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Abstract

Carpinteri et al.’s discussion is very welcome for it gives an opportunity to clarify long-running disagreements on the
problem of size effect, important to several engineering fields. However, the discussion misinterprets many points of Ba ant
and Yavari’s paper and attempts to raise new issues. This response presents recent experimental results contradicting appli-
cability of Carpinteri’s ‘‘multifractal scaling law’’ (MFSL), and refutes the discussers’ arguments on their proposed con-
cepts of ‘‘fractal mechanics’’, on the statistical size effect, on the validity of mathematical derivation of MFSL and its
asymptotic slope, and on various other aspects of scaling of quasibrittle failure.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A factual discussion of the differences between the energetic or energetic-statistical theory and the fractal
theories has been overdue for a long time. Therefore, we sincerely welcome the discussion of our paper by
the group of researchers from the Politecnico di Torino. However, since the discussion misinterprets many
points from our paper and also attempts to raise many new issues, a detailed response is called for.

2. Response to discussers’ ‘‘introduction’’ and to their comparisons with energetic and energetic-statistical theories

of size effect

Carpinteri, Chiaia, Cornetti and Puzzi (henceforth called the discussers) begin by pointing out that
the hypothesis of fractal origin of the experimentally observed size effect on structural strength, and the
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‘‘multifractal scaling law’’ (MFSL) in particular, have been promulgated by the senior discusser (Carpinteri) in
‘‘more than 60 peer-reviewed papers published in the most prestigious journals’’ and ‘‘in the most important
conferences throughout the world’’. This is true. We leave it up to the reader to decide whether it invalidates
our critique.

2.1. Experiments showing inapplicability of MSFL to reinforced concrete structures

The discussers write that ‘‘the experimental tests, as evidenced from the first publications in 1992, have
often supported the soundness of the fractal approach and of the MFSL’’. This statement would be accurate
only if one considered only older experiments on not too large unreinforced (plain) concrete structures, and
only those failing at macro-crack initiation (which requires the structure geometry to be positive [1]). The
senior discusser has long claimed that the MFSL applied to all quasibrittle failures of concrete structures
except notched test specimens. This claim is not true, and we are compelled to make it clear by giving a
synopsis of the main experimental evidence, as available today.

The discussers ignore the difference between the size effects of two types: type 1, which occurs in unnotched
structures (of positive geometry) [1,2] at fracture initiation from a boundary layer of cracking in structures,
and type 2, which occurs in unnotched or notched structures that reach maximum load only after large stable
crack growth. Their fractal geometric arguments do not distinguish between these two cases, and so they
assume that the MFSL applies to both. Yet a very different size effect law is required for each [1–3].

The discussers accept that the size effect in notched structures is energetic and different from MFSL. In real-
ity, though, a notch acts similarly to a crack, and is almost perfectly equivalent to a pre-existing (initial) crack
when the crack-bridging cohesive stresses in this crack have been reduced to zero by prior load cycling and
fatigue, as typical in practice. So, if they accept one case to be energetic, why don’t they accept the other? Both
cases lead to size effect laws with exactly the same asymptotes [2,3], and even if the crack-bridging stresses have
not been reduced to zero by prior load cycles and fatigue, there is only a small and negligible difference in the
sharpness of the transition between the asymptotes (see [4,2,3] for the difference between the type 2 and type 3
size effect laws). Another reason why both cases are essentially equivalent is that, if the crack propagation (in a
non-homogeneously stressed structure) is stable, the crack path is almost completely dictated by the laws of
mechanics (maximization of entropy production or energy release rate), and does not vary perceptibly because
of material randomness, nor fractality of fracturing or damage. So, it is known in advance where approxi-
mately the crack will go, which is almost the same situation as for notches.

These facts become clearer by considering the widely studied case of diagonal shear fracture of longitudi-
nally reinforced concrete beams without stirrups. As confirmed by many experiments as well as finite element
simulations, the diagonal cracks have essentially similar paths in small and large beams and about the same
relative length at maximum load, extending through about 80% of the cross section depth (see the bold curves
ending by a circle in Fig. 1). There is no chance that the crack would propagate with a much steeper or much
milder average slope for one size than for another, start at very dissimilar positions, or have a very different
relative length at the moment of failure (faint curves ending by a cross in Fig. 1). Thus the fracture process
zones at maximum loads of small and large geometrically similar beams are found to lie at the same homol-
ogous locations (in Fig. 1), as if a precut notch had a tip at that location. The senior discusser has since 1994
insisted repeatedly, in numerous papers, that the MFSL is applicable to all unnotched structures, including the
aforementioned case of beam shear. Initially, the experimental evidence and its statistical analysis was not
unambiguous in this regard. Broader-range test data for normal concretes, of a size range sufficiently broader
than the width of the scatter band, were at that time unavailable, or geometrical scaling of test specimens was
not adhered to. This situation, and the excessive scatter of old test data, were the reasons why, in the senior
discusser’s widely circulated 1995 report (the discussers’ Ref. [8]), the MFSL seemed to fit various old data
equally well as, and in some cases better than, the energetic size effect law (SEL) of type 2 (Eq. (5) in Ref. [5]).

For the shear failure of reinforced concrete beams (with non-reduced aggregate sizes), the situation in 1995
is documented in Fig. 2, which shows all the classical test data on beam shear reported between 1962 and 1994
[6–10]. Note that the closeness of fits of these data by the SEL (energetic size effect law of type 2) and by the
MFSL is not very different. Although, in our opinion, the fits by SEL in Fig. 2 are somewhat better, the only
clear conclusion that can be drawn exclusively from these data or those compiled in the senior discusser’s 1995
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Fig. 2. Comprehensive set of classical test data on the size effect on the strength of reinforced concrete beams failing by shear, and their
optimum fits by the type 2 energetic size effect law (SEL) and by the MFSL.
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Fig. 1. Crack paths and lengths at maximum load in shear failure of small and large geometrically similar longitudinally reinforced
concrete beams. Bold curves ending by a circle show the real cracks. Light curves ending by � are impossible cracks.
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report is that a size effect exists, but not which formula is correct. So, by 1995, one had to rely either on frac-
ture mechanics arguments, or on nonlocal finite element simulation. Although experimental evidence was by
1995 available from reduced-scale model tests of geometrically scaled concrete beams [11] (Fig. 3, left), most
practicing engineers (as well as the senior discusser) were unwilling to accept it because the maximum aggre-
gate size (da = 4.8 mm) was deemed to be too small.

Now, 12 years later, two test series carried out at the University of Toronto (summarized in [12,13]) make
the experimental evidence clearer; see Fig. 3 (middle and right). These large-size tests were approximately
geometrically scaled and had a broader size range than those in Fig. 2. They were conducted on beams with
normal aggregate size, and reached the beam depth of d = 1.89 m.
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Fig. 3 shows the optimum fits of the two Toronto test series by the SEL (solid curves) and by the MFSL
(dashed curves). Also shown is the optimum fit of the older reduced-scale model tests [11]. Now note that the
SEL fits the data points well, while the MFSL does not. In particular, note that the final asymptote of slope
�1/2, corresponding to the asymptotic power law d�1/2, is supported by the data. The final slope of �1/2
further implies that the discussers’ intuitive argument about the loss of disorder at a large enough scale is
unrealistic (it may be noted that ACI Committee 446, chaired by W. Gerstle, voted unanimously in 1993 that
any size effect formula to be considered for revising code provisions for beam shear must terminate with the
large-size asymptotic slope of �1/2).

From the ACI database [14] (shown in Fig. 1 of our paper [5] and in [12]), a clear statistical trend can be
extracted using refined statistical analysis. This database collects 398 beam test results obtained in hundreds of
laboratories throughout the world (and is an extension of the 1984 Northwestern University database with 296
test results reported in [15]). A simple statistical regression of all the points in this database, attempted previ-
ously by several authors, cannot give a meaningful trend of the size effect on the nominal (or average) beam
shear strength vc because other important influencing parameters, such as the steel ratio qw, the relative shear
span a/d and the maximum aggregate size da, vary in that database arbitrarily and highly non-uniformly with
respect to beam size d.

Such primitive statistical techniques showed that power laws of various exponents, the MFSL, and the
energetic size effect law, all fit the database almost equally well (or equally badly) [16]. Therefore, special sta-
tistical techniques are needed to extract any meaningful and unbiased information by purely statistical means.
This objective necessitates suppressing the bias implied by lack of statistical design of parameter sampling. A
suitable statistical technique has recently been introduced in [17] (and summarized in [18]). It does provide a
clear size effect trend; see Fig. 4 (top, and bottom left). Here the range of beam depths d in the database is
subdivided into five equal-ratio size intervals (Fig. 4). They range from 3 to 6 in., from 6 to 12 in., from 12
to 24 in., from 24 to 48 in., and from 48 to 96 in. (1 in. = 25.4 mm). The borders between the size intervals
are chosen to form a geometric (rather than arithmetic) progression because what matters for size effect is
the ratio of sizes, not their difference (note that, e.g., from d = 4 to 4 + 20 in., the size effect is strong, from
400 to 400 + 20 in. negligible). The averages and the distributions of the values of qw, a/d and da in these inter-
vals of the ACI database are very different. Because, as generally agreed, the effect of the required concrete
strength f 0c is adequately captured by assuming the shear strength of cross section, vc, to be proportional toffiffiffiffi

f 0c
p

, the ratio y ¼ vc=
ffiffiffiffi
f 0c

p
, where vc and f 0c are both given in psi (1 psi = 6895 Pa) may be considered to depend

only on qw, a/d and da.
To filter out the effect of influencing parameters other than d, one must, within each interval of d, gradually

(step by step) restrict the relevant values or influencing parameters qw, a/d and da by adjusting the upper and
lower limits until the averages of these relevant values within each interval of d would become, for each inter-
val of d, about the same (within a given tolerance). To ensure statistically unbiased treatment, no data point
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within the upper and lower limits of each interval of d for each influencing parameter may be left out, and no
data point outside those limits may be included. A computer optimization algorithm has been written for
extracting such relevant data from the ACI database. The algorithm has been run to extract three subsets
of the ACI database, corresponding to three different average values, qw � 1.5%, 2.5% and 0.9%.

The centroids of the extracted relevant y-data points within each of the aforementioned 5 intervals of d are
shown as the bold diamond points in Fig. 4 (top left and right, and bottom left) in the plot of logðvc=

ffiffiffiffi
f 0c

p
Þ

versus logd. For qw � 1.5% and 2.5%, the last of the five intervals of d (which is the case of very large beams)
had to be left empty because the ACI database does not contain within that interval sufficient data points
giving these average values of qw. The subsets of extracted relevant data points are shown as the faint empty
circles. For qw � 1.5%, the algorithm delivered a subset of 128 relevant data points for which the precise values
of the averages within each interval of d were qw = 1.51%, 1.50%, 1.50%, 1.50%, with the corresponding aver-
ages a/d = 3.45, 3.33, 3.33, 3.23, and da = 0.66, 0.67, 0.66, 0.65 in. For qw � 2.5%, the algorithm delivered a
subset of 157 relevant data points for which the precise values of the averages within each interval of d were
qw = 2.55%, 2.51%, 2.48%, 2.44%, with the corresponding averages a/d = 3.33, 3.33, 3.34, 3.33, and da = 0.67,
0.67, 0.66, 0.67 in. For qw � 0.9%, the algorithm delivered a subset of only 24 relevant data points for which
the precise values of the averages within each interval of d were qw = 0.91%, 0.94%, 0.94%, 0.91%, 0.74%, with
the corresponding averages a/d = 2.94, 2.94, 2.94, 2.94, 2.86, and da = 0.39, 0.39, 0.39, 0.39, 0.39 in.

Under the assumption that the statistical weight of each size interval centroid in Fig. 4 is the same, the fore-
going procedure [17] is now used to obtain the optimum least-square fit of these 4 or 5 centroids with the SEL
(type 2 energetic size effect law, Eq. (5) in [5]), which is written here as vc=

ffiffiffiffi
f 0c

p
¼ Cð1þ d=d0Þ�1=2 where C,

d0 = free constants to be found by the fitting algorithm (note that Eq. 5 of our paper [5] has a misprint:
the exponent should be �1/2, not 1/2).
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The fits of the diamond points (solid curves in Fig. 4 top left and right, and bottom left) are seen to be quite
satisfactory; they have very small coefficients of variation of errors, x = 2.5%, 1.7% and 5.1%, respectively
(standard deviation of errors divided by data mean). The trends of the diamond points are seen to be quite
systematic. Note all the three trends show a negative curvature, agreeing with the SEL and contradicting
the MFSL. The terminal trends of the centroids agree with the asymptote of slope �1/2, characterizing the
SEL [15,16,12,19], and give no hint of an approach to the asymptote of slope 0, characterizing the MFSL.
Finally note that the trends of the centroids disagree also with the Weibull statistical theory, which would
require a straight line of slope cca �1/12.

Another way to obtain from the database a meaningful result is to conduct a multivariate nonlinear regres-
sion with a rational size effect formula in which the strong influences of qw, a/d and da on the parameters are
taken realistically into account. These influences have been incorporated into the coefficients of SEL (see the
formula in Fig. 4 bottom right). This led to the optimum fit of the entire ACI database of 398 points shown in
Fig. 4 (right) [12], plotted in transformed coordinates of the formula. Despite scatter, the trend of the energetic
size effect is clearly confirmed. The MFSL cannot be plotted against the entire ACI database because the influ-
ences of qw, d/a and da on its coefficient are not known and are impossible to determine by the discussers’ ‘frac-
tal mechanics’. Nevertheless, the positive curvature of the MFSL disagrees with the trend in Fig. 4 (right).

Since the MFSL cannot apply to reinforced concrete beams failing after large crack growth, it was mislead-
ing, in numerous papers of the senior discusser, to present the MFSL and the SEL as two competing models.
The former applies only to type 1 size effect (at small sizes), and the latter only to type 2 size effect. Models that
apply to different situations cannot be in competition.

The discussers are silent about two other inconsistencies. When applying the MFSL to type 2 failures, they
ignore the rate of energy release caused by a large crack growing stably before the maximum load. Yet the fact
that this energy release causes a size effect is undeniable and easily understood (see the discussion about Fig. 3
(right) in [5], and point 1 on page 564 of [20]). Even if the fractal source of size effect for type 2 failures were
accepted, the size effect of the energy release would have to be superposed on it because it is inevitable.
Likewise, in applying the MFSL to type 1 failures, the discussers ignore both the size effect due to stress
redistribution engendered by a finite fracture process zone (or boundary layer of cracking), and the Weibull
statistical size effect, which is undeniable in the case of failures at crack initiation in a material of random
strength.

The discussers are further silent about the fact that the dependence of MFSL coefficients on structural
geometry is not predicted by their fractal mechanics. By contrast, the energetic size effect law (of type 1 as well
as 2) for failures at crack initiation does predict this dependence, through the limit values of the energy release
rate derivatives (Eq. (6) in [5]).

Referring to the RILEM report [20], the discussers are not right in criticizing that ‘‘a non-zero term is
included in the formula’’ of the SEL. As a matter of fact, the original SEL [19] is cited in [20] as Ref. [53]
and is presented in Eq. (11). It is true that ‘‘a non-zero term’’ rR (the need for which was pointed out in
1987 [21]) is added, but this is done only for the sake of brevity, and a few lines below it is stated that the
residual strength rR is usually zero, with two exceptions – unbroken fibers crossing the crack, or transition
at large sizes to a residual frictional plastic mechanism as in compression kink bands or the Brazilian test
[22]. We can see nothing that could be criticized.

2.2. Discussers’ comments on statistical size effect and Weibull theory

The discussers write that Z.P. Bažant (ZPB) ‘‘exploited the same tactics he followed to demonstrate that
Weibull-type size effect is not applicable to concrete structures’’. This is a distortion of our position, which
must be explained. We certainly do not deny that the Weibull-type statistical size effect on the mean structural
strength exists in concrete structures, though not without important limitations. It exists only in those struc-
tures that fail (under load control) at the moment of macro-crack initiation and are sufficiently large compared
to the aggregate size. Very large unreinforced concrete structures (such as large arch dams or retaining walls
failing by flexure) qualify, but reinforced concrete structures failing after large crack growth generally do not.
Neither do small plain concrete beams. What needs to be understood is that (aside from other reasons [23,2])
there are four strong reasons for these limitations:
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(1) Large cracks grow stably prior to the maximum load, traversing typically 80% of the cross section in the
case of beam shear. Since, as already pointed out, the crack path is dictated by mechanics, the fracture
process zone at maximum load lies at one precise location, and so a random local strength at other loca-
tions in the beam does not matter. In such structures, strength randomness affects only the shape of the
probability density function (pdf) of structural strength but not the mean, and causes no appreciable size
effect on the mean strength [23]. Here the size effect, seen in experiments, is energetic (non-statistical),
caused by the energy release due to stress redistribution engendered by large crack growth.

(2) The contribution to Weibull probability integral is proportional to r = (r(x)/rmax)m where r(x) = first
principal stress at point of coordinate x, rmax = maximum of principal stresses within the structure,
and m = Weibull modulus � 24 for concrete [24]. Because of stress concentration near the tip of a large
crack, the stresses decay rapidly and at points where r(x) 6 0.9rmax, one has r 6 0.08, and where
r(x) 6 0.5rmax, one has r 6 6 · 10�8. So, virtually the only non-negligible contribution to the Weibull
probability integral for structural strength comes from the fracture process zone, whose size is essentially
independent of the structure size, and thus can cause no size effect [23]. Besides, the Weibull probability
integral could diverge if the singular elastic stress field of a crack were substituted. Hence, there is no
appreciable statistical size effect if a large crack forms before the maximum load.

(3) The third reason, which precludes the use of classical Weibull statistics to both unreinforced and rein-
forced concrete structures of normal sizes (as well as to most structural parts made of laminates or
coarse-grained ceramics), is that the equivalent number [25,26] of representative volume elements
(RVE) contained in a normal concrete structure is not large enough (because of insufficient ratio of cross
section size to aggregate size, as well as stress non-uniformity).

(4) To obtain acceptable (in fact, barely acceptable) data fits, the classical Weibull theory is often considered
to have a non-zero threshold. But recently it was shown [25,26] that the threshold in Weibull theory must
always be zero, or else the Maxwell–Boltzmann distribution of interatomic bond strength would be
contradicted.

While the discussers object to certain ‘tactics’ against the Weibull statistical theory, they themselves actually
never use that theory. They argue that some sort of strength randomness is in some way communicated
through fractals. But the way it is supposed to be communicated is to us mathematically incomprehensible.

Since the discussers emphasize the statistical aspect of the material, it is strange that they accept a horizon-
tal large-size asymptote of size effect, as exhibited by MFSL. According to the Weibull statistical theory (and
also the chain-of-RVEs model [25,26]), the slope of that asymptote would have to be �nd/m, which is about
�1/12 for two-dimensional scaling of failure of unreinforced concrete structure (m = Weibull modulus � 24
for concrete, and nd = number of dimensions of fracture scaling).
2.3. Why do the discussers compare MFSL to the universal SEL?

In [5], the universal size effect law (U-SEL) was mentioned only to illustrate a unified description of size
effect clarifying the transition between the energetic size effects of type 1 (failures at crack initiation) and type
2 (failures after large crack growth). It has not been mentioned in regard to MFSL because it is irrelevant to
the comparison of MFSL with the energetic size effect. Yet the discussers write: ‘‘ The reaction of Bažant was a
fierce opposition . . . Therefore he introduced the so-called Universal SEL’’. The word ‘‘therefore’’ is misplaced
(because the U-SEL was shown on the screen of an opening lecture at that same conference at which the dis-
cussers’ Ref. [8] was distributed).

More importantly, none of us has ever mentioned the U-SEL in relation to the MFSL, nor to the fractal
theories of the senior discusser. The repeated mentions of this law by the discussers in regard to MFSL only
cloud the issue and evade the real problem.

In all the discussers’ statements, the words ‘‘Universal SEL’’ should be replaced by the words ‘‘the energetic
size effect law for failures at crack initiation’’, or simply the words ‘‘type 1 size effect law’’. Only then the dis-
cussers’ commentary would make sense (although it would still be unjustified). The MFSL should be com-
pared only to the type 1 size effect law because it is usable (as an empirical formula for a limited size
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range) only for small enough structures failing at crack initiation, and not when small or large macro-cracks
grow stably before the maximum load.

2.4. Discussers’ other points

The discussers appeal to the well-known renormalization group theory as a foundation of their ‘multifrac-
tal’ theory. That is unwarranted. The renormalization group theory does not sanction the ‘multifractal
theory’. That theory merely describes the transition from one power law scaling to another power law scaling,
which is a characteristic not only of the MFSL but also of the energetic and energetic-statistical size effect laws
(thus, a foundation in the renormalization group theory could just as well be invoked for the latter). What is
crucial is the gradual transition between these two power-law scalings, which spreads over several orders of
magnitude depending on strain localization instabilities. On that, the renormalization group theory says
nothing.

For the sake of accuracy, various marginal comments of the discussers need to be corrected. E.g., the dis-
cussers write ‘‘Although some scepticism . . . was outlined . . . by Bažant, Gettu, Jirásek, Planas and Xi, the
other members of the Committee did not take a position and, in other papers, expressed their independent
point of view . . . in favour of the MFSL’’ (actually, not ‘members’, but only one member, van Mier, who
expressed that point of view, in a rather non-specific way).

3. Response to ‘‘slope of the MFSL asymptote’’

3.1. The concept of ‘‘fractal mechanics’’

The discussers’ concept of the so-called ‘‘fractal mechanics’’ is interesting but not well defined. As explained
in [5], it involves some simplistic extensions of linear elasticity. The arguments presented in [27], and also those
offered by the discussers, conflict with some universal principles of mechanics. Note the following points, to
wit.

In an axially loaded bar, the strain is a normalized displacement, i.e., the ratio of the total relative displace-
ment to the original length of the bar. But this can have nothing to do with the cross section of the bar, as
implied in [27,28]. Thus the one-dimensional definition of strain proposed in [28, Eq. (3)] is not rigorously jus-
tified. In the prototypal one-dimensional problem of an axially loaded bar, one can define a ‘‘fractal normal
stress’’, similar to what was defined for a cohesive theory in [29], but such a definition is limited to forces in a
fixed direction. If it is desired to introduce a normal stress definition as the density of force on a fractal cross
section, what should be modified is the stress–strain relation, and not the strain. In that sense, the constitutive
equations become scale dependent, but not the strain.

The recent works of the senior discusser’s team go even further and, without any sensible justification,
define the strain as the fractional derivative of the displacement field. What they present as a ‘‘formal deriva-
tion’’ [28, see the paragraph after Eq. (18)] looks to us as a collection of various undefined quantities with
undefined connections.

In this regard, note that linear elasticity can be rigorously derived from nonlinear elasticity by linearization
about a given deformation mapping [30]. The linearized strain represents the linearization of deformation gra-
dient and thus happens to depend on the first derivatives of the displacement field. The deformation gradient
(which is the derivative map of the deformation mapping) maps an infinitesimal line element in the reference
configuration to its deformed form in the current configuration.

Now it is unclear what a fractional derivative would mean in this fundamental context. Defining a quantity
as the fractional derivative of the displacement field is meaningless. The possibility of some new measures of
strain is not excluded, but any such measure would have to be based on sound geometric arguments.

Another surprising aspect in the so-called ‘‘fractal mechanics’’ [27] is the differential equation of equilib-
rium, which is expressed in terms of some fractional divergence of an undefined stress tensor. In classical con-
tinuum mechanics, the local balance of linear momentum is obtained by localization of the global balance of
linear momentum away from discontinuities. This yields the Cauchy theorem and the local balance of linear
momentum (or equilibrium equations), i.e. divr + qb = qa (where r = stress tensor, b = body force, a =
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acceleration, q = mass density). However, the discussers’ definition of a ‘‘fractal stress tensor’’ is unclear, and
so is their replacement of the divergence operator with a fractional operator. It is also unclear how the stress
could be defined on a lacunar fractal if the energy is supposed to dissipate on an invasive fractal.

3.2. Problems with MFSL asymptotic slope �1/2

Trying to defend the small-size asymptotic slope of MFSL, the discussers say nothing about one simple but
strong objection to its value �1/2. Since the fractal dimension d of the cracking morphology is not constant
but varies from one material to another, how can the exponent n = �1/2 of the small-size power-law asymp-
tote of MFSL be treated as independent d?

Consider that d varies and approaches the Euclidean dimension dEu. In the discussers’ view and in the der-
ivation of MFSL ([31] or discussers’ Ref. [2]), exponent n remains equal to �1/2 even when, for example,
d = dEu + 10�9 (where dEu = Euclidean dimension). Then n is supposed to jump discontinuously to 0 as
d = dEu.

In a credible theory, n would have to approach 0 continuously, i.e., limd!dEu
n ¼ 0 should hold. The discon-

tinuity of n as a function of d is physically unacceptable. Thus the arguments in [31] that led to asserting that
dr = 1/2 are hazy and, to us, mathematically incomprehensible.

In regard to their Eq. (1), the discussers claim that ‘‘at the smaller scales . . . continuum mechanics holds’’,
and ‘‘damage is diffused and one obtains d� = 0’’. This cannot be true. At the smaller scale, the discreteness of
the microstructure of the material, for instance concrete, cannot be ignored, and thus the continuum mechan-
ics approximation of concrete as such cannot hold.

Furthermore, the discussers’ claim that ‘‘the maximum value for dG is 1/2’’ looks to us as nothing but a
questionable conjecture. In fact, the variation of the critical energy release rate G in the sense of an R-curve
is not a physical fact but merely an artifice allowing approximations by linear elastic fracture mechanics.
According to the cohesive crack model, which is a physically more realistic approach, the critical G, i.e.,
the fracture energy, is a constant, yet the R-curve (representing the variation of the critical J-integral near
the crack tip) can be predicted by this model (and so can the variation of this integral when the crack front
is close enough to the boundary to interact).

The discussers’ response to our statement in [5] that the ‘‘the defects of maximum size cannot have the same
probability distribution of a as the ensemble of all defects (as considered in Eqs. (22)–(32) of [31]) but could
have only one of the three possible extreme value distributions (Fréchet, Gumbel or Weibull)’’ sidetracks the
issue that we raised. The Fréchet distribution would, of course, be acceptable (provided that the defect size
distribution had a Pareto tail), but that is not what we criticized.

What we criticized as incorrect is that the derivation of the MFSL in [31] considered, for the maxima, the
same distribution as for the whole ensemble of defects, and particularly not the Fréchet distribution (note that
a consistent statistical theory of crack propagation using the Fréchet extreme value distribution was presented
in Section 12.6 of [1]).

Stochastic simulations with the nonlocal Weibull statistical theory or with the probabilistic nonlocal dam-
age mechanics [24,32, e.g.] demonstrate that the small-size asymptotic power law of size effect of type 1 can
have an exponent different from �1/2. Since no analytical solutions of boundary value problems with the frac-
tal theory have been presented by the discussers, it would be welcome to see at least some numerical solution
of the fractal field equations of some boundary value problem, and its comparisons with experiments. We
expect that such solutions would show that the small-size asymptotic exponent of size effect is not restricted
to �1/2, even under the hypotheses of their ‘fractal theory’.

A fundamental model for the statistical aspect of the size effect at crack initiation (type 1) in a heteroge-
neous material is the chain-of-RVEs model [25,26,33]. This is a weakest-link model that, in contrast to Weibull
theory, has a finite, rather than infinite, number of links, each of which is imagined to correspond to one RVE.
Based on the Maxwell–Boltzmann statistics of atomic energies, each RVE of a heterogeneous brittle material
must have a Gaussian strength distribution onto which a power-law tail with a zero threshold is necessarily
grafted at the probability of the order of 0.001. For large sizes, this model asymptotically reduces to the clas-
sical Weibull theory, while for small sizes it yields the correct (experimentally and computationally confirmed)
deviation from the Weibull power-law size effect (whose exponent is �nd/m). This is the same as predicted by
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the energetic analysis of size effect (the reason is that the RVE is considered to have a finite size and the equiv-
alent number of RVEs is finite). The predicted small-size asymptotic slope of size effect (plotted in a logarith-
mic scale) is, in general, different from �1/2 [25,26].

The MFSL, with its initial asymptotic slope fixed as �1/2, and the chain-of-RVEs model (whose mean coin-
cides with the energetic-statistical size effect law and also with the mean of nonlocal Weibull theory), are mutu-
ally exclusive. They cannot both be correct. Eventually, the science and engineering community will have to
choose.

The discussers try to justify the small-size asymptotic slope of �1/2 by claiming that ‘‘the maximum defect
size is proportional, on the average, to the structural scale’’. It is not clear whether the discussers consider the
defects to be the initial microscopic defects, i.e., microcracks (smaller than about the maximum inhomogeneity
sizes), or the macrocracks produced by load. There are two points to consider in this regard.

First consider the initial microcracks, or flaws. The distribution of their sizes is supposed to be an objective
material property, not alterable by human will once the concrete is cast. So how can it depend on the struc-
tural scale, e.g., the depth of a reinforced concrete beam, which is a subjective property chosen by the engineer
at will?

On the other hand, if the maximum ‘defect’ is considered to be the macro-crack produced by loading, the
size of which at maximum load does depend on the beam depth, then there is a different problem. Wouldn’t
macrocrack formation cause stress redistribution with energy release? Wouldn’t that energy release inevitably
cause an energetic, rather than fractal, size effect? Wouldn’t that size effect have to be taken into account? Isn’t
it true that the energy release increases with structure size roughly quadratically, while the energy dissipated by
the crack increases approximately linearly? [2, e.g.].

Alas, the argumentation relative to the maximum defect size is not mathematically comprehensible to us.

3.3. Criticisms of MFSL derivation whose refutation was not attempted

Aside from the discussers’ points rebutted later in Section 4, the interested reader should note that the
authors made no attempt to refute the following problematic and mathematically invalid steps in the ‘deriva-
tion’ of MFSL, as identified in [5]: seven of the nine points mentioned in item 1 on page 26 of [5], all the three
points in item 2, and all of item 4.

So it must be concluded that the MFSL does not logically follow from the hypothesis of fracture or damage
fractality. It is merely an empirical formula which is good enough only for the type 1 size effect (at crack ini-
tiation), and only for sizes not so large that Weibull statistical size effect would intervene. In that range, the
MFSL is equivalent to a special case of the energetic and energetic-statistical size effects. For very small sizes,
though, the MFSL has a questionable asymptote, and for very large sizes it fails to capture the inclined asymp-
tote of the power-law size effect of Weibull statistical theory, which must occur for failures at crack initiation.

Although MFSL has the same asymptotes as the earlier CEB-FIP formula [34] Aþ
ffiffiffiffiffiffiffiffiffi
B=D

p� �
, it certainly

cannot be claimed that it provides a theoretical foundation for that formula, which was introduced purely
empirically.
4. Responses to points made in ‘‘further considerations’’

(1) We find this point to be mere playing with words. Careful reading of [5] makes it clear what we meant by
‘fractals’ and by ‘energetic-statistical’.

(2) Mathematically, a multi-fractal is not what the discussers call ‘multi-fractal’, as explained in [5].
(3) The requirement for ‘‘six orders of magnitude’’ of scales [35] (see also item 8 on page 564 of [20]) is nec-

essary to ensure that the scaling property be unambiguously fractal, i.e, that it cannot be described
equally well by some non-fractal theory (e.g., autocorrelated statistical roughness). The fractal scaling
property must be verified over a sufficiently broad range of scales, since not everything with apparently
fractal scaling in a narrow range of scales is properly modelled as a fractal. Of course, the two limits of
this interval depend on the microstructure scale and on the macroscopic characteristic length of the
problem.
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(4) Our paper [5] certainly did not exclude the possibility of modelling certain aspects of fracture mechanics
by fractals. What [5] warns about is the danger of introducing some ill-defined fractal-motivated con-
cepts into mechanics. Furthermore, the discussers pointed out the similarity of Eq. 15 in an earlier Carp-
interi’s paper to Eq. (10) in [29], which describes the asymptotic stress distribution around a fractal crack
(they actually write ‘‘Eq. (20)’’ but the number ‘‘20’’ was most likely a misprint). This comment, how-
ever, is surprising since Eq. (10) was not presented in [29] as original. In all the papers by Yavari and
co-workers on this subject [29,36–40], proper reference has been made to those who studied this problem
for the first time, i.e. Mosolov [41], and Gol’dshtein and Mosolov [42,43]. However, none of these ori-
ginal sources has been cited in the long series of papers by the senior discusser.
In this context, we wish to emphasize that, aside from Mosolov and Gol’dstein’s pioneering contribu-
tions, we see, despite our critiques, valuable contributions in the early and recent works on fractal
aspects of fracture by many other researchers (see, e.g. [44–53] and other works cited in [5]).

(5) There is no such confusion in [5]. Careful reading reveals that crack fractality and the so-called ligament
fractality were properly distinguished. Besides, the related sentence ‘‘after more than ten years, Bažant
still seems to confuse lacunar fractals with invasive fractals’’ (in the penultimate paragraph of the dis-
cussers’ Section 2) is baseless.

(6) In principle, one can work with an entity having a zero volume and a finite fractal measure, and associate
with it a fractal mass density. Our argument in [5] does not exclude this possibility. The point is the fol-
lowing. Would it be meaningful to work with a body of zero volume within the setting of classical con-
tinuum mechanics? The answer is no, if one wants to use the established continuum concepts. For
example, if a body has the fractal dimension of 2.55 (locally, in the neighborhood of a point) it makes
no sense to think of the ‘‘stress’’ and ‘‘strain’’, or even mass density, as a field in the classical sense, since
these quantities cannot be defined everywhere in the ambient space.

(7) This comment is surprising because, in subsection 4.4.3 of [5], we give no definition of stress. We explic-
itly say that ‘‘One may be tempted to define a fractal traction...’’ but we do not use the equation follow-
ing this statement, and we explain in detail why one must be very careful in defining the stress on fractal
surfaces, and why the concepts of the so-called ‘‘fractal mechanics’’ are unjustified and should be
avoided. Besides, [29] discussed similar problems and again made no use of any ‘‘fractal stress tensor’’.
In that work, it was explained that, in one-dimensional problems, one can define fractal densities of force
although their naive extension to three-dimensional problems is impossible.

(8) Any definition of stress and strain should be based on sound mathematical arguments, but those used by
the senior discusser are not of such a kind. For a given system, one should start with a proper description
of kinematics and define appropriate strain measures. This is not done in the so-called ‘‘fractal mechan-
ics’’ in [27]. The existence of Cauchy stress is a consequence of balance of linear momentum and explic-
itly depends on smoothness of the surfaces on which traction acts. In any well-defined ‘‘fractal
mechanics’’, one needs to address this issue and define a proper measure of stress. Again, this is not done
in [27].

(9) Eq. (12) in [27] is a constitutive equation. This equation, whatever one may want to call it, uses a mean-
ingless quantity, and this was the point made in [5]. Fractal derivatives have been applied in physics – for
example, in describing anomalous diffusion, in characterizing viscoelasticity, and also in describing dis-
sipation in the framework of Lagrangian mechanics. We certainly did not imply in [5] that fractional
derivatives could not be useful. Our point simply is that one cannot simply take a fractional derivative
of a displacement field and call it a ‘‘fractal strain’’.

(10) This statement of ours is attacked outside its context. Exponent b, of course, does not characterize frac-
tality, but if b would not reduce to 1 then standard continuum mechanics could not be the limit case of
Carpinteri et al.’s ‘‘fractal mechanics’’, which is a fundamental requirement.

(11) The point is not whether exponent N is used in [31] as some sort of a measure of disorder, but whether it
is realistic to use it for that purpose. The author provides no justification, and the reason for its intro-
duction in the MFSL derivation in [31] is indeed unclear.

In conclusion, it must be reasserted that ‘‘the ‘MFSL’ has been based on a series of hypotheses but does not
follow from these hypotheses by a valid mathematical procedure’’.
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4.1. Closing comments

The tone of the discussion and the personal emotive comments it contains suggest that our attempt at a
factual criticism has offended the feelings of the discussers. If that is so, we are truly sorry. It was definitely
not our intention to cause that. What is needed is an unemotional scientific debate of the salient differences
between competing viewpoints.

Although the discussion and our response are focussed on concrete structures, further debate of size effects
will be important for all the fields of engineering affected by quasibrittle (or cohesive) fracture. This for exam-
ple includes the design of large load-bearing composite parts for aircraft and ship, predictions of the load
capacity of sea ice and the forces it exerts on obstacles, estimates of the danger of landslides, snow avalanches,
and rock burst in mines, safety of nuclear containments and waste storage, and reliability of micro-electronic
components and nano-devices.

Introducing the size effect into design codes for concrete structures, which affect how many thousands of
concrete structures are built, is a necessity. One reason why progress has been delayed for 15 years is the unre-
solved scientific conflict between the energetic-statistical and fractal theories of size effect. Reaching a consen-
sus on the theory is essential since it is costly to test a very large structure to destruction and outright
prohibitive to conduct a statistically significant number of such tests. Thus it is not surprising that, in the case
of shear of reinforced concrete beams [12,16,18,54], 86% of all available test data pertain to beam depths less
than 0.5 m, and 99% to depths less than 1.1 m, while, by contrast, the world-record box girder of the
Babeldaob-Koror Bridge in Palau, whose fatal collapse in 1996 was marked by a large inclined shear–com-
pression fracture emanating from the support, was 14.2 m deep. In extrapolations of the laboratory test data
to such a structure size, the SEL and the MFSL curves in Figs. 2–4 differ by factors between 2.4 and 3.7, the
MFSL being on the unconservative side. Clearly, the present debate has grave engineering consequences [55].

That a serious problem exists is also clear from past experience with catastrophic collapses of large concrete
structures involving fracture. According to the statistics reported in [56,57], the frequency of collapses of very
large structures has been more than 1 in a thousand (per lifetime), while for normal size concrete structures it
has been about one in a million, which is what is generally required [58,56] to ensure that concrete structures
(or aircrafts, ships, nuclear plants, etc.) would not add significantly to other hazards that people inevita-
bly face. One in a thousand is intolerable, and a way to move forward in the ongoing polemic must be
found.
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