumferential curvatures are evolving, while the intrinsic metric of the shell
remains unchanged. Let (R, ®, Z) be the standard cylindrical coordinate system for
R3 such that initially the mid-surface 7 of the shell lies in the hyperplane Z = 0
and the origin of the coordinate system coincides with the center of the circular mid-
surface. Let R, be the radius of the circular disk. For time r > 0, we represent the
aforementioned growth by the following evolving material metric:

20r (R.Z.1) 0 0
G = 0 e2wo(RZOR2 (] | (5.24)
0 0 1
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such that wyq for A = R, ® are symmetric with respect to Z, i.e., wa(R, Z,t) =
—waA(R, —Z, 1), which implies that w4 (R, 0,t) = 0.16 Therefore, the first and the
second fundamental forms of H read

(1 0 _(—Kgr(R,1) 0
G‘(o R2)’ B‘( 0 —RZK@(R,t))’

where K (R, 1) = %4(R,0,1) for A = R, ©.

We endow the ambient Euclidean space R? with the standard cylindrical coordinate
system (7, ¢, z). In order to study the growth of the shell and obtain the growth-induced
residual stresses, we embed the shell into the Euclidean ambient space and look for
solutions of the form (r, ¢, z) = (r(R, 1), P, z(R, t)). We fix the rigid body motion
of the embedded surface by assuming r(0,7) = 0, z(0,7) = 0, and 7'(0,¢) = 0.
Therefore, the deformation tensors read

2 /2 1 I
(57 8). em L (T 0)
0 r (r’2+z/2)/ 0 rz

2 . .
where r’ = g_lre and r” = ;’Tr. We introduce the function x = x (R, t) defined such

that 7/ = xr’. Hence, the deformation tensors in terms of r and x read

cz(r/z(lﬂz) 02), o 1Z(W 0).
0 r (1+X2)/ 0 xr

We assume that the shell is made of a homogeneous and isotropic material. Because
of the symmetry of the problem, the second Piola—Kirchhoff stress and material couple-
stress components have the following forms

SRR = SRR(R,1), §R® =0, $** =S5%%(R, 1),
MRR = MER(R 1), MR® =0, M®® =M®*R,1).

In the convected manifold (H, C), the only nonzero Christoffel symbols of the Levi—
Civita connection are

/ " /

v XX r ¥ R r ¥ D r

Rpp=-"22 _ 4+ T = T =
RR= 12t > P 22) RO

16 We let for example wq = ZKA(R,t) for A = R, © in (5.24).
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Therefore, the equilibrium equations follow from (4.19) and read!”
Ll p(srr g0 X yyre
R ! (1 + )(2)3/2 .
/ r// /
+2( XX2+—/) SRR Lo X — MRR
1+ x r ' (1 + Xz) /
r X P x' RR
- s 42— M - — M
r’(1+X2)( r(l—i—)(z)l/2 r/(1+)(2)3/2 R

X, X r Y0}
_ _ MO — 0, (5.25)
(r/ (1 +X2)3/2 r (1 +Xz)1/2)r’(l+)(2)

. RMRR) R (2 T yre R el
R|r R r\1+x% 7 r’(1+)(2) R

(5.25b)

The boundary conditions (4.20) for zero surface load, zero moment load, and zero
shear load at R = R, read
1 l
SRR =0, MM =0, - (RMRR) — MO =0, (5.26)
We assume a Saint Venant—Kirchhoff constitutive model, for which the strain energy
density W is given by (4.27). Therefore, the nonzero components of the material stress
and couple stress tensors read

2

e[ ().

HB_,’_C_AC@CDADBHB:(EAB +2c—AC@CDADB)”B_

» ADB, Also, we have ] = % Therefore, the convected stress and couple-stress tensors

17 Note that (EAB + C_ACG)CDADB)

(C—AC@CD)”

read ¥ = §S and A = §M
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2
2 r 1
5P = Ych[v[r/ (1+x%) - 1]+ (ﬁ - 1)} =
1.0
MRR:YCh3 Ll/z_i_KR +v LW—FK@ ,
(14 x?) R% (14 x?)

1
M®® = y.h? [v [L +KR:| + [L +K@“ —.
(1+x2)"? R2 (14 x2)"? R

where Y. = 555 C 1 . Therefore, we have the governing Eq. (5.25) and the boundary
conditions (5. 26) 1n terms of r and x. However, we still need the kinetic equations for
the evolution of growth in order to fully solve the problem. We consider the Rayleigh
potential R(B,G) = ﬂltr(B )+ ﬂztr(B 2). Therefore, we find the following evolution

equations for the principal curvatures:

. Y.h3 "y’ [ r i
KR:ﬂ— ¢ H: X 1/2+KR:|+U _ + Ko ]

28 128, (1 + X2) R2 (1 + X2)1/2 ]
(5.27a)
. _ B Y xr [ wr |
Ko =—— v +Kp|+ | ———5 +Ke |-
6= 26, 125 (1+X2)1/2 R | R2 (1+X2)1/2 ()_
(5.27b)

Using the time differentiation with respect tof = t/t where t is defined by (5.22)
and the spatial differentiation with respect to R = R/R,, (5.27) reads

X 681 R " . 7 .
Kg = ﬂl;’— XV1/2+KR +v Ax—rl/z+K@ :
Ych (1+X2) R2(1+X2)

A 681 R ¥ . r N
Ko = ﬂl;— v LW-FKR + AX—"1/2+K(~) )
Y.h (1 +X2) R2 (1 +X2)

WhereIeA_KAR for A = ROr_ R_R andh_R—

We numerically solve the governing Eq (5 25) and the boundary conditions (5.26)
along with the kinetic equations (5.27) for a shell of thickness # = 0.1R, made of an
isotropic and homogeneous material with v = 0.5, and undergoing a growth such that
B1 = Y.h3/(12R,). In Fig. 15, we show the evolution of a radial fiber by plotting its
radius r and elevation z as a function of R. We observe that the radius r remains almost
unchanged from R and is almost time-independent, while the out-of-plane elevation
changes the fiber from its original configuration on the plane z = 0 to adopt a curved
configuration. In Fig. 16, we show the evolution of the spatial embedding of the disk
from its initial planar configuration to a non-trivial curved disk. In Fig. 17, we show
the evolution of the radial and the circumferential curvatures. In Fig. 18, we show the
evolutions of the residual stresses and couple stresses in the growing disk.
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Fig. 15 Evolution of the
out-of-plane spatial elevation
profile z = z(R, t) of a radial
fiber of the initially planar
growing disk
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Fig. 16 Visualization of the evolution of an initially planar growing disk. The out-of-plane elevation is

scaled to a factor of 5
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Fig. 17 Evolution of the radial i and circumferential ii principal curvatures on a radial fiber of the initially

planar growing disk
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Fig. 18 Evolution of i the radial stress and ii the radial couple-stress on a radial fiber of the initially planar

growing disk
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6 Concluding Remarks

In this paper, we presented within the framework of nonlinear elasticity, a geometric
theory of morphoelastic shells to study the coupling of bulk growth with elastic-
ity. We looked at how bulk growth affects the geometry of the shell and eventually
leads to residual stresses and couple stresses in the shell. We identified the thin body
with a three-dimensional Riemannian manifold and modeled the shell by the mid-
surface of the thin body as an orientable two-dimensional Riemannian submanifold.
The shell geometry is hence characterized by its first and second fundamental forms
that, respectively, represent the in-plane and out-of plane geometries. The nonlin-
ear shell compatibility equations were related to the Gauss and Codazzi—Mainardi
equations. We modeled the growth of a shell by considering a referential evolution
such that the material points remain fixed, while the fundamental forms evolve to
account for growth. The evolution of the fundamental forms is such that the shell
always remains stress-free in the material manifold, which is not necessarily Euclid-
ean. We discussed a systematic method to obtain those growth fields that leave a
simply-connected shell both stress-free and couple-stress-free. Using a Lagrangian
field theory, we derived the governing equations of motion. We obtained the balance
laws for morphoelastic shells and a kinetic equation governing the evolution of the
growth through imposing a coupling between the state of stress of the shell and the
time evolution of the fundamental forms. As an example, we considered a planar sheet
and found a family of stress-free growth fields. We observed that stress-free growth
can evolve a planar shell into another flat shell, a positively curved, or a negatively
curved one. We studied the growth of a morphoelastic infinitely long circular cylindri-
cal shell subject to a time-dependent internal pressure. We also considered a growing
circular shell that evolves to a curved cap. In both cases, we numerically obtained
the evolution of the evolving curvatures and the induced residual stresses and couple
stresses.
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7 Appendix: Derivation of the Euler-Lagrange Equations
In this appendix, we work out in detail the derivation of the Euler—Lagrange equations

first assuming that G = § B = 0. We substitute (4.8), (4.9), (4.10), (4.11), and (4.12)
into (4.7) to obtain

g oL oL L 3(5¢™) 9L DSy
S Sot — [ == S0 b T\ J ab =
/Z()A[agoa"’+agon"’ (w)b((”’g“ axag)+a¢ ar
0

L
+ 3Cn (2Fthbc8(/’C|A - 2899”FaAFbB/3ab) + (F“AFbBﬁabc5¢C

004pB
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axb

Vdet Gdx'dr = 0. (7.1)

85g0n
+2F“Aﬂac8<o63—ago”F“AF”BﬂacﬁbdgCMF”A( ) )]
|B

Hence, we have

h oL oL 1 d oL
S + So" + —(VdetG—.6 )
/m /H{aw“ NPT «/detGdt( 29g Y

d oL
+/det
\/detGdl( G5 )

(e (o),
() re)
+ 2(8—F A8ac3P” ) (

aC

Fe . Y
9Cap Agac) %

|B
_ Z%F“AF BBabd¢" 72
+ 32)£AB FCAF" 3 Bpciade” +2 (%FCA'BM&'M)B
) (agig FCA,Bac)lB 3¢
_ ag)ig AF" 5 BacPrag " + (az)ig o 8?)(Sj”n)w

[ Gegr) wer ]

L
+ [ ( FbA) F_Db} (S(p"]«/det Gdx'dr =0.

We can rewrite (7.2) as

§ 1 d i or
— deth.,(S )_}_2(71;'(,‘ S a)

9L 9L

+2(7FCA 3 ”) — [( FbA) s anDb:|
a®AB ﬂac QD |B BG)AB \B QD ‘D
oL L 38¢"

— = So" abF—A

((aN)b @8 a)|A+ (8®AB axA)lB

L (LN 1 d ac oL
o) Ba— —+ (VdetG—= ) =2 ———Fuguc
[W (BN)bﬂ «/detGdt( © 390”) (ac A8 )IB
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L., oL .
F qa—2 F°¢ . 8¢
3045 A Bﬁbcla (a(“)AB Aﬁac)lB] @

oL L\ wps ) 1 d ( a.c)
= (o) sF - = (Vdet G
|:a¢n ((aN)bg ¢ |A J/det G dr 8@"

aL aL
—ZmFaAFbBﬁab - mFaAFbBﬁacﬂbdng
0L b —-D n
+ 8®ABF a) F7P| |8¢"1dSdr =0. (7.3)
|B |D

At t = 11, we assume that . ;;, = @5 so that 8¢;; = 0. Therefore, by integrating
the first term in (7.3) in the time domain, we obtain only one term at ¢ = # giving
the initial condition on the velocity at t = #y. By applying Stokes’ theorem to the
following five terms, if we denote by T the outward in-plane vector field normal to
the boundary curve d’H, we obtain

oL
= C = a
/ 8(,0(15 / / [ ( 9Caz F Agac + 23@ F A,Bac) Tpéyp
L, L — AL _ 3Sg"
— F awE Tpée" Tg dLd
[(amc A),c ”(BN) § "B T Seas Paxa |4
L 1 d oL oL
———— — | VdetG— ) -2 ——FF
//[[ a (aN)ﬁ“ ﬁdetadr( © a'“) (ac Ag“)m

c _ 87 c
FAF Bﬂbcla 2 8@ FAﬂ(lL

+

8®A

L LN e ) 1 d( 8/:)
=+ (=) s®F — (VdetG
[W” ((BN)bg i VdetGdr 9
oL

0L
20— F°,Fb — —— FYFb
3 A BBbe 20,5 A BBacPrag™

+[( 0L F”A) F‘Db] }S(p”]det:O. (7.4)
3O A5 2 D

By arbitrariness of 8¢, §¢", and d(8¢"), the Euler—Lagrange equations for shells
(4.13) together with the initial and boundary conditions (4.14) follow from (7.4).
Note that following Codazzi’s equation (2.3), we have Bpcja = PBacjp- Therefore

9L b
3045 FeuF B,Bbcla = 3®ABF AﬁaclB
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