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Abstract

In this paper, dynamic response of Timoshenko beams under moving mass is analyzed using a numerical method called discrete element
technique (DET). In DET, continuous flexible beam elements are replaced by a system of rigid bars and flexible joints. We present a DET
model of Timoshenko beams under moving mass. The results of our DET model are compared with the solutions obtained by PAFEC
(programs for automatic finite element calculations) for Euler—Bernoulli beams and finite difference method for Timoshenko beams. The
effects of beam thickness and moving mass velocity on dynamic response of beams under moving mass are numerically studied. © 2002

Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the most important problems facing structural and
design engineers is the analysis of dynamic behavior of
bridges subjected to moving loads (moving forces and
moving masses). This is one of the oldest problems in
structural dynamics. In recent years, the speed and weight
of commercial vehicles have been increased significantly.
However, due to economical requirements, the bridge struc-
tures carrying these vehicles are fabricated much lighter.
These structures are therefore subjected to severe vibrations
and dynamic stresses, which in turn are much more than the
corresponding static stresses.

Historically, the analysis of moving loads on bridges goes
back to the 19th century, when railroad construction was
first initiated. Research on this subject is still in progress,
especially due to the development of numerical techniques
for solving complicated differential equations and also due
to the improvement of computers. Since the middle of the
19th century, when railway construction began, the problem
of oscillation of bridges under traveling loads has interested
many engineers [1]. Timoshenko [2] considered the
problem of a pulsating load passing over a bridge, while
Inglis [3] performed an analysis on trains crossing a bridge
and considered many important factors such as the effect of
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moving load, the influence of damping and suspension of
locomotives.

The problem of a concentrated force moving with a
constant velocity along a beam, when neglecting damping
forces, was solved by Timoshenko [4] and an expression for
the critical velocity of a moving mass was found. The
dynamic analysis of a simply supported beam carrying a
moving mass was performed by Stanisic and Hardin [5].
A comprehensive treatment of the subject for the vibration
of structures resulting from moving loads has been given by
Fryba [6]. The vibration of an Euler—Bernoulli beam
traversed by uniform partially distributed moving mass
was studied by Esmailzadeh and Ghorashi [7].

Mofid [8] (see also Ref. [9]) developed a new method for
solving the problem of vibration of Euler—Bernoulli beams
subjected to moving mass. Here we call the method discrete
element technique (DET). It is a simple and fast method for
solving this problem, but its application is limited to the case
of Euler—Bernoulli beams. The present work extends the
scope of previous study [8,9] by considering the
Timoshenko theory for the beam and considering the effects
of both shear deformation and rotary inertia. DET is used for
determining the dynamic response of beams with different
boundary conditions subjected to moving mass. The critical
velocity for a moving mass to get maximum beam dynamic
deflection is numerically calculated. The present numerical
results also confirm that the deflection under the moving
load is not always an upper bound solution for the moving
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Fig. 1. A discrete element beam approximation.

mass formulation for both the Euler—Bernoulli and
Timoshenko beams.

In this paper, the following assumptions are made. First,
the beam is assumed to be of constant cross-section with
uniform mass distribution. Furthermore, its dynamic
characteristics are described by the Timoshenko beam
equations. Second, the effects of inertia for both the beam
and the moving mass are taken into account with the gravi-
tational effect of load. Third, the load moves with a constant

speed and is guided in such a way that it is in contact with

the beam at all times. The objectives of this investigation
are: (1) to present a simple and practical technique for deter-
mining the dynamic response of a Timoshenko beam, with
various essential boundary conditions, carrying a moving
mass, (2) to formulate the solution of the problem in the
general form, (3) to verify the solutions by applying them to
some test problems and comparing the results with those
from literature, and (4) to study the important factors such
as moving mass velocity and beam thickness in the moving
mass problem. This paper is organized as follows. In Section
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Fig. 2. Typical shearing and bending joints.
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2, DET is generalized for Timoshenko beams. A DET
model of Timoshenko beams under moving mass is
presented in Section 3. Some numerical examples are solved
in Section 4. The conclusions are given in Section 5.

2. Discrete element model for Timoshenko beams

In this model the flexible beam is replaced by a system of
rigid bars and joints that resist relative rotation of attached
bars (Euler—Bernoulli beam model) or both relative rotation
and relative deflection of attached bars (Timoshenko beam
model). For example, we may replace the fixed-hinged
beam by the three-bar system for an approximate analysis
as shown in Fig. 1. All deformations take place at the joints.
The deflection of joints is the sum of bending and shear
deflections. Bending deflection is due to bending moments
and shearing deflection is due to shear forces. The flexibility
of the joints (both bending and shearing) is chosen such that
under uniform bending moment the model gives the exact
bending deformations and under uniform shear force, the
model gives the exact shearing deformations. In any
problem when the number of rigid elements increases, the

moment and the shear force changes between adjacent joints
decrease and hence we reach uniform moment and uniform
shear force over a short length. Thus, the results improve as
we use more rigid elements and the results converge to the
exact solution as the number of discrete elements increases.
However, the numerical solution of these systems will be
affected by additional discretizations and round-off errors.
In the development of the model, deflection of joints due to
bending deformation and shearing deformation must be
considered separately. A typical joint that can have only
bending deformation is shown in Fig. 2. It is composed of
a deformable centerpiece and a rigid element on each side.
In the same figure, a typical shear deformation joint is
shown. It is composed of a deformable centerpiece and a
rigid element on each side.
In the case of bending deformation we have

M= K6, M

where M; is the bending moment, 0, is the relative rotation of
attached bars, and K; is the rotational stiffness of the joint.
Here we use the theorem of virtual work to develop an
expression for K;. Consider the beam element under the
action of uniform moment shown in Fig. 3(a). Moment
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Fig. 3. (a) Discrete element approximation for a bending element, (b) moment diagrams.
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Fig. 4. (a) Discrete element approximation for a shear element, (b) shear diagrams.

diagrams for external uniform moment (M) and unit load in
intermediate joint (m) are shown in Fig. 3(b). Using virtual
work theorem we have

hap Mm hpe Mm
= — dx + — 2
% ,[ o EI o EI 2
If the lengths of the bars are equal, we obtain
Mn?
- 3
B = —pr 3)
Therefore,
Mh
0 = — 4
b= 7 )
Hence, for interior joints we obtain
EI
K=" 5
h Q)
The expression for a fixed end is
2EI
Kiixea = —— (6)

h
Similarly, for shear deformation we have

where V; is the shear force, Ssj, the relative deflection of
attached bars, and Kj; is the translational stiffness of the
joint. Consider the beam under the action of a uniform
shear force shown in Fig. 4(a). Shear diagrams for external
uniform shear (V) and unit shear in joints (v) are shown in
Fig. 4(b). Using virtual work theorem we have

h aVy
& = — dx 8
i= |, ca ®)
where « is the shear coefficient. Thus
ah
Thus, the shearing stiffness of the joint is
GA
K. = — 10
ST oh (10)

3. Formulation of the problem of a Timoshenko beam
under moving mass

To analyze the response of a Timoshenko beam subjected
to a moving mass, we consider the bending and shearing
deformations separately. To formulate this problem for
different boundary conditions, we have introduced three
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sl

Fig. 5. Boundary condition parameters.

parameters J; (i = 1,2, 3) to define the type of the boundary
conditions (fixed, hinged or free). The parameter &; corre-
sponds to the left end of the beam and the parameters 6, and
83 correspond to the right end of beam. Parameters 6, and 6,
present contribution of the corresponding strain energy
resulting from fixed end joints and &3 indicates contribution
of the corresponding kinetic energy and external work
resulting from the movement of the free end. While
formulating the problem it is assumed that the first node is
restricted to be ‘fixed” or ‘hinged’ only and that it cannot be
‘free’. However, if the first node was free, with the change in
direction of moving mass, the same formulation is still
applicable. For the case of shearing deformation, there is
only one boundary parameter, 8, which is similar to ;. The
values, which are assigned to each of these parameters, are
shown in Fig. 5.

Based on the assumption of a constant inertia, the total
energy of motion of the beam under the moving mass M,
neglecting the damping and rotary inertia of moving mass,
can be written in two parts: ‘the total energy of beam’ and
‘the total energy affected by moving mass’. For the sake of
simplicity, we consider the bending and shearing deflections
of the beam separately. For the bending deflection, the
following expressions are valid for energies of the n nodes
(see Refs. [8] and [10] for more details):

1 ) 1

_ «f QY )

I = 52’"](@) PN (11)
j=1 j=1
1 & 1 & P

U= 32 M6= 3> K¢ (12)
=1 j=1

n—1

Q= py;+ &pya (13)
=1
Vi=U — & (14)
lI/l = Tl + Vl (15)
EI L
]\4]:[(]6], KZT, mj :mh, h:;,

1

0, = Z[(yj = yi-0) + O =yl
| PP _

@ = 20 = Y- Vi = 501 T ) (16)

Substituting Eq. (16) in Egs. (11) and (12), and applying the
boundary conditions specified in Fig. 5 yields

mL b2 n_l 2 2 mL
=(=)1+ = 2+ o2 |+ (—

IS . o
X (1 - W)I:Z VVi+1 T 6yn—1y11] (17)
Jj=1
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EInS n—2
Vi= 3[251(_)’1)2 + 2y~ )+ Z

2L =

X(=yj—1 + 2y, — )’j+1)2 + (=Vuet 201 — Sy’

n—1

+20,(=y,—1 + 53yn)2] - Z PjYj — 03PnYn (18)
=

The total energy affected by moving mass Yy, can be

written as
At the first node:

L
QHZO 0<t0<2—

T 1M 2
= — C .
1 2 nc

At the interior nodes:

1 [dy, P 1
Ty = —M[ﬁ] + M,

2 dt 2
2j— DL 2j + 1L
OQpn=Mgy, —— <t < —nu "
1 & 2nc J 2nc
j=12,....,n—1
At the final node:
1 dy, 21 5
Ty = = &M + =M
m= 5% [ dr ] 27
2n — 1)L L

Oy = Mgy, e <t < o
In summary

n
Uy = Z Strain energy of moving mass
=1

n
Vi = Z Potential energy = — {2y
j=1

Yy =Ty + Vi

(19a)

(19b)

(19¢)

(20)

2y

(22)

The dynamic equation for this discrete system may be
obtained from Lagrange’s equations. For a conservative

system we have

[ o (oT av'\ |
“=1+(=]]=0

From Egs. (15) and (22), Eq. (23) becomes

[ o (0T av'\ |
—— ]+ —

(5
H =)+ (&

(23)

(24)

Substituting Egs. (17)—(19¢) in Eq. (24) and rearranging in

matrix form results in

Q+HY, +AY=W+P

(25)

where P is generalized loading, W, the weight of the
moving mass and Y, the displacement vector. H has a single
time-dependent diagonal term, Q is a constant symmetric
tridiagonal matrix, which is the sum of two other matrices
and A is a constant symmetric pentadiagonal matrix.
Rearranging Eq. (25) in the form of a matrix at an interior
node (j), we obtain

[Q + Hil{Y,} + [AI{Y} = [W; + P]

. . (26a)
2j— DL <M < 2j+ 1L

2nc J 2nc
And at the end node (n) we have
(Q + H,{Y,} + [A{Y} =[W, + P]
n — 1L L (26D)
<, < =

2nc c
where

Y =iyerwh Y = D o V) (272)

(W, + P} = (W) + PP Pp183Pn}
(W, + P} = {w(wy + p2)-pp183p,)

(27b)
{Wn + P}T = {pl p2"'pn7163(wn +pn)}
m4 -
1 4
mL
[Q]l= o
4 1
14 &
i 8 20
-4 5 -
-2 4
bz
4h*
4 -2
—2 4 —25
i —28, 28,
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48, +10 -8 2
-8 12 -8 2
2 -8 12 -8 2
2 -8 12 -8 2
Eln’
[A]=F
2 =8 12
2 =8
2
S -
0 O
H,]= )
0 0
B 0 0]
-0 0 -
0 M
[H,] = yuees 27e)
0 0
B 0 0.
0 0 -
0 0
H,] =
0 O
B & M

For the case of shearing deflection, the matrix [A] should be
replaced by [A,] (see Eq. (31)). Strain energy of the beam in
pure shear is

1 n
Ug= 3 D K6 (28)
j=1

Problem 1 (reference [1])

Problems 2 and 3 (reference [8])

-8
285

149

(274d)
2
_8 253
—48,(1 + &)  285(1 +28,) |

where Kj; is the shear stiffness of joints Eq. (10) and §; is

O = Yj = Yj-1 (29)
Hence

GA | "< ) 5
Ug = Sah I:J—Zz 0 = yi-1)" + (8 = Yu-1) ] (30)

Similar to the pure bending formulation, in pure shear we
have

m 4 -2
-2 4 -2
-2 4
GA
Al=——
[Aq] el
4 -2
-2 4 25
i —25 26
(31)

where 6 = ;. Matrices [Q], [H], {Y,}, {Y}, [W] and {P}
are similar to the previous ones. The nodal deflections due to

pure shear can be obtained from Eq. (32).
Q+HY,+AY=W+P (32)

For obtaining deflection of a Timoshenko beam, we should
add the nodal deflections from Egs. (25) and (32).

O—>c

il

Fig. 6. Sample beams.
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Fig. 7. Dynamic deflection of end point of Beam 1.

4. Numerical examples and discussion shear modulus, /, the moment of inertia, A, the beam cross-

sectional area, L, the beam length, and «, the shear factor.

Three examples are solved in this section. The data for

each problem are as follows:

Problem 1.

Problem 2. Beam 2 is simply supported (see Fig. 6) with

) ) ) the following characteristics
Beam 1 is fixed-free (see Fig. 6) with the

following characteristics: M = 21.83 kg, ¢ =27.49 m/s, m = 87.04 kg,

M =31bs%in,  ¢=2000in/s, m=2Ibs%in.,
E=3%x10"psi, G=115x10"psi, I=110in

A=09.13in2,

E=2.02x 10" N/m?, G =17.7%10" N/m?,

I=571x10"" m*, A=131%x10"°m?,

L=300m,  a=12 L=4352m,  a=143.

where M is the moving mass, m, the total mass of the beam,

¢, the moving mass velocity, E, the Young’s modulus, G, the Problem 3. Beam 3 is similar to Beam 2 except for the
1.50E-03
1.20E-03
9.00E-04 -
Dmid
L 6.00E-04 |
’ - DET
—— BEsmailzadeh & Ghorashi
3.00E-04
0.00E+00 = T 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Time (sec)

Fig. 8. Dynamic deflection of mid-point of Beam 2.
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Fig. 9. Dynamic deflection of mid-point of Beam 3.

following different parameters
M =200 kg, ¢ = 50 m’s, [=342%x10"° m*
A=02025m’, a=1.18

This is obviously a thick beam.

Fig. 7 compares the deflection of the free end of Beam 1
calculated using DET (with neglecting the rotatory inertia
and shear deformation) and programs for automatic finite
element calculations (PAFEC) [8]. So, in both calculations

9.00E-03 1

8.75E-03 A

Dm‘!V
—m 8 50E-03

the beam is considered to be Euler—Bernoulli. It is seen that
as the moving mass approaches the free end the dynamic
deflection of the free end increases. The maximum
difference between DET and PAFEC is 10% and it occurs
when the moving mass reaches the free end of the beam.
This difference will decrease by increasing the number of
rigid elements. In Fig. 8 the dynamic deflection of mid-span
of Beam 2 calculated by DET and finite difference method
[7] are compared. The maximum dynamic deflection of the
mid-point of the beam occurs when the moving mass has
traveled 70% of the beam length. It is seen that the results

—A— Euler-Bernoulli (DET)
—&- Timoshenko (DET)

D>

8.25E-03 1

8.00E-03 T
0 1000

2000

3000 4000 5000

Q

Fig. 10. Effect of beam slenderness on dynamic response of Beam 1 (D, is the maximum deflection at the free end).
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1.28E-03 A
£l
1.20E-03 T T T ]
0 1000 2000 3000 4000 5000

Q

Fig. 11. Effect of beam slenderness on dynamic response of Beam 2 (D, is the maximum deflection at the free end).

are fairly close and the maximum difference is 3%. Dynamic
deflection of mid-span of Beam 3 according to Euler—
Bernoulli and Timoshenko theories are compared in Fig. 9.
As we expected, Timoshenko theory predicts larger displace-
ments. Figs. 10 and 11 compare Euler—Bernoulli and
Timoshenko theories for Beam 1 and 2. It is seen that the
maximum deflection at the free end predicted by Euler—
Bernoulli theory is independent of the dimensionless para-
meter 2 = AL*/I (slenderness). For the Timoshenko beam
this displacement increases as {2 decreases. The parameter
{) is a measure of deepness of the beam; the smaller the {2
the deeper the beam. Effect of the moving mass velocity ¢ on
deflections of Beam 1 and 2 are shown in Figs. 12 and 13. As
the speed of the moving mass increases the maximum dynamic
deflection of the end-point increases until it reaches a maxi-

0.015 1
0.013 A

0.011 A1

0.009

0.007 1

mum. Above this speed, the maximum deflection decreases
with increase in the moving mass speed. This moving mass
speed that corresponds to the maximum end-point deflection is
called critical speed of the moving mass. Itis seen from Fig. 12
that the maximum dynamic deflection of the free end is 12%
greater than the deflection of the free end when the same mass
is acting at the free end statically. Fig. 13 is similar to Fig. 12.

5. Conclusions

In this paper, a DET model for Timoshenko beams under
moving mass was presented. In this model, the continuous
beam is replaced by a system of rigid bars and flexible
joints. The flexible joints resist both relative rotation and

0.005 T

0 250 500 750

T T

1000 1250 1500 1750 2000

¢ (m/sec)

Fig. 12. Effect of increase in moving mass velocity for Beam 1 (D, is the maximum deflection at the free end).
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5.00E-04

2.50E-04 -

0.00E+00 T T

30 40 50 60
¢ (m/sec)

Fig. 13. Effect of increase in moving mass velocity for Beam 2 (D, is the maximum deflection at the free end).

relative deflection of adjacent bars. The rotational and trans-
lational stiffnesses of the joints are functions of the material
and geometrical properties of the Timoshenko beam. Some
test problems were solved by the DET model and the results
were compared to the results obtained by PAFEC and finite
difference method. Good agreement was observed in all
cases. This approximate technique can be applied to thin
and thick beam structures with various boundary conditions.
We formulated the problem without considering damping.
However, including damping is straightforward. This
method is fast and computationally inexpensive and can
be used in real design problems.
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