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On superelastic bending of shape memory alloy beams
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a b s t r a c t

In this paper, a closed-form solution is presented for bending analysis of shape memory alloy (SMA)
beams. Two different transformation functions are considered: a J2-based model with symmetric ten-
sion–compression response, and a J2—I1-based model for considering the tension–compression asymme-
try that is observed in experiments. The constitutive equations are reduced to an appropriate form for
studying the pseudoelastic bending response of SMAs. Closed-form expressions are given for the stress
and martensitic volume fraction distributions in the cross section and the bending moment–curvature
relation is obtained analytically. Both circular and rectangular cross sections are considered and several
case studies are presented for testing the accuracy of the method and also the effect of taking into
account the tension–compression asymmetry on the bending response of SMAs. The results of a three-
point bending test on an SMA beam are presented and compared with the theoretical predictions. Using
some experimental data on bending of a nickel–titanium micropillar the applicability of the present
method in the micro scale is studied. It is shown that this method can be used for assessing the tensile
properties of materials in this special case, where the compressive and bending responses are known
from experiments while the tensile properties are very difficult to be measured experimentally.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mirzaeifar et al. (2010, 2011c,b) recently developed analytic and
semi-analytic methods for simulating the pseudoelastic response
of various shape memory alloy (SMA) devices subjected to differ-
ent loading conditions. In many SMA devices, the SMA instrument
is subjected to local or global bending. This is the main motivation
for several reported works on bending analysis of SMAs in the lit-
erature. The bending of beams made of single crystal SMAs and the
propagation of phase boundaries was studied by Purohit and Bhat-
tacharya (2002). They used additional kinetic relations in conjunc-
tion with the constitutive assumptions and balance laws to
determine the propagation of phase boundaries. The solutions for
single crystalline beams consider a jump in the material properties
before and after the phase transformation, and there is no interme-
diate condition between these two cases. In polycrystalline mate-
rials, which are used in the majority of SMA engineering
applications, the phase transformation does not occur simulta-
neously in all the grains. This causes a considerable difference be-
tween the material properties in single crystals and polycrystalline
samples. While the material in a beam made of a single crystal
SMA is austenite or martensite with some phase boundaries, the

continuous change of material properties in polycrystalline SMAs
makes modeling the bending of beams made of these materials a
challenging problem (see Thamburaja and Anand (2001, 2002)
and Anand and Gurtin (2003) for studying polycrystalline SMAs
using a constitutive model based on the response of single crystal
SMAs).

Among the solutions available for modeling bending in polycry-
stallline SMAs a large number are purely numerical (Auricchio and
Sacco, 1999; Marfia et al., 2003). In an early work, Atanackovic and
Achenbach (1989) used a simplified multi-linear constitutive equa-
tion for obtaining the moment–curvature relation of a pseudoelas-
tic beam. Plietsch et al. (1994) presented a closed-form solution for
bending of SMA beams by considering a multi-linear stress–strain
response. Auricchio and Sacco (2001) studied the SMA wires sub-
jected to cyclic stretching-bending loads using a one-dimensional
constitutive model. In their work the thermo-mechanical coupling
was also considered and the finite element method was used for
solving the governing equations. Auricchio et al. (2011) imple-
mented one-dimensional constitutive equations into a finite ele-
ment model for studying the shape memory effect for SMA
beams in bending. The material response in tension and compres-
sion was assumed asymmetric and the numerical results were
compared with experiments. Recently, Flor et al. (2011) presented
some numerical simulation and experimental analysis of SMA
wires in bending. They considered tension–compression asymme-
try in their model and a numerical scheme was used for calculating
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the bending response. Their model is developed only for the load-
ing phase; unloading was not studied in either their experiments
or numerical simulations.

The existing numerical methods suffer from the high computa-
tional cost and convergence difficulties particularly for modeling
the unloading process or considering the geometric nonlinearities.
The results obtained using these numerical methods are highly sen-
sitive to a large number of secondary parameters, e.g. the mesh size,
tolerance criteria, and number of loading steps. The numerical sim-
ulations may give erroneous results due to an improper choice for
any of these parameters. On the other hand, the semi-analytic solu-
tions in the literature are based on oversimplified constitutive rela-
tions or using unrealistic simplifying assumptions. In this paper, we
introduce a closed-form solution for analyzing the superelastic
bending of shape memory alloys. A three-dimensional constitutive
model is reduced to an appropriate one-dimensional constitutive
equation. Closed-form expressions are obtained for the martensitic
volume fraction and stress distributions in the cross section of SMA
beams in bending. The Euler–Bernoulli beam theory (assuming the
plane cross sections remain plane and perpendicular to the center-
line after deformation) is used and the bending moment–curvature
relation is obtained analytically. A method is presented for solving
the bending of superelastic SMAs analytically. In addition to the J2-
based model that predicts a symmetric response in tension and
compression, a more accurate solution based on J2—I1 transforma-
tion function is also presented and the effect of considering the ten-
sion–compression asymmetry (which is a well-known response for
most SMAs (Gall et al., 1999a; Anand and Gurtin, 2003)) in the
bending response is studied.

It is worth noting that for modeling the tension–compression
asymmetry, the J2—J3 model gives more accurate results because of
its capability in modeling the negative volume change during mar-
tensitic transformation (Qidwai and Lagoudas, 2000b). However,
the J2—J3-based model cannot be used for developing a closed-form
solution in this paper. Experiments have shown that the J2—I1-based
model can predict the superelastic response of SMAs with a good
accuracy for all the parameters except the volumetric transformation
strain (see Section 4 in Qidwai and Lagoudas (2000b)). Also, the mate-
rial parameters in the J2—I1-based model can be calibrated for model-
ing a realistic volumetric transformation strain, but in this case the
tension–compression asymmetry is not modeled correctly. We will
not use this calibration method in our solution.

An important capability of our model is its applicability in
extracting the tensile properties of materials when the compres-
sion and bending test results are available but the tension proper-
ties are practically difficult to be measured experimentally, e.g. in
the micro scale applications of SMAs.

SMAs have recently attracted considerable interest for applica-
tions as actuators in micro-electro-mechanical systems (MEMS)
(Kahn et al., 1998; Bhattacharya et al., 2005; Shin et al., 2005) due
to their relatively high work output per unit volume (Krulevitch
et al., 1996). One of the traditional methods for studying the
mechanical properties of a material in the micro and nano scales
is testing pillars. These pillars are produced by focused ion beam
(FIB) micromachining (Volkert and Minor, 2007). Recently, the
pseudoelasticity, crystal orientation effect, and size dependency
have been extensively studied experimentally for nickel–titanium
and Cu–Al–Ni micropillars (Frick et al., 2007; Juan et al., 2008,
2009; Manjeri et al., 2010; Clark et al., 2010). In order to have a pre-
cise description of the micropillars response in MEMS applications,
it is ideal to extract the material response in tension, compression,
and bending experimentally. However, among the reported works
on studying the shape memory micropillars response the majority
of experiments are performed for compressive loading (Frick
et al., 2007; Juan et al., 2008, 2009; Manjeri et al., 2010); there
are very few experimental works on bending (Clark et al., 2010).

While performing bending tests on micropillars one faces some
technical difficulties (Clark et al., 2010). Tensile tests in the nano
and micro scales are considerably more difficult because a special
geometric shape should be created at the pillar head for attaching
the tensile tool to the pillar (Kim et al., 2009; Kim and Greer,
2009). As we explain in Section 4.6, our analytical solution for bend-
ing can be used for extracting the tensile properties when the bend-
ing and compressive responses are known.

The material properties in compression are calibrated from the
available experimental data. The material-independent properties
in tension are assumed and bending is simulated using these prop-
erties in tension and compression. The predicted bending response
is compared with the experimental data and a trial and error ap-
proach is used for improving the assumed tensile material proper-
ties for finding the best match between the experimental and
analytical results. It is worth noting that the iterations for improv-
ing the initial guess are performed without a considerable compu-
tational cost; the closed-form solutions are obtained in a few
seconds. Such a method is extremely time consuming if the avail-
able numerical solutions are used for modeling the bending re-
sponse. In the numerical results section, we will implement this
method for analyzing bending of a nickel–titanium micropillar
using the available experimental data.

This paper is organized as follows. In Section 2 a general three-
dimensional constitutive equation for polycrystalline SMAs using
two different transformation functions and an appropriate reduced
constitutive equation for pure bending are discussed. In this sec-
tion explicit expressions are given for the stress and martensitic
volume fraction distributions as functions of the curvature in
bending. In Section 3, these explicit expressions are used and three
different analytic approximations for the relation between the
bending moment and curvature are presented. Numerical results
for macroscale SMA beams with circular and rectangular cross sec-
tions are given in Section 4. The results of a three-point bending
test are presented and compared with the theoretical results in
Section 4.5. The available experimental data on bending of a NiTi
micropillar are used for studying the applicability of our method
for modeling this problem in Section 4.6. Conclusions are given
in Section 5.

2. Three-dimensional constitutive equations and one-
dimensional reduction for bending

We use the three-dimensional phenomenological macroscopic
constitutive model for polycrystalline SMAs proposed by Boyd
and Lagoudas (1996). In this constitutive model, by considering
the transformation strain �t (the portion of strain that is recovered
due to reverse phase transformation from detwinned martensite to
austenite) and the martensitic volume fraction n (an indicator of the
extent of the phase transformation from austenite to martensite) as
the internal state variables, the following expression is obtained for
the Gibbs free energy potential (Qidwai and Lagoudas, 2000b):

Gðr; T;�t; nÞ ¼ � 1
2q

r : S : r� 1
q

r : a T � T0ð Þ þ �t
� �

þ c T � T0ð Þ � T ln
T
T0

� �� �
� s0T þ u0 þ

1
q

f ðnÞ; ð1Þ

where, S;a; c;q; s0 and u0 are the effective compliance tensor, effec-
tive thermal expansion coefficient tensor, effective specific heat,
mass density, effective specific entropy, and effective specific inter-
nal energy at the reference state, respectively. The symbols
r; T; T0;�t , and n denote the Cauchy stress tensor, temperature, ref-
erence temperature, transformation strain, and martensitic volume
fraction, respectively. Any effective material property P is assumed
to vary with the martensitic volume fraction as P ¼ PA þ nDP, where
the superscript A denotes the austenite phase and the symbol Dð�Þ
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denotes the difference of a quality (�) between the martensitic and
austenitic phases, i.e. Dð�Þ ¼ ð�ÞM � ð�ÞA with M denoting the mar-
tensite phase.

In (1), f ðnÞ is a hardening function that models the transforma-
tion strain hardening in the SMA material. In the Boyd–Lagoudas
polynomial hardening model (Lagoudas, 2008), this function is gi-
ven by

f nð Þ ¼
1
2 qbMn2 þ l1 þ l2

� 	
n; _n > 0;

1
2 qbAn2 þ l1 � l2

� 	
n; _n < 0;

(
ð2Þ

where, qbA
;qbM

;l1 and l2 are material constants for transforma-
tion strain hardening. The first condition in (2) represents the for-
ward phase transformation (A! M) and the second condition
represents the reverse phase transformation (M ! A). The constitu-
tive relation of a shape memory material can be obtained by using
the total Gibbs free energy as

� ¼ �q
@G
@r
¼ S : rþ a T � T0ð Þ þ �t; ð3Þ

where � is the strain tensor. By introducing a generalized thermo-
dynamic force P as:

P ¼ �q
@G
@n
¼ 1

2
r : DS : rþ Da : r T � T0ð Þ

þ qDc T � T0ð Þ � T ln
T
T0

� �� �
þ qDs0T � @f

@n
� qDu0; ð4Þ

the second law of thermodynamics in the form of non-negative-
ness of the rate of entropy production density can be expressed
as r : _�t þ P _n ¼ p _n P 0 (Mirzaeifar et al., 2011a). We assume the
existence of a thermo-elastic region (transformation surface)
bounded by a smooth hypersurface, which can be described by a
transformation function U as Uðr;PÞ ¼ 0. We choose the following
general form for the transformation function (Qidwai and
Lagoudas, 2000b)

Uðr;PÞ ¼ ~UðrÞ þ P
h i2

� Y2

¼ ~UðrÞ þ P þ Y
h i

~UðrÞ þ P � Y
h i

; ð5Þ

where ~UðrÞ is the stress related transformation function that will be
defined in the following sections and Y is a measure of internal dis-
sipation due to microstructural changes during phase transforma-
tion. The transformation surface that controls the onset of direct
(austenite to martensite) and reverse (martensite to austenite)
phase transformation is defined as

~UðrÞ þ P ¼ Y; _n > 0;
�Y ; _n < 0:

(
ð6Þ

Considering the fact that any change in the state of the system is
only possible by a change in the internal state variable n (Bo and
Lagoudas, 1999), the evolution of the transformation strain tensor
is related to the evolution of the martensitic volume fraction as
_�t ¼ ð@ ~UðrÞ=@rÞ _n ¼ C _n, where C represents a transformation tensor
associated with the chosen transformation function.

By ignoring the shear force in the cross section of an SMA
beam subjected to bending, the state of stress and strain is
one dimensional. Considering the cross section in the yz-plane
and the beam axis along the x-axis, the only non-zero stress
component is rx. However, the strain and transformation strain
tensors have other non-zero components as will be shown in
the following two sections where the transformation tensor is
obtained.

2.1. Transformation function based on J2 with symmetric tension–
compression response

By an appropriate selection of the function ~UðrÞ, different mate-
rial responses observed in experiments can be modeled by this
constitutive framework. There are numerous selections for the
transformation function of SMAs in the literature based on J2 (Qid-
wai and Lagoudas, 2000a), J2—J3 (Gillet et al., 1998), J2—I1 (Auric-
chio et al., 1997), and J2—J3—I1 (Qidwai and Lagoudas, 2000b).
The models with a transformation function based on a J2 invariant
are the simplest and the best choice for our purposes of seeking a
closed-form solution. However, by developing the constitutive
equations based on J2 invariant, although the majority of the
SMA experimentally-observed responses are modeled with good
accuracy, the tension–compression asymmetry (that plays an
important rule in bending as will be shown in the numerical re-
sults section) cannot be modeled. We will use a J2-based model
and also modify it by using a J2—I1 model for taking into account
the tension–compression asymmetry. The function ~UðrÞ for a J2-
invariant based model is given by

~UðrÞ ¼ @
ffiffiffiffiffiffiffi
3J2

p
¼ @

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
; ð7Þ

where @ is a material constant corresponding to the maximum
transformation strain during forward phase transformation in ten-
sion or compression. In (7) the deviatoric stress is r0 ¼ r� 1

3 ðtrrÞI,
where I is the identity matrix. The transformation tensor associated
with this function is obtained as C ¼ 3@

2
r0ffiffiffiffiffi
3J2

p (Mirzaeifar et al.,

2011a). The evolution equation in this case reads _�t ¼ C _n.
For studying pure bending in SMAs knowing that the only non-

zero stress component is rx, the second deviatoric stress invariant
is simplified and

ffiffiffiffiffiffiffi
3J2

p
¼ jrxj. The transformation tensor for pure

bending in the case of J2-based model is reduced to read

C ¼ @sgnðrxÞ
1 0 0
0 �0:5 0
0 0 �0:5

264
375; ð8Þ

where sgnð�Þ is the sign function. Substituting (8) into the evolution
equation, if we denote the transformation strain along the beam
axis by �t

x, the transformation strain components in the cross sec-
tion are �t

y ¼ �t
z ¼ �0:5�t

x and the other components are zero during
loading. This is equivalent to assuming that phase transformation is
an isochoric (volume preserving) process, which is a consequent of
considering the transformation function based only on the J2-invari-
ant. It is worth noting that in developing the three-dimensional
constitutive relations a more precise model is obtained by assuming
a different transformation tensor related to the second deviatoric
transformation strain invariant during reverse phase transforma-
tion (Mirzaeifar et al., 2010, 2011a), but in the present case of pure
bending in which the normal stress is the only non-zero stress com-
ponent, the transformation tensors are identical during forward and
reverse phase transformations.

2.2. Modeling tension–compression asymmetry using a J2—I1-based
transformation function

It is experimentally well known that single crystal and polycrys-
talline shape memory alloys have a non-symmetric tension–com-
pression response (Liu et al., 1998; Gall et al., 1999b, 2001;
Thamburaja and Anand, 2001). There have been numerous efforts
in the literature for better understanding the origins of this second-
ary effect in SMAs and introducing appropriate constitutive rela-
tions capable of modeling this effect (Patoor et al., 1995; Paiva
et al., 2005; Auricchio et al., 2009). Most of the existing constitutive
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relations for modeling the tension–compression asymmetry are
appropriate only for numerical simulations and not for closed-form
solutions because of their complexity. We use the J2—I1-based
transformation function that enables the constitutive relations to
model the tension–compression asymmetry besides relative sim-
plicity compared to the other models (Auricchio et al., 1997; Qidwai
and Lagoudas, 2000b). The function ~UðrÞ for this model is given by

~UðrÞ ¼ g
ffiffiffiffiffiffiffi
3J2

p
þxI1 ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 : r0

r
þxtrðrÞ; ð9Þ

where g and x are material constants related to the maximum
transformation strains during forward phase transformation in ten-
sion and compression. The transformation tensor associated with
the chosen function is given by C ¼ 3g

2
r0ffiffiffiffiffi
3J2

p þxI (Auricchio et al.,

1997). The evolution function in this case is similar to the J2 model
by replacing the transformation tensor with the previously derived
tensor. It is worth noting that by setting x ¼ 0 in the J2—I1 model,
the J2 model is not recovered because the material constants are
calibrated separately for these two models. The material constants
in (9) can be calibrated for modeling the volumetric strain or the
tension–compression asymmetry. We will use the later method be-
cause we are studying the effect of asymmetry of tension–compres-
sion response on the bending response of SMAs. However, it is
shown that by calibrating the material constants in this manner
the model will predict a positive volumetric transformation strain,
which is unrealistic1 (Qidwai and Lagoudas, 2000b). However, we
are interested in the bending problem by considering the normal
components of stress and strain. The volumetric transformation
strain has no effect on our solution. In the special case that the only
non-zero stress component is the normal stress rx, the transforma-
tion tensor is given by

C ¼ gsgnðrxÞ

1 0 0

0 �0:5 0

0 0 �0:5

2664
3775þx

1 0 0

0 1 0

0 0 1

2664
3775: ð10Þ

2.3. Stress–strain relationship for SMAs in pure bending

In the one-dimensional case corresponding to pure bending,
substituting the transformation functions (7) and (9) into the
expression of thermodynamic force (4) and the transformation cri-
teria (6) enables us to find an explicit expression for the martens-
itic volume fraction. Using the following relation between the
constitutive model parameters

qDu0 þ l1 ¼
1
2
qDs0ðMs þ Af Þ; qbA ¼ �qDs0ðAf � AsÞ;

qbM ¼ �qDs0ðMs �Mf Þ; Y ¼ �1
2
qDs0ðAf �MsÞ � l2;

l2 ¼
1
4
ðqbA � qbMÞ; Da ¼ Dc ¼ 0;

ð11Þ
the explicit expressions for the martensitic volume fraction in direct
and inverse phase transformation for J2 and J2—I1 models in pure
bending after some mathematical manipulation are simplified to
read

n� ¼ 1
qb�

@jrxj þ
1
2
r2

xDS11 þ qDs0ðT � T�Þ
� �

; ð12Þ

for the J2-based model and

n� ¼ 1
qb�

gjrxj þxrx þ
1
2
r2

xDS11 þ qDs0ðT � T�Þ
� �

; ð13Þ

for the J2—I1-based model, where the + and � symbols are used for
indicating the loading and unloading, respectively, and
Tþ ¼ Ms; T� ¼ Af ; qbþ ¼ qbM , and qb� ¼ qbA. Throughout this pa-
per we use the superscripts + and � for any variable for indicating
the forward and reverse phase transformations, respectively.

Substituting the transformation tensors (8) and (10) into the
evolution equation, the explicit expressions �t

x ¼ @sgnðrxÞn and
�t

x ¼ ½gsgnðrxÞ þx�n are obtained for the J2 and J2—I1 models,
respectively. Considering an SMA beam subjected to bending both
the axial stress and transformation strain components are positive
in the region that is in tension and negative in the region that is sub-
jected to compression. For the sake of simplicity, we write the
transformation strain based on J2 and J2—I1 models with the same
equation �t

x ¼ ð‘cĝþ x̂Þn, where the loading coefficient ‘c is þ1 in
tension and �1 in compression and the parameters (ĝ; x̂) are re-
placed with (g;x) for the J2—I1 model and replaced with (@, 0) for
the J2 based model. Substituting the resulting transformation strain
into (3) gives the following one-dimensional constitutive equation

�x ¼ ðSA
11 þ nDS11Þrx þ aA T � T0ð Þ þ ð‘cĝþ x̂Þn; ð14Þ

where SA
11 ¼ 1=EA; DS11 ¼ 1=EM � 1=EA (EA and EM are the elastic

muduli of austenite and martensite, respectively). Substituting the
martensitic volume fractions (12) and (13), and using the Euler
beam theory for the strain-curvature relation �x ¼ �jy, where j
is the curvature and y is the distance from the neutral axis into
(14), the stress–strain relation can be implicitly written as the fol-
lowing cubic equation

r3
x þ ar2

x þ brx þ ~c þ ~jy ¼ 0; ð15Þ

where a; b; ~c, and ~j are constants given by

a ¼ 3ð‘cĝþ x̂Þ
DS11

; ~j ¼ 2jqb�

DS2
11

b ¼ 2qDs0ðT � T�Þ
DS11

þ 2ð‘cĝþ x̂Þ2 þ 2qb�SA
11

DS2
11

;

~c ¼ 2ð‘cĝþ x̂ÞqDs0ðT � T�Þ þ 2qb�aAðT � T0Þ
DS2

11

:

ð16Þ

The cubic Eq. (15) is solved for rx as a function of temperature and
strain. The acceptable roots2 for the SMA material in tension and
compression are

rt ¼
1
6

A� 108~jyþ Pð Þ1=3 � 2b� 2a2=3

A� 108~jyþ Pð Þ1=3 �
a
3
; ð17Þ

rc ¼
�1
12

A� 108~jyþ Pð Þ1=3 þ b� a2=3

A� 108~jyþ Pð Þ1=3 �
a
3

�
ffiffiffi
3
p

2
i

1
6

A� 108~jyþ Pð Þ1=3 þ 2b� 2a2=3

A� 108~jyþ Pð Þ1=3

" #
; ð18Þ

where A ¼ 36ab� 108~c � 8a3; B ¼ 162~c � 54abþ 12a3; C ¼ 12b3

�3a2b2 � 54ab~c þ 12a3~c þ 81~c2and P ¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81~j2y2 þ B~jyþ C

p
. It is

worth noting that the expressions for stress in tension and compression
arereal when the SMA material properties aresubstituted into the coef-
ficients (16). In order to simplify the expressions for stress, we also use
the trigonometric form of the roots of the cubic Eq. (15) as (Abramowitz
and Stegun, 1964)

1 Experiments on polycrystalline NiTi show a negative change of volume during
phase transformation. J2 models predict a zero transformation volumetric strain and
the J2—I1 model leads to a positive value. J2—J3—I1 models are able to account for a
negative transformation strain.

2 We choose the real positive root for tension, and the real negative root for
compression. If there are more than one positive or negative roots, the acceptable root
is distinguished by considering the phase transformation start and finish stresses
(30).
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rt ¼ cos
1
3

tan�1 h

� �
G � a=3; ð19Þ

rc ¼
1
2

cos
1
3

tan�1 h� 2p
3

� �
G þ

ffiffiffi
3
p

2
sin

1
3

tan�1 h� 2p
3

� �
G � a=3;

ð20Þ

where h ¼ 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�81~j2y2 � B~jy� C

p
=ðA� 108 ~jyÞ, and G ¼ 1

3 ðA
2�

144CÞ1=6. The explicit expressions in (19) give the exact value of
stress. However, we need a simplified expression to calculate an ex-
plicit expression for bending moment later. As it will be shown in
Section 4, the typical values of material properties for SMAs lead
to a large value for h in (19). Using the trigonometric identity
tan�1 h ¼ p=2� tan�1ð1=hÞ, the argument of tangent inverse is small
and can be approximated as tan�1 h ’ p=2� 1=h. Substituting this
approximation in (19) and using the fact that the parameter
b ¼ 1=ð3hÞ is also small, and considering the approximations
cos b ’ 1� b2=2, and sin b ’ b, the stresses in tension and compres-
sion are given by

rt ¼ 1� 1
2

b2
� �

cos uþ b sin u
� �

G � a
3
; ð21Þ

rc ¼ 1� 1
2

b2
� �

cos uþ b sinu
� �

G

þ
ffiffiffi
3
p

2
b cos u� 1� 1

2
b2

� �
sin u

� �
G � a

3
; ð22Þ

where u ¼ p=6. After some algebraic simplifications, the stress–
strain relationship in tension and compression can be unified using
the load condition coefficient ‘c as

r ¼ ‘c 1� 1
2

b2
� �

cos uþ b sinu
� �

G � a
3
: ð23Þ

We will present a detailed numerical study of the accuracy of the
above approximation for obtaining (21) from the exact expressions
in (19) for different curvature values in Section 4. It will be shown
that these approximate formulas give accurate results even for large
curvatures.

3. Bending moment–curvature relationship for SMAs in
bending

In this section we present a closed-form relationship between
the bending moment and curvature in SMAs subjected to bending
using the explicit stress–strain relations obtained in the previous
section. We will introduce the formulas with some different sim-
plifying assumptions. The accuracy of each approximation is
numerically studied in Section 4 versus the exact solution obtained
by using the exact stress–strain relationships (19) or (17) and using
numerical integration in the cross section for obtaining the bend-
ing moment–curvature response.

The bending moment–curvature relationship for an SMA beam
with an arbitrary cross section is given by M ¼

R
X yrðyÞdA, where

M is the bending moment, y is the distance from the neutral axis,
and X is the cross section. In the most general case, the cross sec-
tion is divided into three regions: an elastic core in which the
phase transformation has not started, a middle part with phase
transformation, and the outer part in which the material is fully
transformed to martensite. In order to calculate the total bending
moment, the bending moment in each part should be found and
summed in the whole cross section. The most complicated section
to be solved is the middle part with active phase transformation.
However, the bending moment in this section can be calculated
explicitly by using the stress distributions given in (23). In addition
to the bending moment obtained using the complete stress

expression (23), we present two more explicit expressions for the
bending moment obtained by imposing simplifications on the
stress distribution. We will numerically study the accuracy of these
simplifying assumptions in Section 4. The simplified relations can
be later used for developing closed-form solutions in more compli-
cated cases, e.g. for studying the large deflection of SMA cantile-
vers. We start with the complete stress distribution in (23). For
calculating the bending moment, the stress distribution ð23Þ
should be used only in the portion of the cross section with phase
transformation. We present a method for finding the boundaries of
this section (see (32)). For a rectangular cross section, we can write

I1 ¼
Z

yrðyÞwdy

¼�wG
ffiffiffi
R
p
ð�54~jyþAþBÞsinu

2916~j2
�w‘cGyð3Aþ2BÞcosu

2916~j

þ19
36

wy2‘cGcosu�1
6

wy2a�wGtan�1 Sð ÞðB2�108CþABÞsinu
2338 ~j2

þw‘cG ln �Rð Þð�1296Cþ9A2þ24ABþ16B2Þcosu
26310 ~j2

þw‘cGtanh�1 Qð Þcosu
�3888CðAþBÞþ9A2Bþ24AB2þ16B3

25310 ~j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 ~j2�324 ~j2C

p !
þC1;

ð24Þ

where w is the cross section width, C1 is a constant of integration, and

R ¼ �81~k2y2 � Bky� C; Q ¼ 162 ~k2yþ B~kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2~k2 � 324 ~k2C

p ;

S ¼ 9 ~kffiffiffi
R
p yþ 1

162
B
~k

� �
: ð25Þ

The other parameters in (24) are all defined in the previous sections.
We use this expression for calculating the total bending moment in
the cross section later on. Before doing that, we first present two
more expressions for this integral using the following simplifica-
tions. Considering the typical material properties for polycrystalline
SMAs, it can be shown that in the term h ¼ 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�81~j2y2 � B

p
~jy� C=ðA� 108 ~jyÞ; j � Cj � j � B~jyj > j � 81~j2y2j. We consider
two simplifying approximations in calculating the bending moment
by ignoring the first term and the first two terms in the nominator
of the expression for h. The accuracy of these approximations will
be numerically studied in Section 4.1. By ignoring the first term
(�81~j2y2), the integral required for calculating the bending mo-
ment for a rectangular cross section is given by

I2 ¼
Z

yrðyÞwdy

¼ 6wG �B~jy� Cð Þ5=2 sin u
5B3 ~j2

þ 4wGC �B~jy� Cð Þ3=2 sin u
B3 ~j2

þwGA �B~jy� Cð Þ3=2 sin u
54B2 ~j2

þwGCA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B~jy� C

p
sin u

18B2 ~j2

þ 6wGC2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B~jy� C

p
sin u

B3 ~j2
þ 3w‘cG~jy3 cos u

2B

þ 1
2

wy2‘cG cos u�wy2‘cGA cos u
24B

� 1
6

wy2a

� 9wy2‘cGC cos u
4B2 þw‘cGyA2 cos u

2592B~j
þw‘cGyCA cos u

12B2 ~j

�w‘cGCA2 ln B~jyþ Cð Þ cos u
2592B2 ~j2

þ 9w‘cGyC2 cos u
2B3 ~j

�w‘cGC2A ln B~jyþ Cð Þ cos u
12B3 ~j2

� 9w‘cGC3 ln B~jyþ Cð Þ cos u
2B4 ~j2

þ C2; ð26Þ
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where C2 is a constant of integration. By ignoring the first two
terms, this integral is simplified to read

I3 ¼
Z

yrðyÞwdy ¼ 9
8

w‘cG~k2y4 cos u
C

þ 1
3
�1
12

w‘cA~k cos u
C

� 3
w~k sin uffiffiffiffiffiffiffi
�C
p

 !
Gy3

þw
2

‘c cos u 1þ 1
2592

A2

C

 !
þ 1

36
A sin uffiffiffiffiffiffiffi
�C
p

" #
G � 1

3
a

( )
y2 þ C3;

ð27Þ

where C3 is a constant of integration. The integrals (24)–(27) are
calculated for a rectangular cross section. We study the circular
cross section later in this section. For obtaining a complete descrip-
tion of the moment–curvature relation, it is necessary to find the
boundaries of the region in which the phase transformation occurs.
We obtain these boundaries for the loading phase first. Later we
show that a different approach should be used for unloading. In
the most general case in loading, the cross section is divided into
three sections. A schematic of the cross section for a rectangular
superelastic beam is shown in Fig. 1. The first region includes the
neutral axis and the phase transformation has not started in this re-
gion (n ¼ 0). In the second region (region II) the phase transforma-
tion has started but has not been completed (0 < n < 1). The third
region (region III) contains the material with completed phase
transformation from austenite to martensite (n ¼ 1).

When using the J2-based model, the neutral axis is located at
the centroid of the beam (YNA ¼ 0 in Fig. 1) and the three regions
are symmetric with respect to the center line. However, for the
J2—I1-based model, the neutral axis is not located on the center
line. To find the neutral axis location in this case, the force equilib-
rium in each cross section along the beam axis (

P
F ¼ 0) should be

enforced, which reads

1
2

EAjy2
1tþ eI jy¼y1t

� eI jy¼y2t

 �
þEM 1

2
j y2

2t�
h2

t

4

 !
�Ht y2tþ

ht

2

� �" #

�1
2

EAjy2
1cþ eI jy¼y2c

� eI jy¼y1c

 �
þEM 1

2
j

h2
c

4
�y2

2c

 !
�Hc hc

2
�y2c

� �" #
¼0;

ð28Þ

where Ht and Hc are the maximum transformation strains in ten-
sion and compression, respectively. The parameters ht and hc are
the maximum distance from the neutral axis in the tension and
compression regions, respectively (see Fig. 1). The first three terms
in (28) correspond to the force in sections below the neutral axis
subjected to tension, and the next terms represent the force above
the neutral axis in compression (a positive curvature is assumed).
The terms containing eI represent the force corresponding to region
II with 0 < n < 1 given by

eI ¼ Z rðyÞdy

¼ ‘cGy cos u�
‘cGy �27B~kyþ BAþ 54C

 �
cos u

12B2 � 1
3

ay

�
2G �B~ky� C
 �3=2

sinu

B2~k

�
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�B~ky� C

q
BAþ 108Cð Þ sinu

18B2~k

þ
‘cG ln B~kyþ C

 �
A2B2 þ 216CABþ 11664C2
 �

cos u

2592B3~k
þ C4;

ð29Þ

where C4 is a constant of integration. In (28) we need to calculate
the values of y1t; y2t ; y1c , and y2c to obtain the neutral axis position.
The stress values corresponding to the start and finish of phase
transformation during loading phase can be calculated by replacing
nþ ¼ 0 and nþ ¼ 1 into (13) and solving for stress. These are given by

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘cĝþ x̂Þ2 � 2DS11qDs0ðT �MsÞ

q
� ð‘cĝþ x̂Þ

DS11
; ð30Þ

rf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘cĝþ x̂Þ2 � 2DS11 qDs0ðT �MsÞ � qbM

 �r
� ð‘cĝþ x̂Þ

DS11
;

ð31Þ

where the loading factor ‘c is equal to þ1 in tension and �1 in com-
pression. Using these stress values the boundaries of various re-
gions in the cross section are given by

y1t ¼
rsj‘c¼1

jEA ; y2t ¼
ðĝþ x̂ÞEM þ rf j‘c¼1

jEM ;

y1c ¼
rsj‘c¼�1

jEA ; y2c ¼
ð�ĝþ x̂ÞEM þ rf j‘c¼�1

jEM : ð32Þ

Substituting (29)–(32) into (28) and considering the fact that
hc ¼ h� ht , where h is the cross section height, this equation can
be solved for ht . This gives the neutral axis position corresponding
to j. It is worth noting that this formulation corresponds to the
most general case in which the cross section is divided into three
regions. It is obvious that if jy2tj > ht or y2c > hc , region III is not
formed in the tension or compression part of the cross section
and the above equations can be modified by eliminating the terms
associated with this region.

Bending moment at each cross section along the length of the
superelastic beam is related to the curvature by

M ¼ �1
3

EAjwðy3
1c � y3

1tÞ þ I ijy¼y2c
� I ijy¼y1c

 �
þ EMw

1
3
j

h3
c

8
� y3

2c

 !
� Hc h2

c

4
� y2

2c

 !" #
þ I ijy¼y1t

� I ijy¼y2t

 �
þ EMw

1
3
j y3

2t �
h3

t

8

 !
� Hc y2

2t �
h2

t

4

 !" #
; ð33Þ

where the superscript i is replaced by 1, 2, or 3 for different approx-
imations given in (24)–(27). It is worth noting that when the terms
I are evaluated in tension regions, the loading coefficient ‘c ¼ 1 and
in the compression regions ‘c ¼ �1. The solution procedure for the
loading phase is as follows. Bending moment along the beam axis is
calculated by considering the external force and the boundary con-
ditions. At each cross section bending moment is known and the
curvature should be found by solving the nonlinear algebraic Eq.
(33). In the case of the J2-based model, this equation can be solved
independently because the neutral axis location is known due to
symmetry, i.e. hc ¼ ht ¼ h=2. However, in the case of using the
J2—I1-based model, the neutral axis position is unknown and should
be obtained by solving (28) in which the curvature is assumed
known. For solving these equations simultaneously, a numerical
scheme is used (Forsythe et al., 1976). In this numerical method,
in each iteration, curvature j in (33) is given an initial value. This
initial value is substituted into (28) and the neutral axis position
is obtained. The calculated neutral axis position is returned to eval-
uate the right-hand side of (33). Comparing the calculated bending
moment at that cross section with the bending moment obtained
from the external force, curvature is modified (Forsythe et al.,
1976). The iterations are stopped when a tolerance is achieved
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between the applied bending moment at each cross section and the
right-hand side of (33). When the curvature is found the lateral
deflection is calculated using j ¼ d2v

dx2 , where v is the lateral deflec-
tion and x is measured along the beam axis. The integration con-
stants in curvature-lateral deflection relationship are found by
imposing the appropriate boundary conditions.

In the unloading phase, in the most general case the cross sec-
tion may be divided into three regions. The material in the inner
region with elastic response in loading (y1t < y < y1c) experiences
elastic unloading. The outer regions with phase transformation in
loading are divided into two regions during unloading; one with
elastic unloading and the other one with reverse phase transforma-
tion in unloading. To obtain the boundaries of these regions con-
sider a generic point in the cross section. If we denote the
martensitic volume fraction at the end of loading for this point
by n�, the critical stress for the start of reverse phase transforma-
tion in unloading is given by replacing n� in (12) or (13) by n�

and solving the resulting equation for stress. Using the properties
defined for the evolution equation (see below (13) for definitions),
this critical stress is given by

rc ¼
‘c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘cĝþ x̂Þ2 � 2DS11qDs0ðT � Af Þ � qbAn�

q
DS11

: ð34Þ

During unloading, the elastic change of stress at a generic location is
calculated by Dr ¼ �ðEA þ n�DEÞð�j�yþ juyÞ, where y is the dis-
tance of the point from the neutral axis. The parameters j� and
ju are the curvature of the corresponding cross section at the end
of the loading phase and the curvature in unloading, respectively.
Now we can evaluate the start of reverse phase transformation by
comparing the stress re ¼ r� � Dr (r� is the stress value at the
end of loading phase) with rc . For jrej > jrcj, the phase transforma-
tion in unloading has not started. In this case stress is equal to re

and n ¼ n�. If jrej 6 jrcj, the reverse phase transformation has
started. The stress and martensitic volume fraction are obtained
from (12), (13), and (23) by considering the superscript ‘‘-’’ and
the appropriate loading condition parameter ‘c ¼ �1. For the sake
of brevity, the details of the bending moment–curvature relations
and the process of finding the neutral axis position in unloading
are not presented here. However, this procedure is very similar to
that of the loading case.

For analyzing beams with circular cross sections a similar meth-
od is used where X is the area enclosed by the horizontal chords at
y1t and y2t , and also the area between y1c and y2c in the cross sec-
tion. In this case, we use a trapezoidal numerical integration meth-
od to obtain the bending moment–curvature relationship.

4. Numerical results

In this section, several case studies are presented for superelas-
tic beams with circular and rectangular cross sections subjected to
loading–unloading cycles. The results of both J2 and J2—I1 models
are presented. The J2-based solution is compared with a three-
dimensional finite element model and the J2—I1 results are pre-
sented to show the effect of taking into account the tension–com-
pression asymmetry on the bending response of superelastic
beams. Some experimental data for bending of a nickel–titanium
micropillar are used to verify the applicability of the present meth-
od for modeling bending in the micro scale. The available material
response in compression and bending are used for extracting the
material response in tension, which is very difficult to measure
in experiments. The resulting tensile and compressive properties
are compared with the nickel–titanium constitutive relations and
it is shown that the predicted response in tension is in good agree-
ment with the single-crystal theoretical response (see the end of
Section 4.6).

4.1. The accuracy of the proposed approximations

In Section 2.3 we presented the exact stress distribution (19).
Using this stress distribution needs a numerical integration for
obtaining the bending moment–curvature relation. Using some
assumptions an approximate stress distribution is given in (23),
which can be used for calculating explicit expressions for the the
bending moment–curvature relation. We used three different sim-
plifying assumptions for calculating the bending moment as a
function of curvature (see I i; i ¼ 1;2;3 in (24)–(27)). In this sec-
tion we compare the bending moment–curvature relationship ob-
tained by the exact stress distribution and numerical trapezoidal
integration with the results of the three approximations. A rectan-
gular cross section with h ¼ 1 cm and width w ¼ 1:5 mm is consid-
ered. The J2-based model is used for this comparison. The material
properties for Ni50Ti50 (Jacobus et al., 1996) are used for obtaining
the necessary constants in the constitutive relations (see Qidwai
and Lagoudas (2000b) for details of extracting constitutive model
constants from experimental data): EA ¼ 72 MPa; EM ¼ 30 MPa;
mA ¼ mM ¼ 0:42; qcA ¼ qcM ¼ 2:6� 106 J=ðm3 KÞ; Ht ¼ 0:05; Hc ¼
�0:035; ðdr=dTÞAt ¼ 8:4� 106 J=ðm3 KÞ; qDs0 ¼ �Htðdr=dTÞAt ¼
�0:42� 106 J=ðm3 KÞ; Af ¼ 281:6 K; As ¼ 272:7 K; Mf ¼ 238:8 K;
Ms ¼ 254:9 K. For implementing the J2-based model, the constants
in the transformation function are set to ĝ ¼ @ ¼ Ht , and x̂ ¼ 0.
The temperature is T ¼ T0 ¼ 300 K and an isothermal loading–
unloading process is assumed (see Mirzaeifar et al. (2011a) for a
detailed study of isothermal process and thermo-mechanical cou-
pling in the response of SMAs). The bending moment–curvature
relation is depicted in Fig. 2. As it is seen, all the approximations
are in good agreement with the solution obtained form the exact
stress distribution even for large curvature values. We use the
approximation II (given in (26)) throughout this paper. We use
the third approximation in a future communication for considering
the large deflection effects.

4.2. J2-based model

In this section the results of the J2-based model are presented.
We compare the analytical results obtained from the present for-
mulation with those of a three-dimensional finite element simula-
tion. The three-dimensional constitutive relations of Section 2 are
used and an appropriate user subroutine (UMAT) is written by
FORTRAN in the commercially available finite element program
ABAQUS that enables this code to model SMA structures using so-
lid elements and some two-dimensional elements. The details of
implementing the constitutive equations in a displacement-based
finite element formulation are given in Mirzaeifar et al. (2009).
The finite element framework is validated by comparing its results
with many experimental tests and analytical solutions in Mirzaei-
far et al. (2010, 2011c,b). An SMA cantilever with length L ¼ 10 cm
is considered in this section. The rectangular cross section has a
height of h ¼ 1 cm and width w ¼ 1:5 mm. Three-dimensional qua-
dratic brick elements with reduced integration (element C3D20R in
ABAQUS) are used in the finite element method. A convergence
analysis is performed for choosing the appropriate number of ele-
ments by considering the normal stress distribution in the cross
section and the load–displacement response as the convergence
criteria. The stress distribution is considered to be converged when
the maximum difference is smaller than 0.1 MPa and the conver-
gence criterion of the maximum difference for the load–displace-
ment response is 10 N. A total of 6000 elements are used for
modeling the cantilever beam (100� 20� 3 elements in length,
width, and thickness directions). All the finite element simulations
are done using this mesh. The material properties are the same as
those of the case study in Section 4.1. The temperature is
T ¼ T0 ¼ 300 K and an isothermal loading–unloading process is
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assumed. The superelastic cantilever is subjected to a transverse
tip load. The load-tip deflection is calculated by the present analyt-
ical method and the results are compared with the numerical sim-
ulation results in Fig. 3.

As it is shown, even for this relatively large deflection (the tip
deflection is four times the height of the beam), the results are in
good agreement (with a maximum of 14% error). The finite ele-
ment results show stiffening at the end of loading phase as the
slope of force–deflection increases while the analytical solution
predicts an almost constant gradient. This difference is mainly
caused by the nonlinear geometric effects that are ignored in the
present solution and included in the numerical simulations. It is
worth noting that the finite element simulation is completed in
about two hours on a 2 GHz CPU with 2 GB RAM while the analytic
solutions are obtained in a few seconds on the same system. Also
as it is seen in Fig. 3, the numerical simulation in unloading is
not completed. This happens due to some convergence issues in
most numerical simulations during unloading, especially in the
case of large deflections or complicated geometries. While
achieving convergence in the finite element simulation requires
an excessive effort by refining the mesh size and modifying the
numerical algorithms, the present analytic solution is a reliable
method. The present method can also be used as a benchmark
for validating the numerical simulations. In order to study the

capability of the present formulation in calculating the stress and
martensitic volume fraction distributions, the cross section of the
superelastic cantilever at the clamped edge is considered. The
stress distribution at the end of the loading phase is shown in
Fig. 4(a) and the martensitic volume fraction is shown in
Fig. 4(b). As it is shown the closed-form solution calculates both
the stress and martensitic volume fractions accurately. It is worth
noting that in the finite element simulation the outputs are aver-
aged between integration points and this makes the results smooth
compared to the analytical solution. As it is seen in these figures,
the core remains austenite without phase transformation. By con-
sidering pure bending, the stress around the neutral axis is zero
and there is always an austenite core without phase transforma-
tion even for large deflections. By considering the shear effect in
bending, the stress at the core is nonzero which may cause phase
transformation at the core as well. However, except for very thick
beams the pure bending theory gives accurate results and this is
reflected in comparison of the results with the finite element solu-
tion that considers the shear effect.

The contour plots of the stress and martensitic volume fraction
distributions at the end of the loading phase obtained from the
present closed-form solution are depicted in Fig. 5 and compared
with the finite element results. As it is shown, the deformed shape
obtained by the present method is slightly different from the
numerical simulation prediction. Also, the analytic solution (in this
section we are using the J2-based model) is predicting symmetric
stress and martensitic volume fraction distributions, while the fi-
nite element results show a slight asymmetry along the beam axis.
Note that in our solution the nonlinear geometry effects and the
displacement along the beam axis direction are ignored while the
numerical simulations show a minor deflection along the axis
due to geometric nonlinearities. As shown in Figs. 3–5, the present
method gives accurate results even for the large deflection chosen
in these case studies. It is worth nothing that the accuracy of the
results based on small deflection assumption is geometry depen-
dent. The geometry in the above case studies is chosen such that
phase transformation starts in the cross section even for moderate
tip deflections (in the order of thickness). If other geometries are
chosen (e.g. the same beam in another direction with height
h ¼ 1:5 mm and width w ¼ 1 cm), very large deflections are re-
quired for the phase transformation to start, and using the solu-
tions based on the small deflection assumption leads to large
errors in those cases. However, there are numerous applications
for which the approach of this paper gives accurate results (e.g.
the micropillar studied at the end of this section).

As another case study, consider a superelastic cantilever with
circular cross section. The material properties are the same as
those of the previous case study and the dimensions are
R ¼ 5 mm and L ¼ 10 cm, where R is the cross section radius. A to-
tal of 9600 three-dimensional quadratic brick elements with re-
duced integration (element C3D20R in ABAQUS) are used in the
finite element model (a cross section of the mesh is shown in
Fig. 8). The cantilever is clamped at one end and a transverse load
is applied at the other end as shown in Fig. 6. The applied force ver-
sus the tip deflection obtained by the present analytical method is
shown in Fig. 6 and compared with the finite element results. As it
is seen, the finite element results again suffer from convergence is-
sues during the unloading phase and this causes the solution to
terminate before completion. The results are in good agreement
(with a maximum of 11% error) even for the relatively large deflec-
tion (four times the bar diameter).

The results for the calculated stress and martensitic volume
fraction corresponding to the end of the loading phase at the
clamped edge are compared in Fig. 7. The results are depicted
along a vertical path passing through the center of the cross section
at the clamped edge.
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Fig. 2. The bending moment–curvature relationship calculated by the exact stress
distribution with trapezoidal integration, and three different approximate explicit
integrals (24), (26), and (27) of Section 3.
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Fig. 1. A schematic of the rectangular cross section.
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The contour plots of the stress and martensitic volume fraction
distributions are shown in Fig. 8. These contours are plotted for a
vertical section passing through the axis of the bar (see Fig. 6 for
the geometry). As mentioned earlier, a slight difference in the de-
formed shape and the asymmetry of distributions observed in
the finite element outputs both result from ignoring the geometric
nonlinearities in the present formulation. In the results presented
in this section, both the numerical simulations and the analytic
solutions are based on the J2 model. The effect of taking into ac-
count the tension–compression asymmetry on the response of
SMAs is considered by using the J2—I1-based model and the results
are presented in the next section.

4.3. Effect of tension–compression asymmetry on the bending response
of SMAs

Most shape memory alloys including NiTi exhibit significant dif-
ferent responses in tension and compression when subjected to
uniaxial loading. Bending is readily affected by this phenomenon
because the material is subjected to both tension and compression
in bending. We presented a J2—I1-based model capable of modeling
the tension–compression asymmetry in Sections 2 and 3. The con-
stitutive model parameters should be calibrated using the experi-
mental data. Denoting the maximum transformation strain in
tension and compression by Ht and Hc , respectively, the J2—I1 model

parameters are given by ĝ ¼ g ¼ 1
2 ðH

t þ jHcjÞ, and
x̂ ¼ x ¼ 1

2 ðH
t � jHcjÞ. We consider the material properties used in

the previous section and modify the constitutive parameters by
implementing the above modifications. The response of a NiTi alloy
with these properties in uniaxial compression is calculated using
both the J2 and J2—I1 models as shown in Fig. 9. It is worth noting
that the material response in tension is identical for both models
and equivalent to the results of the J2-based model in Fig. 9 with po-
sitive stress and strain values. As it is shown in Fig. 9, the J2—I1-
based model predicts the start of the phase transformation at larger
absolute values of stress, and also predicts a lower compressive
strain for completion of phase transformation compared to the J2-
based model. This phenomenon is in agreement with experimental
data (Gall et al., 1999a,b). The experimental data of Jacobus et al.
(1996) were used in Qidwai and Lagoudas (2000b) and the accuracy
of the presented J2—I1-based model was studied for modeling uni-
axial loading. We are using the same constitutive model and mate-
rial properties for studying bending of SMA beams.

Consider a cantilever superelastic beam with rectangular cross
section with the same dimensions, temperature, and boundary con-
ditions as those of the case study of Section 4.2. For comparison
purposes we study the results of J2 and J2—I1-based models to ana-
lyze the effect of taking into account the tension–compression
asymmetry on the bending response of superelastic beams. The
tip deflection versus applied force is depicted in Fig. 10. Two differ-
ent case studies are solved with the J2 model. In one case the beam
is subjected to the same force as in the J2—I1-based case study, and
in the other one the tip deflections of both beams are equal. As it is
shown, the tension–compression asymmetry significantly affects
the bending response. In the same deflection case, a maximum of
16% difference is seen in the applied force and in the same force
case, the tip deflection differs by a maximum value of 41% at the
end of the loading phase. The stress and martensitic volume frac-
tion distributions at the clamped edge are shown in Fig. 11 for this
case study at the end of the loading phase. As it is seen in Fig. 11(a),
the J2—I1 model predicts the zero stress above the cross section cen-
ter (y = 0). The non-symmetric martensitic volume fraction distri-
bution is shown in Fig. 11(b). It is worth noting that the minor
symmetry observed in the FE results is caused by the effect of large
deflections, mainly because the load at the tip is considered always
vertical in the FE analysis (the load is not rotating as the tip rotates).

The zero stress point determines the neutral axis position that is
found by solving (28) as explained in Section 3. As expected (see
Fig. 9), the absolute value of stress predicted by the J2—I1-based
model is larger compared to the predicted values by the J2-based
model. This causes a larger force at the compression portion of
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Fig. 4. Comparison of the finite element and analytical results for (a) normal stress and (b) martensitic volume fraction distribution at the clamped edge of an SMA beam with
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the cross section, and the neutral axis is shifted up toward the
compression part in order to satisfy equilibrium. It is worth noting
that the height of the phase transformation area is smaller in the
compression part due to smaller maximum compressive transfor-
mation strain (see Fig. 9) and this causes a slight downward move-
ment of the neutral axis towards the centerline as the phase
transformation area (section II in Fig. 1) is formed in the cross sec-
tion. To have a detailed view of the neutral axis position with re-
spect to the applied bending moment, this position is plotted
along the axis of the beam (in which the bending moment is vary-
ing linearly) in Fig. 12. As it is shown, in the regions far from the
clamped edge in which the material responds elastically due to
small bending moments, the neutral axis coincides with the cen-
terline. Increasing the bending moment (decreasing x on the hori-
zontal axis), the neutral axis distance from the centroid increases
up to a specific bending moment value (M ¼ 17:5 Nm at
x ¼ 1:75 cm in the present case study). Increasing the bending mo-
ment above this critical value, the neutral axis distance from the
centroid decreases slightly due to spread of the fully transformed
area.

The contour plots of martensitic volume fraction at the end of
the loading phase near the clamped edge are shown in Fig. 13
and the results are compared for the J2 and J2—I1 models (for case
study with identical tip deflections). An asymmetric distribution is
clearly seen in Fig. 13(a) and the neutral axis position is shown. As
it is seen, the neutral axis coincides with the centerline in the re-
gions far from the clamped edge where the phase transformation
has not started. Fig. 10 shows the significant effect of this
asymmetry on the force–deflection response of the superelastic
cantilever.

4.4. Materials with large tension–compression asymmetries

It has been observed in experiments that the material properties
in shape memory alloys, particularly NiTi, are strongly affected by
the deformation processing. Frick et al. (2004) studied the proper-
ties of cast and deformation processed polycrystalline NiTi (Ti-
50:9 at. pct Ni) bars. They showed that while the material response
for the cast NiTi samples is almost symmetric in tension and com-
pression, a cast, hot rolled, then cold drawn material exhibits a very
large asymmetry in tension–compression response. The maximum
transformation strain in tension is reported more than two times
the maximum transformation strain in compression for the hot
rolled, then cold drawn material with a significant difference in
the stress levels in the stress–strain plateau (see Fig. 14). Such a
large asymmetry in tension–compression response causes numeri-
cal instabilities in the finite element simulations. However, our
closed-form solution does not suffer from such instabilities. In or-
der to study the applicability of our analytic solution for modeling
bending of SMA beams with very large tension–compression asym-
metry, a superelastic beam with rectangular cross section is consid-
ered. The geometry and boundary conditions are the same as those
of the case studies in Section 4.2. The experimental results for the
stress–strain response of the material is shown in Fig. 14. The mate-
rial properties in the constitutive model are calibrated as follows:
EA ¼ 63 MPa; EM ¼ 35 MPa; mA ¼ mM ¼ 0:3; Ht ¼ 0:047; Hc ¼ �0:02;
ðdr=dTÞAt ¼ 6:4 � 106 J=ðm3 KÞ; qDs0 ¼ �Htðdr=dTÞAt ¼ �0:3008�
106 J=ðm3 KÞ; Af ¼ 300 K; As ¼ 273 K; Mf ¼ 218 K; Ms ¼ 254 K. We
use the J2—I1-based model for analyzing this problem by setting
ĝ ¼ g ¼ 1

2 ðH
t þ jHcjÞ and x̂ ¼ x ¼ 1

2 ðH
t � jHcjÞ. The ambient

temperature is T ¼ T0 ¼ 27 	C. The model prediction for the
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stress–strain response in uniaxial loading is compared with the
experimental data in Fig. 14. It is worth noting that the experimen-
tally observed difference in the Young modulus in tension and com-
pression is ignored in our solution. The difference of elastic
modulus in tension and compression has been reported in Plietsch
and Ehrlich (1997) without explaining its origin. Frick et al. (2004)
used various experimental results and asserted that the asymmetry
of the tensile and compressive response of the elastic modulus is
caused by strain contributions related to the transformation, such
as martensite interface motion, or pre-martensitic deformation
modes such as the R-phase. These strain contributions are strongly
affected by the texture of a polycrystalline SMA and a microme-
chanical model can be used to capture such effects, while phenom-
enological models ignore this asymmetry. Also, the smooth
hardening observed at the end of stress–strain plateau can be sim-
ulated in phenomenological models by using higher degree polyno-
mials or trigonometric hardening functions (Lagoudas, 2008). We
have chosen the quadratic function (2), which ignores this effect,
for obtaining a closed-form solution.

A transverse load F ¼ 210 N is applied to the superelastic canti-
lever (see Fig. 3 for the geometry and loading). The martensitic vol-
ume fraction distribution in the cross section near the clamped
edge is shown in Fig. 15(a). Comparing this distribution with the

results in the previous case study given in Fig. 13(a), it is seen that
for the material with the larger asymmetry, the neutral axis posi-
tion moves further into the compression region, and the martens-
itic volume fraction distribution is considerably asymmetric with
respect to the centerline. The stress distribution in the cross sec-
tion near the clamped edge of a beam made of this material with
large tension–compression asymmetry is shown in Fig. 15(b). As
it is seen, the compression part is considerably smaller than the
tension region. This is expected from the stress–strain response
shown in Fig. 14. The large asymmetry in the stress and martensitic
volume fraction distributions clearly shows that using a symmetric
constitutive model for this case leads to erroneous results. Our
model is stable in modeling the bending of superelastic SMA beams
made of materials with large asymmetries in tensile and compres-
sive responses.

4.5. Three-point bending test of a NiTi beam

A NiTi shape memory alloy beam is used to compare the exper-
imental and the corresponding theoretical results. A schematic of
the setup for performing the three-point bending test is shown
in Fig. 16. The length of the SMA beam is L ¼ 170 mm and the cross
section is rectangular with w ¼7.5 mm and h ¼3 mm. The SMA
beam is made of a nearly equiatomic NiTi alloy and the material
properties of Ni50Ti50 (Jacobus et al., 1996) as mentioned in Sec-
tion 4.1 are used for developing the analytic solution. It is worth
noting that thermal treatments and deformation processing may
change the material properties slightly. However, in this case by
performing a simple tension test on the sample, it was observed
that using the same material properties predicts the response in
tension with an acceptable accuracy (see Mirzaeifar et al.
(2011b) for some examples of comparing the response of SMA
samples in uniaxial tests with the results predicted by the present
constitutive equations). A 250 kN MTS Universal Testing Machine
is used for performing the three-point bending test with the setup
shown in Fig. 16. The maximum deflection of the center is set to
d ¼20 mm and the loading–unloading is performed slowly to en-
sure the isothermal condition.

The non-dimensional load–deflection response of the beam
obtained from the experiment is compared with the theoretical
results in Fig. 17. As it is shown in this figure, the loading response
is accurately predicted by the J2—I1-based model. However, the re-
sults in the unloading phase show a larger difference. This is be-
cause the constitutive equations used in this work (with the
choice of polynomial hardening function) cannot predict the
smooth stress–strain plateau in unloading and this difference is
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more when unloading starts before the material is fully trans-
formed to martensite (n < 1). In the presented test, the thickness
of the SMA beam is small and the phase transformation is not com-
pleted in most parts of the cross section (see the previous sections
for some examples of SMA beams with larger thicknesses). By
increasing the thickness, the error in the unloading phase is de-
creased remarkably. It is worth noting that by modifying the hard-
ening function (2) the constitutive equation results improve in the
unloading phase (Lagoudas, 2008). However, more complicated

hardening functions are not suitable for developing closed-form
solutions.

4.6. Bending of micropillars

As was mentioned earlier, one application of our analytic
solution is the assessment of material properties in tension
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(compression) when the bending and compressive (tensile) re-
sponses are known but performing tension (compression) tests is
practically difficult. Our solution is developed based on the consti-

tutive equations suitable for polycrystalline SMAs, and an example
of such application for polycrystalline SMAs is to obtain the
compressive response of tiny wires using the known bending and
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Fig. 14. The stress–strain response in uniaxial loading for a cast, hot rolled, then
cold drawn polycrystalline NiTi with a large tension–compression asymmetry (Frick
et al., 2004).
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tensile test results. However, we will consider a different example
in this section. Although the constitutive equations of this paper
are developed for modeling polycrystalline SMAs, we will show
that the analytical solution of this paper can also be used as an
approximation for studying the single crystal NiTi micropillars
with specific orientations with a significant hardening in the
stress–strain response.

In this section we study the superelastic response of NiTi
microscale pillars. Nickel-titanium nano to micro scale pillars
have been extensively studied experimentally in recent years. In
experiments on compressive loading of micropillars, it is observed
that the [111] NiTi samples exhibit a significant hardening during
phase transformation compared to [100] oriented samples (com-
pare the stress–strain curves for [100] oriented crystals in Juan
et al. (2008, 2009) with the response of [111] crystals in Manjeri
et al. (2010) and Frick et al. (2007)). This phenomenon is expected
from the theory as well because the NiTi crystals of [111] orien-
tation are hard under compression (Gall et al., 1999a). The hard-
ening during phase transformation in the compressive response
of [111] NiTi micropillars motivated us to implement the present
formulation, which is capable of considering the stress hardening
with arbitrary slope in the phase transformation plateau3 (see
Fig. 9) for studying bending of micropillars. We show in this section
that the material properties predicted by this method are in good
agreement with the expected properties for NiTi single crystals as
well. The experimental results on the bending of a micropillar re-
ported by Clark et al. (2010) are used in this section. They tested
a [111] oriented NiTi pillar with a diameter of Dt ¼ 1:2 lm at the

top of pillar and length of L ¼ 3:8 lm. The undeformed micropillar
and the deformed shape of the micropillar subjected to bending
are shown in Fig. 18. As mentioned in the pillar specifications, all
the samples had an estimated taper angle of 
3�–5�. We consider
a 3� angle, which leads to a diameter of Dt ¼ 1:6 lm at the pillar
base.

Among the material properties required for our constitutive
model, the austenite finish temperature is reported as Af ¼ 33 	C.
The other properties in compression can be calibrated by using a
cyclic compressive test on the micropillar reported in (Clark et al.,
2010). These properties are obtained as follows (some of the proper-
ties are considered identical with those of the NiTi bulk material as
given in the previous sections): EA ¼ 55 MPa; EM ¼ 50 MPa; mA ¼
mM ¼ 0:3; qcA ¼ qcM ¼ 2:6� 106 J=ðm3 KÞ; Ht ¼ 0:05; Hc ¼ �0:03;
ðdr=dTÞAt ¼11:4�106 J=ðm3 KÞ; qDs0¼�Htðdr=dTÞAt ¼�0:57�106 J=
ðm3 KÞ; Af ¼ 306 K; As ¼ 4288 K; Mf ¼ 242 K; Ms ¼ 274K. We use
the J2—I1-based model for analyzing this case study by setting
ĝ ¼ g ¼ 1

2 ðH
t þ jHcjÞ, and x̂ ¼ x ¼ 1

2 ðH
t � jHcjÞ. It is worth noting

that for calibrating these properties, Ht , and ðdr=dTÞAt cannot be ob-
tained only from the compression test; we have used an error and
trial method for finding these properties for the best match in the
theoretical and experimental results in bending as it will be dis-
cussed shortly. The material response in compression obtained from
the experiments (Clark et al., 2010) and the present model are
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Fig. 16. The experimental setup for the three-point bending test of an SMA beam.
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Fig. 15. Contour plots of (a) the martensitic volume fraction distribution, and (b) the stress distribution near the clamped edge for a material with large tension-compression
asymmetry (see Fig. 14).

3 The slope of stress–strain plateau for single crystal SMAs in some specific
orientations and also polycrystalline SMAs with particular heat treatments may be
near zero. The material properties of the presented model cannot be calibrated for
modeling a zero slope during the transformation. However, these properties can be
calibrated for modeling a very small slope in the stress–strain plateau if needed.
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compared in Fig. 19 for two loading–unloading cycles with 3% and
5% axial strains.4

The pillar is subjected to bending using an inclined indenter
with the angle of 
 60	 (see Fig. 18). As mentioned in (Clark
et al., 2010), the pillar slips on the indenter during loading and this
releases the axial compressive load. It can be assumed that the pil-
lar is subjected to a pure bending with the projection of force in the
transverse direction.5 The transverse force versus tip deflection ob-
tained from the present formulation with the J2—I1-based model is
compared with the experimental results in Fig. 20. As it is shown,
the present model predicts the force–deflection in bending of the
micropillar with a good accuracy. It is worth noting that the exper-
iment contains loading further up to a tip deflection of near
1500 nm. However, as it is shown in Fig. 20 for tip deflections larger
than d 
 790 nm the force–deflection slope suddenly decreases (see
Fig. 2(e) in (Clark et al., 2010)). This is due to the start of plastic
deformation of martensite that happens by further loading the mate-
rial far beyond the completion of phase transformation. We are not

considering the martensite plastic response in our model and restrict
our comparison to the start of the plastic deformation. The dashed
line in Fig. 20 shows the model prediction for the unloading phase
if the pillar was unloaded after the maximum tip deflection of
d 
 790 nm. As it is shown, even by ignoring the plastic nonrecover-
able response a residual deflection is observed in the model. This is
due to the ambient temperature T ¼ 300 K, which is slightly bellow
Af temperature.

The present method can be used to calculate the stress distri-
bution and the intensity of phase transformation inside and at the
surface of the micropillar (which are both extremely difficult to be
measured experimentally). The martensitic volume fraction distri-
bution, as a measure of the phase transformation intensity, is
shown in Fig. 21(a), and the stress distribution at the surface at
the end of the loading phase is shown in Fig. 21(b). As it is shown
in Fig. 21(b), the maximum stress at the surface is 
2500 MPa.
This is in agreement with our previous prediction of martensite
plastic deformation start at this tip deflection. The reason is that
the compression tests show the same stress for the start of mar-
tensite plastic deformation (see Fig. 4 in (Clark et al., 2010)). Con-
sidering the fact that the present model with the calibrated
material properties is predicting the material response in both
compression and bending with good accuracy, it can be concluded
that the material properties in tension are also assumed accu-
rately (these properties are guessed by considering the bending
results for finding the best possible match). The predicted

Fig. 18. SEM images showing (a) the initial configuration and the inclined flat-tip punch, and (b) in situ bending of the pillar. Copyright (2010) Wiley. Used with publisher
permission from Clark et al. (2010), Wiley.
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Fig. 19. The compressive stress–strain response of [111] NiTi micro pillars
obtained from experiments (Clark et al., 2010), and the compressive and tensile
response obtained from the present model.
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Fig. 20. Comparison of the force–deflection response for micropillars obtained from
experiments (Clark et al., 2010) and the present formulation.

4 In the compression response reported in (Clark et al., 2010), the initiation of
loading was associated with a stress–strain plateau with a very small slope. It was
assumed that the small Young modulus at the start of loading is due to the imperfect
contact. We calibrated the austenite elastic modulus by ignoring the initial low elastic
modulus in the response. This region is not shown in Fig. 19 for the sake of clarity.

5 The transverse force is F ¼ Fa cosð60	Þ ¼ 0:5Fa , where Fa is the actuation force
reported in (Clark et al., 2010), and 60	 represents the indenter angle (see Fig. 1(b) in
(Clark et al., 2010)).
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material response in tension for two loading–unloading cycles
with 3% and 5% tensile strains is also shown in Fig. 19. The pre-
dicted response in tension for this special geometry is valuable
because it is practically very difficult to test a micropillar in ten-
sion. It is worth noting that there are several uncertainties in the
experiment used in this section, including the non-uniform cross
section of the pillar, the inclined indentor for bending, and the
imperfect contact at the start of compressive loading that cause
the observed error in the results. In order to obtain more accurate
results, a specific experiment on a micropillar with uniform cross
section subjected to bending with a sharp perpendicular indentor
is required. Also, various length to thickness ratios should be con-
sidered for studying the effect of shear deformation on the bend-
ing response of NiTi micropillars. However, as it will be shown in
the following, the results of this section are in agreement with the
theoretical expectations for single crystal NiTi shape memory
alloys.

The predicted maximum transformation strains in tension and
compression are in agreement with the response of [111] oriented
NiTi single crystals. Considering the crystallographic data for
24 martensite correspondence variant pairs (CVPs) in NiTi (see
Table 1 in (Gall et al., 1999a)), and using the method described
in detail by Gall et al., 1999a, it can be shown that for a [111]
oriented NiTi single crystal, CVP#2 with habit plane normal
n ¼ ð�0:4044;�0:8889;�0:2152Þ and transformation direction
m ¼ ð�0:4981;0:4114;�0:7633Þ is the first CVP to satisfy the
transformation criteria in tension, and the CVP#1 with habit plane
normal n ¼ ð�0:8889;�0:4044;0:2152Þ and transformation direc-
tion m ¼ ð0:4114;�0:4981;0:7633Þ is the first CVP to satisfy the
transformation criteria in compression. Using these directions
and the magnitude of transformation g ¼ 0:13078, the transforma-
tion strain for the kth variant is given by �k

ij ¼
g
2 ðmk

i nk
j þmk

j nk
i Þ (Gall

et al., 1999a). Calculating the transformation strain tensors for ten-
sion and compression with the given directions, the normal trans-
formation strains in [111] direction are obtained as �t

t ¼ 5:59% and
�t

c ¼ 3:18% in tension and compression, respectively. These trans-
formation strains are in good agreement with the values obtained
for Ht ¼ 5% and Hc ¼ 3% that represent the maximum transforma-
tion strains in our model. Using the transformation criteria for NiTi
single crystals given in (Gall et al., 1999a), the ratio of phase trans-
formation start stresses in tension and compression is given by
jr̂cj=r̂t ¼ ât=jâcj, where r̂ is the critical stress at which phase trans-
formation starts and â is the normal component of the tensor a on
(111) plane with aij ¼ 1

2 ðmk
i nk

j þmk
j nk

i Þ. This ratio is obtained as
jr̂cj=r̂t ¼ 1.7578 using the m and n directions given above, which
is in agreement with the value predicted by our model
jr̂cj=r̂t ¼ 477=275 ¼ 1:7345 (see Fig. 19).

5. Conclusions

In this paper a closed-form solution is given for bending analy-
sis of superelastic shape memory alloy beams. Some three-dimen-
sional constitutive relations are reduced to an appropriate one-
dimensional form required for formulating the bending problem
and explicit expressions are given for the stress and martensitic
volume fraction distributions in the beam cross section. These ex-
plicit expressions are used for obtaining closed-form relations be-
tween bending moment and curvature in pure bending. In addition
to a model based on symmetric tension–compression response, an-
other method is presented that is capable of modeling bending in
materials that have asymmetric response in tension and compres-
sion. Several case studies are presented for studying the accuracy
of our method by comparing the results with those of three-dimen-
sional finite element simulations. The effect of taking into account
the tension–compression asymmetry in the bending response of
shape memory alloys is also studied. In order to study the applica-
bility of the present formulation in the micro scale, some experi-
mental data on the bending of a [111] oriented NiTi micropillar
are used. It is shown that the present formulation can be used
for calculating the global force–deflection response with a good
accuracy compared to the experimental results. Our model is
shown to be very useful in finding the stress distributions, which
are practically difficult to be measured in experiments. It is also
shown that the present formulation can be used to find the tensile
response of micropillars (which is very difficult to be measured
experimentally) by using the responses in compression and bend-
ing. The predicted tensile response is compared with those ob-
tained from analyzing [111] oriented NiTi single crystals, and a
good agreement is observed.

Studying the large strain effects in bending analysis of SMA
superelastic beams is an important extension of the present work,
which can be obtained using the approximation III. This approxi-
mation can also be used for developing a closed-form solution
based on higher-order beam theories. Adding the thermo-mechan-
ical coupling effect to the present model enables it to consider the
phase transformation latent heat effect on the bending of SMA
beams, which leads to a comprehensive solution capable of model-
ing the rate dependency, ambient condition effects, and size effect
in the response of superelastic SMA beams in bending. These will
be the subjects of future communications.
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