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Abstract Many thin three-dimensional elastic bodies can be reduced to elastic shells:
two-dimensional elastic bodieswhose reference shape is not necessarilyflat.More gen-
erally, morphoelastic shells are elastic shells that can remodel and grow in time. These
idealized objects are suitable models for many physical, engineering, and biological
systems. Here, we formulate a general geometric theory of nonlinear morphoelastic
shells that describes both the evolution of the body shape, viewed as an orientable
surface, as well as its intrinsic material properties such as its reference curvatures. In
this geometric theory, bulk growth is modeled using an evolving referential configura-
tion for the shell, the so-called material manifold. Geometric quantities attached to the
surface, such as the first and second fundamental forms, are obtained from the metric
of the three-dimensional body and its evolution. The governing dynamical equations
for the body are obtained from variational consideration by assuming that both fun-
damental forms on the material manifold are dynamical variables in a Lagrangian
field theory. In the case where growth can be modeled by a Rayleigh potential, we
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also obtain the governing equations for growth in the form of kinetic equations cou-
pling the evolution of the first and the second fundamental forms with the state of
stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar
sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-
dependent internal pressure, and the residual stress of a morphoelastic planar circular
shell.

Keywords Bulk growth · Morphoelasticity · Shell · Nonlinear elasticity · Geometric
mechanics · Residual stress

Mathematics Subject Classification 74Axx · 74Fxx · 74Lxx

1 Introduction

Growth and remodeling are particularly important processes inmany physical and bio-
logical systems (Hori et al. 1986; Silberberg et al. 1989; Pollack et al. 1996; Delsanto
et al. 2004; Geitmann and Ortega 2009), and their interplay with mechanical stress is
a well-established fact (Hsu 1968; Skalak 1982; Skalak et al. 1982; Fung 1983, 1991,
1995; Taber 1995; Helmlinger et al. 1997; Humphrey 2002). Growth and remodeling
of a body can happen in such a way (non-uniformly) that a relaxed state may not exist
in the physical space, and since the body is constrained to deform in the Euclidean
space, this leads to a state of residual stresses. Such stresses are in fact residual as they
persist even when all the external loads are removed (Skalak et al. 1996; Takamizawa
and Matsuda 1990). Note that the presence of residual stresses in certain biological
tissues has been experimentally verified (Chuong and Fung 1986; Omens and Fung
1990; Han and Fung 1991). Also, as highlighted by Fung (1991), residual stresses are
of crucial importance to the working conditions and physiological functions of living
organs.

In continuummechanics, stress is related to ameasure of strain, e.g., the deformation
gradient, with respect to a stress-free reference configuration. However, in some cases,
such a configuration may not be realized in the Euclidean three-dimensional space,
i.e., the material manifold is not necessarily Euclidean. This issue has been tradition-
ally addressed by assuming a decomposition of the deformation gradient F = FeF p

into an elastic part Fe and a non-elastic part F p, thus, performing a conceptual local
release of stress to a locally stress-free intermediate configuration followed by an elas-
tic deformation to a configuration in the physical space where residual stresses occur
(Eckart 1948; Kröner 1959; Stojanović et al. 1964). In the context of growth mechan-
ics, most of the existing formulations rely on this multiplicative decomposition. The
non-elastic part of the deformation gradient F p = Fg characterizes the growth of
the reference configuration and transforms it to a locally relaxed intermediate con-
figuration (Kondaurov and Nikitin 1987; Rodriguez et al. 1994; Lubarda and Hoger
2002; Ben Amar and Goriely 2005). See (Lubarda 2004; Ambrosi et al. 2011) for
an extensive review and a comprehensive bibliography on the subject and Sadik and
Yavari (2016) for a historical perspective on the decomposition of deformation gradi-
ent in anelasticity. Recently, Yavari (2010) introduced a geometric theory of growing
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nonlinear elastic solids in which the stress-free material configuration is a Riemannian
manifold with an evolving geometry. This geometrical approach provides amathemat-
ically precise framework to study bulk growth and the induced residual stresses, and
leads to a systematic method to find the stress-free growth distributions in nonlinear
elasticity.

Research interest in elastic shells was mainly triggered by the experimental work
of Chladni (1830) on the tones of vibrating plates, which led to several attempts to lay
down a theoretical framework to explain his findings. In 1809, the French Académie
des sciences sponsored a prize on the theoretical investigation of the vibration of
elastic surfaces and it was won by Germain (1821) whose work proved later on to be
partially incorrect (see the historical introduction by Love (1892)). The first attempts
to formulate a general theory and obtain the governing equations for the deformation
of elastic shells are attributed to Aron (1874) and Mathieu (1882). However, it was
Love (1888) who first obtained a consistent general theory for small strains of linear
elastic shells based on the work of Kirchhoff (1850) on the vibrations of plates.

The governing equations of elastic shells in terms of stress and couple-stress ten-
sors were first derived in rectangular Cartesian coordinates by Cosserat and Cosserat
(1909) (see (Ericksen and Truesdell 1958) for an extension of Cosserats’ work). The
coordinate-free expression of these equations was, however, presented in its full gen-
erality by Synge and Chien (1941). They localized the integral balance laws of shells
valid in a Cartesian coordinate chart to obtain the governing differential equations and
then obtained the coordinate-free expressions of these differential equations. Alter-
native derivations for the governing equations of elastic shells in terms of stress and
couple-stress tensors were later proposed by Novozhilov (1964); Green and Zerna
(1950); Naghdi (1963) starting from the general three-dimensional equations of equi-
librium and by (Koiter 1966) by means of the principle of virtual work.

While considerable progress has been made in the modeling of three-dimensional
growing elastic bodies, a complete continuum theory formorphoelastic shells is not yet
available. In particular, there is no general formulation for the computation of residual
stresses and couple stresses due to bulk growth in shells. All the aforementioned shell
theories are restricted to model shells in the context of mass-conserving elasticity. It
is worthwhile, however, to mention the work by Goriely and Ben Amar (2005) on
a growing shell embedded in an elastic medium and the ongoing effort on modeling
morphoelastic plates (Efrati et al. 2009;Dervaux et al. 2009;McMahon et al. 2011a, b).

More recently, Pezzulla et al. (2015a, b) investigated geometry-driven growth-like
morphing of thin bilayer shells. Remarkably, they were able to predict and experimen-
tally obtain domes or a saddle surface in a shrink-fit problem in thin circular disks
(Pezzulla et al. 2015a). They also showed that a large isotropic expansion of one layer
with respect to the other leads to a cylindrical bending of the bilayer sheet (Pezzulla
et al. 2015b).

In this paper, following Yavari (2010)’s approach of an evolving material manifold
to model bulk growth, we develop a geometric nonlinear theory of morphoelastic
shells. We model bulk growth in orientable surfaces using evolving first and second
fundamental forms in the material manifold. In Sect. 2, we discuss the idealization of
a thin body to a shell and its evolving referential geometry as an embedded hyperplane
to model growth through evolving first and second fundamental forms. In Sect. 3, we
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present the kinematics of shells, include a discussion on the compatibility equations,
and introduce a systematic method to find those growth fields that leave a stress-free
shell stress-free. In Sect. 4, we derive the balance of mass for morphoelastic shells.
Following a Lagrangian field theory, we also derive the balance laws for morphoelastic
shells and the kinetic equations for the evolution of growth such that the evolution of
the first and the second fundamental forms is coupled with the state of stress of the
shell. In Sect. 5, we look at a few examples to demonstrate the capability of the
proposed geometric theory in the calculation of the time evolution of residual stresses
induced by growth. First, we consider a planar shell and look for a family of growth
fields that leave the shell stress-free. We numerically find embeddings of the evolving
surfaces inR3.We find that these stress-free growth distributions of the initially planar
shell can force it to evolve to either another flat sheet (e.g., cylindrical sheets), sheets
with positive curvature (e.g., spherical sheets), or sheets with negative curvature (e.g.,
saddle-like sheets). Next we look at the problems of a morphoelastic infinitely long
circular cylindrical shell subject to a time-dependent internal pressure and that of a
morphoelastic initially planar circular disk.We numerically solve the kinetic equations
for the evolution of growth and observe the coupling between the state of stress of the
shell and the evolution of its curvature. We consequently obtain the evolution of the
geometry of the shells and the induced residual stress and couple-stress fields.

2 Differential Geometry of Shells

In this section, we review a few elements of the differential geometry of shells as
embedded surfaces in three-dimensional manifold and discuss the idealization of a
thin body as a shell and the evolving geometry of a morphoelastic shell.

2.1 Geometry of an embedded surface

In this section, we tersely review some elements of the geometry of two-dimensional
embedded surfaces in three-dimensional manifolds (see for example (Hicks 1965;
do Carmo 1992) for a detailed account on the subject). Let

(B, Ḡ
)
be an ori-

entable three-dimensional Riemannian manifold and let (H, G) be an orientable
two-dimensional Riemannian submanifold of

(B, Ḡ
)
, i.e., G = Ḡ|H. Let X(H) be

the space of smooth tangent vector fields on H. Using the decomposition TXB =
TXH ⊕ (TXH)⊥, ∀X ∈ H, we define the space of smooth normal vector fields
X(H)⊥ ⊂ X(B). Let N ∈ X(H)⊥ be the smooth unit normal vector field of H.
The orientation of the unit normal vector field N is chosen such that the orientation
induced by the local coordinate chart of the surface H and the unit normal vector
field as the last coordinate on B is consistent with the orientation of B. Let ∇H and
∇̄ be the Levi–Civita connections of (H, G) and

(B, Ḡ
)
, respectively. Note that the

Levi–Civita connection ∇H of the metric G is precisely the connection induced by
the Levi–Civita connection ∇̄ of the metric Ḡ. The connection ∇H in terms of the
connection ∇̄ is given by

123

Author's personal copy



J Nonlinear Sci (2016) 26:929–978 933

∇H
X Y = ∇̄X̄ Ȳ − Ḡ

(∇̄X̄ Ȳ , N
)
N, ∀X,Y ∈ X(H),

where X̄ ∈ X(B) and Ȳ ∈ X(B) are any local extensions of X and Y , respectively,
i.e., X̄(X) = X(X), ∀X ∈ H. The second fundamental form of H is defined as the
symmetric tensor B ∈ �(S2T ∗H) given by

B(X,Y) = Ḡ
(∇̄X̄ Ȳ , N

) = −Ḡ
(∇̄X̄ N, Ȳ

)
, ∀X,Y ∈ X(H). (2.1)

The connection ∇ on TH induces a connection on S2T ∗H defined by

(∇X A) (Y , Z) = X (A(Y , Z)) − A(∇XY , Z) − A(Y ,∇X Z), ∀A ∈ �(S2T ∗H).

The curvature tensor R of a Riemannian manifold (M, G) is defined as

R(X,Y , Z,W) = G(R(X,Y)Z,W), ∀X,Y , Z,W ∈ X(M),

where R is given in terms of the Levi-Civita connection ∇M by

R(X,Y)Z = ∇M[X,Y ]Z − ∇M
X ∇M

Y Z + ∇M
Y ∇M

X Z.

In components, the curvature tensor reads

RABCD = R(∂A, ∂B, ∂C , ∂D)

=
(
∂B�K

AC − ∂A�K
BC + �L

AC�K
BL − �L

BC�K
AL

)
GKD .

Given the symmetries of the curvature tensor, if n is the dimension of the manifold
M , its curvature tensorR has n2(n2 − 1)/12 independent components. In particular,
for a two-dimensional surface (n = 2), the curvature tensor has one independent
component R1221.

We denote the Riemann curvature tensors ofH and B byRH and R̄, respectively.
The Gauss equation gives a relation between the Riemann curvature tensor and the
second fundamental form of H, and the Riemann curvature tensor of B as

R̄(X,Y , Z,W) = RH(X,Y , Z,W) − B(X, Z) B(Y ,W) + B(X,W) B(Y , Z).

(2.2)
The second fundamental form also satisfies the Codazzi-Mainardi equation that can
be written as

R̄(X,Y , Z, N) =
(
∇H
Y B

)
(X, Z) −

(
∇H
X B

)
(Y , Z). (2.3)

Let (X1, X2, X3) be a local coordinate chart for B such that at any point of the
hypersurfaceH, {X1, X2} is a local coordinate chart forH and the normal vector field
N toH is tangent to the coordinate curve X3.We say that such a chart is compatiblewith
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B, Ḡ

(H,G,B)

Fig. 1 The mid-surface (H, G, B) as a Riemannian submanifold of
(B, Ḡ

)

H. Note that given the symmetries of the curvature tensor and the second fundamental
form, the Gauss and Codazzi–Mainardi equations reduce in components to

R̄1212 − RH
1212 = B11B22 − B12B12, (2.4a)

R̄1213 = B11|2 − B21|1, (2.4b)

R̄2123 = B22|1 − B12|2, (2.4c)

wherewe denote by a stroke | the covariant derivative corresponding to the Levi–Civita
connection of (H, G), i.e., BAB|C = BAB,C −�K

CABK B −�K
CB BAK , where �C

AB

is the Christoffel symbol of the connection ∇H in the local chart {X1, X2}.
The fundamental theorem of surface theory, first proved by Bonnet (1865), implies

that the geometry of a surface is fully describedby itsmetric and its second fundamental
form (do Carmo 1976; Ivey and Landsberg 2003).

2.2 Idealization of a Thin Body

Let B be a three-dimensional thin body (i.e., its thickness is negligible compared to
the other two dimensions) identified with an orientable three-dimensional Riemannian
manifold B endowed with the metric Ḡ. Let H— the mid-surface of B—be identified
with (H, G, B), a two-dimensional Riemannian submanifold of

(B, Ḡ
)
with first and

second fundamental forms G and B (see Fig. 1). We assume in the following thatH is
an orientable hypersurface of B. We show that the natural isometric embedding of H
in B induces independent in-plane and out-of-plane geometries for the hypersurface
H.

Let (X1, X2, X3) be a local coordinate chart compatible withH. In this coordinate
chart, at any point X ∈ B, the metric Ḡ of B has the following representation:

Ḡ(X) =
⎛

⎝
Ḡ11(X) Ḡ12(X) Ḡ13(X)

Ḡ12(X) Ḡ22(X) Ḡ23(X)

Ḡ13(X) Ḡ23(X) Ḡ33(X)

⎞

⎠ .
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If X ∈ H, we have

Ḡ(X) =
⎛

⎝
Ḡ11(X) Ḡ12(X) 0
Ḡ12(X) Ḡ22(X) 0

0 0 1

⎞

⎠ .

Thus, the metric G of H, referred to as the first fundamental form, has the following
representation

G(X) =
(
Ḡ11(X) Ḡ12(X)

Ḡ12(X) Ḡ22(X)

)
, ∀X ∈ H, (2.5)

and the second fundamental form ofH has the following components

BAB(X) = �̄3
AB(X), A, B = 1, 2, ∀X ∈ H,

where �̄C
AB = 1

2

∑
K ḠCK

(
∂AḠK B + ∂BḠK A − ∂K Ḡ AB

)
is theChristoffel symbol

of the Levi–Civita connection of
(B, Ḡ

)
. Therefore

BAB(X) = −1

2

∂Ḡ AB

∂X3

∣∣∣∣H
(X), A, B = 1, 2, ∀X ∈ H, (2.6)

where Ḡ AB should be thought of as a function on the coordinate curve X3 and ∂Ḡ AB
∂X3

∣∣H
is evaluated at the point where the curve X3 meets the hypersurface H. Since Ḡ AB

and ∂Ḡ AB
∂X3 can be prescribed independently, Eqs. (2.5) and (2.6) demonstrate that the

independent first and second fundamental forms G and B of the hypersurface H can
be obtained from the metric Ḡ of the embedding space B. Therefore, we only need to
specify the components Ḡ AB for A, B = 1, 2 to characterize the geometry of H. We
introduce the following notation

ḠH(X) :=
(
Ḡ11(X) Ḡ12(X)

Ḡ12(X) Ḡ22(X)

)
, ∀X ∈ B. (2.7)

Remark 2.1 In the local coordinate chart (X1, X2, X3), note that the components
Ḡ A3, A = 1, 2, 3 of the metric Ḡ do not affect the geometry of H. Indeed, from
Eqs. (2.5) and (2.6), the geometry of H depends only on the restriction of the metric
Ḡ to H (i.e., Ḡ AB |H, A, B = 1, 2) and its first-order derivative along the normal

to H (i.e., ∂Ḡ AB
∂X3

∣∣H, A, B = 1, 2). Therefore, higher-order variations of ḠH along
the thickness of B are not captured by the geometry of H. As an example, let B be
a thin body in R

3 with the coordinate chart (X1, X2, X3) such that the hypersurface
X3 = 0 contains the mid-surfaceH. Two different metrics for B such that Ḡ1

AB(X) =
eX

3
δAB, and Ḡ2

AB(X) = (
1 + X3

)
δAB, ∀X ∈ B, A, B = 1, 2, correspond to the

same geometry forH given byGAB = δAB and BAB = − 1
2δAB, A, B = 1, 2. Also, if

we consider an evolving metric such that Ḡ AB(X, t) = (
1 + (X3)2 f (t)

)
δAB, ∀X ∈

B, A, B = 1, 2, where f is a given function of time, we find that the geometry ofH
does not capture this evolution as it remains unchanged both in-plane and out-of-plane
(G = δ and B = 0).
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2.3 Evolving Geometry of a Morphoelastic Shell

In order to model bulk growth of the body B, we assume, following Yavari (2010), an
evolving metric for the material manifold

(B, Ḡ
)
, i.e., we leave the manifold B fixed

and endow it with an evolving metric1 Ḡ, i.e., Ḡ = Ḡ(X, t), such that at t = 0, we

have Ḡ(X, 0) = Ḡ
0
(X) the metric of a natural stress-free configuration of B. In this

paper, however, we are interested in growth of thin bodies, and hence, we consider
the manifold

(B, Ḡ
)
with an evolving metric such that, in a local coordinate chart

(X1, X2, X3) as introduced in Sect. 2.2, only ḠH is evolving.2 Now, we leave the
mid-surface manifoldH fixed and let its evolving first and second fundamental forms
G and B be induced from its natural isometric embedding in B. Therefore, in the local
coordinate chart (X1, X2, X3), the metric reads

G(X, t) =
(
Ḡ11(X, t) Ḡ12(X, t)
Ḡ12(X, t) Ḡ22(X, t)

)
, ∀X ∈ H, (2.8)

and the second fundamental form ofH is written as

BAB(X, t) = −1

2

∂Ḡ AB

∂X3

∣∣∣
∣H

(X, t), A, B = 1, 2, ∀X ∈ H. (2.9)

We will discuss, in Sect. 4.2, the governing equations for the evolution of the first
and the second fundamental forms of shells and see how the evolving geometry of
the material manifold, i.e., the growth of the morphoelastic shell, is coupled with
its current state of stress. Note that the evolving fundamental forms G and B are
compatible in the manifold

(B, Ḡ
)
, i.e., they satisfy the Gauss and Codazzi–Mainardi

equations (2.2) and (2.3).
To illustrate the evolving geometry of a surface, we consider a flat thin body that can

be represented by a planar surface (H, G) in
(
R
3, Ḡ

)
. Let (X1, X2, X3) be the standard

coordinate chart for R3 such that the hyperplane X3 = 0 contains the surface H. If
we assume that the body undergoes a growth that is uniform through its thickness,
then we can model this growth by an evolving metric ḠH such that Ḡ AB(X, t) =
Ḡ AB(X1, X2, t), ∀X ∈ B, A, B = 1, 2 (i.e., Ḡ ABs do not depend on X3), and
then we obtain an evolving geometry for H with an evolving metric GAB(X, t) =
Ḡ AB(X, t), ∀X ∈ H, and a vanishing second fundamental form. As an example
Ḡ AB(X1, X2, t) = f (t)δAB, A, B = 1, 2, for some function f of time, models
a uniform in-plane growth with no out-of-plane geometry change (i.e., a vanishing
second fundamental form). However, if we assume that the body undergoes a growth
that is not uniform through its thickness, we obtain an evolving geometry forH such

that the second fundamental form evolves with time: BAB(X, t) = − 1
2

∂Ḡ AB
∂X3 |H(X, t).

As an example, we let Ḡ AB(X, t) = f (X3, t)δAB, A, B = 1, 2, for some function

1 Other examples of evolving material metrics in mechanics have been introduced in (Ozakin and Yavari
2010; Yavari and Goriely 2012a, b, 2013a, 2015, 2013b, 2014; Sadik and Yavari 2015).
2 cf. (2.7) where the notation ḠH was introduced.
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f of time and X3 such that f (0, t) = 1, ∂ f
∂X3 (0, 0) = 0, and ∂ f

∂X3 (0, t) 	= 0 for t 	= 0

(e.g., f (X3, t) = eX
3t ). Thenwe have an evolving geometry forH such that themetric

of H remains unchanged: GAB = δAB , while its out-of-plane geometry evolves with
time: BAB = − 1

2
∂ f

∂X3 (0, t)δAB .

Remark 2.2 Given the fact (discussed in Remark 2.1) that the geometry ofH depends
only on the restriction of the metric Ḡ to H and its first-order derivative along the
normal to H, we are bound to model a restrictive class of material evolutions. We
assume that the evolving material manifold (H, G) at time t is diffeomorphic to the
referencemanifold

(H, G0) at time t = 0, so that this diffeomorphism can be extended
to a neighborhoodofH inB in such away that the push-forward of the reference normal

vector field N0 ofH in
(
B, Ḡ

0
)
is precisely the evolving normal vector field N ofH

in
(
B, Ḡ

0
)
. Note that this implies that during the material evolution of the shell, at

any point of H, the normal to H remains normal.

We can write the evolving metric ḠH in the form

ḠH(X, t) = Ḡ
0
H(X)e2ω̄(X,t), ∀X ∈ B,

where ω̄ is a smooth (11)-rank tensor characterizing growth of the thin bodyB such that
ω̄(X, 0) = 0. Following (2.8), the evolving first fundamental form of H is given by

G(X, t) = Ḡ
0
H(X)e2ω(X,t), ∀X ∈ H,

where ω = ω̄
∣∣H. Following (2.9), for X ∈ H, the evolving second fundamental form

of H is given by

B(X, t) = −1

2

∂ ḠH
∂X3 (X, t)

= −1

2

∂

∂X3

[
Ḡ

0
He2ω̄

]
(X, t)

= −1

2

∂ Ḡ
0
H

∂X3 (X)e2ω̄(X,t) − Ḡ
0
H(X)

∂ω̄

∂X3 (X, t)e2ω̄(X,t).

For X ∈ H, we introduce the following notations:

G0(X) := Ḡ
0
H(X), B0(X) := −1

2

∂ Ḡ
0
H

∂X3 (X), ω(X, t) := ω̄(X, t),

and K (X, t) = ∂ω̄

∂X3 (X, t),

and hence we write the evolving first and second fundamental forms of H as

G(X, t) = G0(X)e2ω(X,t), B(X, t) = B0(X)e2ω(X,t) − G0(X)K (X, t)e2ω(X,t),

(2.10)
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such that ω(X, 0) = 0 and K (X, 0) = 0, so that at t = 0, G(t = 0) = G0 and
B(t = 0) = B0. For isotropic growth, we assume ω1 = ω2 = ω and K1 = K2 = K ,
recalling that for A = {1, 2}, KA = ∂ω̄A

∂X3 . Therefore, we have

G(X, t) = G0(X)e2ω(X,t), B(X, t) = B0(X)e2ω(X,t) − K (X, t)G0(X)e2ω(X,t),

(2.11)
such that ω(X, 0) = 0 and K (X, 0) = 0.

Remark 2.3 The Riemannian surface form—i.e., the volume form of the surfaceH—
associated with the metric G is written as

dS(X, G) = √
det G dX1∧dX2=

√
det G0 etr(ω(X,T ))dX1∧dX2 = etr(ω(X,t))dS0(X),

where dS0 is the Riemannian surface form associated with the metric G0. Using the
identity det eA = etr(A), the rate of change of the volume element due to the evolving
metric is given by

d

dt
dS(X, G) = d

dt
[tr(ω(X, t))] dS(X, G). (2.12)

Alternatively, by using the identity d
dt [det A(t)] = det A(t) tr

[
A−1(t) ddt A(t)

]
, we

find that
d

dt
dS(X, G) = 1

2
tr

(
dG
dt

)
dS(X, G).

3 Kinematics of Shells

Let the ambient space be S = R
3 endowed with the standard Euclidean metric g̃.

Recall that the Riemannian surface (H, G, B) is an orientable two-dimensional Rie-
mannian submanifold of

(B, Ḡ
)
. A configuration of H in S is a smooth embedding

ϕ : H → S. We denote the set of all configurations ofH in S by C.
As shown in Fig. 2, the Riemannianmanifold (ϕ(H), g,β), where g := g̃|ϕ(H) and

β ∈ �(S2T ∗ϕ(H)) is the second fundamental formofϕ(H), is a hypersurface inS. Let

Fig. 2 A configuration ϕ : H → S of a Riemannian surface (H, G) in the ambient space (S, g̃). The
vector fields N and n are the unit normal vector fields of H and ϕ(H), respectively
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∇ and ∇̃ be the Levi–Civita connections of g and g̃, respectively. Let n ∈ X(ϕ(H))⊥
be the smooth unit normal vector field of ϕ(H) and R ∈ �(S2(�2T ∗ϕ(H))) be the
Riemannian curvature of the surface ϕ(H). Since the ambient space S = R

3 is flat,
the Gauss and Codazzi–Mainardi equations for the Riemannian manifold (ϕ(H), g)

read

R(x, y, z,w) = β(x, z)β( y,w) − β(x,w)β( y, z), (3.1a)

(∇xβ) ( y, z) = (∇ yβ
)
(x, z). (3.1b)

We denote objects and indices by uppercase characters in the material manifold (e.g.,
X ∈ H for a material point) and by lowercase characters in the spatial manifold (e.g.,
x ∈ ϕ(H) for a spatial point). In the remainder of the paper, unless stated otherwise,
all indices (material and spatial) take values in the range 1, 2. We adopt the standard
Einstein convention of summation over repeated indices.

3.1 Strain Measures

We define the deformation gradient F as the tangent map of ϕ : H → ϕ (H), i.e.,
F(X) := TXϕ : TXH → Tϕ(X)ϕ (H). The right Cauchy–Green deformation tensor
C ∈ �(S2T ∗H) is defined as the pull-back of the spatial metric (Marsden and Hughes
1983), C(X) := ϕ∗g(X) : TXH → TXH, i.e., C(X,Y) = g(ϕ∗X, ϕ∗Y), ∀X,Y ∈
X(H). In components, CAB = Fa

AFb
Bgab. The Jacobian of the motion J relates the

material and spatial Riemannian surface forms dS(X, G) and ds(ϕ(X), g) by

ϕ∗ds = JdS.

It can be shown that (Marsden and Hughes 1983)

J =
√
det ϕ∗g
det G

. (3.2)

The material strain tensor E ∈ �(S2T ∗H) is given by E = 1
2 (C − G). The spatial

strain tensor e ∈ �(S2T ∗ϕ(H)) is defined as e = 1
2 (g − c), where c = ϕ∗G. Note

that e = ϕ∗E. The material and spatial strain tensors are intrinsic in the sense that
they are determined by the metrics of the reference and the final configurations of
the surface. We introduce extrinsic strain tensors for configurations of surfaces that
depend on the second fundamental form as follows. The extrinsic deformation ten-
sor � ∈ �(S2T ∗H) is defined as the pull-back of the spatial second fundamental
form

� := ϕ∗β.

In components, �AB = Fa
AFb

Bβab. We define the extrinsic material strain tensor
as H := 1

2 (� − B) and the extrinsic spatial strain tensor as η := 1
2 (β − θ), where

θ := ϕ∗B. Note that η = ϕ∗H . As an example, consider two different configurations
of a sheet shown in Fig. 3. The configuration ϕ1 is an isometry between the sheet and
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Fig. 3 Strains of two different
configurations of a sheet: i The
configuration ϕ1 maps the sheet
to a section of a cylinder with
E = 0, and H 	= 0, ii the
configuration ϕ2 is an in-plane
extension of the sheet with
E 	= 0, and H = 0

a section of a cylinder, and therefore, E = 0. However, note that since the out-of-
plane geometry has changed, we have H 	= 0. On the other hand, ϕ2 is an in-plane
deformation of the sheet with E 	= 0, and H = 0.

3.2 Compatibility Equations of Shells

The pull-back of the Gauss and the Codazzi equations (3.1) of the surface (ϕ(H), g)

by ϕ read (Angoshtari and Yavari 2015)

RC(X,Y , Z,W) = �(X, Z)�(Y ,W) − �(X,W)�(Y , Z), (3.3a)
(
∇C
X�

)
(Y , Z) =

(
∇C
Y �

)
(X, Z), (3.3b)

where ∇C andRC are, respectively, the Levi–Civita connection and the Riemannian
curvature of the Riemannian manifold (H,C). Given a metric C ∈ �(S2T ∗H) and
a symmetric tensor � ∈ �(S2T ∗H), the relations (3.3) express the compatibility
equations for these tensors when H is simply connected, i.e., they are the necessary
and locally sufficient conditions for the existence of a configuration of H with the
given deformation tensors that is unique up to isometries of S = R

3 when H is
simply connected (Ivey and Landsberg 2003; Angoshtari and Yavari 2015). Hence,
we observe that if ϕ1 and ϕ2 are different configurations of the surface H ⊂ R

3 with
the same deformation tensors, then ϕ1 ◦ϕ−1

2 and ϕ2 ◦ϕ−1
1 are rigid body motions ofH

inR3. Note that similar to (2.4), given the symmetries of the curvature tensorRC and
the extrinsic deformation tensor, the compatibility equations reduce in components to

RC
1212 = �11�22 − �12�12,

�11||2 = �12||1,
�22||1 = �12||2,

where we denote by a double stroke || the covariant derivative corresponding to the
Levi–Civita connection of C .
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3.3 Stress-Free Shell Growth

Given a thin body B and its idealization, the mid-surface H, we want to find those
growth fields that leave the shell “stress-free”, by which we mean both stress- and
couple-stress-free. As introduced earlier, given the smooth embedding ϕ of the surface
(H, G, B) into the Euclidean space S to form a surface (ϕ(H), g,β), the tensors
2E = ϕ∗g − G and 2H = ϕ∗β − B, respectively, provide measures of in-plane and
out-of-plane strains. Therefore, the surface is stress-free when these two measures are
identically zero, i.e., ϕ∗g = G and ϕ∗β = B. Noting that C = ϕ∗g and � := ϕ∗β
are uniquely specified by (3.3) when H is simply connected, it follows that a simply
connected shellH is stress-free if and only if G and B are specified by (3.3), i.e., we
have

RH(X,Y , Z,W) = B(X, Z) B(Y ,W) − B(X,W) B(Y , Z), (3.4a)
(
∇H
Y B

)
(X, Z) =

(
∇H
X B

)
(Y , Z). (3.4b)

These are precisely the necessary and sufficient conditions for the simply-connected
surface (H, G, B) to be isometrically embeddable in R

3. In components, Eq. (3.4)
reduce to

RH
1212 = B11B22 − B12B12,

B11|2 = B12|1,
B22|1 = B12|2.

3.4 Velocity and Acceleration

We define a motion to be a smooth curve t → ϕt ∈ C, i.e., ϕt : H → S and
denote ϕ(., t) := ϕt (.) and ϕX (.) := ϕ(X, .). At time t , the surface ϕt (H) has the
metric g := g̃|ϕt (H), the Levi–Civita connection ∇, the unit normal vector field
n ∈ X(ϕt (H))⊥, and the second fundamental form β ∈ �(S2T ∗ϕt (H)). The material
velocity is themappingV : H×R → TS, (X, t) → V (X, t) := TtϕX [∂t ] , ∀X ∈ H.
We denote for each X ∈ H, V X := V (X, ·) the vector field along the curve ϕX ,
i.e., V X ∈ X(ϕX ). Using the decomposition of TS, the material velocity can be
decomposed as V X (t) = V ‖

X (t) + V⊥
X (t), where V ‖

X (t) ∈ Tϕt (X)ϕt (H) and V⊥
X (t) ∈

(
Tϕt (X)ϕt (H)

)⊥, i.e., V ‖ is parallel to ϕt (H) and V⊥ is normal to ϕt (H), see Fig. 4.
The spatial velocity at a fixed time t is a vector field along ϕt (H) defined

as v(x, t) := V
(
ϕ−1
t (x), t

)
. Note that even though for a fixed t , the mapping

ϕt : H → S is a smooth embedding, the mapping ϕ : H × R → S is, in gen-
eral, not even an immersion. In fact, it can be seen that T(X,t)ϕ is not necessarily
injective. In {X A} and {xa}, in some local coordinate charts forH and S, respectively,
T(X,t)ϕ reads as follows
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Fig. 4 The decomposition of
the material velocity
V = V‖ + V⊥. The component
V‖(X, t) is an element of
Tϕ(X)ϕ(H), and V⊥(X, t) is
normal to Tϕ(X)ϕ(H)

T(X,t)ϕ =

⎛

⎜⎜⎜
⎝

∂ϕ1

∂X1
∂ϕ1

∂X2
∂ϕ1

∂t

∂ϕ2

∂X1
∂ϕ2

∂X2
∂ϕ2

∂t

∂ϕ3

∂X1
∂ϕ3

∂X2
∂ϕ3

∂t

⎞

⎟⎟⎟
⎠

.

Now, if V (X, t) = 0 (i.e., ∂ϕa/∂t = 0 for a = 1, 2, 3), or ϕ is an in-planemotion (i.e.,
in some coordinate chart for S such that ∂3 = n on ϕt (H) we have ϕ3 = 0), T(X,t)ϕ is
clearly not injective. However, if T(X,t)ϕ is injective, the implicit function theorem tells
us that ϕ is a local diffeomorphism at (X, t), and one can construct a local vector field
V onS in a neighborhood of ϕ(X, t) such thatV(ϕ(X, t)) = V (X, t) = v(ϕ(X, t), t).
Hence, the material acceleration can be in this case unambiguously defined as

A(X, t) = DϕXV X := ∇̃VV(ϕ(X, t)),

where DϕX is the covariant derivative along ϕX . Using the decomposition of the
material velocity into parallel and normal components V = V‖ + V⊥ and assuming
that ϕ is a local diffeomorphism at (X, t), one can write

A(X, t) = ∇̃V(V‖ + V⊥) = ∇̃VV
‖ + ∇̃VV

⊥.

Since ∇ is the Levi–Civita connection on Tϕ(H) induced by g, it is torsion-free and
hence

∇̃VV
‖ =

[
V,V‖]+ ∇̃V‖V =

[
V,V‖]+ ∇̃V‖V‖ + ∇̃V‖V⊥.

Note that since V = V(ϕ̃(X, t)) does not explicitly depend on time, hence, denoting
the Lie derivative by L, one can write

[V,V‖] = LVV‖, which is tangent to St .3

Following the definition of the second fundamental form,we have ∇̃V‖V‖ = ∇V‖V‖+
β(V‖,V‖)n. We let Vn = g̃(V, n), i.e., V⊥ = Vnn. The metric compatibility of ∇̃

3 The Lie derivative along the vector field V is defined as LVV‖ = d
dt

∣∣
∣
t=s

[(
ϕt ◦ ϕ−1

s

)∗ V‖], where
ϕt ◦ ϕ−1

s is the flow ofV.
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and the fact that g̃(n, n) = 1 imply that for any vector W along ϕt (H) in S, we have

d

dt

(
g̃(n, n)

)
= 2 g̃(∇̃Wn, n) = 0,

i.e., ∇̃Wn ∈ X (ϕ(H)). Thus ∇̃V‖n = −g
 · β · V‖. Therefore

∇̃V‖V⊥ = ∇̃V‖
(
Vnn

) = ∇̃V‖
(
Vn) n + Vn∇̃V‖n =

(
dVn · V‖) n − Vn g
 · β · V‖.

On the other hand, we have

∇̃VV⊥ = ∇̃V
(Vnn

) = dVn

dt
n + Vn∇̃Vn.

However, as observed earlier, ∇̃Vn ∈ X (ϕ(H)), then, it follows that at ϕ(X, t), one
can write (

∇̃VV⊥)⊥ = dV n

dt
n.

Let us now compute
(
∇̃VV⊥

)‖
. We consider an arbitrary vector field U in S such

that U is tangent to H in a neighborhood of ϕ(X, t), i.e., g̃
(V⊥,U

) = 0. Hence,

g̃
(
∇̃VV⊥,U

)
= − g̃

(
V⊥, ∇̃VU

)
. However, at ϕ(X, t), we have

∇̃VU = [V,U] + ∇̃UV = [V,U] + ∇̃UV‖ + ∇̃UV⊥

= [V,U] + ∇UV ‖ + β
(
V ‖,U

)
n + (

dV n · U) n + V n∇̃Un.

Hence4

g̃
(
V⊥, ∇̃VU

)
= V nβ(V ‖,U) + V n (dV n · U) .

Thus, it follows from g̃
(
∇̃VV⊥,U

)
= − g̃

(
V⊥, ∇̃VU

)
and by arbitrariness of U

that (
∇̃VV⊥)‖ = −Vn g
 · β · V‖ − Vn (dVn)
 .

Therefore, the parallel and normal components of the material acceleration read

A‖ =
[
V , V ‖]+ ∇V ‖V ‖ − 2V n g
 · β · V ‖ − V n (dV n)
 ,

A⊥ =
[
dV n

dt
+ β

(
V ‖, V ‖)+ dVn · V ‖

]
n.

4 Note that since the vector U is tangent toH at ϕ(X, t), the vectors [V,U] = LVU and ∇̃Un are tangent
toH as well.
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4 The Governing Equations of Motion

In this section, we derive the governing equations of motion for morphoelastic shells
that include: balance of mass, balance of linear and angular momenta, and the kinetic
equations of growth.

4.1 Balance of Mass

We denote the material and spatial surface mass densities (mass per unit area) by ρ

and �, respectively, and let U be any open set in H with a smooth boundary. For a
growing body, the balance of mass for a motion ϕ can be written as

d

dt

∫

U
ρdS =

∫

U
SmdS, (4.1)

where Sm = Sm(X, t) is a given scalar field characterizing the material rate of change
of mass per unit area.We postulate that the motion ϕ conserves the mass of the system,
i.e. ∫

ϕt (U)

�ds =
∫

U
ρdS. (4.2)

Recalling that dS = √
det G dX1 ∧ dX2, it follows from (4.1) that ρ = ρ(X, G, t),

and we find
1√
det G

d

dt

(√
det Gρ

)
= Sm, (4.3)

which, using the identity d
dt [det A(t)] = det A(t) tr

[
A−1(t) ddt A(t)

]
, gives the mate-

rial local form of the balance of mass for a growing body as

ρ̇ + 1

2
ρ trĠ = Sm, (4.4)

where the dot denotes total time differentiation. Note that if we write the evolving
metric as in (2.10), i.e., G(X, t) = G0(X)e2ω(X,t), and use the identity det

(
eA
) =

etr(A), then (4.3) reads

ρ̇ + ρ
d

dt
[tr(ω)] = Sm .

Now, since J =
√

det ϕ∗g
det G = J (X, ϕ, G, g), and ρ = J�, it follows from (4.4) that

� = �(X, ϕ, G, g, t), and we find5

�̇ + �
J̇

J
+ 1

2
� tr

(
dG
dt

)
= sm, (4.5)

5 Note that (4.5) can also be obtained from (4.2) and (4.1) by writing

d

dt

∫

ϕt (U)
�ds =

∫

ϕt (U)
smds.
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where sm(X, t) = 1
J Sm(X, t) is the spatial rate of change of mass per unit area. Using

(3.2), one can write

J̇ = 1

2

d

dt

(
det ϕ∗g

) 1√
det G det ϕ∗g

− 1

2

d

dt
(det G)

√
det ϕ∗g
(det G)3

.

Therefore
J̇

J
= 1

2
trC

(
dϕ∗g
dt

)
− 1

2
tr

(
dG
dt

)
,

where trC is the trace taken with respect to the metric C . Recalling the decomposition
v = v‖ + vnn, we have (Marsden and Hughes 1983; Verpoort 2008; Kadianakis and
Travlopanos 2013)

ϕ∗
dϕ∗g
dt

= Lv g = Lv‖ g − 2vnβ,

and it follows that

trC

(
dϕ∗g
dt

)
= 2divv‖ − 2vn trβ,

where div denotes the divergence on the surface ϕt (H). Therefore, (4.5) gives the
spatial local form of the balance of mass for a growing shell as �̇+�divv‖ −�vn trβ =
sm .

4.2 Balance Laws

Given the right Cauchy–Green deformation tensor C and the extrinsic deformation
tensor �, the geometry of the deformed surface is uniquely defined (See Sect. 3.2).
However, in order to specify the evolution of an element of the deformed surface, we
need to know its position ϕ and its orientation by means of the normal vector field
N = n ◦ ϕ. Therefore, in the classical theory of nonlinear elasticity of shells, we
define the action functional as the map S : C → R

S(ϕ) =
∫ t1

t0

∫

H
L(X, ϕ(X, t),N (X, t), ϕ̇(X, t), g̃ ◦ ϕ(X, t),C(X, t),

�(X, t), G(X))dS(X)dt,

where L = L(X, ϕ,N , ϕ̇, g̃,C,�, G) is the Lagrangian density per unit surface
area.6 The governing equations of motion follow from Hamilton’s principle of least
action, which states that the physical motion ϕ of H between t0 and t1 is a critical
point for the action functional, i.e.,

δS(ϕ) = 0.

6 Since the Lagrangian density is a scalar, it depends on the metrics G and g̃.
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In the present geometric theory ofmorphoelastic shells, thematerial first and second
fundamental forms are dynamical variables that vary independently of the motion.
Therefore, the action functional is modified to read

S(ϕ, G, B) =
∫ t1

t0

∫

H
L(X, ϕ(X, t),N (X, t), ϕ̇(X, t), g̃ ◦ ϕ(X, t),C(X, t),

�(X, t), G(X, t), B(X, t))dS(X, t)dt.

We recall that dS(X, t) = √
det G(X, t) dX1∧dX2 and define the Lagrangian density

L by

L(X, ϕ,N , ϕ̇, g̃,C,�, G, B) = 1

2
ρ g̃(ϕ̇, ϕ̇) − W(X,C,

�, G, B) − V(X, ϕ,N , g̃),

where W = W(X,C,�, G, B) is the elastic energy density per unit surface area
(related to the elastic deformation of a surface element), and V = V(X, ϕ,N , g̃) is
the potential energy density per unit surface area (related to the position—respectively
orientation—of a surface element in the body force— respectively moment—fields).
Similar to the coordinate chart (X1, X2, X3) previously defined for B, let (x1, x2, x3)
be a local coordinate chart for S such that at any point of the hypersurface ϕ(H),
{x1, x2} is a local coordinate chart for ϕ(H) and the normal vector field n to ϕ(H) is
tangent to the coordinate curve x3. Therefore, the Lagrangian density in this coordinate
chart reads

L(X, ϕ,N , ϕ̇, g̃,C,�, G, B) = 1

2
ρgabϕ̇

a ϕ̇b + 1

2
ρ
(
ϕ̇n)2 − W(X,C,�, G, B)

−V(X, ϕ,N , g̃). (4.6)

Also, because growth is, in general, a non-conservative process, we use the Lagrange-
d’Alembert’s principle for non conservative processes. Given non-conservative forces
Fϕ , FN , FG , and FB associated with the variations of the position, the orientation,
and the first and second fundamental forms, respectively, the Lagrange-d’Alembert’s
principle states that (Marsden and Ratiu 1994)

δS(ϕ, G, B) +
∫ t1

t0

∫

H
(
Fϕ.δϕ + FN .δN + FG :δG + FB :δB) dSdt = 0.

The sources of these forces depend on the particular underlying biological, biochem-
ical, or physical processes leading to growth. Here, we assume the existence of a
Rayleigh potential R = R(ϕ̇, Ṅ , g̃, Ġ, Ḃ, G) such that

Fϕ = −∂R
∂ϕ̇

, FN = − ∂R
∂Ṅ , FG = −∂R

∂ Ġ
, and FB = −∂R

∂ Ḃ
.
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In the context of our theory, we disregard non-conservative forces due to the variations
of position and orientation and assume that it is only due to growth, i.e., we assume
that R = R(Ġ, Ḃ, G).

In order to take variations, we let ϕε be a 1-parameter family of motions such that
ϕ0,t = ϕt .7 For fixed X and t , we consider the curve ϕt,X : ε → ϕt,X (ε) := ϕε,t (X)

and define the variation of motion as the spatial vector field given by

δϕ(X, t) = Tεϕt,X [∂ε]

∣∣∣∣
ε=0

∈ Tϕε,t (X)S.

Similarly, we let Gε be a 1-parameter family of material metrics such that Gε=0 = G
and for fixed X and t , we define the variation of the metric by the material tensor given
by

δG(X, t) = dGε

dε

∣∣
∣∣
ε=0

(X, t).

Also, let Bε be a 1-parameter family of second fundamental forms such that Bε=0 = B
and for fixed X and t , we define the variation of the second fundamental form by the
material tensor given by

δB(X, t) = dBε

dε

∣∣∣
∣
ε=0

(X, t).

It follows from Lagrange–d’Alembert’s principle that

∫ t1

t0

∫

H

(
∂L
∂ϕ

.δϕ + ∂L
∂N .δN + ∂L

∂ϕ̇
.δϕ̇ + ∂L

∂ g̃
:δ g̃ ◦ ϕ + ∂L

∂C
:δC + ∂L

∂�
:δ�

+ 1√
det G

∂
√
det GL
∂G

:δG + ∂L
∂B

:δB
)
dSdt

=
∫ t1

t0

∫

H

(
∂R
∂ Ġ

:δG + ∂R
∂ Ḃ

:δB
)
dSdt.

(4.7)

Remark 4.1 Note that in taking the variation of the action, the variations of C and
� must be such that they satisfy the compatibility Eq. (3.3). Since the variation of
the action is taken by considering the variation of the deformation mapping ϕ, the
resulting variations of C and � (cf. (4.10) and (4.11)) are trivially compatible, i.e.,
they trivially satisfy the compatibility Eq. (3.3). Hence these compatibility equations
are not constraints.

If we vary ε, for fixed time t and X ∈ H, thematerial velocity ϕ̇ε and the unit normal
N lie in Tϕε,t (X)S. Therefore, their variations are given by their covariant derivatives
along the curve ϕt,X in S evaluated at ε = 0. By the symmetry lemma (see (do Carmo

7 For fixed X and t , we let ϕε,t (X) := ϕε(X, t).

123

Author's personal copy



948 J Nonlinear Sci (2016) 26:929–978

1992; Nishikawa 2002)), we find the variation of the velocity as

δϕ̇ = Dϕt,X (ε)ϕ̇ε

∣∣
ε=0 = Dϕt,X (ε)

[
Ttϕε,X [∂t ]

∣∣
ε=0

] = DϕX (t)
[
Tεϕt,X [∂ε]

]∣∣
ε=0

= DϕX (t)δϕ =: Dδϕ

dt
. (4.8)

Following (Kadianakis and Travlopanos 2013), the variation of the unit normal vector
field is given by

δN = Dϕt,X (ε)N ε

∣
∣
ε=0 = ∇̃δϕ‖N − (

d(δϕn)
)


,

where 
 denotes the operation of raising indices (sharp operator). In components

δN a = δϕb∇̃∂bN − ∂(δϕn)

∂xb
gab∂a = −

(
δϕbβa

b + ∂(δϕn)

∂xb
gab

)
∂a . (4.9)

For any fixed time t and X ∈ H, the right Cauchy–Green deformation tensor Cε lies
in S2T ∗

XH. Therefore, the variation of C is given by its total derivative with respect to
ε evaluated at ε = 0:

δC = dCε

dε

∣∣∣∣
ε=0

= d

dε

(
ϕ∗

ε gε

)
∣∣∣∣
ε=0

= d

dε

(
ϕ∗ϕ∗ϕ∗

ε gε

)
∣∣∣∣
ε=0

= ϕ∗Lδϕ g.

Note that (Marsden and Hughes 1983; Verpoort 2008; Kadianakis and Travlopanos
2013) Lδϕ g = Lδϕ‖ g − 2δϕnβ. Hence, we have

δC = ϕ∗Lδϕ‖ g − 2δϕnϕ∗β.

In components, it reads

δCAB = Fa
Agacδϕ

c |B + Fb
Bgbcδϕ

c |A − 2δϕn Fa
AF

b
Bβab. (4.10)

The extrinsic deformation tensor �ε lies in the same space S2T ∗
XH for fixed time t

and X ∈ H. Hence, the variation of � is given by its total derivative with respect to ε

evaluated at ε = 0:

δ� = d�ε

dε

∣
∣∣∣
ε=0

= d

dε

(
ϕ∗

ε βε

)
∣
∣∣∣
ε=0

= d

dε

(
ϕ∗ϕ∗ϕ∗

ε βε

)
∣
∣∣∣
ε=0

= ϕ∗Lδϕβ.

The variation in terms of the Lie derivative of the second fundamental form is given
by (Verpoort 2008; Kadianakis and Travlopanos 2013)

Lδϕβ = Lδϕ‖β − δϕnC + Hessδϕn ,

where C denotes the third fundamental form of the surface ϕt (H) and is defined for
x, y ∈ X(ϕt (H)) by

C(x, y) := g
(
∇̃xn, ∇̃ yn

)
,
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and Hess f denotes the Hessian of the scalar-valued function f and is defined for
x, y ∈ X(ϕt (H)) by

Hess f (x, y) := g
(
∇̃x (d f )
 , y

)
.

Therefore, we have

δ� = ϕ∗Lδϕ‖β − δϕnϕ∗C + ϕ∗Hessδϕn ,

or, in components

δ�AB = Fa
AF

b
Bβab|cδϕc + Fa

Aβacδϕ
c |B + Fb

Bβbcδϕ
c |A

− δϕn Fa
AF

b
Bβacβbdg

cd + Fb
A

(
∂δϕn

∂xb

)

|B
. (4.11)

The variation of the ambient space metric vanishes identically since it is compatible
with the connection, i.e.,

δ g̃ ◦ ϕ = Dϕt,X g̃ ◦ ϕ = ∇̃δϕ g̃ = 0. (4.12)

In order to obtain the balance laws, we fix the first and the second fundamental
forms, i.e., δG = 0 and δB = 0 and vary ϕ. Therefore, following (4.7) and by
arbitrariness of δϕ and ∇Hδϕn , we find the following Euler–Lagrange equations8

∂L
∂ϕa

−
(

∂L
∂N

)

b
βb

a − 1√
det G

d

dt

[√
det G

∂L
∂ϕ̇a

]
− 2

[
∂L

∂CAB
Fb

Agab

]

|B

−
[

∂L
∂�AB

Fb
Aβab

]

|B
−
[

∂L
∂�AB

Fb
A

]

|B
βab = 0, (4.13a)

∂L
∂ϕn

+
((

∂L
∂N

)

b
gabF−A

a

)

|A
− 1√

det G

d

dt

[√
det G

∂L
∂ϕ̇n

]
− 2

∂L
∂CAB

Fb
AF

a
Bβab

− ∂L
∂�AB

Fb
AF

a
Bβacβbdg

cd +
[(

∂L
∂�AB

Fb
A

)

|B
F−D

b

]

|D
= 0, (4.13b)

along with the following equations prescribing a vanishing initial velocity vector field
and vanishing boundary conditions for the loading on the boundary ∂H

∂L
∂ϕ̇

∣∣
∣∣
t=t0

= 0, (4.14a)

(
2

∂L
∂CAB

Fc
Agac + 2

∂L
∂�AB

Fc
Aβac

)
TB = 0, (4.14b)

[(
∂L

∂�AC
Fb

A

)

|C
F−B

b +
(

∂L
∂N

)

b
gabF−B

a

]

TB = 0, (4.14c)

8 We denote by F−A
a the components of F−1, the inverse of F. See Appendix 7 for the details of the

derivation of (4.13) and (4.14) following (4.7).
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Fig. 5 Shell boundary loads: ϒ,
ϑ , and Q are the surface
traction, the moment, and the
shear, respectively. T denotes the
outward in-plane normal

∂L
∂�AB

Fa
ATB = 0, (4.14d)

where T is the outward in-plane vector field normal to the boundary ∂H.

Remark 4.2 Note that we canmodify the Lagrange–d’Alembert’s principle in order to
prescribe non-vanishing initial and boundary conditions on ∂H. Letϒ be the boundary
surface traction, ϑ be the boundary moment, Q be the boundary shear, and V t0 be the
initial velocity vector field (see Fig. 5). We write the Lagrange–d’Alembert’s principle
as

δS(ϕ, G, B) +
∫ t1

t0

∫

H
(FG :δG + FB :δB) dSdt

+
∫ t1

t0

∫

∂H

(
Jϒagabδϕ

b + Jϑaδϕn
,AF

−A
a + JQδϕn

)
dLdt

+
∫

H
ρV t0 .δϕt0dS = 0,

and from (4.14) we have

∂L
∂ϕ̇

∣∣∣∣
t=t0

= ρV t0 ,

(
2

∂L
∂CAB

Fc
Agac + 2

∂L
∂�AB

Fc
Aβac

)
TB = Jgabϒ

b,

[(
∂L

∂�AC
Fb

A

)

|C
F−B

b +
(

∂L
∂N

)

b
gabF−B

a

]

TB = JQ,

∂L
∂�AB

Fa
ATB = Jϑa .

We introduce the following surface tensors:

Second Piola-Kirchhoff stress tensor: S = 2
∂W
∂C

, in components, SAB = 2
∂W

∂CAB
;

First Piola-Kirchhoff stress tensor: P = 2F
∂W
∂C

, in components,

PbB = 2
∂W

∂CAB
Fb

A;
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Cauchy stress tensor: σ = 2

J
F

∂W
∂C

FT, in components, σ ab = 2

J

∂W
∂CAB

Fa
AF

b
B;

Material couple-stress tensor: M = ∂W
∂�

, in components, MAB = ∂W
∂�AB

;

Two-point couple-stress tensor: M = F
∂W
∂�

, in components, MbB = ∂W
∂�AB

Fb
A;

Spatial couple-stress tensor: μ = 1

J
F

∂W
∂�

FT, in components,

μab = 1

J

∂W
∂�AB

Fa
AF

b
B .

We further introduce the following notations for the external loads

External body forces : B = − 1

ρ

∂V
∂ϕ

,

External body moments : L = − 1

ρ

∂V
∂N .

Recalling the balance of mass (4.3), we have for the Lagrangian density (4.6)

1√
det G

d

dt

[√
det G

∂L
∂ϕ̇

]
= ρ g̃ A + Sm g̃V .

Therefore, the Euler–Lagrange equations (4.13) read
(
PaB + βa

bMbB
)

|B + βa
b

(
MbB |B

)
+ ρBa − ρβa

bL
b − Sm ϕ̇a = ρAa,

(4.15a)
(
PaB + βa

bMbB
)
Fc

Bβac −
(
MbB |B F−D

b

)

|D + ρBn +
(
ρLa F−A

a

)

|A − Sm ϕ̇n = ρAn,

(4.15b)

and the vanishing initial and boundary conditions

V |t=t0 = 0, (4.16a)
(
gabP

bB + 2βabMbB
)
TB = 0, (4.16b)

[
MbC |C F−B

b + ρLa F−B
a

]
TB = 0, (4.16c)

MaBTB = 0. (4.16d)

We apply the Piola transform9 to (4.15) and (4.16) and obtain the spatial version of
the balance of linear momenta as

(
σ ac + βa

bμ
bc
)

|c + βa
bμ

bc|c + �Ba − �βa
bL

b − sm ϕ̇a = �Aa, (4.17a)

9 Recall the Piola identity
(
J F−A

a

)

|A = 0.
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(
σ ac + βa

bμ
bc
)

βac − μab |ab + �Bn + (�La)|a − sm ϕ̇n = �An, (4.17b)

and the vanishing initial and boundary conditions

V |t=t0 = 0, (4.18a)
(
σ ac + 2βa

bμ
bc
)
tc = 0, (4.18b)

(
μab|b + �La

)
ta = 0, (4.18c)

μabtb = 0, (4.18d)

where t is the outward in-plane vector field normal to the boundary ∂ϕt (H). By pulling
back the system of Eq. (4.17) with the mapping ϕ, we obtain the Euler–Lagrange
equations in the convected manifold (H,C)10 in terms of the convected stress tensor
� = ϕ∗σ = S/J and the convected couple-stress tensor � = ϕ∗μ = M/J. If we
denote by a double stroke || the covariant derivative corresponding to the Levi–Civita
connection of (H,C), the convected Euler–Lagrange equation reads11

(
�AB + C−AC�CD�DB

)

||B + C−AC�CD�DB ||B + �F−A
aB

a

−�C−AC�CDF
−D

aL
a − sm F

−A
a ϕ̇

a = �F−A
a A

a, (4.19a)

(
�AB + C−AC�CD�DB

)
�AB − �AB ||AB + �Bn +

(
�La F−A

a

)

||A − sm ϕ̇n = �An,

(4.19b)

and the vanishing initial and boundary conditions

V |t=t0 = 0, (4.20a)
(
�AB + 2C−AC�CD�DB

)
TB = 0, (4.20b)

(
�AB ||B + �F−A

aL
a
)
TA = 0, (4.20c)

�ABTB = 0. (4.20d)

Recall that in terms of the deformation mapping ϕ : H → R
3, we can write the

components of C and � in a local chart {X,Y } of H as follow

10 We define the convected manifold to be the material manifoldH equipped with the right Cauchy–Green
deformation tensor C.
11 The components of C−1, the inverse of C, are denoted by C−AB .

123

Author's personal copy



J Nonlinear Sci (2016) 26:929–978 953

CAB = ϕ,A · ϕ,B,

�AB = ϕ,AB · ϕ,X × ϕ,Y

‖ϕ,X × ϕ,Y ‖ ,

where ·, ×, and ‖.‖, respectively, denote the dot product, the cross product, and the
standard norm in R3.

Given a constitutive relation, the stress and the couple-stress tensors can be written
in terms of the first and the second fundamental forms of the deformed surface. On the
other hand, the first and the second fundamental forms of the deformed surface can
be written in terms of the motion ϕ such that the compatibility Eq. (3.3) are trivially
satisfied. Therefore, the system of Eq. (4.15) (or (4.17), or (4.19)) is a set of three
equations for three unknowns (the three components of the motion), and together with
the initial and boundary conditions (4.16) (or (4.18), or (4.20)), they form the complete
set of governing equations for the morphoelastic shell problem.

Remark 4.3 Note that both systems of Eqs. (4.15) and (4.17) reduce to the elastic
shell equilibrium equations for a zero-acceleration motion in the absence of growth
(sm = 0) and dissipation (R = 0). See (Chien 1943) (Equations 2.8), (Sanders Jr
1961) (Equations 55 and 56), (Naghdi 1963) (Equations 5.36), and (Koiter 1966)
(Equations 6.3 and 6.4) where the shell problem is described by a system of three
equations involving six stress and couple-stress components. Note that an alternative
description is provided by a system of six equations involving ten stress and couple-
stress components, see (Green and Zerna 1950) (Equations 3.6 and 3.11) and (Ericksen
and Truesdell 1958) (Equations 26.6, 26.7 and 26.10).

Remark 4.4 Following the definitions of the surface tensors and based on the symme-
try of the right Cauchy–Green tensor and the extrinsic deformation tensor, we have the
following symmetries for the stress tensors, which are the local forms of the balance
of angular momenta

ST = S, �T = �, PFT = PTF, σT = σ ,

MT = M, �T = �, MFT = MTF, μT = μ. (4.21)

4.3 Kinetic Equations of Growth

To obtain the kinetic equations governing the evolution of growth, we fix the motion,
i.e., δϕ = 0, andvary thefirst and the second fundamental forms. From the arbitrariness
of δG and δB, we obtain from (4.7) the following kinetic equations for the evolution
of the first and the second fundamental forms of H:

1√
det G

∂(
√
det G L)

∂G
= ∂R

∂ Ġ
,

∂L
∂B

= ∂R
∂ Ḃ

.
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Therefore, we find the following for the Lagrangian density (4.6)

∂R
∂ Ġ

= 1

2

(
1

2
ρ g̃(ϕ̇, ϕ̇) − W − V

)
G
 − ∂W

∂G
, (4.22a)

∂R
∂ Ḃ

= −∂W
∂B

. (4.22b)

Assuming the existence of a Rayleigh potential R = R(Ġ, Ḃ, G), we introduce a
variational characterization for the variation of energy in the shell due to growth.
The system of Eq. (4.22) provides a coupling of the rate of change of the first and
the second fundamental forms of H with its current state of deformation through the
elastic energy density W of the material. Therefore, the evolution of the geometry of
the shell, i.e., the growth of the morphoelastic shell, is governed by (4.22).

Remark 4.5 Yavari (2010) discussed the kinetic equation for the evolving metric in
the case of bulk growth for three-dimensional nonlinear elasticity. Note, however, that
there was a missing term in equation (2.179), which should be corrected to read

δ

∫ t1

t0

∫

B
LdV dt =

∫ t1

t0

∫

B

[
δL + 1

2
Ltr(δG)

]
dV dt.

The kinetic equation (2.181) in (Yavari 2010) should also be corrected to read

∂R
∂ Ġ

= ∂L
∂G

+ 1

2
LG
. (4.23)

Ignoring inertial forces and in the absence of body forces, (4.23) reads

∂R
∂ Ġ

= −∂W
∂G

− 1

2
WG
.

Following thematerial covariance of nonlinear elasticity, Lu andPapadopoulos (2000);
Yavari et al. (2006) proved the following relation:

1

2
SoG = ∂W

∂G
G + ∂W

∂C
C,

where So is a stress-like tensor conjugate to Ġ. So is associated with the material
evolution and is a measure of anisotropy of the medium: So = 0 for an isotropic
material. Therefore, (4.23) can be rewritten as

∂R
∂ Ġ

G = −1

2
WG
G + 1

2
SC − 1

2
SoG. (4.24)

In the context of the multiplicative decomposition of the deformation gradient F =
FeFg , the kinetic equation coupling the evolution of growth and stress is written in
terms of the growth tensor Fg . Fusi et al. (2006) derived it using the so-called principle
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of maximum entropy production rate, and Ambrosi and Guana (2007); Olsson and
Klarbring (2008) used the Clausius-Duhem inequality. Note that these equations are
both equivalent and similar in form to (4.24).

Example 4.1 As an example, we consider the following Rayleigh potential

R(Ġ, Ḃ, G) = α1tr(Ġ) + α2tr(Ġ
2
) + β1tr(Ḃ) + β2tr(Ḃ

2
). (4.25)

In components

R(Ġ, Ḃ, G) = α1Ġ ABG
AB + α2Ġ ABĠCDG

CAGDB + β1 ḂABG
AB

+β2 ḂAB ḂCDG
CAGDB .

Therefore, if we assume a static shell in the absence of body forces and moments, the
kinetic equations (4.22) read

Ġ = − α1

2α2
G − 1

4α2
WG − 1

2α2
G

∂W
∂G

G, (4.26a)

Ḃ = − β1

2β2
G − 1

2β2
G

∂W
∂B

G. (4.26b)

In components

Ġ AB = − α1

2α2
GAB − 1

4α2
WGAB − 1

2α2
GAC

∂W
∂GDC

GDB,

ḂAB = − β1

2β2
GAB − 1

2β2
GAC

∂W
∂BDC

GDB .

We assume a Saint Venant–Kirchhoff constitutive model, for which the strain energy
density W is given by12

W = h

4

{
μtr

[
(C − G)2

]
+ μλ

2μ + λ
[tr (C − G)]2

}

+ h3

12

{
μtr

[
(� − B)2

]
+ μλ

2μ + λ
[tr (� − B)]2

}

= Eh

8(1 + ν)

{
tr
[
(C − G)2

]
+ ν

1 − ν
[tr (C − G)]2

}

+ Eh3

24(1 + ν)

{
tr
[
(� − B)2

]
+ ν

1 − ν
[tr (� − B)]2

}
,

(4.27)

12 For details on the derivation of the Saint Venant–Kirchhoff shell model, see (Fox et al. 1993; Le Dret and
Raoult 1993; Lods and Miara 1995; Miara 1998; Lods and Miara 1998; Friesecke et al. 2002a, b, 2003).
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where λ and μ are, respectively, Lamé’s first and second parameters, E is Young’s
modulus, and ν is Poisson’s ratio. Therefore, for a Saint Venant–Kirchhoff constitutive
model, the kinetic equations (4.26) read

Ġ AB = − α1

2α2
GAB − h

16α2

[
μ (CKL − GKL )

(
CKL − GKL

)
+ μλ

2μ + λ

(
CK

K − 2
)2]

GAB

− h3

48α2

[
μ (�K L − BKL )

(
�K L − BKL

)
+ μλ

2μ + λ

(
�K

K − BK
K

)2]
GAB

+ h

4α2

[
μCAK (CLB − GLB)GKL + μλ

2μ + λ

(
CK

K − 2
)
CAB

]

+ h3

12α2

[
μ (�AK − BAK ) (�LB − BLB)GKL + μλ

2μ + λ

(
�K

K − BK
K

)
(�AB − BAB)

]
,

ḂAB = − β1

2β2
GAB + h3

12β2

[
μ (�AB − BAB) + μλ

2μ + λ

(
�K

K − BK
K

)
GAB

]
.

5 Examples

As applications of the proposed geometric theory of morphoelastic shells, we study in
this section some examples of growth and the induced residual stress fields. We look
at the stress-free growth of an initially planar sheet and study the residual stress and
geometry evolution of a morphoelastic infinitely long circular cylindrical shell subject
to an internal pressure and a morphoelastic initially planar circular disk.

5.1 Stress-Free Growth Fields for an Initially Flat Simply Connected Shell

Weconsider an initiallyflat thin shellB such that itsmid-surfaceH is simply connected.
Let (X,Y, Z) be the standard coordinate chart forR3 such that the hyperplane X3 = 0
containsH. We assume that the morphoelastic shell is undergoing a growth field that
is modeled by the following evolving metric for B:

Ḡ =
⎛

⎝
e2ω̄X (X,Y,Z ,t) 0 0

0 e2ω̄Y (X,Y,Z ,t) 0
0 0 1

⎞

⎠ ,

which corresponds to the following evolving first and second fundamental forms for
the mid-surface H:

G =
(
e2ωX (X,Y,t) 0

0 e2ωY (X,Y,t)

)
,

B =
(−KX (X,Y, t)e2ωX (X,Y,t) 0

0 −KY (X,Y, t)e2ωY (X,Y,t)

)
,

where ωA(X,Y, t) = ω̄A(X,Y, 0, t) and KA(X,Y, t) = ∂ω̄A
∂Z (X,Y, 0, t) for A =

X,Y . Following Sect. 3.3, the growth of a simply-connected shell is stress-free if and
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Fig. 6 Visualization of a few stress-free material evolutions of an initially planar sheet with the prescribed
evolving fundamental forms such that the in-plane growth is uniform, i.e., ωA = ωA(t) for A = X, Y ,
the Gaussian curvature is vanishing, i.e., KX KY = 0, and the nonzero principal curvature is such that
KX = KX (X, t) or KY = KY (Y, t). We assume for these figures that KY = 0 and a KX = KX (t) to
grow to a cylindrical portion, b KX (X, t) = k1(t) sin(k2(t)X), where k1 = k1(t) and k2 = k2(t) are some
arbitrary functions of time resulting in a sheet with sinusoidal rippling, and c KX (X, t) = k(t)

√
X , for

X > 0, where k = k(t) is some arbitrary function of time

only if the relations (3.4) hold. In the case of an initially flat morphoelastic simply-
connected shell, the growth is stress-free if and only if

e2ωX

[(
∂ωY

∂Y
− ∂ωX

∂Y

)
∂ωX

∂Y
− ∂2ωX

∂Y 2

]

+ e2ωY

[(
∂ωX

∂X
− ∂ωY

∂X

)
∂ωY

∂X
− ∂2ωY

∂X2

]
= KX KY e

2ωX e2ωY ,

∂KX

∂Y
= (KY − KX )

∂ωX

∂Y
,

∂KY

∂X
= (KX − KY )

∂ωY

∂X
.

Now we consider the following simplifying assumptions:

• If we assume that the in-plane growth is uniform, i.e., ωA = ωA(t) for A = X,Y ,
we find that the growth is stress-free if and only if KX = KX (X, t), KY =
KY (Y, t), and KX KY = 0. This case includes the stress-free growth of a planar
sheet into a cylindrical portion. See Fig. 6 for examples of evolutions of planar
sheets into flat surfaces with stress-free growth.

• If we assume that the evolving curvatures KX and KY are uniform, i.e., KA =
KA(t) for A = X,Y , we distinguish the following cases:
– If KX 	= KY , then the growth is stress-free if and only if ωX and ωY are
uniform and KX KY = 0. This is precisely the case of a planar sheet evolving
to a cylindrical portion with a stress-free growth (see Fig. 6a).

– If K = KX = KY , then the growth is stress-free if and only if

e2ωX

[(
∂ωY

∂Y
− ∂ωX

∂Y

)
∂ωX

∂Y
− ∂2ωX

∂Y 2

]

+ e2ωY

[(
∂ωX

∂X
− ∂ωY

∂X

)
∂ωY

∂X
− ∂2ωY

∂X2

]
= K 2e2ωX e2ωY .

• If we assume that the in-plane growth is isotropic, i.e., ω = ωX = ωY , we
distinguish the following cases:

123

Author's personal copy



958 J Nonlinear Sci (2016) 26:929–978

(a)

(b)

Fig. 7 Example 5.1: Visualization of the stress-free material evolution of an initially planar sheet with the
prescribed evolving fundamental forms (5.2) and (5.3), shown, respectively, in a, b, at different times. Note
that the change of shape of the shell is due to growth and not stretch; such an evolution is stress-free

– If K = KX = KY , then the growth is stress-free if and only if K is uniform
and ∂2ω

∂Y 2 + ∂2ω
∂X2 = −K 2e2ω. In particular, if KX = KY = 0, then the growth

is stress-free if and only if ω is harmonic. See Example 5.1 and Fig. 7 for
examples of such a stress-free growth.

– If KX 	= KY , then the growth is stress-free if and only if

∂2ω

∂Y 2 + ∂2ω

∂X2 = −KX KY e
2ω,

∂KX

∂Y
= (KY − KX )

∂ω

∂Y
,

∂KY

∂X
= (KX − KY )

∂ω

∂X
.

See Example 5.2 and Fig. 8 for examples of such a stress-free growth assuming
that KX = −KY .

Example 5.1 In this example,we consider amorphoelastic initially planar square sheet
in the XY -plane such that center of the shell coincides with the origin of the coordinate
system and the sides of the shell are parallel to the X and Y axes. We assume that
both the in-plane and the out-of-plane growths are isotropic, i.e., ω = ωX = ωY , and
K = KX = KY . Therefore, the growth is stress-free if and only if K = K (t) is a
uniform arbitrary function of time and ω is such that

∂2ω

∂Y 2 + ∂2ω

∂X2 = −K 2e2ω. (5.1)

Following Polyanin and Zaitsev (2004), a solution of (5.1) is given by

ω(X,Y, t) = 1

2
ln

(
A2(t) + B2(t)

K 2(t) cosh2 [C(t) + A(t)X + B(t)Y ]

)
,
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(a)

(b)

t = 0 t = 0.5τ t = τ t = 1.5τ t = 2τ

Fig. 8 Example 5.2: Visualization of the stress-free material evolution of an initially planar sheet with the
prescribed evolving fundamental forms (5.6) and (5.7), shown, respectively, in a, b at different times. Note
that the change of shape of the shell is due to growth and not stretch; such an evolution is stress-free

for some arbitrary functions of time A = A(t), B = B(t), C = C(t), and K = K (t).
Therefore, the first and the second fundamental forms read

G = A2(t) + B2(t)

K 2(t) cosh2 [C(t) + A(t)X + B(t)Y ]

(
1 0
0 1

)
,

B = − A2(t) + B2(t)

K (t) cosh2 [C(t) + A(t)X + B(t)Y ]

(
1 0
0 1

)
.

It is readily seen that every point of the surface is an umbilical point (the principal
curvatures are equal to K (t)). Therefore, at a given time t , we have a surface of constant
nonnegative curvature K 2(t), and hence it is either a planar (K = 0) or a spherical
(K > 0) surface of radius 1/K (t) (see Figure 7).

The functions A = A(t), B = B(t), C = C(t), and K = K (t) define the time evo-
lution of the first and the second fundamental forms. Given a constitutive equation for
the material, their evolution can subsequently be obtained from the kinetic equations
(4.22) governing the evolution of growth. As an example, and for the purpose of illus-
trating the non-trivial evolution of the initially planar shell as a result of a stress-free
growth, we consider the following cases:

• We assume that A(t) = t/τ , B(t) = t/τ , C(t) = 0, and K0(t) = √
2t/τ ,

where τ is some growth characteristic time. It follows that ω(X,Y, t) =
− ln {cosh [(X + Y )t/τ ]}, such that at t = 0 they satisfy ω(X,Y, 0) = 0 and
K (0) = 0. Therefore, we have the following evolving first and second fundamen-
tal forms:
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G = 1

cosh2 [(X + Y )t/τ ]

(
1 0
0 1

)
, B = −

√
2t/τ

cosh2 [(X + Y )t/τ ]

(
1 0
0 1

)
.

(5.2)
• We assume that A(t) = 2t/τ , B(t) = 0, C(t) = 0 and K0(t) = 2t/τ . It
follows that ω(X,Y, t) = − ln {cosh [2Xt/τ ]}, such that at t = 0 they satisfy
ω(X,Y, 0) = 0 and K (X,Y, 0) = 0. Therefore, we have the following evolving
first and second fundamental forms:

G = 1

cosh2 [2Xt/τ ]

(
1 0
0 1

)
, B = − 2t/τ

cosh2 [2Xt/τ ]

(
1 0
0 1

)
. (5.3)

We visualize in Fig. 7, the evolution of the initially planar sheet with the prescribed
fundamental forms (5.2) and (5.3).

Example 5.2 In this example, we consider a morphoelastic initially flat square sheet
in the XY -plane such that the center of the shell coincides with the origin of the
coordinate system and the sides of the shell are parallel to the X and Y axes. We
assume that the in-plane growth is isotropic, i.e., ω = ωX = ωY , and assume that
K = KX = −KY 	= 0. We look for ω and K such that the growth is stress-free, i.e.,
such that

∂2ω

∂Y 2 + ∂2ω

∂X2 = K 2e2ω, (5.4a)

∂K

∂Y
= −2K

∂ω

∂Y
, (5.4b)

∂K

∂X
= −2K

∂ω

∂X
. (5.4c)

It follows from (5.4b) and (5.4c) that K (X,Y, t) = Ko(t)e−2ω(X,Y,t), for some arbi-
trary function of time Ko = Ko(t). Therefore, (5.4a) now reads

∂2ω

∂Y 2 + ∂2ω

∂X2 = K 2
o e

−2ω. (5.5)

Following Polyanin and Zaitsev (2004), a solution for (5.5) is given by

ω(X,Y, t) = −1

2
ln

(
A2(t) + B2(t)

K 2
o (t) cosh2 (C(t) + A(t)X + B(t)Y )

)
,

for some arbitrary functions of time A = A(t), B = B(t), C = C(t), and Ko(t). As
an example, and for the purpose of illustrating the non-trivial form the initially flat
shell could adopt as a result of a stress-free growth, we consider the following cases:

• We assume that A(t) = t/τ , B(t) = t/τ , C(t) = 0, and K0(t) = √
2t/τ . It

follows that

ω(X,Y, t) = ln {cosh [(X + Y )t/τ ]} , K (X,Y, t) =
√
2t/τ

cosh2 [(X + Y )t/τ ]
,
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such that at t = 0 they satisfy ω(X,Y, 0) = 0 and K (X,Y, 0) = 0. Therefore, we
have the following evolving first and second fundamental forms:

G = cosh2 [(X + Y )t/τ ]

(
1 0
0 1

)
, B = √

2t/τ

(−1 0
0 1

)
. (5.6)

• We assume that A(t) = 2t/τ , B(t) = 0, C(t) = 0, and K0(t) = 2t/τ . It follows
that

ω(X,Y, t) = ln {cosh [2Xt/τ ]} , K (X,Y, t) = 2t/τ

cosh2 [2Xt/τ ]
,

such that at t = 0 they satisfy ω(X,Y, 0) = 0 and K (X,Y, 0) = 0. Therefore, we
have the following evolving first and second fundamental forms:

G = cosh2 [2Xt/τ ]

(
1 0
0 1

)
, B = 2t/τ

(−1 0
0 1

)
. (5.7)

We visualize in Fig. 8, the evolution of the initially planar sheet with the prescribed
fundamental forms (5.6) and (5.7).

Remark 5.1 In the previous examples, we obtained the first and the second funda-
mental forms for stress-free growth fields. Recall that a growth field leaves the surface
stress-free if and only if it is embeddable in R3. Therefore, given a surface (H, G, B)

with a stress-free growth field, we can find an isometric embedding of it in R
3 by

integrating for the R3-valued function f the following system of partial differential
equations written in a local chart {X,Y } of H:

f ,AB = �C
AB f ,C + BABN, (5.8)

where N = f ,X× f ,Y
‖ f ,X× f ,Y ‖ , × and ‖.‖, respectively, denote the cross product and the

standard norm in R
3, �C

AB is the Christoffel symbol of the Levi–Civita connection
∇H in the local chart {X1, X2}. The integrability conditions for (5.8) are the equality
of the mixed partial for f , i.e., f ,XY = f ,Y X , which is equivalent to the stress-free
growth compatibility conditions (or the embeddability conditions) (3.4). Figures 6, 7,
and 8 are obtained by plotting f in R

3 following the numerical integration of (5.8).
We fix the rigid body motion of the surface by assuming f (0, 0) = 0, f ,X (0, 0) =
(
√
G11(0, 0), 0, 0)T, and f ,Y (0, 0) = (0,

√
G22(0, 0), 0)T,whereT denotes transpose

of a vector in R3.

5.2 An Infinitely Long Morphoelastic Circular Cylindrical Shell

We consider an infinitely long morphoelastic thin hollow circular cylinder B under
uniform internal pressure pi = pi (t), with thickness h and mid-radius Ro, made of a
homogeneous isotropic material. Let B undergo a circumferential radially symmetric
but non-uniformgrowth through its thickness. In the cylindrical coordinates (R,�, Z),
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such that R ≥ 0, 0 ≤ � ≤ 2π , and Z ∈ R, we represent growth by the following
evolving material metric

Ḡ =
⎛

⎝
1 0 0
0 R2e2ω̄(R,t) 0
0 0 1

⎞

⎠ ,

which corresponds to the following evolving first and second fundamental forms for
the mid-cylinder H of radius Ro in the coordinate system (�, Z):

G =
(
R2
oe

2ω(t) 0
0 1

)
, B =

(− [1 + R0K (t)] R0e2ω(t) 0
0 0

)
,

where ω(t) = ω̄(Ro, t) and K (t) = ∂ω̄
∂R (Ro, t).

Let (r, φ, z) be the cylindrical coordinate system for the Euclidean ambient space.
Based on the symmetry of the problem, and in order to find the growth-induced residual
stress field, we embed thematerialmanifold into the Euclidean ambient space to form a
circular cylindrical shell of radius r = r(t) such that (φ, z) = (�, Z). The spatial first
and second fundamental forms for the cylindrical shell in the cylindrical coordinate
system (φ, ξ) can be written as

g =
(
r2(t) 0
0 1

)
, β =

(−r(t) 0
0 0

)
.

Therefore, the deformation tensors read

C =
(
r2(t) 0
0 1

)
, � =

(−r(t) 0
0 0

)
.

Note that since the cylinder is made of a homogeneous and isotropic material, and
because of the radial symmetry of the problem, we have

σφφ(t) = σφφ(r(t), ω(t), K (t)), σ zφ(t) = 0, σ zz(t) = σ zz(r(t), ω(t), K (t)),

(5.9a)

μφφ(t) = μφφ(r(t), ω(t), K (t)), μzφ(t) = 0, μzz(t) = μzz(r(t), ω(t), K (t)).

(5.9b)

It follows that the only non-trivial equilibrium equation is (4.17b), which is simplified
to read13 (

σφφ − 1

r
μφφ

)
r − pi = 0. (5.11)

13 Following (4.17b), there are three equilibrium equations
(
σ ac + βa

bμ
bc
)

|c + βa
bμ

bc |c = 0, for a = r, φ, (5.10a)

(
σ ac + βa

bμ
bc
)

βac − μab |ab + pi = 0. (5.10b)
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Weassume aSaintVenant–Kirchhoff constitutivemodel, forwhich the strain energy
densityW is given by (4.27). Therefore, the nonzero components of the material stress
and couple stress tensors read

σφφ = h
E

2(1 − ν2)

(
r2(t)

R2
o

e−2ω(t) − 1

)
1

r2(t)
,

σ zz = h
Eν

2(1 − ν2)

(
r2(t)

R2
o

e−2ω(t) − 1

)
1

r2(t)
,

(5.12a)

μφφ = h3

6

E

2(1 − ν2)

[
(1 + R0K (t)) R0e

2ω(t) − r(t)
] e−2ω(t)

R2
or

2(t)
,

μzz = h3

6

Eν

2(1 − ν2)

[
(1 + R0K (t)) R0e

2ω(t) − r(t)
] e−2ω(t)

R2
or

2(t)
.

(5.12b)

Then, it follows from (5.11) that

r3(t)

R3
oe

3ω(t)
− pi (t)Roeω(t)

Ych

r2(t)

R2
oe

2ω(t)
+
(
1

6

h2

R2
oe

2ω(t)
− 1

)
r(t)

Roeω(t)

− 1

6

h2

R2
oe

ω(t)
(1 + R0K (t)) = 0, (5.13)

whereYc = E
2(1−ν2)

= μ+ μλ
2μ+λ

.We introduce the followingdimensionless quantities:

ĥ = h

Ro
, K̂ = RoK , r̂ = r

Ro
, p̂i = pi

Yc
,

and rewrite (5.13) as

r̂3(t)

e3ω(t)
− p̂i (t)eω(t)

ĥ

r̂2(t)

e2ω(t)
+
(

ĥ2

6e2ω(t)
− 1

)
r̂(t)

eω(t)
− ĥ2

6eω(t)

(
1 + K̂ (t)

)
= 0. (5.14)

Equation (5.14) is a cubic equation in r̂(t)e−ω(t) that has at least one real solution,
which is calculated in closed form using the method of Cardano–Tartaglia (See (Cox
2012) for more details on the method). To obtain closed form solutions for (5.14), we
use the following change of variable

ζ = r̂(t)

eω(t)
− p̂i (t)eω(t)

3h
.

Footnote 13 continued
Because of the symmetry of the problem and the isotropy of the material, the stresses take the form (5.9).
This implies that Eq. (5.10a) are trivially satisfied and the terms containing derivatives in (5.10b) vanish.
Therefore, we are left with Eq. (5.11) as the only non-trivial equilibrium equation.
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In terms of ζ , (5.14) reads
ζ 3 + mζ + n = 0, (5.15)

where m = ĥ2

6e2ω(t) − 1− p̂2i (t)e2ω(t)

3ĥ2
and n = − p̂i (t)eω(t)

27ĥ

(
2 p̂i (t)2e2ω(t)

ĥ2
− 3ĥ2

2e2ω(t) + 9
)

−
ĥ2

6eω(t)

(
1 + K̂ (t)

)
.

The discriminant of (5.15) reads � = −4m3 − 27n2. We distinguish three cases:

(i) When � > 0, (5.13) has three real solutions, of which we pick the positive one
(the physically meaningful one). For i ∈ {0, 1, 2}, these three solutions are

r̂(t) = p̂i (t)e2ω(t)

3ĥ
+ 2eω(t)

√−m

3
cos

[
1

3
cos−1

(
−n

2

√
27

−m3

)

+ 2iπ

3

]

.

(5.16)
(ii) When � = 0, (5.13) has two real solutions, of which we pick the positive one.

These two solutions are

r̂(t) = p̂i (t)e2ω(t)

3ĥ
+ 3neω(t)

m
, r̂(t) = p̂i (t)e2ω(t)

3ĥ
− 3neω(t)

2m
. (5.17)

(iii) When � < 0, (5.13) has a unique real solution, which reads

r̂(t) = p̂i (t)e2ω(t)

3ĥ
+ eω(t)

⎛

⎝
−n +

√
−�
27

2

⎞

⎠

1
3

+ eω(t)

⎛

⎝
−n −

√
−�
27

2

⎞

⎠

1
3

. (5.18)

Now we only need to find the evolution of the first and the second fundamental
forms of the material manifold to characterize the growth of the cylindrical shell. We
assume the following Rayleigh potential

R(Ġ, Ḃ, G) = α1tr(Ġ) + α2tr(Ġ
2
) + β1tr(Ḃ) + β2tr(Ḃ

2
). (5.19)

Therefore, Eq. (4.22) yield the following kinetic equations for ω and K

ω̇ = − α1

4α2
− Ych

32α2

(
r2

R2
o
e−2ω − 1

)2

+ Ych

8α2

(
r2

R2
o
e−2ω − 1

)
r2

R2
o
e−2ω

+ Ych3

32α2

(
K + 1

Ro
− r

R2
o
e−2ω

)2

, (5.20a)

K̇ = −2ω̇

(
K + 1

Ro

)
+ β1

2β2
− Ych3

12β2

(
K + 1

Ro
− r

R2
o
ey−2ω

)
. (5.20b)

The system of ordinary differential Eq. (5.20) along with the initial conditions ω(0) =
0 and K (0) = 0 (see (2.11)) is an initial-value problem. Following the existence and
uniqueness theorems of the initial-value problems (Coddington and Levinson 1955),
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∃ T > 0 such that (5.20) has a unique solution (ω, K ) for t ∈ [0, T ] with ω(0) = 0
and K (0) = 0.

Example 5.3 In this example, we assume that the growth through the thickness of
the hollow cylinder B is non-uniform and symmetric with respect to the mid-cylinder
H. In particular, we assume that K (t) = ∂ω̄

∂R (Ro, t) 	= 0 and ω(t) = ω̄(Ro, t) = 0.
Therefore, the kinetic equations reduce to (5.20b),14 giving the evolution of K , which
further simplifies to read15

K̇ = β1

2β2
+ Ych3

12β2

(
r

R2
o

− K − 1

Ro

)
. (5.21)

We define the following characteristic time

τ = 12β2

Ych3
. (5.22)

We differentiate with respect to t̂ = t/τ and rewrite (5.21) using dimensionless quan-
tities K̂ and r̂

˙̂K (t̂) = 6β1Ro

Ych3
+
(
r̂(t̂) − K̂ (t̂) − 1

)
, (5.23)

where r̂ is given by (5.16), (5.17), or (5.18) depending on the sign of the discriminant
�. Following (5.12), the physical components of the residual stresses read

σ̂ φφ = hYc
(
r̂2(t) − 1

)
, σ̂ zz = hYs

(
r̂2(t) − 1

)
,

μ̂φφ = h2Yc
ĥ

6

[
1 + K̂ (t) − r̂(t)

]
, μ̂zz = h2Ys

ĥ

6

[
1 + K̂ (t) − r̂(t)

]
,

where Ys = μλ
2μ+λ

and recall that Yc = μ + μλ
2μ+λ

.
In the linear theory of elasticity, it can be shown that the circumferential stress in a

thin-walled cylinder of radius Ro and thickness h, subject to an internal pressure pi ,
is given by

σ̂
φφ
lin = pRo

h
.

Starting from our circumferential shell stress σ̂ φφ , we want to prove that for p and h
small, σ̂ φφ approaches hσ̂

φφ
lin . For p and h small enough, the discriminant � > 0 and

the dimensionless radius is written as

r(p, h, t) = pi R2
o

3Ych
+ 2Ro

√−m

3
cos

[
1

3
cos−1

(
−n

2

√
27

−m3

)]

,

14 When ω = 0, the first fundamental form G is not a dynamical variable anymore, and hence, the kinetic
equation (5.20a) should be discarded.
15 Recall that r depends on K as can be seen in (5.16), (5.17), or (5.18) depending on the value of the
discriminant �.
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wherem = h2

6R2
o
−1− p2i R

2
o

3Y 2
c h

2 andn = − pi Ro
27Ych

(
2p2i R

2
o

Y 2
c h

2 − 3h2

2R2
o

+ 9

)
− h2

6R2
o

(1 + RoK (t)).

For small p and h, we have the following asymptotic expansion

r(p, h, t) = Ro +
[
R2
o

2h
+ o (h)

]
p

Yc
+ o (h) + o

(
p2
)

.

It follows that

σ̂ φφ

h
= Yc

(
r2(t)

R2
o

− 1

)
= pRo

h
+ o (h) p + o

(
h2
)

+ o
(
p2
)

.

For a shell of thickness h = 0.1Ro, a growth such that β1 = Ych3/(12Ro), and
for different values of a constant internal pressure pi , we numerically solve (5.23)
for the evolution of K (see Fig. 9 for the evolution of the material curvature B�

� =
− 1

Ro
−K (t)).We consequently obtain the evolution of its radius and the corresponding

circumferential stress and couple stress (see Figs. 10, 11, 12).We also consider a time-
dependent internal pressure and numerically solve (5.23) for the evolution of K . We
assume in particular a time-dependent profile of internal pressure given in Fig. 13. We
show in Fig. 14 the evolution of the material curvature B�

� and the resulting couple
stress induced by the time-dependent internal pressure shown in Fig. 13.

We note that the cylindrical shell expands and contracts following the internal
pressure level, through the explicit dependence of the spatial radius r on the internal
pressure pi . Also, the circumferential stress follows the profile of expansion and con-
traction of the cylinder and has a value close to that of the thin-walled cylinders, i.e.,
pi r
h . Note that we have omitted the plots of evolution of the radius and the circumfer-
ential stress as their profiles are similar to that of the internal pressure. We note that

μ̂φφ = β1 − h2Yc
ĥ
6

˙̂K (t̂) = β1 + h2Yc
ĥ
6 Ḃ

�
�(t̂), and we can hence interpret, in this

case, the circumferential couple stress as the rate of change of the material curvature
augmented by the growth-induced residual couple stress β1. We observe that at large

times, the rate of change of the curvature ˙̂K tends to zero (suggesting that the system
(5.23) asymptotically tends to its attracting fixed point). Therefore, in the case of the

Fig. 9 The evolution of the
material curvature B�

� of a
morphoelastic circular
cylindrical shell with h = 0.1Ro
for different values of the
constant internal pressure pi

pi = 0 pi = 0.05Yc pi = 0.10Yc pi = 0.15Yc

t/τ

−RoB
Φ

Φ
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2 4 6 8 10

1.6178

1.6179

1.6180

1.6181

1.6182

t/τ

r/Ro

0.1 0.2 0.3 0.4 0.5

2

3

4

5

pi/Yc

r/Ro

)ii()i(

Fig. 10 The evolution of the radius r of a morphoelastic circular cylindrical shell with h = 0.1Ro. i shows
the time evolution for a constant internal pressure pi = 0.1Yc , and ii shows the internal pressure dependence
at time t = 10τ

Fig. 11 The evolution of the circumferential stress of a morphoelastic circular cylindrical shell with h =
0.1Ro. i shows the time evolution for a constant internal pressure pi = 0.1Yc , and ii shows the internal
pressure dependence at time t = 10τ

Fig. 12 The evolution of the
circumferential couple stress of
a morphoelastic circular
cylindrical shell with h = 0.1Ro
for different values of the
constant internal pressure pi

constant internal pressure, the circumferential stress tends to the residual couple stress
β1, and in the case of a time-dependent pressure, the mean value of the circumferen-
tial stress tends to the residual couple stress β1. Note that the plots of the longitudinal
stress and couple stress are omitted because they are, respectively, proportional to the
circumferential stress and couple stress by a factor of Ys/Yc = ν.
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Fig. 13 The time-dependent
profiles for internal pressure pi .
Each profile corresponds to its
average pressure value pave

pave = 0.05Yc pave = 0.10Yc pave = 0.15Yc

t/τ

pi/Yc

Fig. 14 The evolution of i the material curvature B�
�, and ii the circumferential couple stress of a

morphoelastic circular cylindrical shell with h = 0.1Ro for the time-dependent internal pressure plotted in
Fig. 13

5.3 A Morphoelastic Circular Shell

In the absence of body forces, we consider an initially planar thin morphoelastic
circular disk B with vanishing boundary loads. We assume that the disk is undergoing
radially symmetric but non-uniform growth through its thickness such that the radial
and circumferential curvatures are evolving, while the intrinsic metric of the shell
remains unchanged. Let (R,�, Z) be the standard cylindrical coordinate system for
R
3 such that initially the mid-surface H of the shell lies in the hyperplane Z = 0

and the origin of the coordinate system coincides with the center of the circular mid-
surface. Let Ro be the radius of the circular disk. For time t ≥ 0, we represent the
aforementioned growth by the following evolving material metric:

Ḡ =
⎛

⎝
e2ωR(R,Z ,t) 0 0

0 e2ω�(R,Z ,t)R2 0
0 0 1

⎞

⎠ , (5.24)
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such that ωA for A = R,� are symmetric with respect to Z , i.e., ωA(R, Z , t) =
−ωA(R,−Z , t), which implies that ωA(R, 0, t) = 0.16 Therefore, the first and the
second fundamental forms of H read

G =
(
1 0
0 R2

)
, B =

(−KR(R, t) 0
0 −R2K�(R, t)

)
,

where KA(R, t) = ∂ωA
∂Z (R, 0, t) for A = R,�.

We endow the ambient Euclidean spaceR3 with the standard cylindrical coordinate
system (r, φ, z). In order to study the growth of the shell and obtain the growth-induced
residual stresses, we embed the shell into the Euclidean ambient space and look for
solutions of the form (r, φ, z) = (r(R, t),�, z(R, t)). We fix the rigid body motion
of the embedded surface by assuming r(0, t) = 0, z(0, t) = 0, and z′(0, t) = 0.
Therefore, the deformation tensors read

C =
(
r ′2 + z′2 0

0 r2

)
, � = 1

(
r ′2 + z′2

)1/2

(
r ′z′′ − r ′′z′ 0

0 r z′
)

,

where r ′ = ∂r
∂R and r ′′ = ∂2r

∂R2 . We introduce the function χ = χ(R, t) defined such
that z′ = χr ′. Hence, the deformation tensors in terms of r and χ read

C =
(
r ′2 (1 + χ2

)
0

0 r2

)
, � = 1

(
1 + χ2

)1/2

(
χ ′r ′ 0
0 χr

)
.

We assume that the shell is made of a homogeneous and isotropic material. Because
of the symmetry of the problem, the secondPiola–Kirchhoff stress andmaterial couple-
stress components have the following forms

SRR = SRR(R, t), SR� = 0, S�� = S��(R, t),

MRR = MRR(R, t), MR� = 0, M�� = M��(R, t).

In the convected manifold (H,C), the only nonzero Christoffel symbols of the Levi–
Civita connection are

�̌R
RR = χχ ′

1 + χ2 + r ′′

r ′ , �̌R
�� = − r

r ′ (1 + χ2
) , �̌�

R� = r ′

r
.

16 We let for example ωA = ZKA(R, t) for A = R, � in (5.24).
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Therefore, the equilibrium equations follow from (4.19) and read17

1

R

[

R

(

SRR + 2
χ ′

r ′ (1 + χ2
)3/2 M

RR

)]

,R

+ 2

(
χχ ′

1 + χ2 + r ′′

r ′

)(

SRR + 2
χ ′

r ′ (1 + χ2
)3/2 M

RR

)

− r

r ′ (1 + χ2
)

(

S�� + 2
χ

r
(
1 + χ2

)1/2 M
��

)

−
(

χ ′

r ′ (1 + χ2
)3/2

)

,R

MRR

−
(

χ ′

r ′ (1 + χ2
)3/2 − χ

r
(
1 + χ2

)1/2

)
r

r ′ (1 + χ2
)M�� = 0, (5.25a)

χ ′r ′
(
1 + χ2

)1/2

(

SRR + χ ′

r ′ (1 + χ2
)3/2 M

RR

)

+ χr
(
1 + χ2

)1/2

(

S�� + χ

r
(
1 + χ2

)1/2 M
��

)

− r

R

(
r ′

r
+ χχ ′

1 + χ2 + r ′′

r ′

)[
1

r

(
RMRR

)

,R

+2
R

r

(
χχ ′

1 + χ2 + r ′′

r ′

)
MRR − R

r ′ (1 + χ2
)M��

]

− r

R

[
1

r

(
RMRR

)

,R
+ 2

R

r

(
χχ ′

1 + χ2 + r ′′

r ′

)
MRR − R

r ′ (1 + χ2
)M��

]

,R

= 0.

(5.25b)

The boundary conditions (4.20) for zero surface load, zero moment load, and zero
shear load at R = Ro read

SRR = 0, MRR = 0,
1

R

(
RMRR

)′ − rr ′M�� = 0. (5.26)

Weassume aSaintVenant–Kirchhoff constitutivemodel, forwhich the strain energy
densityW is given by (4.27). Therefore, the nonzero components of the material stress
and couple stress tensors read

SRR = Ych

{[
r ′2 (1 + χ2

)
− 1

]
+ ν

(
r2

R2 − 1

)}
,

17 Note that
(
�AB + C−AC�CD�DB

)

||B +C−AC�CD�DB ||B =
(
�AB + 2C−AC�CD�DB

)

||B −
(
C−AC�CD

)

||B �DB . Also, we have J = r
R . Therefore, the convected stress and couple-stress tensors

read � = R
r S and � = R

r M.
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S�� = Ych

{
ν
[
r ′2 (1 + χ2

)
− 1

]
+
(
r2

R2 − 1

)}
1

R2 ,

MRR = Ych
3

{[
χ ′r ′

(
1 + χ2

)1/2 + KR

]

+ ν

[
χr

R2
(
1 + χ2

)1/2 + K�

]}

,

M�� = Ych
3

{

ν

[
χ ′r ′

(
1 + χ2

)1/2 + KR

]

+
[

χr

R2
(
1 + χ2

)1/2 + K�

]}
1

R2 ,

where Yc = E
2(1−ν2)

. Therefore, we have the governing Eq. (5.25) and the boundary
conditions (5.26) in terms of r and χ . However, we still need the kinetic equations for
the evolution of growth in order to fully solve the problem. We consider the Rayleigh

potentialR(Ḃ, G) = β1tr(Ḃ)+β2tr(Ḃ
2
). Therefore, we find the following evolution

equations for the principal curvatures:

K̇R = β1

2β2
− Ych3

12β2

{[
χ ′r ′

(
1 + χ2

)1/2 + KR

]

+ ν

[
χr

R2
(
1 + χ2

)1/2 + K�

]}

,

(5.27a)

K̇� = β1

2β2
− Ych3

12β2

{

ν

[
χ ′r ′

(
1 + χ2

)1/2 + KR

]

+
[

χr

R2
(
1 + χ2

)1/2 + K�

]}

.

(5.27b)

Using the time differentiation with respect to t̂ = t/τ where τ is defined by (5.22)
and the spatial differentiation with respect to R̂ = R/Ro, (5.27) reads

˙̂KR = 6β1Ro

Ych3
−
{[

χ ′r̂ ′
(
1 + χ2

)1/2 + K̂R

]

+ ν

[
χ r̂

R̂2
(
1 + χ2

)1/2 + K̂�

]}

,

˙̂K� = 6β1Ro

Ych3
−
{

ν

[
χ ′r̂ ′

(
1 + χ2

)1/2 + K̂R

]

+
[

χ r̂

R̂2
(
1 + χ2

)1/2 + K̂�

]}

,

where K̂ A = KARo for A = R,�, r̂ = r
Ro
, R̂ = R

Ro
, and ĥ = h

Ro
.

We numerically solve the governing Eq. (5.25) and the boundary conditions (5.26)
along with the kinetic equations (5.27) for a shell of thickness h = 0.1Ro made of an
isotropic and homogeneous material with ν = 0.5, and undergoing a growth such that
β1 = Ych3/(12Ro). In Fig. 15, we show the evolution of a radial fiber by plotting its
radius r and elevation z as a function of R. We observe that the radius r remains almost
unchanged from R and is almost time-independent, while the out-of-plane elevation
changes the fiber from its original configuration on the plane z = 0 to adopt a curved
configuration. In Fig. 16, we show the evolution of the spatial embedding of the disk
from its initial planar configuration to a non-trivial curved disk. In Fig. 17, we show
the evolution of the radial and the circumferential curvatures. In Fig. 18, we show the
evolutions of the residual stresses and couple stresses in the growing disk.
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Fig. 15 Evolution of the
out-of-plane spatial elevation
profile z = z(R, t) of a radial
fiber of the initially planar
growing disk

R/Ro

−z/Ro

t = 0 t = 0.5τ t = τ t = 2τ t = 5τ

t = 0 t = 0.5τ t = tτ = 2 tτ = 5τ

Fig. 16 Visualization of the evolution of an initially planar growing disk. The out-of-plane elevation is
scaled to a factor of 5
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)ii()i(
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Fig. 17 Evolution of the radial i and circumferential ii principal curvatures on a radial fiber of the initially
planar growing disk

Fig. 18 Evolution of i the radial stress and ii the radial couple-stress on a radial fiber of the initially planar
growing disk
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6 Concluding Remarks

In this paper, we presented within the framework of nonlinear elasticity, a geometric
theory of morphoelastic shells to study the coupling of bulk growth with elastic-
ity. We looked at how bulk growth affects the geometry of the shell and eventually
leads to residual stresses and couple stresses in the shell. We identified the thin body
with a three-dimensional Riemannian manifold and modeled the shell by the mid-
surface of the thin body as an orientable two-dimensional Riemannian submanifold.
The shell geometry is hence characterized by its first and second fundamental forms
that, respectively, represent the in-plane and out-of plane geometries. The nonlin-
ear shell compatibility equations were related to the Gauss and Codazzi–Mainardi
equations. We modeled the growth of a shell by considering a referential evolution
such that the material points remain fixed, while the fundamental forms evolve to
account for growth. The evolution of the fundamental forms is such that the shell
always remains stress-free in the material manifold, which is not necessarily Euclid-
ean. We discussed a systematic method to obtain those growth fields that leave a
simply-connected shell both stress-free and couple-stress-free. Using a Lagrangian
field theory, we derived the governing equations of motion. We obtained the balance
laws for morphoelastic shells and a kinetic equation governing the evolution of the
growth through imposing a coupling between the state of stress of the shell and the
time evolution of the fundamental forms. As an example, we considered a planar sheet
and found a family of stress-free growth fields. We observed that stress-free growth
can evolve a planar shell into another flat shell, a positively curved, or a negatively
curved one. We studied the growth of a morphoelastic infinitely long circular cylindri-
cal shell subject to a time-dependent internal pressure. We also considered a growing
circular shell that evolves to a curved cap. In both cases, we numerically obtained
the evolution of the evolving curvatures and the induced residual stresses and couple
stresses.
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Holder and acknowledges support from a Reintegration Grant under EC Framework VII. We thank M.F.
Shojaei for his help with some of the numerical examples. This research was partially supported by AFOSR
– Grant No. FA9550-12-1-0290 and NSF—Grant No. CMMI 1042559 and CMMI 1130856.

7 Appendix: Derivation of the Euler–Lagrange Equations

In this appendix, we work out in detail the derivation of the Euler–Lagrange equations
first assuming that δG = δB = 0. We substitute (4.8), (4.9), (4.10), (4.11), and (4.12)
into (4.7) to obtain

∫ t1

t0

∫

H

[
∂L
∂ϕa

δϕa + ∂L
∂ϕn

δϕn −
(

∂L
∂N

)

b

(
δϕaβb

a + ∂(δϕn)

∂xa
gab

)
+ ∂L

∂ϕ̇
.
Dδϕ

dt

+ ∂L
∂CAB

(
2Fb

Bgbcδϕ
c |A − 2δϕn Fa

AF
b
Bβab

)
+ ∂L

∂�AB

(
Fa

AF
b
Bβab|cδϕc
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+ 2Fa
Aβacδϕ

c |B − δϕn Fa
AF

b
Bβacβbdg

cd + Fb
A

(
∂δϕn

∂xb

)

|B

)]

√
det GdX Idt = 0. (7.1)

Hence, we have

∫ t1

t0

∫

H

{
∂L
∂ϕa

δϕa + ∂L
∂ϕn

δϕn + 1√
det G

d

dt

(√
det G

∂L
∂ϕ̇

.δϕ

)

− 1√
det G

d

dt

(√
det G

∂L
∂ϕ̇

)
.δϕ

−
(

∂L
∂N

)

b
βb

aδϕ
a −

((
∂L
∂N

)

b
δϕngabF−A

a

)

|A

+
((

∂L
∂N

)

b
gabF−A

a

)

|A
δϕn

+ 2

(
∂L

∂CAB
Fc

Agacδϕ
a
)

|B
− 2

(
∂L

∂CAB
Fc

Agac

)

|B
δϕa

− 2
∂L

∂CAB
Fa

AF
b
Bβabδϕ

n

+ ∂L
∂�AB

Fc
AF

b
Bβbc|aδϕa + 2

(
∂L

∂�AB
Fc

Aβacδϕ
a
)

|B

− 2

(
∂L

∂�AB
Fc

Aβac

)

|B
δϕa

− ∂L
∂�AB

Fa
AF

b
Bβacβbdg

cdδϕn +
(

∂L
∂�AB

Fb
A
∂δϕn

∂xb

)

|B

−
[(

∂L
∂�AB

Fb
A

)

|B
δϕn F−D

b

]

|D

+
[(

∂L
∂�AB

Fb
A

)

|B
F−D

b

]

|D
δϕn

}√
det GdX Idt = 0.

(7.2)

We can rewrite (7.2) as

∫ t1

t0

∫

H

{
1√
det G

d

dt

(√
det G

∂L
∂ϕ̇

.δϕ

)
+ 2

(
∂L

∂CAB
Fc

Agacδϕ
a
)

|B

+ 2

(
∂L

∂�AB
Fc

Aβacδϕ
a
)

|B
−
[(

∂L
∂�AB

Fb
A

)

|B
δϕn F−D

b

]

|D

−
((

∂L
∂N

)

b
δϕngabF−A

a

)

|A
+
(

∂L
∂�AB

∂δϕn

∂X A

)

|B

+
[

∂L
∂ϕa

−
(

∂L
∂N

)

b
βb

a − 1√
det G

d

dt

(√
det G

∂L
∂ϕ̇a

)
− 2

(
∂L

∂CAB
Fc

Agac

)

|B
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+ ∂L
∂�AB

Fc
AF

b
Bβbc|a − 2

(
∂L

∂�AB
Fc

Aβac

)

|B

]
δϕa

+
[

∂L
∂ϕn

+
((

∂L
∂N

)

b
gabF−A

a

)

|A
− 1√

det G

d

dt

(√
det G

∂L
∂ϕ̇n

)

− 2
∂L

∂CAB
Fa

AF
b
Bβab − ∂L

∂�AB
Fa

AF
b
Bβacβbdg

cd

+
[(

∂L
∂�AB

Fb
A

)

|B
F−D

b

]

|D

]
δϕn

}
dSdt = 0. (7.3)

At t = t1, we assume that ϕε,t1 = ϕt1 so that δϕt1 = 0. Therefore, by integrating
the first term in (7.3) in the time domain, we obtain only one term at t = t0 giving
the initial condition on the velocity at t = t0. By applying Stokes’ theorem to the
following five terms, if we denote by T the outward in-plane vector field normal to
the boundary curve ∂H, we obtain

−
∫

H
∂L
∂ϕ̇

.δϕdS

∣∣∣∣
t=t0

+
∫ t1

t0

∫

∂H

{(
2

∂L
∂CAB

Fc
Agac + 2

∂L
∂�AB

Fc
Aβac

)
TBδϕa

−
[(

∂L
∂�AC

Fb
A

)

|C
F−B

b +
(

∂L
∂N

)

b
gabF−B

a

]
TBδϕn + ∂L

∂�AB
TB

∂δϕn

∂X A

}
dLdt

∫ t1

t0

∫

H

{[
∂L
∂ϕa

−
(

∂L
∂N

)

b
βb

a − 1√
det G

d

dt

(√
det G

∂L
∂ϕ̇a

)
− 2

(
∂L

∂CAB
Fc

Agac

)

|B

+ ∂L
∂�AB

Fc
AF

b
Bβbc|a − 2

(
∂L

∂�AB
Fc

Aβac

)

|B

]
δϕa

+
[

∂L
∂ϕn

+
((

∂L
∂N

)

b
gabF−A

a

)

|A
− 1√

det G

d

dt

(√
det G

∂L
∂ϕ̇n

)

−2
∂L

∂CAB
Fc

AF
b
Bβbc − ∂L

∂�AB
Fa

AF
b
Bβacβbd g

cd

+
[(

∂L
∂�AB

Fb
A

)

|B
F−D

b

]

|D

]
δϕn

}
dSdt = 0. (7.4)

By arbitrariness of δϕ‖, δϕn , and d(δϕn), the Euler–Lagrange equations for shells
(4.13) together with the initial and boundary conditions (4.14) follow from (7.4).
Note that following Codazzi’s equation (2.3), we have βbc|a = βac|b. Therefore

∂L
∂�AB

Fc
AFb

Bβbc|a = ∂L
∂�AB

Fc
Aβac|B .
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