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Pure torsion of shape memory alloy (SMA) bars with circular cross section is studied by considering the

effect of temperature gradient in the cross sections as a result of latent heat generation and absorption

during forward and reverse phase transformations. The local form of energy balance for SMAs by taking

into account the heat flux effect is coupled to a closed-form solution of SMA bars subjected to pure

torsion. The resulting coupled thermo-mechanical equations are solved for SMA bars with circular cross

sections. Several numerical case studies are presented and the necessity of considering the coupled

thermo-mechanical formulation is demonstrated by comparing the results of the proposed model with

those obtained by assuming an isothermal process during loading–unloading. Pure torsion of SMA bars

in various ambient conditions (free and forced convection of air, and forced convection of water flow)

subjected to different loading–unloading rates are studied and it is shown that the isothermal solution

is valid only for specific combinations of ambient conditions and loading rates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Shape memory alloys (SMAs) in recent applications are usually
subjected to combined loadings in contrast with the early devices
that were mostly designed based on using the uniaxial deforma-
tion of SMA wires operating as tendons. The recent interest in
using sophisticated SMA devices reveals the necessity of analyz-
ing these materials subjected to complicated loadings. There are
numerous industrial applications using SMA helical springs as
active actuators [17,6]. In addition to actuators, it has been shown
recently that due to the hysteretic response of SMAs, helical
springs made of these materials can be efficiently used as energy
dissipating devices for improving the response of structures
subjected to earthquake loads [30]. Speicher et al. [30] studied
SMA helical springs subjected to cyclic loads and it was shown
that Nitinol helical springs are efficient devices for damping in a
vast range of structures besides their ability in minimizing the
residual deformations after an earthquake. It is well known that
for most practical helical springs (when the ratio of the mean coil
radius to the cross section radius is large and the helix angle is
small), assuming that each portion of a spring acts as a straight
bar under torsion gives accurate results [32]. The application of
torsion analysis for studying the behavior of SMA helical springs
ll rights reserved.

vari).
motivated the authors to seek accurate and efficient analysis
techniques for the pure torsion of SMA bars with circular cross
sections. There are a few attempts to study the torsion problem
for SMA bars in the literature by using numerical methods or
considering simplified SMA constitutive relations (see [20,22] for
a comprehensive review of the available solutions for torsion of
SMA bars). An accurate three-dimensional phenomenological
constitutive equation is reduced for studying the one-dimensional
pure torsional problem and exact solutions are proposed for
analyzing the torsion of straight SMA bars [20] and SMA curved
bars and helical springs [22]. In these studies, it is assumed that
the material temperature is not affected by the phase transforma-
tion and it remains uniformly distributed and equal to the initial
temperature during loading–unloading. However, it is well
known that the phase transformation in SMAs is accompanied
by heat generation during austenite to martensite (forward) and
heat absorption during martensite to austenite (reverse) phase
transformation [16,2,27]. Assuming a constant temperature is
identical to assuming an isothermal process that requires some
particular ambient conditions, geometric properties, and loading
rates to allow the material to exchange all the phase transforma-
tion latent heat with the ambient during loading–unloading. In a
recent study, we have shown that in the case of SMA wires and
bars subjected to uniaxial loads, response of the material is
strongly affected by the thermo-mechanical coupling in SMAs
[21]. In Mirzaeifar et al. [21], the heat balance equation that
accounts for the phase transformation heat and the heat flux are
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coupled to the uniaxial constitutive relation of SMAs. Our for-
mulation can be used for SMA wires and bars with circular cross
sections subjected to different uniaxial loading–unloading rates in
various ambient conditions. The accuracy of the proposed coupled
formulation was validated using experimental results. We have
shown that the accuracy of assuming adiabatic or isothermal
conditions in the tensile response of SMA bars strongly depends
on the size and the ambient conditions in addition to the rate-
dependency. We concluded that for having an analysis with
acceptable accuracy, a coupled thermo-mechanical formulation
is inevitable.

To our best knowledge, there is no reported work in the
literature on studying the coupled thermo-mechanical response
of SMA bars in torsion. In this paper, we present the heat balance
equation by considering the phase transformation latent heat and
the heat flux effects for bars in pure torsion. This relation is
coupled with the exact solution for pure torsion of SMA bars that
we presented previously assuming that the SMA bar is under
torsion in a constant temperature [20,22]. The generation and
absorption of latent heat due to phase transformation and its flux
toward the other parts of the cross section in which the material
is responding elastically is taken into consideration. Boundary
conditions at the outer surface of the bar caused by free or forced
convection of air or fluid flow are carefully enforced. For verifica-
tion purposes the results of the present coupled thermo-mechan-
ical formulation are compared with the experimental data for a
thin-walled NiTi tube subjected to pure torsion.

Since the heat conduction inside the SMA bar and the convec-
tion with the ambient both are strongly affected by the loading
rate, it is shown that the response of SMA bars in torsion is rate
dependent. Several case studies are considered and the effect of
loading rate and ambient conditions on the torsional response of
SMA bars is studied in detail. In each case, the results are
compared with the solution obtained by ignoring the thermo-
mechanical coupling, and it is shown that the special character-
istics of torsion in SMA bars leads to a significant difference
between the isothermal and coupled thermo-mechanical results.
It is worth noting that although some simplified lumped tem-
perature methods can be used for studying the coupled thermo-
mechanical response of SMA bars subjected to uniaxial loading in
particular conditions (when there are no propagating transforma-
tion fronts along the length, the Biot number is sufficiently small,
and thermal boundary conditions at the ends are insulated), due
to the non-uniform distribution of shear stress in the cross section
of SMA bars subjected to torsion, the effect of temperature non-
uniformity and the flux of latent heat is more evident compared
to the simple tension without propagating phase fronts.

This paper is organized as follows. In Section 2 a three-
dimensional coupled thermo-mechanical formulation for SMAs
is briefly explained. The reduction of the model to the one-
dimensional pure torsion and the exact solution for SMA bars
with circular cross section in torsion is presented in Section 3.
Section 4 contains several case studies and some important
observations regarding the torsional response of SMA bars for
different loading rates and boundary conditions. Section 5 pre-
sents a study of the effect of various parameters (loading rate,
size, and ambient condition) on the temperature distributions in
the cross section. Conclusions are given in Section 6.
2. Coupled thermo-mechanical governing equations for SMAs

Deriving the three-dimensional coupled thermo-mechanical
governing equations for SMAs is explained in details in Mirzaeifar
et al. [21]. Starting from the first law of thermodynamics in local
form and using the second law of thermodynamics, the following
coupled energy balance equation is obtained [16]

Ta : _rþrc _Tþ �pþTDa : r�rDc T ln
T

T0

� �
þrDs0T

� �
_x

¼�div qþrĝ , ð1Þ

where T is the absolute temperature, a,r,c and s0 are the effective
thermal expansion coefficient tensor, density, effective specific
heat, and specific entropy, respectively. The symbols r and T0

denote the Cauchy stress tensor and reference temperature. It is
worth noting that, although the constitutive relations are capable
of modeling finite strains [26], we consider the small strains
assumption and the formulation is not affected by the stress
measure in use. The parameter x is the martensitic volume
fraction, the terms q and ĝ account for the heat flux and any
internal heat generation except the phase transformation induced
generated heat. Dot on a quantity (�) denotes time derivative and
any effective material property P is assumed to vary with the
martensitic volume fraction as P¼ PA

þxDP, where the super-
script A denotes the austenite phase and the symbol Dð�Þ denotes
the difference of a quantity ( � ) between the martensitic and
austenitic phases, i.e. Dð�Þ ¼ ð�ÞM�ð�ÞA with M denoting the mar-
tensite phase. The term p in (1) is the thermodynamic force
conjugate to the martensitic volume fraction and depends on the
chosen definition for the free energy. In this paper we use the
Gibbs free energy for polycrystalline SMAs [1,26] and this leads to
the following thermodynamic force (see [26] for details of deriv-
ing this term):

p¼ r : Cþ
1

2
r : DS : rþDa : rðT�T0Þ�rDc ðT�T0Þ�T ln

T

T0

� �� �

þrDs0T�
@f

@x
�rDu0, ð2Þ

where C is the transformation tensor, S and u0 are the compli-
ance tensor and the specific internal energy at the reference state.
The function f ðxÞ is a hardening function that models the
transformation strain hardening in the SMA material. Using this
thermodynamic force, the second law of thermodynamics in the
form of a dissipation inequality can be written as p _xZ0. This
inequality is then used to obtain the conditions that control the
onset of forward and reverse phase transformations as

F¼ 0, F¼
p�Y , _x40,

�p�Y , _xo0,

(
ð3Þ

where Y is a threshold value for the thermodynamic force during
phase transformation [26]. The consistency during phase trans-
formation guaranteeing the stress and temperature states to
remain on the transformation surface is given by _F ¼ 0 [28,26].
Substituting (2) and (3) into this consistency condition, the
following relation is obtained between the rate of change of
martensitic volume fraction, the stress tensor, and temperature

_x ¼�
ðCþDS : rÞ : _rþrDs0

_T

D7 , ð4Þ

where Dþ ¼ rDs0ðMs�Mf Þ for the forward phase transformation
ð _x40Þ and D� ¼ rDs0ðAs�Af Þ for reverse phase transformation
ð _xo0Þ. The parameters As,Af ,Ms,Mf represent the austenite and
martensite start and finish temperatures, respectively. Substitut-
ing (4) into (1) and assuming Da¼Dc¼ 0 – valid for almost all
practical SMA alloys – the following expression is obtained:

½Ta�F 1ðr,TÞ� : _rþ½rc�F 2ðTÞ� _T ¼�div qþrĝ , ð5Þ

where

F1ðr,TÞ ¼
1

D7 ðCþDS : rÞð8YþrDs0TÞ,
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F 2ðTÞ ¼
rDs0

D7 ð8YþrDs0TÞ: ð6Þ

In (6) the symbol (þ) is used for forward phase transformation
and (�) is used for the reverse transformation. Eq. (5) is one of
the two coupled relations for describing the thermo-mechanical
response of SMAs. The second relation is the constitutive equation
and reads [26]

e ¼S : rþaðT�T0Þþe t , ð7Þ

where e t is the transformation strain tensor related to the rate of
change of martensitic volume fraction by the evolution equation
_e t
¼C _x. In the following section, these coupled relations are

simplified for pure torsion.
3. Reduction of the coupled equations for pure torsion

The exact solution for pure torsion of shape memory alloy
circular bars ignoring the effect of phase transformation latent
heat, and assuming the isothermal condition was given in
Mirzaeifar et al. [20,22]. In this paper we modify the solution
for the pure torsion of circular bars considering the coupled
thermo-mechanical governing equations for SMAs as presented
in the previous section and Mirzaeifar et al. [21]. In the new
formulation, we study the coupled thermo-mechanical torsion
problem in the presence of the phase transformation induced heat
generation/absorption and the heat flux effect in the cross section.
A finite difference formulation is used to solve the governing
coupled thermo-mechanical equations.
3.1. Coupled thermo-mechanical governing equations in torsion of

SMA bars

According to Saint-Venant’s solution the state of stress and
strain is one dimensional and shear strain varies linearly from the
central axis toward the outer radius for bars with circular cross
sections [11,29]. It is worth noting that the Saint-Venant assump-
tion of no warpage in circular cross sections is a result of
symmetry in kinematics and it is independent of the material
response. This phenomenon has been shown theoretically for
elastic–plastic torsion of prismatic bars with circular cross section
[23,14]. Grewe and Kappler [8] reported some tests on the plastic
torsion of prismatic bars with circular cross sections and proved
the validity of Saint-Venant assumption for a material with strain
hardening response. The validity of Saint-Venant assumption for
the elastic–plastic torsion has also been studied numerically
[31,15]. For a material with phase transformation, comparable
to the strain hardening plastic response, we assume that the
Saint-Venant assumption is valid for SMA prismatic bars with
circular cross sections. The stress, strain, and transformation
strain tensors have the following forms:

r¼

0 0 0

0 0 tyz

0 tyz 0

2
64

3
75, e ¼

0 0 0

0 0 Eyz

0 Eyz 0

2
64

3
75, e t ¼

0 0 0

0 0 Et
yz

0 Et
yz 0

2
64

3
75,

ð8Þ

where tyz, Eyz and Et
yz are the shear stress, shear strain and

transformation shear strains, respectively. The no warpage assump-
tion forces the out of plane strains (both the total and transforma-
tion strains) to be zero. The transformation strain tensor in (8) is also
consistent with the transformation tensor and the evolution equa-
tion in Mirzaeifar et al. [20]. The transformation tensors for pure
torsion are given as

Cþ ¼

ffiffiffi
3
p

2
H sgnðtyzÞ

0 0 0

0 0 1

0 1 0

2
64

3
75, C� ¼

ffiffiffi
3
p

2
H sgnðEtr

yzÞ

0 0 0

0 0 1

0 1 0

2
64

3
75,

ð9Þ

where H is the ultimate transformation strain magnitude for full
austenite to martensite transformation in uniaxial loading, sgnð�Þ is
the sign function, and the superscripts (þ) and (�) for C denote the
forward and inverse phase transformations, respectively (see [1] for
the reason of assuming different transformation tensors in forward
and reverse phase transformations, and [20] for details of deriving
these tensors from the three-dimensional case for pure torsion). It is
shown by the authors that the shear strain is related to the shear
stress in SMA circular bars by the following expression [20,22]:

Eyz ¼
1þn

EA
þx7

ðDEÞ
tyz

þ
1

rb7

3

2
H2tyzþ

ffiffiffi
3
p

Ht2
yz@

7DS44þ

ffiffiffi
3
p

2
H@7 f 7

ðTÞ

( )
, ð10Þ

where n is Poisson’s ratio (assumed to be the same for both phases),
EA and DE are the austenite elastic modulus and the elastic modulus
difference between martensite and austenite phases, respectively,
DS44 ¼ ð1=GM

Þ�ð1=GA
Þ, where G is the shear modulus, and the other

parameters for the forward and reverse phase transformation are
@þ ¼ sgnðtyzÞ, @

� ¼ sgnðEtr
yzÞ, rbþ ¼ rbM

¼�rDs0ðMs�Mf Þ, rb� ¼

rbA
¼�rDs0ðAf�AsÞ, f þ ðTÞ ¼ rDs0ðT�MsÞ, and f�ðTÞ ¼ rDs0ðT�Af Þ.

The explicit expressions for the martensitic volume fraction in pure
torsion are obtained by substituting (8) into (2) and (3) and read

xþ ¼
1

rbM
f
ffiffiffi
3
p

H9tyz9þ2t2
yzDS44þ f þ ðTÞg,

x� ¼
1

rbA
f
ffiffiffi
3
p

Htyz sgnðEtr
yzÞþ2t2

yzDS44þ f�ðTÞg: ð11Þ

Substituting (11) into (10) and using Eyz ¼
1
2ry, where r is the

distance from the axis of the bar and y is the twist angle per unit
length, a quartic equation is obtained for the shear stress. The closed
form solution of this equation was presented by the authors and the
shear stress was given as a function of the radius, twist angle and
temperature, tyz ¼Y7 ðr,y,TÞ [20,22]. This equation will replace the
second coupled equation given in (7). The reduction of equation (5)
for pure torsion is obtained by substituting (8) and (9) into (5). The
set of coupled thermo-mechanical governing equations read

� ~F 1ðtyz,TÞ _tyzþ½rc� ~F 2ðTÞ� _T ¼ k
@2T

@r2
þ

1

r

@T

@r

� �
,

tyz ¼Y7 ðr,y,TÞ,

8><
>: ð12Þ

where

~F 1ðtyz,TÞ ¼
1

D7 ð
ffiffiffi
3
p

Hþ4DS44tyzÞð8YþrDs0TÞ,

~F 2ðTÞ ¼
rDs0

D7 ð8YþrDs0TÞ: ð13Þ

In (12)1, k is the thermal conductivity and Fourier’s law of thermal
conduction ðq¼�k=TÞ is used for deriving the right-hand side. The
explicit expression for (12)2 can be found in Mirzaeifar et al. [20].
Temperature and stress distributions at t¼0 are given as the initial
conditions, Tðr,0Þ ¼ T̂ , tyzðr,0Þ ¼ t̂yz. The following boundary condi-
tions are given at the outer surface and the center of the circular bar:

k
@Tðr,tÞ

@r

����
r ¼ R

¼ h1½T1�TðR,tÞ�,
@Tðr,tÞ

@r

����
r ¼ 0

¼ 0, ð14Þ

where h1 is the heat convection coefficient, T1 is the ambient
temperature, and R is the bar outer radius.
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3.2. Finite difference discretization of the governing equations

Considering axisymmetric stress and temperature distribu-
tions in the circular bar, the set of coupled thermo-mechanical
equations (12) and the boundary conditions (14) are discretized
by dividing the bar into Nr annuli of equal size Dr and using an
explicit finite difference method. The finite difference form of the
coupled thermo-mechanical equations (12) for pure torsion is
given by (see [21] for details of deriving similar relations in the
uniaxial case)

�
1

D7 ð
ffiffiffi
3
p

Hþ4DS44tn
yz,iÞð8YþrDs0Tn

i Þ

� � tnþ1
yz,i �t

n
yz,i

Dt

þ rc�
rDs0

D7 ð8YþrDs0Tn
i Þ

� �
Tnþ1

i �Tn
i

Dt

¼ riþ
Dr

2

� �
Tn

iþ1�Tn
i

riðDrÞ2
� ri�

Dr

2

� �
Tn

i �Tn
i�1

riðDrÞ2
, ð15Þ

tnþ1
yz,i ¼Y7 ðr,ynþ1,Tnþ1

Þ, ð16Þ

where the subscript i denotes the ith node in the cross section and
the superscript n refers to the nth time increment. For calculating
the finite difference approximation of the boundary conditions
that include internal heat generation, energy balance for a volume
attached to boundary nodes should be considered. For the central
node i¼1, consider a cylindrical volume with radius Dr=2. The
axis of this volume coincides with the bar axis. The finite
difference approximation of the boundary condition in the central
node is given by [24]

k
Tn

2�Tn
1

2
þ

1

8
ðDrÞ2Rn

1 ¼
1

8
ðDrÞ2rc

Tnþ1
1 �Tn

1

Dt
, ð17Þ

and for the outer node with the convection boundary condition,
considering a cylindrical volume attached to the outer node (Mth
node) with inner radius R�Dr=2 and outer radius R, the energy
balance gives

Rh1ðT1�Tn
MÞþk R�

Dr

2

� �
Tn

M�1�Tn
M

Dr
þ

RDr

2
�
ðDrÞ2

4

" #
Rn

M

¼
RDr

2
�
ðDrÞ2

4

" #
rc

Tnþ1
M �Tn

M

Dt
, ð18Þ

where the parameters Rn
1 and Rn

M are the equivalent internal heat
generation due to phase transformation calculated at the central
(i¼1) and outer (i¼M) nodes of a bar subjected to torsion as (see
[21] for details of deriving similar terms in the uniaxial case)

Rn
i ¼ �

1

D7 ð
ffiffiffi
3
p

Hþ4DS44tn
yz,iÞð8YþrDs0Tn

i Þ

� � tnþ1
yz,i �t

n
yz,i

Dt

þ �
rDs0

D7 ð8YþrDs0Tn
i Þ

� �
Tnþ1

i �Tn
i

Dt
: ð19Þ

The solution procedure is as following: the stress and tem-
perature in all nodes are known at the nth loading increment
(from the initial conditions if n¼0, and from the completed
solution in the previous increment if na0). For any of the nodes
except the central and outer nodes, substituting (16) into (15) a
non-linear algebraic equation is obtained with only one
unknown: Tnþ1

i , i¼ 2, . . . ,M�1. This equation is solved numeri-
cally [7] and the temperature at the (nþ1)th time increment is
calculated. Substituting the calculated temperature into (16) gives
the stress for the (nþ1)th increment. For the central and outer
nodes, a similar procedure is used considering (16)–(19).
4. Numerical results

We previously reported the exact solution for SMA straight
bars with circular cross sections in torsion [20] and SMA helical
springs by using the torsion of straight and curved SMA bars [22].
It is worth noting that for springs with very low helix indices, the
no warpage assumption is not valid and an appropriate modifica-
tion is needed for using the torsion theory in analyzing such
springs [10]. In a previous work we showed that considering an
isothermal process in uniaxial loading–unloading of SMA bars and
wires gives accurate results only for wires with small diameters
subjected to loadings applied with a very slow rate [21]. To
consider the effect of ambient condition, loading rate, and size
accurately, it is necessary to solve the coupled thermo-mechan-
ical equations. In this section we study the pure torsion of SMA
circular bars using the coupled thermo-mechanical equations of
Sections 2 and 3. The present formulation has the capability of
considering an accurate convection boundary condition on the
bar surface. The details of calculating the convection coefficient
on the surface of a cylindrical bar in free air, flowing air, and fluid
flow is presented in Mirzaeifar et al. [21].

4.1. Verification using experimental results

There are some reported experiments in the literature for the
torsion of prismatic solid SMA bars [5]. However, although these
works report the results of torsion tests, the material properties
needed in our constitutive model are not presented. Also, the
temperature is not measured in these tests. In order to verify our
coupled thermo-mechanical formulation the experimental data
reported by Lim and McDowell [19] is used. Lim and McDowell
[19] performed experiments on thin-wall tubes of pseudoelastic
NiTi subjected to pure torsion. During loading–unloading the
change of temperature due to latent heat generation/absorption
during phase transformation was measured using four thermo-
couples attached to the specimen and temperature versus shear
strain was reported. The specimen was made of a NiTi alloy with
the near equiatomic composition and was subjected to a heat
treatment after machining from bar stock. In Lim and McDowell
[19] only the austenite finish temperature is reported and the
other material properties are not measured. However, the results
of several uniaxial loading tests are reported that can be used for
calibrating the required material constants in the constitutive
relation that we are using in this paper. The experimental data in
Lim and McDowell [19] and Lim [18] are used for obtaining the
following properties (see [26] for details of calibrating the model
using experimental data): EA

¼ 72 GPa, EM
¼ 30 GPa, nA ¼ nM ¼

0:42, H¼0.05, rDs0 ¼�0:57� 106 J=ðm3 KÞ, Af ¼ 273:1 K, As ¼

265:7 K, Mf ¼ 231:8 K, Ms ¼ 247:9 K. Since the thermal conductiv-
ity and the specific heat are not reported for this material, we use
the previously reported values in the literature for Ni50Ti50 [16]:
k¼18 W/(m K), rcA ¼ rcM ¼ 3:9� 106 J=ðm3 KÞ. Both the inner
and outer surfaces of the tube are subjected to free convection
by air. In the numerical simulations, both the inner and outer
nodes are considered as the boundary nodes and the boundary
condition (18) is imposed for both these nodes. The thickness is
divided into 20 sections. The free convection coefficient for both
surfaces is h1 ¼ 5:2 W=m2 K (see Section 5 in [21] for calculation
details). The initial and ambient temperatures are T̂ ¼ T1 ¼ 287 K.
The loading rate is _Eeq ¼ 5� 10�4 s�1, where Eeq ¼ g=

ffiffiffi
3
p
¼ 2Eyz=

ffiffiffi
3
p

is the Mises equivalent strain. The specimen was subjected to five
loading cycles with the equivalent strains between 73%. We use
the results of the second loading–unloading cycle, in which the
material response is stabilized, for verification purposes (due to
the unknown thermal condition between the specimen and the
grips, the simulation results may be inaccurate for the final cycles
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Fig. 1. Comparison of the experimental and analytical results for (a) equivalent shear stress versus equivalent shear strain, and (b) temperature versus equivalent shear

strain at the outer surface of a thin-walled SMA tube subjected to pure torsion.
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and the second cycle is chosen because the material response is
stabilized while the effect of head exchange between the grips
and the specimen is minimum). The equivalent shear stress
versus the equivalent shear strain at the outer surface obtained
from the present formulation is compared with the experimental
results in Fig. 1(a). The temperature versus the equivalent shear
strain is calculated using the method of this paper and compared
with the experimental results in Fig. 1(b). It is worth noting that
due to the small thickness (t¼1.95 mm), the temperature gradi-
ent in the cross section is negligible. We present a detailed study
of the effect of size on the temperature gradient in the sequel. As
it is shown, the results are in an acceptable agreement. The
differences in the strain–stress response is due to the formation of
R-phase in phase transformation that is not considered in our
formulation. The differences in temperature distribution origi-
nated from the difference in the stress distribution, and also by
considering the special specimen shape. The specimen has two
thick bars attached to the ends for being mounted into the grips,
and the heat transfer between the tube gage section and the
attached parts to the tube at the ends is ignored in our theoretical
modeling (see Fig. 1 in [19] for details of the specimen shape). As
it is seen in Fig. 1(b), the specimen temperature immediately
reaches the ambient temperature at the start of unloading, while
this is not seen in the numerical simulations. This phenomenon
may be caused by the high heat exchange between the specimen
and the grips (that are in the same temperature with the ambient)
that is ignored in the theoretical modeling.
4.2. Thermo-mechanical analysis of solid SMA bars subjected to

pure torsion

As the first case study for analyzing the coupled thermo-
mechanical response of solid SMA bars under torsion, consider an
SMA bar with circular cross section of radius R¼2.5 cm
and length L¼20 cm. The bar is made of a NiTi alloy with
the following material properties: EA

¼ 72 GPa, EM
¼ 30 GPa,

nA ¼ nM ¼ 0:42, rcA ¼ rcM ¼ 2:6� 105 J=ðm3 KÞ, H¼0.05, rDs0 ¼

�0:42� 106 J=ðm3 KÞ, Af ¼ 281:6 K, As ¼ 272:7 K, Mf ¼ 238:8 K,
Ms ¼ 254:9 K. These properties are extracted for the phenomen-
ological constitutive equations by Qidwai and Lagoudas [26]
using the experimental date reported by Jacobus et al. [13] for a
Ni50Ti50 alloy. The thermal conductivity is not reported for this
material and we use k¼18 W/(m K), which is reported in the
literature for Ni50Ti50 [16]. The SMA bar is fixed at one end and
the other end is twisted to the maximum twist angle per unit
length of y¼ 5 rad=m and then unloaded to the initial configura-
tion at rest. The total loading–unloading time is assumed to be
~t ¼ 10 s. It is assumed that the whole bar is initially at the
temperature T̂ ¼ 300 K and it is surrounded by still air with
temperature T1 ¼ 300 K. The SMA specimen is vertical and
surrounded by air with negligible flow speed. For calculating
the free convection coefficient of a vertical cylinder, the empirical
and numerical relations for the Nusselt number are used (see
Section 5.1, and Fig. 2, Case III in [21], and also [12,25] for more
details). By considering an average temperature difference of 15 K
between the bar surface and the surrounding air, free convection
coefficient for this case study is h1 ¼ 4:5 W=m2 K (see Fig. 2, Case
III in [21]). The number of grid points is M¼50. The minimum
time increment for having a stable solution in the explicit
formulation is a function of the radius in each case study [24].
It is observed that in practice a convergence study is not required
because the stable solution (with appropriate choice of time
increment) always converges to the same stress and temperatures
at the selected points and the only criterion is obtaining a smooth
distribution that is acceptable by choosing 50 grid points. The
results of this case study are depicted in Fig. 2. The shear stress
distribution in the cross section of the bar in loading is shown in
Fig. 2(a) for various twist angles.

Fig. 2(b) shows the shear stress distribution in the cross
section for various twist angles in unloading. The observed spark
in the shear stress distribution for y¼ 4 rad=m is caused by the
arrangement of different regions that experience phase transfor-
mation during loading and unloading. A detailed study of this
phenomenon, along with some graphs showing the martensitic
volume fraction distribution in the cross section are presented in
Mirzaeifar et al. [20]. Since the temperature of the bar in the parts
that experience phase transformation is above the austenite finish
temperature during loading–unloading, there is no residual stress
in the cross section at the end of unloading. It is worth noting
that, temperature distribution in the cross section is affected by a
set of parameters, e.g. the loading rate, size of the bar, and the
ambient condition. Temperature may be lower than the initial
temperature in some cases (see [21] and the following case
studies in this paper). For having zero residual stress at the end
of unloading, T̂ 4Af is not an adequate condition and the
complete history of temperature distribution in the cross section
during loading–unloading should be considered. Fig. 2(c) shows
the temperature distribution in the cross section of the bar during
loading for various twist angles per unit length. There are some
important observations regarding the temperature distribution
worth explaining. As it is shown in Fig. 2(a), during loading for
each twist angle the SMA bar has an austenite core surrounding
the bar axis (characterized by a linear shear stress distribution in
the cross section). Since there is no phase transformation inside
this core, consequently no heat is generated in this region while
the temperature of the material outside this austenite core is
increased due to forward phase transformation. During loading,
the temperature inside the austenite core is increasing by the hot
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material in the outer region due to thermal conduction. Because
the temperature change inside this austenite core during loading
and unloading is solely caused by the heat exchange with the
outer material, as it will be shown in the sequel, temperature is
strongly affected by the rate of loading and a complicated
interaction between the loading rate and the core temperature
is observed. This phenomenon will be studied in detail in the
following case studies. The temperature distribution in the region
attached to the outer radius at the end of loading phase
(y¼ 5 rad=m) in Fig. 2(c) shows that the slope of temperature
distribution changes at a specific point and temperature starts to
decrease slightly in an annular ring attached to the outer surface.
By looking at Fig. 2(a), it is seen that the material in this region is
fully transformed to martensite (the linear part of shear stress
distribution for the regions near r=R¼ 1). Since after completion
of phase transformation there is no heat generation, the material
in this region loses temperature due to heat exchange with the
colder ambient at the surface. This negative slope in temperature
distribution for the outer region is seen with more intensity for
slower loading rates and higher convection coefficients as we will
show in the following case studies. The temperature distribution
during unloading in the cross section is depicted in Fig. 2(d) for
various twist angles. As it is expected, the heat absorption during
reverse phase transformation from martensite to austenite causes
a temperature decrease in the cross section during unloading. The
significance of the results in this figure is in predicting the
temperature distribution in some regions at the end of unloading
to be lower than the initial and ambient temperatures. This
phenomenon is also observed in the uniaxial loading–unloading
of SMA bars and a detailed study of this phenomenon in tension is
presented in [21]. As it will be shown in the following case
studies, temperature in the whole cross section may drop below
the initial temperature for very slow loadings and high convection
coefficients. This phenomenon will be further discussed in the
sequel. It is worth noting that the thermo-mechanical coupled
response is strongly affected by the strain history. The results
presented in this paper correspond to a monotonic increase and
decrease of twist angle. Any other loading or unloading history,
e.g. a sinusoidal or impulsive loading, should be studied
separately.

Another case study is considered in order to demonstrate the
effect of loading rate on the response of SMA bars. The geometry,
material properties, the initial condition, and the boundary
conditions are the same as those of the previous example. The
response of the bar is studied for four different loading rates ~t ¼ 1,
10, 60, and 600 s ( ~t is the total loading–unloading time). For
comparison purposes, the results of the exact solution of SMA
bars assuming the whole material at a constant initial tempera-
ture during loading–unloading are also presented in this section.
The shear stress distribution at the end of loading phase (SMA bar
is twisted to y¼ 5 rad=m and then unloaded) in the cross section
of the bar is shown in Fig. 3(a). As it is seen, the stress distribution
is strongly affected by the loading rate. The slope of stress
distribution in the region with 0oxo1 is increased by increasing
the loading rate.

The applied torque versus the twist angle for different loading
rates is shown in Fig. 3(b). The loading rate does not have a
significant influence on the applied torque for different loading
rates for the present case in which the bar is subjected to free
convection by air. We will show in the following examples that
the effect of loading rate on the applied torque depends also on the
boundary conditions and different results are observed for higher
convection coefficients. Fig. 3(a) and (b) reveals a remarkable
difference between both the stress distribution and applied torque
of the present analysis and those obtained by considering the
isothermal loading–unloading assumption. It is shown in these
figures that considering the bar in the constant initial temperature
during loading–unloading is unrealistic even for the slow loading
cycle with ~t ¼ 600 s. We will show in the next example that slow
loading rate is not an adequate measure of the isothermal response
of SMA bars in torsion; the ambient condition should be considered
as well to justify the accuracy of assuming a constant temperature
during loading–unloading. The temperature distribution in the cross
section at the end of the loading phase is depicted in Fig. 3(c). As it is
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shown, the slope of temperature distribution decreases for slower
loading rates. This is expected because as explained earlier the
temperature in the central austenite core, with no phase transfor-
mation heat generation, increases by the heat flux conducted from
the outer region. For very fast loading (e.g. see ~t ¼ 1 s in Fig. 3(c)),
the generated heat in the outer regions does not have enough time
to warm the central austenite core and hence the temperature at the
center remains close to the initial temperature. For the slow loading
~t ¼ 600 s, the temperature distribution is almost uniform. However,
it is worth mentioning that this uniform temperature is not the
same as that of an isothermal loading process (compare the
temperature by assuming an isothermal loading with the slow
loading in Fig. 3(c)). Temperature distribution in the cross section
at the end of unloading phase is shown in Fig. 3(d). It is seen that the
effect of loading rate on the temperature at the end of unloading is
more complicated compared to the previous cases. Temperature
distributions for ~t ¼ 1 and 600 s are similar. This seems surprising at
first. This figure clearly shows the complexity of the coupling
between various parameters, e.g. loading rate and boundary condi-
tions on the response of bars in torsion. For having a more precise
understanding of the temperature changes during a loading–unload-
ing cycle, and explaining the non-trivial results shown in Fig. 3(d),
the history of temperature at the center of the bar is shown in Fig. 4.

Looking at Fig. 4 and also Fig. 3(c) and (d) leads to some
important conclusions. As it is seen in Fig. 4, and as explained
earlier, during fast loading the material at the center is not warmed
by the outer material, and at the end of loading temperature at the
center is remarkably lower than those of the outer parts (see
Fig. 3(c)). The heat flux from the outer material toward the center
in this case causes a slight temperature increase at the center during
unloading as it is shown in Fig. 4. The whole process leads to a
temperature slightly above the initial temperature at the end of
unloading in fast loading. However, as shown in Fig. 4, for the slow
loading rate of ~t ¼ 600 s, there is enough time for the heat flux to
warm the internal austenite core of the bar and the temperature at
the center increases significantly during loading. At the end of
loading the whole cross section is in an almost uniform high
temperature (see Fig. 3(c)). During slow unloading, temperature of
the material in the outer parts decreases due to reverse phase
transformation heat absorption and because unloading is slow there
is enough time for the heat flux to cool down the material in the
central parts of the cross section. As shown in Fig. 4 temperature at
the end of unloading is slightly above the initial temperature and
close to the final temperature in fast loading. Considering the four
graphs presented in Fig. 4, it is seen that decreasing the loading rate
from ~t ¼ 1 s to ~t ¼ 600 s, the slope of temperature changes during
loading and unloading increases. Also it is seen that the area of the
hysteretic temperature history increases from ~t ¼ 1 s to ~t ¼ 60 s
and then decreases from ~t ¼ 60 s to ~t ¼ 600 s. For extremely fast
and slow loadings, the hysteresis areas will be zero (based on the
above-mentioned explanation for relatively fast and slow loadings
~t ¼ 1 and 60 s).

In order to study the effect of various ambient conditions on
the coupled thermo-mechanical response of SMA bars subjected
to pure torsion, consider an SMA bar with the same initial
conditions, material properties, and geometry as the previous
case studies. The total loading–unloading time is ~t ¼ 600 s and
various ambient conditions are considered. For comparison pur-
poses, the results of the exact solution assuming isothermal
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loading–unloading are also presented here. In recent years SMA
devices have been used in various structures ranging from
buildings and bridges to aerospace structures [3,4,9]. The SMA
devices in these structural applications are exposed to various
ambient conditions, e.g. the slow air flow in buildings, fast air
flow in aerospace structures, and water flow in bridges. In this
case study we consider the free convection by air, forced convec-
tion by air flow with speed of U1 ¼ 20 m=s, and water flow with
the speed of U1 ¼ 0:5 m=s, which is a common value for the speed
of water in rivers (the average water velocity in rivers varies from
0.1 m/s to 3 m/s). Temperature of both air and water flows are
assumed to be T1 ¼ 300 K. Using the empirical relations for the
forced convection (see [21] for details), the convection coeffi-
cients are obtained as h1 ¼ 91:71 W=m2 K for air flow and
h1 ¼ 2529:3 W=m2 K for water flow. The convection coefficient
for free air is h1 ¼ 4:5 W=m2 K as explained in the previous case
studies. The SMA bar is twisted from rest (fully austenite
material) to y¼ 5 rad=m and unloaded. The shear stress distribu-
tion in the cross section of the bar for different ambient condi-
tions is shown in Fig. 5(a). It is seen that changing the boundary
conditions causes moving of the shear stress plateau without a
significant change in the slope (the slope of shear stress distribu-
tion varies by changing the loading rate as shown in Fig. 3(a)).

The applied torque versus the twist angle of the SMA bar is
shown in Fig. 5(b). The most important observation in these
figures is the deviation of the results corresponding to each
ambient condition from the isothermal results. It is seen that
although the loading–unloading is applied in 10 min, only the
water flow ambient with a very large convection coefficient is
giving similar results to those obtained by assuming a constant
temperature during loading–unloading. We will study the effect
of various parameters on the validity of isothermal assumption in
Section 5. Temperature distribution at the end of loading is shown
in Fig. 5(c). It is clearly seen that only for the SMA bar operating in
water flow the temperature distribution remains constant and
close to the initial temperature. For the other cases, although the
temperature distribution is almost constant, it is remarkably
higher than the initial temperature in the whole cross section.
Both the temperature uniformity and temperature change with
respect to the initial conditions are studied in Section 5 for
various size, loading rate, and ambient conditions. The tempera-
ture distribution at the end of the unloading phase is depicted in
Fig. 5(d). Two important observations are made: temperature in
the whole cross section is lower than the initial and ambient
temperatures for both the air and water flows, and temperature of
the SMA bar exposed to air flow is lower than that of the bar
exposed to water flow. These observations can be explained by
studying the history of temperature during loading–unloading.
The history of temperature at the outer surface of the bar is
shown in Fig. 6. Temperature versus shear stress is shown in this
figure to specify the different parts of loading–unloading phases
before, during, and after phase transformation. In Fig. 6, the end of
forward phase transformation is denoted by A and the start of
reverse phase transformation is marked by the symbol B in all
the graphs. We will use these special points in the sequel to
explain more details of the material response during loading and
unloading.

Starting from T ¼ T̂ ¼ 300 K the vertical part with no tempera-
ture change corresponds to the response of material at the surface
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before the start of forward phase transformation. This vertical
plateau is proceeded by a temperature increase during forward
phase transformation. The forward phase transformation con-
tinues up to the point A on all the graphs. As it is seen, with free
convection boundary condition, temperature increases remark-
ably during phase transformation, while with the water flow
boundary condition it remains almost constant during this phase.
The amount of temperature increase during phase transformation
at the surface of the SMA bar in air flow is between the other two
boundary conditions. After point A, the phase transformation at
the surface is completed and the material is fully transformed to
martensite. With further loading, there is no phase transforma-
tion heat generation at the surface. At this stage of loading (from
the end of phase transformation at A to the end of loading), the
material at the surface loses temperature due to cooling by the
ambient, and gaining heat by conduction from the inner parts that
are experiencing forward phase transformation. For the free and
forced convection of air, the conduction from inner parts is
dominant and the temperature at the surface increases, while
for the water flow, cooling by the ambient is dominant and
temperature at the surface decreases slightly. The unloading
phase starts with an elastic stage up to point B. In this stage,
the reverse phase transformation does not occur. On the other
hand, the material is exposed to an ambient that is cooling the
bar. In all the cases, temperature decreases at the surface during
this stage of unloading. For the free convection boundary condi-
tion, temperature deceases slightly while temperature at the
surface of the bar exposed to force convection by air decreases
much more. Temperature of bars exposed to water flow does not
change much during this stage because the material is not heated
too much during loading and the temperature is almost equal to
the ambient temperature. This elastic unloading stage is pro-
ceeded by the reverse phase transformation from martensite to
austenite at the surface and is accompanied by heat absorption.
For the free convection case for which the temperature drop
during the elastic unloading phase was negligible, the heat
absorption during reverse phase transformation returns the
temperature near the initial temperature at the end of unloading.
However, for the forced air convection for which temperature
dropped remarkably, the reverse phase transformation heat
absorption causes the material to be at a lower temperature
compared to the initial and ambient temperatures at the end of
unloading. For the water flow, the high convection coefficient
keeps the material temperature close to the ambient temperature
during the whole unloading phase (heat flux is from the ambient
to the material for overcoming the heat absorption during the
reverse phase transformation). Temperature distributions at the
end of unloading depicted in Fig. 5(d) are now clearly understood
and temperature history shown in Fig. 6 explains the reason for
observing the lowest temperature for the forced air flow convec-
tion. A detailed study of the effect of ambient condition on the
temperature history during loading–unloading and a precise
study of the conditions required for observing a temperature
distribution below the initial temperature is presented by
the authors for SMA bars and wires subjected to uniaxial tension
in [21].

The presented results clearly show the necessity of using a
coupled thermo-mechanical formulation for analyzing torsion of
SMA bars. Even for relatively slow loadings, considering the
whole material in a constant temperature is not a realistic
assumption (see Fig. 3(a) and (b), and also Section 5 for a detailed
study of the effect of various parameters on the maximum
temperature gradient). As it is shown in [20,22], in general, the
cross section of a bar in pure torsion is divided into three regions
during both loading and unloading. During loading, the inner
region is fully austenite, the outer region is fully transformed into
martensite, and the phase transformation is happening in the
intermediate region. During unloading, the inner austenite region
unloads elastically and the rest of cross section is divided into two
regions. In one of these two regions, the material has been
partially transformed to martensite during loading but the
reverse phase transformation has not started yet and in the other
region the material has experienced both forward and reverse
phase transformations [20]. Note that phase transformation
occurs in only one of these three regions. Consequently, heat is
generated or absorbed in only one region. As a result, a compli-
cated thermo-mechanical problem should be solved considering
the heat flux between these three regions and also the ambient
condition. Existence and interaction of these three regions in the
cross section causes a more complex temperature distribution in
the cross section compared to that of the uniaxial case. This non-
uniform temperature distribution is the origin of the significant
differences in the stress distributions that are observed between
the coupled thermo-mechanical and isothermal torsion solutions.
5. Effect of size, boundary conditions, and loading rate on the
temperature distributions in the cross section

The main effect of thermo-mechanical coupling is reflected in
the temperature changes, although this temperature change
affects the other parameters including the stress and martensitic
volume fraction as well. In order to study the thermo-mechanical
coupling effects, two different parameters are considered in this
section: the maximum temperature difference between the sur-
face and center in the cross section, and the maximum tempera-
ture change with respect to the initial temperature. We will
consider only the loading phase in this section, and the maximum
is calculated by comparing all the increments during loading. In
some cases the temperature distribution is excessively non-uni-
form as seen in Figs. 2 and 3. In some other cases, the temperature
distribution in the cross section may be approximately uniform,
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while the temperature in the whole cross section is remarkably
different from the initial temperature (e.g. the case shown in
Fig. 5). As shown in the previous sections, the accuracy of
assuming an isothermal loading-unloading for SMA bars sub-
jected to torsion strongly depends on the ambient conditions,
size, and loading rate. In this section we consider the maximum
temperature difference between the surface and center in the
cross section, and the maximum temperature change with respect
to the initial temperature as a measure of the thermo-mechanical
coupling effect on the response of the bar. In other words, when
both these parameters are small, the bar subjected to torsion can
be assumed isothermal during loading–unloading with an accep-
table accuracy.

As the first case study in this section, the effect of convection
coefficient and diameter on the temperatures is studied in Fig. 7. In
this case study, the total loading–unloading time is t¼ 10 s. Both
the considered parameters increase with a steep slope by increasing
the diameter. Fig. 7(a) shows that for large diameters, increasing the
convection coefficient decreases the temperature gradient between
the surface and center. However, as shown in Fig. 7(b), the
temperature is much higher than the initial temperature even for
large convection coeffcients, when the diameter is large. It can be
concluded that for this loading rate, the isothermal assumption is
valid only for small diameters, i.e. SMA wires.

The effect of loading rate and diameter on the temperature
distribution in loading phase is studied in Fig. 8 for a bar subjected
to free convection of air. The maximum temperature difference
between the surface and center during loading is small for slow
loading rates even for large bars (Fig. 8(a)). However, as shown in
Fig. 8(b), the maximum temperature increase with respect to the
initial temperature is negligible only for small diameters.

The effect of loading rate and convection coefficient on the
temperature distributions is studied in Fig. 9 for a thick bar (d¼5 cm).
As shown in Fig. 9(a), the maximum temperature difference between
the surface and center during the loading phase uniformly decreases
by decreasing the loading rate for all the convection coefficients.
Fig. 9(b) shows that the maximum temperature difference with
respect to the initial temperature is negligible only when both loading
time and convection coefficient are large enough.
6. Conclusions

In this paper, the effect of heat generation and absorption
during phase transformation in analyzing the pure torsion of
shape memory alloy bars with circular cross sections is studied. A
coupled thermo-mechanical formulation is presented for SMA
bars by coupling the energy balance in the presence of heat flux
with our previous exact solution of SMA bars in torsion. Using the
present formulation one is capable of calculating the non-uniform
temperature distribution in the cross section caused by the
generation and absorption of heat due to phase transformation,
the heat conduction in the cross section, and the heat exchange
with the ambient at the outer surface. It is shown that the
response of SMA bars in torsion is strongly time dependent as
the heat flux in the cross section and the heat exchange with the
ambient is affected by the rate of loading. Several numerical case
studies are presented in order to show the necessity of consider-
ing the coupled thermo-mechanical formulation by comparing
the results of the present model with those obtained by assuming
that the whole cross section is in a constant temperature during
loading–unloading. Pure torsion of SMA bars in various ambient
conditions subjected to different loading–unloading rates are
studied and it is shown that the isothermal solution gives
inaccurate results for most practical ambient conditions and
loading rates.
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[24] M.N. Özis-ik, Finite Difference Methods in Heat Transfer, CRC-Press, Boca

Raton, FL, 1994.
[25] C.O. Popiel, Free convection heat transfer from vertical slender cylinders:

a review, Heat Transfer Engineering 29 (6) (2008) 521–536.
[26] M.A. Qidwai, D.C. Lagoudas, On thermomechanics and transformation sur-

faces of polycrystalline NiTi shape memory alloy material, International
Journal of Plasticity 16 (10) (2000) 1309–1343.

[27] J.A. Shaw, S. Kyriakides, Thermomechanical aspects of NiTi, Journal of the
Mechanics and Physics of Solids 43 (8) (1995) 1243–1281.

[28] J.C. Simo, T.J.R. Hughes, Computational inelasticity. in: Interdisciplinary
Applied Mathematics, vol. 7, Springer-Verlag, New York, 1998.

[29] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York,
1956.

[30] M. Speicher, D.E. Hodgson, R. DesRoches, R.T. Leon, Shape memory alloy
tension/compression device for seismic retrofit of buildings, Journal of
Materials Engineering and Performance 18 (2009) 746–753.
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