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Abstract
We impose uniform electric fields both parallel and normal to 180◦ ferroelectric domain walls
in PbTiO3 and obtain the equilibrium structures using the method of anharmonic lattice statics.
In addition to Ti-centered and Pb-centered perfect domain walls, we also consider Ti-centered
domain walls with oxygen vacancies. We observe that an electric field can increase the
thickness of the domain wall considerably. We also observe that increasing the magnitude of the
electric field we reach a critical electric field Ec; for E > Ec there is no local equilibrium
configuration. Therefore, Ec can be considered as an estimate of the threshold field Eh for
domain wall motion. Our numerical results show that oxygen vacancies decrease the value of
Ec. As the defective domain walls are thicker than perfect walls, this result is in agreement with
the recent experimental observations and continuum calculations that show thicker domain
walls have lower threshold fields.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ferroelectric materials have been used in many important
applications such as high strain actuators, electro-optical
systems, non-volatile and high density memories, etc [1, 2].
The properties of domain walls in ferroelectric materials
including their structure, thickness, and mobility are important
parameters as they determine the performance of devices that
use these materials [3].

Theoretical calculations have predicted that ferroelectric
domain walls are atomically sharp and their thickness is about
a few angstroms [4–7]. However, experimental measurements
show the existence of domain walls with thicknesses of a
few micrometers [8, 9]. It has been observed that such
broadening of domain walls is due to the presence of extrinsic
defects, charged walls, and surfaces [10]. Shilo et al [11]
used atomic force microscopy to measure the surface profile
close to emerging domain walls in PbTiO3 and then fitted it
to the soliton-type solution of GLD theory. They measured
wall widths of 1.5 and 4 nm and observed a wide scatter
in wall widths. They suggested that the presence of point

defects is responsible for such wide variations. Lee et al
[12] proposed a continuum model to investigate this proposal
and reproduced the experimentally observed range of wall
widths with their model. They mentioned that the interaction
between the order parameter and point defects and interaction
of point defects with each other are two important interactions
that should be considered properly in such modelings. Jia
et al [3] investigated the cation–oxygen dipoles near 180◦
domain walls in PbZr0.2Ti0.8O3 thin films. They measured
the width and dipole distortion across domain walls using
the negative spherical-aberration imaging technique in an
aberration-corrected transmission electron microscope and
observed a large difference in the atomic details between
charged and uncharged domain walls.

An external electric field can cause the motion of
ferroelectric domain walls if the magnitude of the field reaches
the threshold field Eh for wall motion, i.e., the field at which
a domain wall begins to move after overcoming the intrinsic
Peierls friction of the ferroelectric lattice [10]. It was observed
that threshold fields that are predicted via thermodynamic
calculations are usually much greater than the experimental
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Figure 1. (a) The relaxed configuration of the unit cell of PbTiO3. a and c are the tetragonal lattice parameters. Note that O1, O2, and O3
refer to oxygen atoms located on the (001), (100), and (010)-planes, respectively. δ denotes the y-displacements of the atoms from their
centrosymmetric positions and the arrows near each atom denote the direction of these displacements. (b) The geometry of a perfect
Ti-centered 180◦ domain wall. (c) The geometry of an O1-defective 180◦ domain wall. Note that Pb-centered domain walls with oxygen
vacancies are not stable.

values. For example, Bandyopadhyay and Ray [13] predicted
an upper limit for Eh of LiNbO3 to be 30 000 kV cm−1

but experimental observations show that the threshold field
for wall motion can be less than 15 kV cm−1. Choudhury
et al [10] suggested that the reason for such large differences
between the theoretical and experimental values of Eh is
broadening of the domain walls. Using microscopic phase-
field modeling, they show that the threshold field for moving
an antiparallel ferroelectric domain wall dramatically drops
by two or three orders of magnitude if the wall was diffused
by only about 1–2 nm. Su and Landis [14] developed a
continuum thermodynamics framework to model the evolution
of ferroelectric domain structures and investigated the fields
near 90◦ and 180◦ domain walls and the electromechanical
pinning strength of an array of line charges on these domain
walls.

In this work, we investigate the effect of an external
electric field (E) on the perfect and defective 180◦ domain
walls in PbTiO3 using the method of anharmonic lattice statics.
We consider both Pb-centered and Ti-centered perfect domain
walls and also defective domain walls with oxygen vacancies.
In agreement with experimental results, our calculations show
that such defective domain walls are thicker than perfect
walls [18]. By increasing E we reach a critical value Ec such
that for E > Ec the lattice statics iterations do not converge.
Therefore, this critical value can be considered as a lower
bound for the threshold field for wall motion.

This paper is organized as follows. In section 2, we
explain the geometry of the perfect and defective domain walls
that we use throughout this work. In section 3, we describe
the method of analysis used in our calculations. Our numerical

results are presented in section 4. The paper ends with some
concluding remarks in section 5.

2. Ferroelectric domain walls

Due to the relative displacements between the center of the
positive and negative charges, each unit cell of a ferroelectric
crystal has a net polarization below its Curie temperature.
Figure 1(a) shows the relaxed unit cell of tetragonal PbTiO3. In
this work, we consider 180◦ domain walls in PbTiO3 parallel
to a (100)-plane. These domain walls are two-dimensional
defects across which the direction of the polarization vector
switches. There are two types of perfect 180◦ domain
wall in PbTiO3: Pb-centered and Ti-centered domain walls.
Figure 1(b) shows the geometry of a Ti-centered domain wall.

In addition to perfect domain walls, we also consider
180◦ domain walls with oxygen vacancies. It is known that
oxygen vacancies tend to move toward domain walls and pin
them [15–17]. Therefore, we study domain walls with oxygen
vacancies sitting on them. In order to be able to obtain a
solution, we need to consider periodically arranged vacancies
on the domain walls. Although in reality oxygen vacancies
have lower densities, our results with the current assumption
can still provide important insights on the effect of oxygen
vacancies on 180◦ domain walls. Depending on which oxygen
in the PbTiO3 unit cell sits on the domain wall, there would be
three types of defective domain wall: (i) O2-defective, (ii) O1-
defective, and (iii) O3-defective. Figure 1(c) shows an O1-
defective domain wall. Note that the O1- and O3-defective
domain walls are Ti-centered while the O2-defective domain
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wall is Pb-centered. It has been observed that O2-defective
domain walls are not stable [15, 18], i.e., the lattice statics
iterations do not converge. Thus, we consider O1- and O3-
defective domain walls in the following.

Let x , y, and z denote coordinates along the 〈100〉, 〈010〉,
and 〈001〉-directions, respectively. We assume a 1D symmetry
reduction, which means that all the atoms with the same
x-coordinates have the same displacements. Therefore, we
partition the 3D lattice L as L = ⊔

I

⊔
α∈Z

LIα , where LIα

and Z are 2D equivalence classes parallel to the (100) plane
and the set of integers, respectively. j = Jβ is the atom in the
βth equivalence class of the J th sublattice. See [19, 20] for
more details on the symmetry reduction.

3. Method of calculation

We apply a uniform electric field on 180◦ domain walls
and obtain the equilibrium structure using the method of
anharmonic lattice statics [19]. We use a shell potential for
PbTiO3 [21] for modeling the atomic interactions. Each ion is
represented by a core and a massless shell in this potential. Let
L denote the collection of cores and shells, i ∈ L denotes a
core or a shell in L, and {xi}i∈L represents the current position
of cores and shells. In this shell potential, three different
energies are assumed to exist due to the interactions of cores
and shells: Eshort, Elong, and Ecore−shell. Eshort({xi}i∈L) denotes
the energy of short range interactions, which are assumed to
be only between Pb–O, Ti–O, and O–O shells. The short
range interactions are described by the Rydberg potential of the
form (A + Br) exp(−r/C), where A, B , and C are potential
parameters and r is the distance between interacting elements.
Elong({xi}i∈L) denotes the Coulombic interactions between the
core and shell of each ion with the cores and shells of all the
other ions. For calculating the classical Coulombic energy
and force, we use the damped Wolf method [22]. Finally,
Ecore−shell({xi}i∈L) represents the interaction of the core and
shell of an atom and is assumed to be an anharmonic spring
of the form (1/2)k2r 2 + (1/24)k4r 4, where k2 and k4 are
constants. The total static energy is written as

E({xi}i∈L) = Eshort({xi}i∈L) + Elong({xi}i∈L)

+ Ecore−shell({xi}i∈L). (1)

Note that all the calculations are done for absolute zero
temperature. At this temperature PbTiO3 has a tetragonal unit
cell with lattice parameters a = 3.843 Å and c = 1.08a [21].

Assume that a uniform electric field E = (Ex , Ey, Ez)

is applied to a collection of atoms. Then for the relaxed
configuration B = {xi}i∈L ⊂ R

3, we have

∂E
∂xi

+ qi E = 0 ∀ i ∈ L, (2)

where qi denotes the charge of the i th particle (core or
shell). To obtain the solution of the above problem, we utilize
the Newton method. Having a configuration Bk , the next
configuration Bk+1 is calculated from the current configuration

Bk as: Bk+1 = Bk + δ̃
k
, where

δ̃k = −H−1(Bk) ·∇E(Bk), (3)

with H denoting the Hessian matrix. The calculation of
the Hessian becomes inefficient as the size of the problem
increases and hence we use the quasi-Newton method. This
method uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm to approximate the inverse of the Hessian [23]
instead of the direct calculation of the Hessian at each iteration.
We start from a positive-definite matrix and use the BFGS
algorithm to update the Hessian at each iteration as follows:

Ci+1 = Ci + δ̃
k ⊗ δ̃

k

(δ̃
k
)T ·Δ

− (Ci ·Δ) ⊗ (Ci ·Δ)

ΔT · Ci ·Δ
+ (ΔT · Ci ·Δ)u ⊗ u, (4)

where Ci = (Hi )−1, Δ = ∇E i+1 − ∇E i , and

u = δ̃
k

(δ̃
k
)T ·Δ

− Ci ·Δ
ΔT · Ci ·Δ . (5)

Calculating Ci+1, one then should use Ci+1 instead of H−1

to update the current configuration. If Ci+1 is a poor
approximation, then one may need to perform a linear search
to refine Bk+1 before starting the next iteration [23].

In the presence of oxygen vacancies on the domain wall,
one needs to consider charge redistribution between some
ions. To model an oxygen vacancy using a shell potential,
we remove the core and shell of the oxygen atom and because
we assume a charge neutral oxygen vacancy, there will be a
charge redistribution in the neighboring shells [18]. It is known
that charge redistribution is highly localized and hence in our
calculations we equally distribute the charge �Q = Qs + Qc,
where Qs and Qc are oxygen shell and core charges, between
the (fourteen) first nearest neighbors of each oxygen vacancy.

To obtain the equilibrium configuration under an external
electric field we need to start from an appropriate initial
configuration. This initial configuration for perfect and
defective domain walls is the equilibrium configuration of
these domain walls under zero electric field (see [6, 18] for
discussions on how to calculate these configurations). As we
mentioned earlier, we assume a 1D symmetry reduction for the
lattice and hence as is shown in figure 2, our computational box
(CB) consists of a row of unit cells perpendicular to the domain
wall. In this figure, the shaded region is the computational
box. Note that because in general there is no symmetry in the
problem, we need to relax all the atoms inside the CB. For
removing the rigid body translation freedom of the atoms, one
should fix the core of an atom and relax the other atoms. We fix
the Pb-core (Ti-core) of an atom located on the domain wall in
Pb-centered (Ti-centered) domain walls. Thus, if there are M
unit cells in the CB, we would have 30M − 3 variables in our
calculations. We should mention that to investigate the effect of
the size of CB in the domain wall plane, we consider CBs with
one, four, and sixteen unit cells in the domain wall plane and
therefore the number of the unit cells in CB in each case is M ,
4M , and 16M , respectively. We observe that the final relaxed
structure does not depend on the size of CB in the domain wall
plane. This suggests that the symmetry reduction that we use
in our calculations is a reasonable assumption for this problem.
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Figure 2. Ti-cores under an external electric field in a Ti-centered 180◦ domain wall. Ex and Ey are the normal and parallel electric fields,
respectively. The shaded region denotes the region that is relaxed in each step. Note that M is the size of the computational box (CB) normal
to the domain wall. We consider different CBs with one, four, and sixteen unit cells in the domain wall plane.

Note that we consider a finite number of unit cells in
the CB and do not assume any periodicity condition in our
calculations. This means that we need to impose some proper
boundary conditions to take into account the effect of the atoms
located outside of the CB. To this end, we rigidly move the unit
cells outside of the CB with displacements equal to those of the
first or last unit cell of the CB (the unit cell on the boundary of
the CB that is closer to the unit cell outside of the CB). This is a
natural boundary condition as we expect the bulk configuration
far from the domain wall.

In our calculations we use M = 20, as larger values for M
do not affect the results. Imposing an external electric field
should be done step by step, i.e., one first needs to obtain
the configuration for E = �E1 from the initial configuration
and then use this configuration to obtain the equilibrium
configuration for E = �E1 + �E2 and so on. We use an
average step size of 20 kV cm−1 for the electric field. Using
this step size and a force tolerance of 0.005 eV Å

−1
, our

solutions converge after about 30–40 iterations.

4. Numerical results

In this section we present our numerical results for perfect and
defective domain walls. Note that as the coordinates of cores
and shells are close to each other, we only report the results for
cores. Also as we mentioned earlier, x , y, and z are coordinates
along the 〈100〉, 〈010〉, and 〈001〉-directions, respectively.

4.1. Perfect domain walls

We plot the y-coordinates of Ti-cores under an external electric
field normal to the Ti-centered domain wall, Ex , in figure 3(a).
As expected, we see that increasing the electric field, the
atomic structure loses its symmetry. We observe that there
exists an upper bound for Ex , i.e., there exists a critical electric
field Ec

x such that for Ex > Ec
x there is no local equilibrium

structure. The critical value of the normal electric field is
Ec

x = 1400 kV cm−1. The thickness of the domain wall
slightly increases as the normal electric field increases. Note

that the domain wall thickness cannot be defined uniquely, very
much like boundary layer thickness in fluid mechanics. Here,
the domain wall thickness is by definition the region that is
affected by the domain wall, i.e. those layers of atoms that
are distorted. One can use definitions like the 99%-thickness
in fluid mechanics and define the domain wall thickness as
the length of the region that has 99% of the far field rigid
translation displacement. What is important here is that no
matter what definition is chosen, the domain wall ‘thickness’
increases as the normal electric field increases. For a Ti-
centered domain wall, the domain wall thickness increases
from 3 atomic spacings (1 nm) to about five atomic spacings
(1.5 nm) for Ex = Ec

x .
Figure 3(b) depicts the y-coordinates of Ti-cores under an

external electric field Ey parallel to a Ti-centered domain wall.
It is observed that such electric fields do not alter the domain
wall thickness. Note that similar to the atomic structure for
normal fields, the atomic structure under parallel fields loses
its symmetry as well. The critical value of the parallel electric
field is Ec

y = 5900 kV cm−1, which is four times larger than
that of the normal electric field.

Figure 3(c) shows the y-coordinates of Pb-cores of a Pb-
centered domain wall under normal electric field Ex . We
observe that the critical electric field is Ec

x = 6300 kV cm−1,
which is about 4.5 times greater than the critical normal electric
field of Ti-centered walls. Also it is observed that the domain
wall thickness increases to about 11 atomic spacings (4 nm)
under a critical normal electric field. The y-coordinates of the
Pb-cores of a Pb-centered domain wall under parallel electric
field Ey are shown in figure 3(d). Similar to perfect Ti-centered
domain walls, we observe that parallel electric fields do not
affect the domain wall thickness. The critical parallel electric
field is Ec

y = 6500 kV cm−1. For Pb-centered domain walls
we see that unlike Ti-centered domain walls, the critical normal
electric field is close to the critical parallel electric field.

Figure 4 depicts the polarization profiles normal and
parallel to the domain walls. For the calculation of the cell-
by-cell polarization, we follow Meyer and Vanderbilt [4]. We
plot P = (P̄x , P̄y) = P/|Pb|, where P is the polarization and
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Figure 3. The y-coordinates of cores under an external electric field: Ti-cores in a perfect Ti-centered domain wall under (a) Ex and (b) Ey ;
Pb-cores in a perfect Pb-centered domain wall under (c) Ex and (d) Ey .

Figure 4. The polarization profiles P = ( P̄x , P̄y) of domain walls under zero, normal critical field (E c
x ), and parallel critical field (E c

y) for
(a) Ti-centered, and (b) Pb-centered domain walls.

|Pb| = 80.1 μC cm−2 is the norm of the bulk polarization [24].
Figure 4(a) shows P̄x and P̄y for Ti-centered domain walls
under zero and critical electric fields. In agreement with
Lee et al [25] and Angoshtari and Yavari [7], it is observed
that (100) Ti-centered domain walls have a mixed Ising–Néel
character, i.e., the polarization rotates normal to the (100)-

plane near the domain wall. For E = 0, the maximum
normal component of the polarization is about 2% of the
bulk polarization. For E = Ec

x , as can be expected, a
normal electric field causes the positive and negative charges
to have normal displacements that cause a polarization in the
x-direction. This normal component of the polarization (P̄x )
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Figure 5. The y-coordinates of Ti-cores in an O1-defective domain wall under (a) normal (Ex ), and (b) parallel (Ey) external electric fields.

reaches to about 13.5% of the bulk polarization at Ec
x , but

we observe that normal electric field Ec
x does not have a

remarkable effect on the parallel component of polarization,
P̄y . On the other hand, we observe that under E = Ec

y ,

P̄x does not change considerably but P̄y has an unsymmetric
profile with the maximum value of about 105% of the bulk
polarization.

Figure 4(b) presents similar results for Pb-centered
domain walls. Similarly to Ti-centered domain walls, we
observe that Pb-centered domain walls have a mixed Ising–
Néel character [7, 25] with P̄x about 2% of the bulk
polarization for zero electric field. For E = Ec

x , P̄x reaches
to about 38% of the bulk polarization. Also we observe that
Ec

x has more impact on P̄y compared to Ti-centered domain
walls. Finally, it is observed that similar to Ti-centered domain
walls, Ec

y does not have a significant effect on P̄x but makes P̄y

unsymmetric with maximum value of about 107% of the bulk
polarization.

4.2. Defective domain walls

In this part we report the structure of defective domain walls
under normal and parallel external electric fields. Because
the results for O1- and O3-defective domain walls are similar,
we only present the results for O1-defective domain walls,
which are Ti-centered. Note that as we mentioned earlier,
O2-defective domain walls, which are Pb-centered, are not
stable. Our calculations show that they are not stable even
under external electric fields. We had earlier shown that they
are not stable under strain as well [18].

Figure 5(a) depicts the y-coordinates of Ti-cores in an
O1-defective domain wall under normal external electric field
Ex . The critical normal field is Ec

x = 380 kV cm−1. It
is observed that the domain wall thickness increases up to
about 16 atomic spacings (6 nm) under the critical normal
electric field. Comparing O1-defective atomic structure with
the structure of a perfect Ti-centered domain wall under a
normal field (figure 3(a)), we observe that oxygen vacancies
increase the thickness of the domain wall considerably. Also
it is observed that the critical normal electric field of defective

domain walls is smaller than that of a perfect Ti-centered wall.
Figure 5(b) shows the y-coordinates of Ti-cores in an O1-
defective domain wall under parallel electric field Ey . The
value of the critical field is Ec

y = 5100 kV cm−1. Here
we observe a major difference between the atomic structures
of perfect and defective domain walls; unlike perfect domain
walls, parallel electric fields increase the thickness of defective
domain walls up to about 13 atomic spacings (5 nm) under the
critical parallel electric field. Also similar to normal electric
fields, we observe that the critical electric field of defective
domain walls is smaller than that of perfect domain walls.

Defective domain walls are thicker than perfect domain
walls. The observation that the defective domain walls
have smaller critical electric fields is in agreement with the
experimental observations of Choudhury et al [10]. They
observed that the threshold field for domain wall motion
exponentially decreases as the domain wall width increases.

Figure 6 shows the polarization profiles for O1-defective
domain walls. It is observed that similarly to perfect domain
walls, defective domain walls have an Ising–Néel character
with a P̄x of about 2.5% of the bulk polarization for zero
electrical field. For E = Ec

x , P̄x reaches to about 55% of
the bulk polarization, which is greater than the corresponding
values for perfect domain walls, and P̄y shows a more Ising-
type character. As we mentioned earlier, for E = Ec

y we
observe a difference between perfect and defective domain
walls; unlike perfect domain walls, parallel electric fields have
a considerable effect on P̄x : it reaches to about 55% of the bulk
polarization under Ec

y . Similarly to perfect domain walls, P̄y

has an unsymmetric distribution and reaches to about 106% of
the bulk polarization.

5. Concluding remarks

In this work we obtained the atomic structure of perfect and
defective 180◦ domain walls in PbTiO3 under both parallel and
normal external electric fields using the method of anharmonic
lattice statics. We observe that an electric field can increase
the thickness of a domain wall considerably (up to five times
thicker than domain walls under no external electric field).
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Figure 6. The polarization profiles of O1-defective domain walls
under (a) zero, (b) normal critical field (E c

x ), and (c) parallel critical
field (E c

y). (d) Components of the polarization vector P = ( P̄x , P̄y)
of O1-defective domain walls under zero, E c

x , and E c
y .

This can be one reason for the wide scatter of the domain
wall thicknesses observed in experimental measurements. In
agreement with previous works [11, 18], we observe that
oxygen vacancies can increase the thickness of the domain
walls. We also observe that by increasing the external electric
field we reach a critical electric field Ec. For E > Ec there
is no local equilibrium configuration and hence Ec can be
considered as an estimate of the threshold field for the domain
wall motion. We observe that defective domain walls, which
are thicker than perfect domain walls, have smaller critical
fields. This is in agreement with the experimental observations
that show the threshold field decreases as the domain wall
thickness increases [10].

In practice, it has been observed that domain walls
move or breakdown under electric fields in the order of a
few kV cm−1 [10, 26], which are considerably smaller than
the high fields that we consider here. We do not consider
breakdown of the domain walls in our model. Also, as

was mentioned earlier, the high density of oxygen vacancies
that we assume is unrealistic. In practice, steps and other
complex defects on domain walls can increase the thickness
of the domain walls considerably [8, 9, 24]. Therefore, as
the threshold fields for domain walls decrease exponentially
with the increase of the domain wall width [10], one can
obtain better estimates for the critical electric fields with
more realistic models for defects on domain walls. Also, as
suggested by Roy et al [26] electric fields change the potential
parameters. In this paper our aim is to demonstrate that even
with our simple model, one can show that the threshold field
has an inverse relation with the domain wall thickness.
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