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Using the method of anharmonic lattice statics, we calculate the equilibrium structure of steps on
180° ferroelectric domain walls �DWs� in PbTiO3. We consider three different types of steps: �i�
Ti–Ti step that joins a Ti-centered DW to a Ti-centered DW, �ii� Pb–Pb step that joins a Pb-centered
DW to a Pb-centered DW, and �iii� Pb–Ti step that joins a Pb-centered DW to a Ti-centered DW. We
show that atomic distortions due to these steps broaden a DW but are localized, i.e., they are
confined to regions with dimensions of a few lattice spacings. We see that a step locally thickens the
DW; the defective DW is two to three times thicker than the perfect DW depending on the step type.
We also observe that steps distort the polarization distribution in a mixed Bloch–Néel like way;
polarization rotates out of the DW plane near the steps. Our calculations show that Pb–Pb steps have
the lowest static energy. © 2010 American Institute of Physics. �doi:10.1063/1.3501050�

I. INTRODUCTION

Ferroelectric materials are an important subclass of polar
materials due to their wide range of applications in ultra-
sound imaging, microelectromechanical systems, high strain
actuators, electro-optical systems, photothermal imaging,
and high density storage devices.1 It is known that some
important properties of ferroelectric materials are due to the
presence of domain walls �DWs�, which are two-dimensional
�2D� defects that separate regions with uniform polarization.2

This explains the importance of a detailed study of the prop-
erties of the DWs.

From both experimental and theoretical studies, it is ob-
served that the thickness of DWs can vary from a few
angstroms3–7 to a few micrometers.8,9 It has been suggested
that this wide scatter in the DW thickness is due to the pres-
ence of point defects.10–12 Another important property of
DWs is the behavior of the polarization profile near the DW.
It is well known that 180° DWs have an Ising-like nature.
Using Monte Carlo simulation, Padilla et al.4 showed the
predominant Ising-like character of 180° DWs in tetragonal
BaTiO3 along the tetragonal axis. In 180° DWs, polarization
vector can either rotate in a plane parallel to the DW �Bloch
type� or normal to the DW �Néel type�.13 Subsequent works
on the DWs showed that DWs can have mixed characters.
Using density functional theory, Lee et al.13 showed that
while 180° DWs in PbTiO3 are predominantly Ising-like,
they have some Néel character as well. Having the DWs
parallel to the �100�-plane, we know that polarization is
mainly along the �010�-direction �see Fig. 1�. As Lee et al.13

showed close to the DW polarization has normal components
�normal to the DW� with magnitudes in the order of 1%–2%
of the bulk polarization. Angoshtari and Yavari6 observed a
similar behavior at finite temperatures for perfect 180° DWs.
They saw normal components in the order of 2% of the bulk
polarization in their finite-temperature structure calculations.

Recently, first-principle-based simulations have led to the
prediction of vortex type polarization distribution in zero-
dimensional ferroelectric nanodots.14,15

It is believed that steps have an important role in DW
motion. Nettleton16 proposed a model for sidewise displace-
ment of a 180° DW in a single crystal barium titanate and
suggested that the formation of an irregular pattern of steps
of varying shapes and sizes results in the motion of the DW
and the speed of the DW motion is determined by the rate of
formation and disappearance of these steps. Shur et al.17 con-
sidered steps on 180° DWs and proposed a mechanism for
DW motion in weak and strong fields. Shin et al.18 used
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FIG. 1. �Color online� �a� The relaxed configuration of the unit cell of
tetragonal PbTiO3. a and c are the tetragonal lattice parameters. Note that
O1, O2, and O3 refer to oxygen atoms located on �001�, �100�, and �010�-
planes, respectively. � denotes the y-displacements of the atoms from the
centerosymmetric position and arrows near each atom denote the direction
of these displacements. �b� Schematic profile of polarization close to a step.
�c� Two different possibilities for a Pb–Pb step.
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atomistic molecular dynamics and coarse-grained Monte
Carlo simulations to analyze the nucleation and growth
mechanism of DWs in PbTiO3 and BaTiO3.

In this work we investigate the effect of steps, which are
one-dimensional �1D� defects, on 180° DWs parallel to
�100�-planes in PbTiO3 using the anharmonic lattice statics
method. We consider Ti–Ti steps that join a Ti-centered DW
to another Ti-centered DW, Pb–Pb steps that join a Pb-
centered DW to another Pb-centered DW, and Pb–Ti steps
that join a Pb-centered DW to a Ti-centered DW. As the
initial configuration, we start from the atomic configuration
of perfect 180° DWs and then relax the structure iteratively
to obtain the optimized atomic configuration.

This paper is organized as follows. In Sec. II, we explain
the initial geometry of steps that we analyzed throughout this
work. In Sec. III, we discuss the method of anharmonic lat-
tice statics and the shell potential for PbTiO3 that we used in
our calculations. We present our numerical results in Sec. IV.
The paper ends with concluding remarks in Sec. V.

II. GEOMETRY OF STEPS

The geometry of the relaxed unit cell of tetragonal
PbTiO3 is shown in Fig. 1�a�. The nonzero relative displace-
ments in the �010�-direction between the center of the posi-
tive and negative charges generate a polarization in the
�010�-direction �we are using a shell potential�. In the 180°
DWs, direction of polarization switches across the DW.
There are two types of �100� 180° DW in PbTiO3, namely,
Ti-centered and Pb-centered DWs. Using the relaxed bulk
configurations, it is possible to calculate the atomic structure
of both types.5

Consider a DW parallel to a �100�-plane. By a step on
the DW we mean the region where the DW joins another
DW parallel to the first wall with an offset in the
�100�-direction �see Figs. 1�b� and 1�c��.19 We consider three
different steps: Ti–Ti, Pb–Pb, and Pb–Ti. Figure 2 shows the
unrelaxed initial configuration for each step. Note that as-
suming that the step is limited to a single unit cell, i.e., if the
two DWs are one or half a lattice spacing apart, there would
be more than one possibility for the step configuration. As an
example, we plot two possibilities for Pb–Pb step in Fig.
1�c�. In this figure, Case I shows a Pb–Pb step in �001� PbO-
plane while Case II shows another Pb–Pb step in �001�
TiO2-plane. Note that there are still other possibilities for
Pb–Pb steps. We should emphasize that the configurations
shown in Figs. 1�c� and 2 are only the initial configurations
that we use as the starting point for finding the final equilib-
rium configuration. We observe that as far as we confine the
step to a single unit cell, the anharmonic lattice statics itera-
tions converge to the same solution regardless of the initial
configuration of the step. Therefore, the exact choice of the
initial step configuration is not important in the final equilib-
rium structure. We should also emphasize that we are ana-
lyzing a single step on a single DW in an infinite crystal, i.e.,
no periodicity assumptions are made. Note that in Fig. 2,
DWs away from the step have polarization only along the
�010�-direction. Note also that we assume a 2D symmetry
reduction, which means that all the atoms with the same x

and z coordinates �x, y, and z are coordinates along the �100�,
�010�, and �001�-directions, respectively� have the same dis-
placements. Therefore, we partition the three-dimensional
lattice L as L=�I��,��ZLI��, where LI�� and Z are 1D
equivalence classes parallel to the �010�-direction and the set
of integers, respectively. See Refs. 20 and 21 for more details
on the symmetry reduction.

III. METHOD OF CALCULATION

We use the method of anharmonic lattice statics20 to cal-
culate the atomic structure of steps. We use a shell potential
for PbTiO3 �Ref. 22� to model the atomic interactions. In this
potential, each ion is represented by a core and a massless
shell. Let L denote the collection of cores and shells, i�L
denote a core or a shell in L, and �xi	i�L represent the cur-
rent position of cores and shells. Then, the total static energy
can be written as

E��xi	i�L� = Eshort��xi	i�L� + Elong��xi	i�L�

+ Ecore-shell��xi	i�L� . �1�

Eshort��xi	i�L� denotes short range interactions, which are as-
sumed to be only between Pb–O, Ti–O, and O–O shells. The
short range interactions are described by the Rydberg poten-
tial of the form �A+Br�exp�−r /C�, where A, B, and C are
potential parameters and r is the distance between interacting
elements. Elong��xi	i�L� denotes the Coulombic interactions
between the core and shell of each ion with the cores and
shells of all of the other ions. Note that for calculating the
classical Coulombic potential and force, we use the damped
Wolf method.23 Finally, Ecore-shell��xi	i�L� represents the in-
teraction of core and shell of an atom and is assumed to be
an anharmonic spring of the form �1 /2�k2r2+ �1 /24�k4r4,
where k2 and k4 are constants. All calculations are done for
absolute zero temperature. As is shown in Fig. 1, at this
temperature PbTiO3 has a tetragonal unit cell with lattice
parameters a=3.843 Å and c=1.08a.24 For more details on
this notation see Ref. 21.

For the relaxed configuration B= �xi	i�L�R3, static en-
ergy attains a local minimum and hence we have

�E
�xi = 0 ∀ i � L . �2�

To obtain the solution of the above optimization problem we
use the Newton method, which is based on a quadratic ap-
proximation near the current configuration Bk:

E�Bk + �̃k� = E�Bk� + �E�Bk� · �̃k + 1
2 ��̃k�T · H�Bk� · �̃k

+ o�
�̃k
2� , �3�

where �̃k=Bk+1−Bk and H is the Hessian matrix. In the New-
ton method:

�̃k = − H−1�Bk� · �E�Bk� . �4�

Having �̃k, the next configuration is calculated as: Bk+1=Bk

+ �̃k.
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As the size of the simulation box increases, the calcula-
tion of the Hessian becomes inefficient and hence we use the
quasi-Newton method. In this method, instead of calculating
the Hessian in each iteration, one uses the Broyden–
Fletcher–Goldfarb–Shanno �BFGS� algorithm to approxi-
mate the inverse of the Hessian.25 One starts with a positive-
definite matrix and uses the following BFGS algorithm to
update the Hessian at each iteration:

Ci+1 = Ci +
�̃k

� �̃k

��̃k�T · �
−

�Ci · �� � �Ci · ��
�T · Ci · �

+ ��T · Ci · ��u � u , �5�

where Ci= �Hi�−1, �=�Ei+1−�Ei, and

u =
�̃k

��̃k�T · �
−

Ci · �

�T · Ci · �
. �6�

Calculating Ci+1, one then should use Ci+1 instead of H−1 to
update the current configuration for the next configuration

Bk+1=Bk+ �̃k. If Ci+1 is a poor approximation, then one may
need to perform a linear search to refine Bk+1 before starting
the next iteration.

As the initial configuration for each step we start with
two half lattices with the proper offset in the x-direction. The
atomic configuration of each half lattice is the same as the
atomic configuration in a perfect 180° DW. To remove the
rigid body translation of the lattice, we fix the core of an

_

_

_

FIG. 2. �Color online� A representative atomic layer for the initial configuration of the three steps: �a� Pb cores in Pb–Pb step, �b� Ti cores in Ti–Ti step, �c�
Pb cores in Pb–Ti step, and �d� Ti cores in Pb–Ti step. Note that planes h-h and v-v are sections that are used for a better display of the variation in the
distortion field in our numerical examples. s and d denote the distances of sections h-h and v-v from the reference planes rh and rv, respectively. rh and rv are

parallel to �100� and �001�-planes, respectively. h-h and v-v sections in part �a� correspond to s=a and d=a and h̄-h̄ and v̄-v̄ sections in part �b� correspond
to s=2a and d=2a. The shaded regions denote the computational box, which contains W�L unit cells and different colors show the regions with opposite
polarization inside the computational box. The symbol � in these figures denote the origin of the coordinate system in each type of steps. The blue and red
filled and hollow circles denote the atoms whose displacements are used as the displacements of the atoms located outside of the computational box.
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atom in our computational box and fully relax the other at-
oms. Hence, we have 30W� �L−3� variables in our calcula-
tions, where W and L are specified in Fig. 2. To consider the
effect of the atoms outside the computational box, we impose
rigid body translations to these atoms as the boundary con-
ditions, i.e., we rigidly move the atoms outside the compu-
tational box such that they keep the perfect 180° DW con-
figuration. To this end, we rigidly move all of the atoms
outside the computational box in the positive �negative� di-
rection of the z-axis with the displacements equal to the dis-
placement of the first �last� atom of the first �last� row of the
representative layer of atoms. This is marked with the red
�blue� circle in Fig. 2�a�. The displacements of the atoms
outside the computational box in the positive �negative� di-
rection of the x-axis are equal to the displacements of the
atoms in the first �last� row of the computational box that is
located on the same column. We choose W=20 and L=30 as
we see larger values will not affect the results. In all our
calculations we assume force tolerance of 0.05 eV/Å and
observe that our solutions converge slowly after about 800 to
1000 iterations depending on the step type. Our calculations
also show that using a smaller force tolerance of 0.005 eV/Å
would change the results by less than 0.1%. This justifies the
above choice of the force tolerance.

IV. NUMERICAL RESULTS

In this section we present our numerical results for the
three different steps as follows. As we mentioned earlier, x,
y, and z are coordinates along the �100�, �010�, and
�001�-directions, respectively, and the origin of the coordi-
nate system for each step is specified in Fig. 2.

A. Pb–Pb step

The atomic configuration of Pb cores in a Pb–Pb step are
shown in Figs. 3�a� and 3�b�. For a clearer presentation of the
atomic configuration, we have plotted the y-coordinates of
Pb cores for different sections v-v and h-h �see Fig. 2�. In
Fig. 3, s and d denote the distances of the h-h and v-v sec-
tions from the reference planes, respectively. Note that as is
shown in Fig. 2, the reference plane for v-v sections �rv� is
parallel to the �001�-plane and the reference plane for h-h
sections �rh� is parallel to the �100�-plane. As it can be seen,
atomic distortions in the Pb–Pb step are localized, i.e., they
are confined to a 8a�20a box in the �010�-plane. Atomic
distortions in the �001�-direction are less localized compared
to those in the �100�-direction. We observe that the step
thickens the DWs; the width of the DW near the step is about
three times that of the prefect Pb-centered DW. Note that
DW thickness cannot be defined uniquely very much like

FIG. 3. �Color online� The y-coordinates of atoms. �a� and �b� are Pb cores in a Pb–Pb step, �c� and �d� are Ti cores in a Ti–Ti step. Note that as it is shown
in Fig. 2, s and d denote the distances from the reference planes.
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boundary layer thickness in fluid mechanics. Here, DW
thickness is by definition the region that is affected by the
DW, i.e., those layers of atoms that are distorted. One can
use definitions like the 99%-thickness in fluid mechanics and
define the DW thickness as the length of the region that has
99% of the far field rigid translation displacement. What is
important here is that no matter what definition is chosen,
DW “thickness” increases by the presence of steps. Note that
due to the symmetry of the Pb–Pb step, atomic configuration
for negative values of s and d will have the same behavior.
Also note that the y-components of the atoms on the section
s=a in Fig. 3�a� are not symmetric because of the way we
define this section �see Fig. 2�. As the coordinates of cores
and shells are close to each other, we only plot the results for
cores. Also because other types of atoms display a similar
behavior, we do not plot their coordinates here.

We follow Meyer and Vanderbilt3 to calculate the polar-
ization profile for each step. The polarization of unit cell i is
calculated as

Pi =
e

�c
�

j

wjZj
�u j

i , �7�

where e is the electron charge, �c is the volume of the unit
cell, Zj

� is the Born effective charge tensor of the cubic
PbTiO3 bulk, and u j

i denotes the displacement of the jth atom

of the unit cell i from the ideal lattice site. wj denotes the
weight for atom j. For example, for a Ti-centered unit cell
we have wTi=1, wO=1 /2, and wPb=1 /8. We have plotted the

polarization P̄i of the rows of unit cells on the section v-v
with d=a �see Fig. 2� in a Pb–Pb step in Fig. 4�a�, where

P̄i=Pi / 
Pb
, with 
Pb
 denoting the norm of the polarization
of the bulk. We obtain the bulk polarization of
80.1 �C cm−2, which is close to the published values
81.0 �C cm−2 �Ref. 24� and 81.2 �C cm−2.3 We observe
that near the step, the DW has a mixed Bloch–Néel character.

Denoting the polarization components by P̄= �P̄x , P̄y , P̄z�,
where P̄x, P̄y, and P̄z are polarization components in �100�,
�010�, and �001�-directions, respectively, we observe that the
polarization vector rotates out of the �001�-plane with the

Bloch angle �B=tan−1�P̄z / P̄y� �see Fig. 4�. The maximum
rotation angle �B for Pb-centered DW is �B�7.0°. Also the
polarization rotates in the �001�-plane with the Néel angle

�N=tan−1�P̄x / P̄y�. The maximum value of �N for Pb-
centered wall is �N�9.9° �compare this with �N=1.43° for
the perfect DW �Ref. 13��. The maximum value of the polar-
ization in the �100� and �001�-directions are about 13.9% and
12.2% of the bulk polarization, respectively.

Finally, we calculate the energy of the Pb–Pb step,
EPb–Pb. Similar to the DW energy, we define the step energy

FIG. 4. �Color online� The polarization vectors P̄= �P̄x , P̄y , P̄z� for the row of unit cells on the section v-v with d=a for: �a� Pb–Pb step and �b� Ti–Ti step.
Close to the step, polarization rotates out of the �001�-plane with the Bloch angle �B. The polarization also rotates inside the �001�-plane with the Néel angle
�N. Note that the Bloch and Néel components of the polarization correspond to the components in �001�-direction �Pz� and �100�-direction �Px�, respectively.
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to be the difference in energies of the unit cells inside the
computational box that are located on the DW with the step
and bulk energy of the same number of unit cells, divided by
the total area of DW in the system. This way we obtain the
Pb–Pb step energy to be 157 mJ m−2, which is greater than
the Pb-centered DW energy that is 132 mJ m−2.3

B. Ti–Ti step

Figs. 3�c� and 3�d� depict the y-coordinates of Ti cores in
a Ti–Ti step for different sections v-v and h-h. Again because
of symmetry, we plot the results only for positive values of s
and d and also similar to the Pb–Pb step, by definition of the
section s=a, the y-components of the atoms on this section
in Fig. 3�c� are not symmetric. Similar to the Pb–Pb step, we
observe that the Ti–Ti step is localized, i.e., atomic distor-
tions are confined to a 9a�18a box in the �010�-plane.
Again we observe that the step thickens the Ti-centered DW;
the thickness of the defective wall is about three times that of
the perfect DW.

As is shown in Fig. 4�b�, polarization has a mixed
Bloch–Néel character near the step. For the Ti–Ti step, the
maximum value of the Bloch and Néel rotation angles are
�B�9.5° and �N�8.1° �compare this with �N=1.0° in the
perfect DW �Ref. 13��, respectively. The maximum value of
the polarization in the �100� and �001�-directions are about
8.1% and 16.8% of the bulk polarization, respectively. The
energy of the Ti–Ti step is ETi–Ti=172 mJ m−2, which is
larger than the energy of the Pb–Pb step and the energy of
the Ti-centered DW, which is 169 mJ m−2.3 This is consis-
tent with the fact that Ti-centered 180° DWs have a greater
static energy than Pb-centered DWs.3,6

C. Pb–Ti step

We have plotted the y-coordinates of Pb cores in a Pb–Ti
step in Fig. 5 for different v-v and h-h sections. Note that
because Pb–Ti steps are not symmetric, we have plotted the
results for both positive and negative values of s and d. Also
since other types of cores and shells have a similar behavior,
we do not plot their coordinates here. We observe that similar
to the other two steps, the Pb–Ti step causes local distortions
that are confined to a 6a�16a box in �010�-plane. The step

broadens the DW; the defective DW thickness is twice that
of the perfect DW. Note that the Pb-centered and Ti-centered
DWs for this step are half a lattice spacing apart and this may
explain the weaker thickening effect of the Pb–Ti step.

As Fig. 6 shows polarization distribution has a mixed
Bloch–Néel character near the Pb–Ti step but the Bloch char-
acter is more dominant. The Polarization profile is plotted for

FIG. 5. �Color online� The y-coordinates of Pb cores in a Pb–Ti step. Note that as it is shown in Fig. 2, s and d denote the distances from the reference planes.

FIG. 6. �Color online� The polarization vectors P̄= �P̄x , P̄y , P̄z� for the row
of unit cells on the section v-v with d=a for a Pb–Ti step. Close to the step,
polarization rotates out of the �001�-plane with the Bloch angle �B. The
polarization also rotates inside the �001�-plane with the Néel angle �N. Note
that the Bloch and Néel components of the polarization correspond to the
components in �001�-direction �Pz� and �100�-direction �Px�, respectively.
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the row of unit cells on the section v-v with d=a, which is
located in the Ti-centered part of the step. For the Pb–Ti step,
the maximum value of the Bloch and Néel rotations are �B

�23.0° and �N�5.9°, respectively. The maximum value of
the polarization in the �100� and �001�-directions are about
5.3% and 20.5% of the bulk polarization, respectively. The
energy of the Pb–Ti step is EPb–Ti=165 mJ m−2. It is seen
that EPb–Pb�EPb–Ti�ETi–Ti.

V. CONCLUDING REMARKS

In this work we obtained the atomic structure of three
different types of steps on 180° DWs in PbTiO3 using the
method of anharmonic lattice statics. We observe that these
steps cause local atomic distortions that are confined to a box
with dimensions of a few lattice spacings. All the three steps
have a broadening effect on the DW thickness. Pb–Ti steps
have a less broadening effect compared to the other two
steps.

We also observe that steps on 180° DWs can cause the
polarization profile to have a mixed Bloch–Néel character.
The Bloch character is more dominant in Ti–Ti and Pb–Ti
steps. Finally, we observe that the Pb–Pb step has a lower
static energy than the other two steps.
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