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The residual stress field of a nonlinear elastic solid with a spherically symmetric
distribution of point defects is obtained explicitly using methods from differential
geometry. The material manifold of a solid with distributed point defects—where the
body is stress-free—is a flat Weyl manifold, i.e. a manifold with an affine connection
that has non-metricity with vanishing traceless part, but both its torsion and curvature
tensors vanish. Given a spherically symmetric point defect distribution, we construct its
Weyl material manifold using the method of Cartan’s moving frames. Having the material
manifold, the anelasticity problem is transformed to a nonlinear elasticity problem and
reduces the problem of computing the residual stresses to finding an embedding into the
Euclidean ambient space. In the case of incompressible neo-Hookean solids, we calculate
explicitly this residual stress field. We consider the example of a finite ball and a point
defect distribution uniform in a smaller ball and vanishing elsewhere. We show that the
residual stress field inside the smaller ball is uniform and hydrostatic. We also prove a
nonlinear analogue of Eshelby’s celebrated inclusion problem for a spherical inclusion in
an isotropic incompressible nonlinear solid.
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1. Introduction

The stress field of a single point defect in an infinite linear elastic solid was
obtained by Love (1927) almost 90 years ago. He observed a 1/r3 singularity.
For distributed defects, Eshelby (1954) showed that for a body with a uniform
distribution of point defects, in the framework of linearized elasticity, the body
expands uniformly. In other words, a uniform distribution of point defects is
stress-free (if the body is not constrained on its boundaries).1 Such calculations
for nonlinear solids have not been done to this date. In the linear elasticity setting,
point defects are modelled as centres of expansion or contraction (Garikipati et al.
2006). In the nonlinear framework presented in this paper, we start with a
distributed point defect and use non-metricity in the material manifold to model
the effect of point defects.
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It has been known for a long time that the mechanics of solids with distributed
defects can be formulated using non-Riemannian geometries (Kondo 1955a,b;
Bilby et al. 1955; Bilby & Smith 1956). In Yavari & Goriely (2012), we presented
a comprehensive theory of the mechanics of distributed dislocations based
on Riemann–Cartan geometry. We showed that in the geometric framework,
several examples of residual stress field of solids with distributed dislocations
can be solved analytically. We analytically calculated the residual stress field
of several examples. Later, we (Yavari & Goriely in press) extended the
geometric theory to the mechanics of solids with distributed disclinations. In
the case of both dislocations and disclinations, there are exact solutions in
the framework of nonlinear elasticity (Rosakis & Rosakis 1988; Zubov 1997;
Acharya 2001).

While it has been noted that the geometric object relevant to point defects
is non-metricity (Falk 1981; de Wit 1981; Grachev et al. 1989; Kröner 1990;
Miri & Rivier 2002), there are no exact nonlinear solutions for point defects
in the literature. In other words, the coupling between the geometry and the
mechanics of point defects is missing. The purpose of this paper is to develop a
fully geometric and exact (in the sense of elasticity) theory of distributed point
defects. As an application of this geometric theory, we obtain the stress field of
a spherically symmetric distribution of point defects in a neo-Hookean solid. We
also prove a nonlinear analogue of Eshelby’s celebrated inclusion problem for a
spherical ‘inclusion’ in an isotropic incompressible nonlinear solid.

This paper is structured as follows. In §2, we briefly review some basic
definitions and concepts from differential geometry and, in particular, Cartan’s
moving frames and Weyl geometry. Kinematics and equations of motion for
nonlinear elasticity and anelasticity are discussed in §3. In §4, we look at the
problem of a spherically symmetric distribution of point defects. Using Cartan’s
structural equations, we obtain an orthonormal coframe field and hence the
material metric. We then make a connection between the material metric and the
volume density of point defects using a compatible volume element in the Weyl
material manifold. Having the material metric, we then calculate the residual
stress field. Next, we study an example of a point defect distribution uniform
in a small ball and vanishing outside the ball. We show that for any isotropic
incompressible nonlinear solid, the residual stress field inside the small ball is
uniform. This is a nonlinear analogue of Eshelby’s celebrated inclusion problem.
We then show that a uniform point defect distribution is the only spherically
symmetric zero-stress point defect distribution. Finally, we compare the linear
and nonlinear solutions for the radial stress distribution.

2. Non-Riemannian geometries and Cartan’s moving frames

(a) Riemann–Cartan manifolds

We tersely review some elementary facts about affine connections on manifolds,
and the geometry of Riemann–Cartan and Weyl manifolds. For more details,
see Schouten (1954), Bochner & Yano (1952), Nakahara (2003), Nester (2010),
Gilkey & Nikcevic (2011), Hehl et al. (1981) and Rosen (1982). A linear (affine)
connection on a manifold B is an operation V : X (B) × X (B) → X (B), where X (B)
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is the set of vector fields on B, such that ∀ X, Y, X1, X2, Y1, Y2 ∈ X (B), ∀ f , f1, f2 ∈
C∞(B), ∀ a1, a2 ∈ R:

(i) Vf1X1+f2X2Y = f1VX1Y + f2VX2Y, (2.1)

(ii) VX(a1Y1 + a2Y2) = a1VX(Y1) + a2VX(Y2) (2.2)

and (iii) VX(f Y) = f VXY + (Xf )Y. (2.3)

VXY is called the covariant derivative of Y along X. In a local chart {XA}, VvAvB =
GC

ABvC , where GC
AB are Christoffel symbols of the connection, and vA = v/vxA

are natural bases for the tangent space corresponding to a coordinate chart {xA}.
A linear connection is said to be compatible with a metric G of the manifold if

VX〈〈Y, Z〉〉G = 〈〈VXY, Z〉〉G + 〈〈Y, VXZ〉〉G, (2.4)

where 〈〈., .〉〉G is the inner product induced by the metric G. It can be shown that
V is compatible with G if and only if VG = 0, or in components

GAB|C = vGAB

vXC
− GS

CAGSB − GS
CBGAS = 0. (2.5)

An n-dimensional manifold B with a metric G and a G-compatible connection V
is called a Riemann–Cartan manifold (Cartan 1924, 1955, 2001; Gordeeva et al.
2010).

The torsion of a connection is defined as

T(X, Y) = VXY − VYX − [X, Y], (2.6)

where
[X, Y](F) = X(Y(F)) − Y(X(F)) ∀F ∈ C∞(S) (2.7)

is the commutator of X and Y. In components in a local chart {XA}, TA
BC =

GA
BC − GA

CB . V is symmetric if it is torsion-free, i.e. VXY − VYX = [X, Y]. On
any Riemannian manifold (B, G), there is a unique linear connection V that is
compatible with G and is torsion-free. This is the Levi–Civita connection. In a
manifold with a connection, the curvature is a map R : X (B) × X (B) × X (B) →
X (B) defined by

R(X, Y)Z = VXVYZ − VYVXZ − V[X,Y]Z, (2.8)

or in components

RA
BCD = vGA

CD

vXB
− vGA

BD

vXC
+ GA

BM GM
CD − GA

CM GM
BD. (2.9)

(b) Cartan’s moving frames

Consider a frame field {ea}Na=1 that at every point of a manifold B forms a basis
for the tangent space. Assume that this frame is orthonormal, i.e. 〈〈ea, eb〉〉G =
dab. This is, in general, a non-coordinate basis for the tangent space. Given a
coordinate basis {vA}, an arbitrary frame field {ea} is obtained by a GL(N , R)-
rotation of {vA} as ea = Fa

AvA such that orientation is preserved, i.e. det Fa
A > 0.
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For the coordinate frame [vA, vB] = 0, but for the non-coordinate frame field,
we have

[ea, ea] = −cg
abeg, (2.10)

where cg
ab are components of the object of anhonolomy. It can be shown that

cg
ab = Fa

AFb
B(vAFg

B − vBFg
A), where Fg

B is the inverse of Fg
B . The frame

field {ea} defines the co-frame field {wa}Na=1 such that wa(eb) = da
b. The object of

anholonomy is defined as cg = dwg. Writing this in the coordinate basis, we have

cg = d(Fg
BdXB) =

∑
a<b

cg
abwa ∧ wb, (2.11)

where ∧ denotes wedge product of differential forms (Abraham et al. 1988).
Connection 1-forms are defined as

Vea = eg ⊗ ug
a. (2.12)

The corresponding connection coefficients are defined as Veb
ea = 〈ug

a, eb〉eg =
ug

baeg. In other words, ug
a = ug

bawb. Similarly, Vwa = −ua
gwg, and Veb

wa =
−ua

bgwg. In the non-coordinate basis, torsion has the following components:

Ta
bg = ua

bg − ua
gb + ca

bg. (2.13)

Similarly, the curvature tensor has the following components with respect to the
frame field

Ra
blm = vbua

lm − vlua
bm + ua

bxux
lm − ua

lxux
bm + ua

xmcx
bl. (2.14)

In the orthonormal frame, metric has the simple representation G = dabwa ⊗ wb.

(c) Non-metricity and Weyl manifolds

Given a manifold with a metric and an affine connection (B, V, G), non-
metricity is a map Q : X (B) × X (B) × X (B) → R defined as

Q(U, V, W) = 〈〈VUV, W〉〉G + 〈〈V, VUW〉〉G − U[〈〈V, W〉〉G]. (2.15)

In the frame {ea}, Qgab = Q(eg, ea, eb).2 Non-metricity 1-forms are defined as
Qab = Qgabwg. It is straightforward to show that

Qgab = ux
gaGxb + ux

gbGxa − 〈dGab, eg〉 = ubga + uagb − 〈dGab, eg〉, (2.16)

where d is the exterior derivative. Thus

Qab = uab + uba − dGab =: −DGab, (2.17)

where D is the covariant exterior derivative. This is called Cartan’s zeroth
structural equation. For an orthonormal frame Gab = dab, and hence

Qab = uab + uba. (2.18)

Weyl 1-form is defined as

Q = 1
n

QabGab. (2.19)

2Here, we mainly follow the notation of Hehl & Obukhov (2003).
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Thus

Qab = Q̃ab + QGab, (2.20)

where Q̃ is the traceless part of non-metricity. If Q̃ = 0, (B, V, G) is called a
Weyl–Cartan manifold. In addition, if V is torsion-free, (B, V, G) is called a Weyl
manifold. It can be shown that

Ra
a = n

2
dQ. (2.21)

This implies that for a flat Weyl manifold, dQ = 0. One can show that (Hehl
et al. 1995)

ua
a = n

2
Q + 1

2
GabdGab = n

2
Q + d ln

√
det G. (2.22)

Also

D
√

det G = d
√

det G − ua
a

√
det G = −n

2
Q

√
det G, (2.23)

i.e. the connection V is not volume-preserving.
The torsion and curvature 2-forms are defined as

T a = dwa + ua
b ∧ wb (2.24)

and

Ra
b = dua

b + ua
g ∧ ug

b. (2.25)

These are called Cartan’s first and second structural equations. In this framework,
Bianchi identities then read:

DQab := dQab − ug
a ∧ Qgb − ug

b ∧ Qag = Rab + Rba, (2.26)

DT a := dT a + ua
b ∧ T b = Ra

b ∧ wb (2.27)

and DRa
b := dRa

b + ua
g ∧ Rg

b − ug
b ∧ Ra

g = 0. (2.28)

Note that for a flat manifold DT a = 0 and DQab = 0.

(d) The compatible volume element on a Weyl manifold

Given a Weyl manifold, one needs a volume element to be able to calculate
volume of an arbitrary subset. Our motivation here is to have a natural way of
measuring volumes in the material manifold and hence to be able to calculate
the volume density of point defects using the geometry of the Weyl material
manifold. Here, by compatible volume element, we mean a volume element
that has vanishing covariant derivative. The volume element of the underlying
Riemannian manifold is not appropriate; we need a natural volume element in
the sense of Saa (1995) (see also Mosna & Saa 2005). A volume element on B is
a non-vanishing n-form (Nakahara 2003). In the orthonormal coframe field {wa},
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the volume form can be written as

m = hw1 ∧ · · · ∧ wn , (2.29)

for some positive function h to be determined. In a coordinate chart {XA}, the
volume form is written as

m = h
√

det G dX 1 ∧ · · · ∧ dXn . (2.30)

Divergence of an arbitrary vector field W on B can be defined using the Lie
derivative as (Abraham et al. 1988)

(DivW)m = LWm. (2.31)

On the other hand, divergence is also defined using the connection as

DivVW = W A|A = W A
,A + GA

ABW B . (2.32)

According to Saa (1995), m is compatible with V if

LWm = (W A|A)m, (2.33)

which is equivalent to
D(h

√
det G) = 0. (2.34)

Using (2.23), we can write

D(h
√

det G) = hD
√

det G + √
det G dh =

(
dh − n

2
hQ

) √
det G = 0. (2.35)

Thus
dh
h

= d ln h = n
2

Q. (2.36)

In coordinate form, this reads

v ln h
vXA

= n
2

QA, (2.37)

or
vh

vXA
− n

2
hQA = 0. (2.38)

Remark 2.1. Note that a Weylian metric on B is given by the pair (G, Q)
with the equivalence relation (G, Q) ∼ (eLG, Q − dL) for an arbitrary smooth
function L on B (Folland 1970). Now if Q = dU for some smooth function U,
then by choosing L = U, we have

(G, Q) ∼ (eUG, 0). (2.39)

In other words, when the Weyl 1-form is exact, there exists an equivalent
Riemannian manifold (B, eUG). In the equivalent Riemannian manifold, the
volume form is enU/2mG, where mG is the standard Riemannian volume form of
G. The volume form enU/2mG is identical to Saa’s compatible volume element
(Saa 1995). In this paper, we call (B, eUG) and (B, G), the equivalent, and the
underlying Riemannian manifolds, respectively.
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Figure 1. (a) Kinematics of nonlinear elasticity. Reference configuration is a submanifold of the
ambient space manifold. The material metric is the induced submanifold metric. (b) Kinematics
of nonlinear anelasticity. Material manifold is a metric-affine manifold (B, V, G). Motion is a time-
dependent mapping from the underlying Riemannian material manifold (B, G) into the Riemannian
ambient space manifold (S, g). (Online version in colour.)

3. Geometric nonlinear elasticity and anelasticity

(a) Kinematics of nonlinear elasticity

Let us first review a few of the basic notions of geometric nonlinear elasticity.
A body B is identified with a Riemannian manifold B3 and a configuration of B
is a mapping 4 : B → S, where S is another Riemannian manifold (Marsden &
Hughes 1983; Yavari et al. 2006), where the elastic body lives (figure 1a). The set
of all configurations of B is denoted by C. A motion is a curve c : R → C; t �→ 4t
in C. A fundamental assumption is that the body is stress-free in the material
manifold. It is the geometry of these two manifolds that describes any possible
residual stresses.

For a fixed t, 4t(X) = 4(X, t) and for a fixed X, 4X(t) = 4(X, t), where X is the
position of material points in the reference configuration B. The material velocity
is given by

Vt(X) = V(X, t) = v4(X, t)
vt

= d
dt

4X(t). (3.1)

Similarly, the material acceleration is defined by

At(X) = A(X, t) = vV(X, t)
vt

= d
dt

VX(t). (3.2)

3This is, in general, the underlying Riemannian manifold of the material manifold.
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In components, Aa = vV a/vt + ga
bcV bV c, where ga

bc is the Christoffel symbol of
the local coordinate chart {xa}. Note that A does not depend on the connection
coefficients of the material manifold. Here, it is assumed that 4t is invertible and
regular. The spatial velocity of a regular motion 4t is defined as vt = Vt ◦ 4−1

t ,
and the spatial acceleration at is defined as a = v̇ = vv/vt + Vvv. In components,
aa = vva/vt + (vva/vxb)vb + ga

bcv
bvc.

Geometrically, deformation gradient—a central object describing deforma-
tion—is the tangent map of 4 and is denoted by F = T4. Thus, at each point
X ∈ B, it is a linear map

F(X) : TXB → T4(X)S. (3.3)

If {xa} and {XA} are local coordinate charts on S and B, respectively, the
components of F are

Fa
A(X) = v4a

vXA
(X). (3.4)

F has the following local representation:

F = Fa
A va ⊗ dXA. (3.5)

Transpose of F is defined by

FT : TxS → TXB and 〈〈FV, v〉〉g = 〈〈V, FTv〉〉G, (3.6)

for all V ∈ TXB, v ∈ TxS. In components, (FT(X))A
a = gab(x)Fb

B(X)GAB(X),
where g and G are metric tensors on S and B, respectively. The right Cauchy–
Green deformation tensor is defined by

C(X) : TXB → TXB and C(X) = FT(X)F(X). (3.7)

In components, CA
B = (FT)A

aFa
B . It is straightforward to show that C� is the

pull-back of the spatial metric, i.e.

C� = 4∗g = F∗gF, i.e. CAB = (gab ◦ 4)Fa
AFb

B . (3.8)

(b) Material manifold and anelasticity

In classical elasticity, one starts with a stress-free configuration embedded in
the ambient space and then makes this embedding time-dependent (a motion;
figure 1a). In anelastic problems (anelastic in the sense of Eckart (1948)), the
stress-free configuration is another manifold with a geometry explicitly depending
on the anelasticity source(s) (figure 1b). In other words, in our geometric
approach, one by-passes the notion of local intermediate configuration by using
an appropriate geometry in the material manifold that automatically makes the
body with distributed defects stress-free. The ambient space being a Riemannian
manifold (S, g), the computation of stresses requires a Riemannian material
manifold (B, G) (the underlying Riemannian material manifold) and a map
4 : B → S. For example, in the case of non-uniform temperature changes and
bulk growth (Ozakin & Yavari 2010; Yavari 2010), one starts with a material
metric G that specifies the relaxed distances of the material points. However, the
material metric cannot always be obtained directly.
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Figure 2. In a Weyl manifold, the Riemannian volume element varies from point to point.

It turns out that for defects in solids, a metric-affine manifold can describe the
stress-free configuration of the body. In the case of dislocations, the material
connection is flat, metric-compatible and has a non-vanishing torsion, which
is identified with the dislocation density tensor—i.e. the material manifold is
a Weitzenböck manifold (Weitzenböck 1923; Yavari & Goriely 2012). Given a
dislocation density tensor, one can obtain the torsion of the affine connection.
Then, using Cartan’s moving frames and structural equations, one can find
an orthonormal frame compatible with the torsion tensor. This, in turn,
provides the material metric. Then, the computation of stress amounts to
finding a mapping from the underlying Riemannian material manifold to the
ambient space manifold. In the case of disclinations, the physically relevant
object is the curvature of a torsion-free and metric-compatible connection, and
one can again find the metric using Cartan’s structural equations (Yavari &
Goriely in press).

For a solid with distributed point defects, the material manifold is a Weyl
manifold. Point defects affect the volume of the stress-free configuration and this
can be described using non-metricity with a vanishing traceless part, as will be
shown shortly. The metric is obtained using Cartan’s structural equations and
the compatible volume element of the Weyl material manifold. We conclude
that all the anelastic effects can be embedded in the appropriate geometric
characterization of the material manifold on which the computation of stresses
reduces to a classical elasticity problem. This means that, in particular, the
deformation gradient by construction is purely elastic.

Remark 3.1. In a body with distributed point defects, we expect the natural
volume element to change from point to point (figure 2), and this change of
volume element is, in general, anisotropic. Weyl 1-form can model such an
anisotropic change in the volume element. This is why the traceless part of
non-metricity is not needed in modelling distributed point defects. See Lazar &
Maugin (2007) for a similar discussion.

(c) Equations of motion

The internal energy density E (or free energy density J) of a solid depends on
the deformation gradient F. Because a scalar function of a two-point tensor must
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explicitly depend on both G and g, we have

E = E(X, N, F, G, g) and J = J(X, Q, F, G, g), (3.9)

where N and Q are the specific entropy and absolute temperature, respectively.
One can derive the equations of motion by either using an action principle or

using covariance of energy balance (Marsden & Hughes 1983; Yavari & Marsden
in press). For a motion 4 : B → S, where (B, G) and (S, g) are, respectively, the
(underlying) Riemannian material and ambient space manifolds, the governing
equations obtained as a consequence of the conservation of mass and balance of
linear and angular momenta, in material form read

vr0

vt
= 0, DivP + r0B = r0A, PFT = FPT, (3.10)

where r0, P, B and A are the material mass density, the first Piola–Kirchhoff
stress, the body force per unit undeformed volume (calculated using the
Riemannian volume form) and the material acceleration, respectively. In
components, the Cauchy equation (3.10)2 reads

vPaA

vXA
+ GA

ABPaB + ga
bcFb

APcA + r0Ba = r0Aa , (3.11)

where GA
BC are the Christoffel symbols of the material metric. Equivalently, in

spatial coordinates

Lvr = 0, divs + rb = ra, sT = s, (3.12)

where r, s, b and a are the spatial mass density, Cauchy stress, body force per unit
deformed volume and spatial acceleration, respectively. Lvr is the Lie derivative
of the mass density with respect to the (time-dependent) spatial velocity. Note
that sab = (1/J )PaAFb

A, where J = √
det g/det G det F is the Jacobian.

4. Residual stress field of a spherically symmetric distribution of point defects

As an application of the geometric theory, we revisit a classical problem of linear
elasticity in the general framework of exact nonlinear elasticity. Namely, we
construct the material manifold of a spherically symmetric distribution of point
defects in a ball of radius Ro, which is traction-free (or is under uniform pressure)
on its boundary sphere. The Weyl material manifold is then used to calculate the
residual stress field.

(a) The Weyl material manifold

In order to find a solution, we follow the procedure in (Adak & Sert 2005;
Yavari & Goriely 2012) and start by an ansatz for the material coframe field.
We then find a flat connection, which is torsion-free but has a non-vanishing
non-metricity compatible with the given point defect distribution. We do this
using Cartan’s structural equations and the compatible volume form of the Weyl
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material manifold. In the spherical coordinates (R, Q, F), R ≥ 0, 0 ≤ Q ≤ p, 0 ≤
F < 2p, let us look for a coframe field of the following form:4

w1 = f (R) dR, w2 = R dQ and w3 = R sin Q dF, (4.1)

for some unknown function f to be determined. We choose the following
connection 1-forms:

u = [ua
b] =

⎛
⎝ u1

1 u1
2 −u3

1
−u1

2 u2
2 u2

3
u3

1 −u2
3 u3

3

⎞
⎠, (4.2)

where

u1
2 = − 1

R
w2, u2

3 = −cot Q

R
w3, u3

1 = 1
R

w3, u1
1 = u2

2 = u3
3 = q(R)w1,

(4.3)
for a function q to be determined. This means that

Qab = 2dabq(R)w1. (4.4)

We now need to enforce T a = 0. Note that

dw1 = 0, dw2 = 1
Rf (R)

w1 ∧ w2, dw3 = − 1
Rf (R)

w3 ∧ w1 + cot Q

R
w2 ∧ w3. (4.5)

From Cartan’s first structural equations, we obtain

T 1 = 0, T 2 =
[

1
Rf (R)

− 1
R

+ q(R)
]

w1 ∧ w2

and T 3 =
[

1
Rf (R)

− 1
R

+ q(R)
]

w3 ∧ w1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

Therefore,

q(R) = 1
R

[
1 − 1

f (R)

]
. (4.7)

It can be checked that for these connection 1-forms Ra
b = 0 are trivially satisfied.

In this example, the Weyl 1-form is written as

Q = 2q(R)w1 = 2
R

[
1 − 1

f (R)

]
w1 = 2(f (R) − 1)

R
dR. (4.8)

It is seen that dQ = 0, as is expected for a flat Weyl manifold.

4This construction is similar to that of Adak & Sert (2005). Note that the Riemannian volume
element is mG = w1 ∧ w2 ∧ w3 = R2f (R) sin Q dR ∧ dQ ∧ dF, and hence f (R) > 0.
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(b) Volume density of point defects

Consider a spherical shell of radius R and thickness DR. In the absence of point
defects (Euclidean material manifold), the volume of this shell is

DV0 = 2p

∫p

0
sin Q dQ

∫R+DR

R
x2 dx = 4p

∫R+DR

R
x2 dx. (4.9)

Now in the underlying Riemannian material manifold, the volume of the same
spherical shell with point defects is

DVRiemannian = 2p

∫p

0
sin Q dQ

∫R+DR

R
x2f (x) dx = 4p

∫R+DR

R
x2f (x) dx. (4.10)

If there are only vacancies in this spherical shell (and no interstitials), we expect
the volume of the Riemannian material manifold to be smaller than DV0. In other
words, for a distribution of vacancies, we expect 0 < f (R) < 1.

In the presence of point defects, the compatible volume element in the Weyl
material manifold is written as

m = h(R)w1 ∧ w2 ∧ w3 = R2f (R)h(R) sin F dR ∧ dQ ∧ dF, (4.11)

for some positive function h satisfying (2.37). In the Weyl material manifold, the
volume of the spherical shell of radius R and thickness DR is5

DV = 2p

∫p

0
sin Q dQ

∫R+DR

R
x2f (x)h(x) dx = 4p

∫R+DR

R
x2f (x)h(x) dx. (4.12)

Total volume of defects in the spherical shell is DVd = DV0 − DV . Thus

DVd = 4p

∫R+DR

R
x2[1 − f (x)h(x)] dx. (4.13)

The volume density of point defects is defined as6

n(R) = lim
DR→0

DVd

DV0
= lim

DR→0

4p
∫R+DR

R x2[1 − f (x)h(x)] dx

4pR2DR
= 1 − f (R)h(R). (4.14)

Therefore,

f (R) = 1 − n(R)
h(R)

. (4.15)

Note that f (R) > 0 and h(R) > 0 imply that

n(R) < 1. (4.16)

For our spherically symmetric point defect distribution, the relationship (2.37) is
simplified to read

d
dR

ln h(R) = h ′(R)
h(R)

= 3(f (R) − 1)
R

. (4.17)

5Note that for the case of a spherically symmetric point defect distribution as a consequence of
the Poincaré Lemma, Q = dU (remark 2.1). In other words, we are calculating the volume of the
equivalent Riemannian manifold of the Weyl material manifold.
6For a distribution of vacancies, n(R) < 0, and for a distribution of interstitials, n(R) > 0.

Proc. R. Soc. A (2012)

 on November 6, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3914 A. Yavari and A. Goriely

From (4.15) and (4.17), we obtain

Rh ′(R) + 3h(R) = 3(1 − n(R)). (4.18)

Hence

h(R) = 1 − 1
R3

∫R

0
3y2n(y) dy. (4.19)

Therefore,

f (R) = 1 − n(R)

1 − (1/R3)
∫R

0 3y2n(y) dy
. (4.20)

To check for consistency, let us consider a spherically symmetric distribution of
vacancies in a ball of radius Ro such that n(R) < 0 (h(R) > 1) and n′(R) > 0. For
a distributed vacancy, we expect a smaller relaxed volume, i.e. m0 > mG and hence
f (R) < 1, where m0 and mG are the volume forms of the flat Euclidean manifold
and the underlying Riemannian manifold, respectively. This can easily be verified
using (4.20).

Example 4.1. If n(R) = n0, then f (R) = 1.

Remark 4.2. For an arbitrary distribution of point defects, the defective solid
is stress-free in a Weyl manifold (B, G, Q). Let us denote the volume form of the
Weyl manifold by m. For a subbody U ⊂ B, the volume of the virgin (defect-free)
and the defective subbody are

V0(U) =
∫
U

m0 and V (U) =
∫
U

m. (4.21)

The volume of the point defects in U is calculated as

Vd(U) =
∫
U

m0 −
∫
U

m =
∫
U
(m0 − m) =

∫
U

nm0. (4.22)

This implies that n is the volume density of the point defects. Note that for
vacancies Vd < 0.

(c) Residual stress calculation

The material metric in spherical coordinates (R, Q, F) has the following form:

G =
⎛
⎝f 2(R) 0 0

0 R2 0
0 0 R2 sin2 Q

⎞
⎠. (4.23)

We use the spherical coordinates (r , q, f) for the Euclidean ambient space with
the following metric:

g =
⎛
⎝1 0 0

0 r2 0
0 0 r2 sin2 q

⎞
⎠. (4.24)

In order to obtain the residual stress field, we embed the material manifold into
the ambient space. We look for solutions of the form (r , q, f) = (r(R), Q, F), and
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hence det F = r ′(R). Assuming an incompressible solid, we have

J =
√

det g
det G

det F = r2(R)
R2f (R)

r ′(R) = 1. (4.25)

Assuming that r(0) = 0, this gives us

r(R) =
(∫R

0
3x2f (x) dx

)1/3

. (4.26)

For a neo-Hookean material, we have PaA = mFa
BGAB − p(F−1)b

Agab, where p =
p(R) is the pressure field. Thus

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

mR2

f (R)r2(R)
− p(R)r2(R)

f (R)R2
0 0

0
m

R2
− p(R)

r2(R)
0

0 0
m

R2 sin2 Q
− p(R)

r(R)2 sin2 Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.27)

Hence

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

mR4

r4(R)
− p(R) 0 0

0
m

R2
− p(R)

r2(R)
0

0 0
1

sin2 Q

[
m

R2
− p(R)

r2(R)

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.28)

In the absence of body forces, the only non-trivial equilibrium equation is sra |a = 0
(p = p(R) is the consequence of the other two equilibrium equations), which is
simplified to read

srr
,r + 2

r
srr − rsqq − r sin2 q sff = 0. (4.29)

Or
r2

R2f
srr

,R + 2
r

srr − 2rsqq = 0. (4.30)

This then gives us

p′(R) = − 2m

r(R)

[
f (R)

(
R

r(R)

)6

− 2
(

R
r(R)

)3

+ f (R)

]
. (4.31)

Let us assume that the defective body is a ball of radius Ro. Assuming that the
boundary of the ball is traction-free (srr(Ro) = 0), we obtain

p(Ro) = m
R4

o

r4(Ro)
. (4.32)
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Therefore, the pressure at all points inside the ball is

p(R) = m
R4

o

r4(Ro)
+ 2m

∫Ro

R

[
f (x)

x6

r7(x)
− 2

x3

r4(x)
+ f (x)

r(x)

]
dx, (4.33)

and the radial stress is

srr(R) = −2m

∫Ro

R

[
f (x)

x6

r7(x)
− 2

x3

r4(x)
+ f (x)

r(x)

]
dx + m

[
R4

r4(R)
− R4

o

r4(Ro)

]
.

(4.34)
For a given point defect distribution n(R), f (R) is obtained using (4.20). Pressure
and stress are then calculated by substituting f (R) into (4.33) and (4.34),
respectively.

Remark 4.3. When n(R) = n0, we saw that f (R) = 1. This then implies that
r(R) = R and p(R) = m, i.e. this point defect distribution is stress-free. Eshelby
(1954) showed this in the linearized setting. We will show in §4d that this is the
only zero-stress spherically symmetric point defect distribution.

Remark 4.4. We can calculate the stress field for the case when on the boundary
of the body tractions are non-zero. Assuming that PrR(Ro) = −p∞, we have

srr(R) = −2m

∫Ro

R

[
f (x)

x6

r7(x)
− 2

x3

r4(x)
+ f (x)

r(x)

]
dx

+ m

[
R4

r4(R)
− R4

o

r4(Ro)

]
− p∞

f (Ro)R2
o

r2(Ro)
. (4.35)

Example 4.5. Let us consider the following point defect distribution:7

n(R) =
{

n0 0 ≤ R ≤ Ri ,
0 R > Ri ,

(4.36)

where Ri < Ro. Thus
0 ≤ R ≤ Ri : f (R) = 1 (4.37)

and

R > Ri : f (R) = 1
1 − n0(Ri/R)3

. (4.38)

Also
0 ≤ R ≤ Ri : r(R) = R (4.39)

and

R > Ri : r(R) =
[
R3 + n0R3

i ln
(

(R/Ri)3 − n0

1 − n0

)]1/3

. (4.40)

Note that for 0 ≤ R ≤ Ri :

p(R) = m
R4

o

r4(Ro)
+ 2m

∫Ro

Ri

[
f (x)

x6

r7(x)
− 2

x3

r4(x)
+ f (x)

r(x)

]
dx = pi , (4.41)

7Note that the total volume of point defects is ((4p/3)R3
i )n0.
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Figure 3. PrR distributions for Ri = Ro/10 and different values of n0. (Online version in colour.)

i.e. pressure is uniform and consequently, srr = m − pi is uniform. Figure 3 shows
the distribution of PrR in the interval [Ri , Ro] for different vacancy distributions
and when Ro = 10Ri .

Remark 4.6. The other two stress components are also equal to m − pi in the
ball R ≤ Ri . To see this, note that in curvilinear coordinates, the components of a
tensor may not have the same physical dimensions. The following relation holds
between the Cauchy stress components (unbarred) and its physical components
(barred) (Truesdell 1953):

s̄ab = sab√gaagbb no summation on a or b. (4.42)

The spatial metric in spherical coordinates has the form diag(1, r2, r2 sin2 q), and
this means that the non-zero Cauchy stress components are

s̄rr = srr = m
R4

r4(R)
− p(R), s̄qq = r2sqq = m

r2(R)
R2

− p(R)

and s̄ff = r2 sin2 qsff = m
r2(R)
R2

− p(R).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.43)

It follows that inside the sphere of radius Ri both s̄qq and s̄ff are equal to
m − pi . Thinking of the ball R ≤ Ri as an inclusion, this is a nonlinear analogue
of Eshelby’s celebrated inclusion problem (Eshelby 1957). This result also holds
for an arbitrary nonlinear isotropic incompressible solid as shown next.

Now let us assume that the body is isotropic and incompressible (not
necessarily neo-Hookean). The second Piola–Kirchhoff stress tensor has the
following representation (Marsden & Hughes 1983):

SAB = a0GAB + a1CAB + a2CA
DCDB , (4.44)
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where a0, a1 and a2 are functions of position and invariants of C. For R ≤ Ri ,
CAB = dAB and hence SAB = adAB , where a = a0 + a1 + a2 is a constant for a
homogeneous solid. This means that similar to the neo-Hookean solid, PaA =
(a − p(R))daA. Equilibrium equations dictate p(R) = a, and hence we have proved
the following proposition.

Proposition 4.7. For a homogeneous spherical ball of radius Ro made of an
isotropic and incompressible solid, traction-free on its boundary sphere, and with
the following point defect distribution:

n(R) =
{

n0 0 ≤ R ≤ Ri ,
0 Ri < R ≤ Ro,

(4.45)

in the ball R ≤ Ri , the stress is uniform and hydrostatic.

Remark 4.8. This proposition still holds when PrR(Ro) = −p∞. In this case,
the uniform value of the hydrostatic pressure inside the sphere of radius Ri is

pi = 2m

∫Ro

Ri

[
f (x)

x6

r7(x)
− 2

x3

r4(x)
+ f (x)

r(x)

]
dx + m

R4
o

r4(Ro)
− p∞. (4.46)

(d) Zero-stress spherically symmetric point defect distributions

Next, we identify all those spherically symmetric point defect distributions
that are zero-stress. This is equivalent to the underlying Riemannian material
manifold being flat (in the case of simply connected material manifolds). Given
the coframe field (4.1) using Cartan’s first structural equations, its Levi–Civita
connections are obtained as

ū1
2 = − 1

Rf (R)
w2, ū2

3 = −cot Q

R
w3 and ū3

1 = 1
Rf (R)

w3. (4.47)

Using Cartan’s second structural equations, we obtain the following Levi–Civita
curvature 2-forms:

R̄1
2 = f ′(R)

Rf 3(R)
w1 ∧ w2, R̄2

3 = − 1
R2

(
1 − 1

f 2(R)

)
w2 ∧ w3

and R̄3
1 = f ′(R)

Rf 3(R)
w3 ∧ w1.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.48)

The Riemannian material manifold is flat if and only if f ′(R) = 0 and f 2(R) = 1.
This means that f (R) = 1 is the only possibility. From (4.20), we see that the
zero-stress point defect distributions must satisfy the following integral equation:

R3n(R) =
∫R

0
3y2n(y) dy ∀ R ≥ 0. (4.49)

Taking derivatives of both sides, we obtain n′(R) = 0 or n(R) = n0.

(e) Comparison with the classical linear solution

Here, we compare our nonlinear solution with the classical linearized elasticity
solution. For a sphere of radius Ro made of an incompressible linear elastic solid
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Figure 4. Comparison of the linear (dashed) and nonlinear (solid) solutions for the radial stress
distribution for n0 = −0.1 and different values of k = Ri/Ro. (Online version in colour.)

with a single point defect at the origin, recall that (Teodosiu 1982)

srr = −4mC
R3

(
1 − R3

R3
o

)
and sqq = sff = 2mC

R3

(
1 + 2R3

R3
o

)
, (4.50)

where

C = dv

4p
, (4.51)

and dv being the volume change due to the point defect. To compare our nonlinear
solution with this classical solution, we note that

dv = 4p

3
R3

i n0. (4.52)

Therefore,

C = 1
3
R3

i n0. (4.53)

While an explicit exact analytic solution is not available, an asymptotic
expansion for Ri small gives

srr = −4mC
R3

{(
1 − R3

R3
o

) [
1 + log

(
R3

o

R3
i (1 − n0)

)]
+ log

(
R3

R3
o

)}
+ O(R6

i ), (4.54)

valid for Ri ≤ R ≤ Ro. We see that the linear solution is modified by a geometric
factor log(R3

o/(R
3
i (1 − n0)) and a nonlinear logarithmic correction. Note that

(4.54) diverges in the limit Ri → 0, holding dv fixed. The latter is the strength of
the centre of contraction/expansion, and is the quantity held fixed in continuum
treatment of point defects. As can be seen in figure 4, the two solutions are
very close, and the classical linear solution captures most of the features of the
nonlinear solution but it diverges at the origin and systematically underestimates

Proc. R. Soc. A (2012)

 on November 6, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3920 A. Yavari and A. Goriely

the stress outside the core of the defect. By comparison, the nonlinear solution is
regular over the entire domain. The nonlinear analysis of a continuous distribution
of point defects in a small core provides an effective way of regularizing the
solution for the stress. This is particularly important in deriving estimates for
fracture and plastic yielding.

5. Conclusions

In this paper, we constructed the material manifold of a spherically symmetric
distribution of point defects, which is a flat Weyl manifold, i.e. a manifold
equipped with a metric and a flat and symmetric affine connection, which
has a non-vanishing traceless non-metricity. Using Cartan’s moving frames and
Cartan’s structural equations, we constructed an orthonormal coframe field that
describes the material manifold. We then embedded the material manifold in
the Euclidean three-space. In the case of neo-Hookean materials, we were able
to calculate the residual stress field. As particular examples, we showed that a
uniform distribution of point defects is zero-stress. We also showed that for a
point defect distribution uniform in a sphere of radius Ri and vanishing outside
this sphere, the residual stress field in the sphere of radius Ri is uniform (in any
isotropic and incompressible solid). This is a nonlinear analogue of Eshelby’s
celebrated result for spherical inclusions in linear elasticity. We also compared
our nonlinear solution with the classical linear elasticity solution of a single point
defect. We observed that as expected for a small volume of point defects, the two
solutions are close.
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