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ABSTRACT

In this paper, we study the effect of normal and shear strains and oxygen vacancies on the structure of
180¢° ferroelectric domain walls in PbTiOs. It is known that oxygen vacancies move to the domain walls
and pin them. Hence, we assume a periodic arrangement of oxygen vacancies on both Pb-centered and Ti-
centered domain walls in PbTiO3. We use a semi-analytic anharmonic lattice statics method for obtaining
the relaxed configurations using a shell potential. In agreement with recent ab initio calculations, we
observe that a Pb-centered domain wall with oxygen vacancies is not stable even under strain. Our
semi-analytic calculations for PbTiO3; show that oxygen vacancies affect the structure of 180° domain
walls significantly but do not have a considerable effect on the thickness of domain walls; they broaden
the domain walls by about 50%. We also study the effect of normal and shear strains on both perfect and
defective 180° domain walls. We observe that normal and shear strains affect the structure but do not

change the domain wall thickness.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ferroelectric perovskites have been the focus of intense re-
search in recent years because of their potential applications in
high strain actuators, high density storage devices, etc. [2]. It is
known that macroscopic properties of ferroelectrics are strongly
dependent on domain walls, which are extended two-dimensional
defects. Any fundamental understanding of ferroelectricity in per-
ovskites requires a detailed understanding of domain walls in the
nanoscale as these defects are atomically sharp (see [8] and refer-
ences therein). Theoretical studies of domain walls have revealed
many of their interesting features. From both ab inito calculations
[16,18,20,21] and anaharmonic lattice statics calculations [32] it is
now known that ferroelectric domain walls are atomically sharp. In
all these studies, the structure calculations have been done for
perfect domain walls and free of strain. However, domain walls
interact with other types of defects and mainly with oxygen vacan-
cies and this may affect the structure and properties of domain
walls. Strain may also have a significant effect on domain wall
structure.

It is known that the presence of point defects can have
important effects on the properties of perovskites. For example,
Bujakiewicz-Koronska and Natanzon [4] show that point defects
alter the elastic constants of Naj;;Bi;;;TiOs significantly. In this
paper, we study the effect of oxygen vacancies and normal and
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shear strains on the structure of 180° ferroelectric domain walls.
It is known that oxygen vacancies move to the domain walls and
pin them and thus we assume a periodic arrangement of oxygen
vacancies on both Pb-centered and Ti-centered domain walls. We
use a semi-analytic anharmonic lattice statics method for obtain-
ing the relaxed configurations using a shell potential. In agreement
with the recent ab initio calculations, we observe that a Pb-cen-
tered domain wall with oxygen vacancies is not stable even under
strain. Our semi-analytic solutions for PbTiO; show that oxygen
vacancies increase the thickness of the domain wall by about
50%. This is different from the results of a recent experimental
measurements of 90° domain walls in PbTiO5; using AFM by Shilo
et al. [28]. They observed that there is a large variation in domain
wall thickness with respect to position (0.5-4.0 nm). This is not
very surprising as vacancies may interact differently with different
types of domain walls. In our calculations, we observe that oxygen
vacancies have a significant effect on the detailed structure of 180°
domain walls. Our result is in agreement with a recent continuum
study of interaction of oxygen vacancies with domain walls [30].
Xiao et al.’s continuum model predicts that 180° and 90° domain
walls have quite different interactions with oxygen vacancies.
There are several works in the literature on the effect of strain
on ferroelectric domain walls showing that strain can have impor-
tant effects on domain walls. For example, both experiments [27]
and ab initio calculations [29] show that shear stress applied to
90° domain walls in PbTiO3; develops polarization reorientation
through a domain wall movement perpendicular to itself known
as stress-induced domain switching. To our best knowledge, there
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are no atomistic calculations in the literature on the effect of strain
on the structure of 180° domain walls in PbTiOs.

This paper is structured as follows: In Section 2 we briefly re-
view the previous studies of ferroelectric domain walls. We then
present the main ideas of anharmonic lattice statics analysis of
perfect and defective ferroelectric domain walls under strain. In
Section 3 we report some numerical results for 180° domain walls
in PbTiOs3 using a shell potential. Conclusions are given in Section 4.

2. Ferroelectric domain walls

Ferroelectric domain walls have been studied extensively both
theoretically and experimentally. For recent experimental investi-
gations see [28,9] and references therein. Shilo et al. [28] studied
the structure of 90° domain walls in PbTiOs; using atomic force
microscopy (AFM). They measured the surface topography of a gi-
ven sample and compared it with a displacement field that is ob-
tained from the Devonshire-Ginzburg-Landau phenomenological
model. They calculated the thickness of two domain walls at two
different positions and observed thicknesses of 0.5nm and
4.0 nm for the two domain walls. They then conjectured that pres-
ence of point defects is responsible for this variation. Lee et al. [14]
used a two-dimensional square lattice model that has a continuum
order parameter interacting with a lattice of Ising spins, where the
Ising spins model the presence or absence of point defects. They
show that depending on the parameters used in their model, one
can reproduce the main features of the experimentally observed
variation in domain wall thickness in Shilo et al.’s [28] experi-
ments. However, one should note that Shilo et al.’s results may
not apply to all types of domain walls as they studied only the
90° domain walls.

Ab initio calculations of He and Vanderbilt [11] show that oxy-
gen vacancies have a tendency to move to domain walls and pin
them. They also observed that defective domain walls are Ti-cen-
tered. In their calculations, they had to assume a periodic array
of domain walls with a high density of charge-neutral oxygen
vacancies. There have also been other ab initio calculations of point
defects in PbTiO5 in the bulk [18,19,6]. Xiao et al. [30] studied the
effect of oxygen vacancies on the structure of domain walls in
tetragonal BaTiO3 using a continuum theory that takes into ac-
count the fact that ferroelectrics are wide-band-gap semiconduc-
tors. In their numerical calculations they observed that 180° and
90° domain walls behave differently in response to oxygen vacan-
cies. In particular, they saw charge accumulation near 90° domain
walls with a potential drop across the wall while these were absent
in the case of 180° domain walls.

2.1. Anharmonic lattice statics of domain walls

Method of lattice statics was introduced by Matsubara [15] and
Kanazaki [12] and was extensively used by Born and Huang [3]. For
more details and history see Ortiz and Phillips [17] and Yavari et al.
[31,32]. In this paper, we study the possibility of domain wall
broadening by oxygen vacancies in the case of 180° domain walls
in PbTiO3. We also study the effect of shear and normal strains
on both defect-free domain walls and domain walls with oxygen
vacancies.

We present a semi-analytical solution of structure of 180° do-
main walls using an anharmonic lattice statics method [31,32].
From ab initio calculations of oxygen vacancies in PbTiOs; [11]
and also molecular dynamics simulations of CaTiOs [5], we know
that oxygen vacancies have a tendency to move to the domain
walls and pin them. Therefore, we study the structure of domain
walls with oxygen vacancies sitting on the wall. To be able to solve
the discrete governing equations analytically we need to assume

some periodicity for the collection of vacancies on the wall. We
consider a 180° domain wall in an infinite crystal and assume that
oxygen vacancies are periodically arranged on the domain wall.
Thus, the only restrictive assumption is the periodicity and high
density of vacancies on the domain wall. In reality, oxygen vacan-
cies can be distributed randomly and have a smaller density. How-
ever, the results from our calculations can still provide some
important quantitative information on the effect of oxygen vacan-
cies on the structure of 180° domain walls in the nanoscale.

2.2. Defect-free 180° domain walls

We use a shell potential for modeling PbTiO3 [1] and all the cal-
culations are performed for T = 0 K. Denoting the collection of cores
and shells by #, i € & represents a core (or shell) in the collection.
In a shell potential, total energy has the following form [7,25,26]:

(”@({xi}ie:f) = é')short({xi}iey) + é')ltmg({xi}ie:f) + gcore—shell({xi}iey)v
(2.1)

where {x},_, is the current position of cores and shells. Short range
energy depends explicitly on the position vectors of the massless
shells. Long range energy is the Coulombic energy of all cores and
shells, excluding core-shell interaction in the same atom. The
core-shell energy prevents the shell collapse in each atom and is
usually a polynomial function of the pairwise distance of core
and shell in a given atom. In the equilibrium configuration % =
{x'},., C R?, energy attains a local minimum, i.e.

g;i:o Vie Z. (2.2)

However, in the case of a defective crystal, the problem is that
we do not know the relaxed configuration a priori. Thus, we start
with a reference configuration %, = {x}},_, that is not necessarily
force free [31]. In the case of a 180° domain wall, %4, is a nominal
defect, i.e., a configuration in which cores and shells on the left and
right sides of the wall have their positions in the bulk configura-
tions corresponding to Ps and —P;, respectively, where Ps is the
spontaneous polarization (see Fig. 2.1). This reference configura-
tion is not force free. Let us denote the discrete field of unbalanced
forces by

= {7%(%)}1@ (23)

In anharmonic lattice statics one finds the discrete deformation
mapping ¢ : 4, — % that takes the chosen nominal defect to its re-
laxed configuration. Note that a different choice of reference con-
figuration %; leads to a different discrete deformation mapping
@' : B, — A.1f the two reference configurations are ‘close’, i.e., they
are in the same energy well, we would converge to the same re-
laxed configuration. The discrete deformation map is found semi-
analytically as follows.

Taylor expanding (2.2) about the reference configuration and
ignoring terms higher than quadratic in displacements, one obtains
the following linearized governing equations:

o0& , & S
o (#0)+ Y oo (40) (X~ %) = 0, (2.4)
j
or
>’ .
XX (Bo)W =f; Vie 2, (2.5)
j

where W =% —x). For a defect-free domain wall, atoms (cores,
shells) of the same type parallel to the wall will have the same
displacement vectors. This symmetry simplifies the linear equations
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Fig. 2.1. Reference configuration for a Ti-centered 180° domain wall in PbO and TiO, planes. Note that cores and shells on the domain wall have no relative shifts and cores
and shells on the left and right sides of the wall have opposite relative shifts. a and N are lattice parameter and size of the simulation box, respectively.

(2.4) considerably [13]. Assume that the defective crystal £ hasa 1-
D symmetry reduction, i.e., it can be partitioned into two-dimen-
sional equivalence classes, i.e.

M
z =1 |7n),

aeZ I=1

(2.6)

where (i) is the equivalence class of all the atoms of type I and
index o with respect to atom i. Here we assume that # is a
multilattice of M simple lattices (for PbTiOs, M = 10). Particle i is
an arbitrary core (shell) and assuming that it is in the nth equiva-
lence class of its type, %Iy is the set of those cores (shells) of type
I that are in the equivalence class n + . For a free surface, for exam-
ple, each equivalence class is a set of cores (shells) lying on a plane
parallel to the free surface. Using this partitioning one can write

>

& o XL P
) = 5T Y A e,

a=—00 JE€L 1ai)
(2.7)
where the prime on the second sum means that the term o.=0, [ =i

is omitted. The linearized discrete governing equations are written
as

Z Z;\ill(ilaum + | — Z Z;\i] Kim:| ui = f,', (28)
o=—00 Ol=—00
where
>éE o8
Kii, = j m(@@ fi = —ﬁ(%o),
u =X X=X X Ve S (2.9)

Unit cell displacement vectors are defined as X, = (ul,...,uM)".
Now the governing equations in terms of unit cells displacements
are

m

Z A, (MXpio =F, nez,

o=-—m

(2.10)

where A, (n) € R*¥3M X, F, € R*™ and m is the range of interac-
tion of unit cells and m = 1 would be accurate enough for the shell
potential [32]. Eq. (2.10) is a linear vector-valued ordinary differ-
ence equation of order 2m with variable coefficient matrices and
the unit cell force vectors and the unit cell stiffness matrices are
defined as

f Kllcx KlZa KlMaz
" Ky Ko Kows
Fn = 5 Aac(n) = . . nez
¢ : :
Mn Kz Kios Ko
(2.11)

Note that A,(n) explicitly depends on n and this reflects the fact
that close to the domain wall force constants may change.

2.3. 180° Domain walls with oxygen vacancies

It is known for quite sometime that for a large enough number
of oxygen vacancies in perovskites one would see a self-organized
planar arrangement of oxygen vacancies (see [24,10] and refer-
ences therein. See also Zhang [33] for atomistic calculations and
discussions on oxygen vacancies in BaTiO3 and their different
possible arrangements). Therefore, similar to the ab initio calcula-
tions of He and Vanderbilt [11], we assume that oxygen vacancies
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Fig. 2.2. Unit cell indexing in the reference configuration of a Ti-centered 180° domain wall. Note that because of symmetry displacements in the z-direction are all zero.

interact with a domain wall and have a planar structure coinciding
with the domain wall.

Eq. (2.10) is the governing equation for a defective domain
wall as long as the oxygen vacancies are arranged periodically
on the domain wall. However, A,(n) and F,, would change, in gen-
eral. We can simplify the solution of the discrete boundary-value
problem even further by noting that the displacements of cores
and shells on the left side of the wall are related to those on
the right side of the wall, i.e., the wall is a reflection symmetry
plane. This reduces (2.10) to an ordinary difference equation on
Nz, i.E.,

A Xo1 +AX, + A X =F, n>2, (2.12)
with the following boundary equations:

A 1(0)X_; +A:(0)X; =F, (2.13)
Ao(1)X; +A(1)X; =F;. (2.14)

Note that A,(n)=A,n > 2 and also X_, =-X;, Vn > 0 and hence
Xo = 0. Note also that because of symmetry the z-component of all
displacements are zero and hence X, € R*, |n| > 1. For a defective
Ti-centered domain wall with O1 or 03 atoms removed, X, € R*
(see Fig. 2.2).

The governing discrete boundary-value problem is closed by
requiring boundedness of displacements at infinity, i.e.

lim X, | < co. (2.15)

One should note that the infinite crystal may undergo a rigid
translation after relaxation. Condition (2.15) does not exclude this
possibility. Note also that assuming that the domain wall is a mir-
ror plane for displacements removes the translation invariance of
the governing equations, i.e., those cores and shells that lie on
the domain wall in the reference configuration remain on the do-
main wall after relaxation (i.e. Xo = 0).

When there are oxygen vacancies on the domain wall, one
needs to look at boundary equations carefully. When modeling
PbTiOs by a shell potential, an oxygen vacancy means removal of
the core and shell of the oxygen atom and because we assume a
charge-neutral oxygen vacancy, there will be a charge redistribu-
tion. This will affect the shell charges of the neighboring shells. It
is known that charge redistribution is highly localized. Thus, in
our calculations we distribute the charge AQ= Qs+ Q. where Qs
and Q. are oxygen shell and core charges, only to the fourteen first
nearest neighbors of each oxygen vacancy. Most of the existing
shell potentials have fixed charges. However, in a more realistic
model shell charges should be variable to be able to adjust them-

selves to the environment, e.g., in the presence of a vacancy. There
have been several efforts in the literature on building empirical
charge-variable models for different systems based on Rappe and
Goddard’s charge equilibrium method [23] and its extensions.
Here, we use a fixed-charge shell potential for PbTiOs and are
not aware of any charge-variable shell model for this material.
Therefore, we have to model the charge transfer due to oxygen
vacancies approximately. However, this should not have severe ef-
fects on the results as our numerical tests show. We studied the
sensitivity of solutions to the exact way of charge redistribution;
we compared two cases: in the first case we distributed the charge
equally to the nearest neighbors and in the second case we distrib-
uted the charge to nearest neighbors depending on their distances
from the vacancy and assuming that charge distribution is expo-
nentially decaying. We did not see much difference and thus in this
work we distribute the charge equally between the nearest
neighbors.

We consider three types of defective domain walls: (i) 02-
defective, (ii) O1-defective, and (iii) O3-defective. An 02-defective
domain wall is Pb-centered. See Fig. 2.1 for this notation. We see
that the anharmonic lattice statics iterations do not converge in
this case, i.e., this is not a stable configuration.! This is in agree-
ment with ab initio calculations [11] that predict Ti-centered
defective domain walls. O1 and O3-defective domain walls are
Ti-centered with no O1 and O3 cores and shells, respectively, on
the domain wall in the reference configuration (see Fig. 2.2).

The linearized governing equations can be solved exactly using
the method proposed in [31]. Thus, we are able to solve the lin-
earized governing equations exactly. Now to obtain the fully non-
linear solutions we use a modified Newton-Raphson iteration.
Solving the linearized problem, we modify the reference configu-
ration by imposing the harmonic displacements and then calcu-
late the new unbalanced forces exactly using the interatomic
potential [31]. Continuing in this manner, if there is an equilib-
rium configuration close to the chosen reference configuration,
unbalanced forces converge to zero. In the present work, conver-
gence means that all forces have magnitudes less than 0.05 eV/A.
Now, let us briefly explain the modified Newton-Raphson meth-
od, called the quasi-Newton method, that we use throughout this
work.

Newton method is based on the following quadratic approxima-
tion near the current configuration #*:

E(B* + 3% = 6(#) + V(B & + % (847 - H(#) - 3¢ + o(\5k|2),
(2.16)

1 This is also the case when the defective domain wall is under strain.
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where 8¢ = %! — #* and H is the Hessian matrix. By differentiat-
ing the above formula with respect to &%, we obtain the Newton
method for determining the next configuration %' = %* + 5%

*=-H (%) VS (2.17)

Note that in order to converge to a local minimum, the Hessian
must be positive definite.

If the calculation of the Hessian in each iteration becomes
numerically inefficient (like the present problem), one can use the
quasi-Newton method. The main idea behind this method is to start
from a positive-definite approximation to the inverse Hessian and
to modify this approximation in each iteration using the gradient
vector of that step. Close to the local minimum, the approximate in-
verse Hessian approaches the true inverse Hessian and we would
have the quadratic convergence of the Newton method [22]. Here
we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
[22] for generating the approximate inverse Hessian:

Fed (€ A)e(C-A)

ctoc4+ 2 : +(AT-C-Aucu, (218
&7 -A AT-CA ( ) 218)
where C' = (H)™', A = V& — Ve, and
. P
_ 9 c-A (2.19)

()T-A AT-C A

Calculating C*', one then should use C*! instead of H™! to up-
date the current configuration for the next configuration B =
#* + &% 1If C*1 is a poor approximation, then one may need to per-
form a linear search to refine #**! before starting the next iteration
[22].

2.4. 180° Domain walls under strain

We put both the perfect and defective domain walls under nor-
mal and shear strains (see Fig. 2.1). We consider both compressive
and tensile strains and also shear strains both along and opposite
to the polarization directions. We apply strains to the defective lat-
tice by imposing displacements in the proper directions far enough
from the domain wall (displacements are in x- and y-directions for
normal and shear strains, respectively). Note that the defective lat-
tice is translated rigidly on both sides of the domain wall outside
the computational box. Applying strain to the lattice should be
done gradually. For both perfect and defective domain walls, we
start with the strain-free relaxed domain wall configuration 4.
Then, we apply proper boundary displacement to increase (or de-
crease) strain by the value A€ to obtain the strained configuration
Zac. Note that Ae should be small enough such that % and %, are
close to each other. In the present work, Ae=0.001 for normal
strains and A€ =0.0005 for shear strains. Next, we start with %,
and calculate %,,.. Repeating this procedure, one can apply large
strains to the defective lattice and obtain its relaxed configuration
4. for a given strain €. Using the notation of the previous sections,
we summarize our algorithm for applying strain as follows.

Input data: %, A€ (strain increment)
> Initialization
> Apply B.C. to 4. and obtain %'

> H'=H|,_, and set C' = (H")™'

> Do until convergence is achieved
> Calculate forces
> Use quasi-Newton method to calculate C¥*

> Use C**! to obtain #*'!

> End Do
> End

3. Numerical results
3.1. Perfect domain walls

In our numerical examples we show the anharmonic displace-
ments with respect to the reference configuration. The first step
is to calculate unbalanced forces. Our choice of reference configu-
rations makes the unbalanced forces localized in the direction per-
pendicular to the domain wall. However, one should note that a
domain wall is an extended defect and unbalanced forces are not
localized in the tetragonal c-direction. We are able to handle this
nonlocality issue using the symmetry reduction idea. Since core
and shell displacements are close, we only report the core displace-
ments in this section. We assume 2N unit cells in the simulation
box (see Fig. 2.1). Our numerical experiments show that N=10
would be enough for calculating displacements as the structure
does not changed by using larger values for N.

Fig. 3.1 shows the displacements of Pb and Ti cores in the a- and
c-directions (u, and u,, respectively) for a perfect Ti-centered do-
main wall under axial strain €,. We plot the displacements for dif-
ferent values of the axial strain between —0.03 and 0.03. As
expected, u, has a larger variation than u, under the axial strain.
However, note that axial strain does not have a significant effect
on domain wall thickness; it is seen that all the distortions occur
within two lattice spacings on each side of the domain wall, i,e. do-
main wall thickness is about 1.0-1.5 nm regardless of the value of
the axial strain. Fig. 3.2 shows displacements of the same domain
wall under different values of shear strain 7,,. The c-displacements
are in the polarization direction for negative values of y,, and are in
the opposite direction for positive values of 7,,. Hence, we do not
see symmetric displacements with respect to the unstrained struc-
ture. Also, we observe that unlike axial strains, shear strains have a
considerable effect on both u, and u.. Similar results for a perfect
Pb-centered domain wall are shown in Figs. 3.3 and 3.4.

3.2. Domain walls with oxygen vacancies

We report the displacements of a Ti-centered 180° domain wall
with oxygen vacancies under axial and shear strains. Since dis-
placements of O1-defective and O3-defective walls are similar,
here we only report the results for O1-defective walls. Fig. 3.5
shows the displacements for an O1-defective domain wall under
normal strain. O1 vacancies lie on the domain wall and because
of symmetry have zero displacements, i.e. they will stay on the do-
main wall after deformation. For the strain-free configuration, all
distortions parallel to the domain wall (c-displacements) occur
within two lattice spacings on each side of the wall, i.e., thickness
of the domain wall in c-direction is not affected by oxygen vacan-
cies. However, it is seen that structure is significantly different
from that of a perfect domain wall. It is also seen that unlike per-
fect domain walls, a-displacements have the same order of magni-
tude as the corresponding c-displacements. We observe that the a-
displacements are nonzero within three lattice spacings on each
side of the wall. Thus, the thickness of an O1-defective domain wall
is about 1.5-2.0 nm, i.e. oXygen vacancies increase the domain wall
thickness by about 50%. Here similar to perfect domain walls, we
see that normal strains do not have a significant effect on the thick-
ness of the domain wall. Fig. 3.6 shows the displacements of an O1-
defective domain wall under shear strain. Again, we see that shear
strain has a significant effect on the displacements of the domain
wall. Also note that domain wall thickness increases in a-direction,
but this increase is less than the increase observed for perfect wall
(see Fig. 3.2).

The only restriction in our calculations is the high density
of oxygen vacancies (similar to the existing ab initio calcula-
tions). The resulting stiffness coefficient matrices become highly



A. Angoshtari, A. Yavari/Computational Materials Science 48 (2010) 258-266 263

0.04
0.02
—~
o<
~ 0
3
S
-0.02
Pb
-0.04
-10 -8 -6 4 -2 0 2 4 6 8 10 -10-8 6 4 -2 0 2 4 6 8 10
n n
0.03 0.2
0.02
0.1
0.01
o —~~
0< SDL-L-B-5-0-L- O<
~— 0 - b S L e e e i el ~ 0
s W\ TTTTEEEE S
S S
-0.01
-0.1 :
-0.02 Tj Ti
-0.03 0.
-10 -8 6 4 -2 0 2 4 6 8 10 -10-8 -6 4 -2 0 2 4 6 8 10
n

n
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ill-conditioned by increasing the period of vacancies. Therefore, we
did the calculations only for the three cases where all 01, 02, or 03
oxygen atoms are removed from the domain wall. In all the three
cases unbalanced forces in the tetragonal c-direction are nonzero
only in two unit cells on each side of the wall. We checked this
for several lower density arrangements of oxygen vacancies and
observed the same local property for unbalanced forces. In the case
of perfect domain walls, unbalanced forces perpendicular to the
wall are very small and nonzero only in two layers on each side
of the wall. In the case of defective domain walls, these unbalanced
forces are nonzero in three unit cells on each side of the wall. This
was also the case for several other lower density arrangements of
oxygen vacancies on the wall. Thus, we believe that the high den-
sity of oxygen vacancies does not have a significant effect on the
thickness of the defective domain wall, although it affects the
structure. In other words, lowering the density of oxygen vacancies
we expect to see changes in structure but no significant change in
thickness.

4. Concluding remarks

In this paper, we presented a semi-analytic study of the effect of
oxygen vacancies and strain on the structure of 180° domain walls
in PbTiO5 using a shell potential. We considered both Pb-centered
and Ti-centered domain walls with oxygen vacancies sitting on
them. We observed that Pb-centered domain walls with oxygen
vacancies are not stable (even under strain) and this is in agree-
ment with the recent ab initio calculations that predict Ti-centered
defective domain walls. To be able to solve for the structure of
defective domain walls semi-analytically we have to work with a
high density of oxygen vacancies on the domain wall (similar to
the existing ab initio calculations). However, we believe that den-
sity of oxygen vacancies does not have a noticeable effect on the
thickness of the defective domain wall.

We observe that oxygen vacancies change the structure of a
180° domain wall significantly. One important effect of oxygen
vacancies is that in the presence of oxygen vacancies, displace-
ments perpendicular to the domain wall are of the same order of
magnitude as the displacements in the tetragonal c-direction. In
the anharmonic lattice statics iterations we observe that a-dis-
placements have a fairly long tail, about five lattice spacings on
each side of the wall. However, the thickness of a defective 180°
domain wall is about 1.5 times that of a perfect domain wall. This
is different from the results of a recent experimental study of 90°
domain walls in PbTiO3 using AFM and the observed large varia-
tions of domain wall thickness in the internal 0.5-4.0 nm [28].
However, our results are in agreement with those obtained from

a recent continuum model that predicts different behaviors of
180° and 90° in response to point defects [30]. We studied the ef-
fect of strain on both perfect and defective 180° domain walls. We
observed that normal strains have a greater effect on a-displace-
ments but shear strains have a significant effect on both a- and
c-displacements. Finally, we observe that the domain wall thick-
ness does not change significantly under normal or shear strains.
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